Package ‘quantmod’
June 20, 2017

Type Package
Title Quantitative Financial Modelling Framework
Version 0.4-10
Date 2017-06-19
Depends xts(>= 0.9-0), zoo, TTR(>= 0.2), methods
Imports curl
Suggests DBI, RMySQL, RSQLite, timeSeries, XML, downloader, jsonlite(>= 1.1)
Description Specify, build, trade, and analyse quantitative financial trading strategies.
LazyLoad yes
License GPL-3

BugReports https://github.com/joshuaulrich/quantmod/issues

NeedsCompilation yes
Author Jeffrey A. Ryan [aut, cph],
Joshua M. Ulrich [cre, aut],
Wouter Thielen [ctb]

Maintainer Joshua M. Ulrich <josh.m.ulrich@gmail.com>
Repository CRAN

Date/Publication 2017-06-20 10:36:21 UTC

R topics documented:

quantmod-package ... 3
addADX ... 4
addBBands ... 5
addCCI ... 6
addExpiry .. 7
addMA ... 8
addMACD ... 9
addROC ... 10
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>addRSI .. 11</td>
</tr>
<tr>
<td>addSAR .. 12</td>
</tr>
<tr>
<td>addSMI .. 13</td>
</tr>
<tr>
<td>addVo .. 14</td>
</tr>
<tr>
<td>addWPR .. 15</td>
</tr>
<tr>
<td>adjustOHLC ... 16</td>
</tr>
<tr>
<td>attachSymbols .. 17</td>
</tr>
<tr>
<td>buildData .. 19</td>
</tr>
<tr>
<td>buildModel ... 21</td>
</tr>
<tr>
<td>chartSeries .. 22</td>
</tr>
<tr>
<td>chartTheme ... 25</td>
</tr>
<tr>
<td>chart_Series .. 27</td>
</tr>
<tr>
<td>chob-class .. 28</td>
</tr>
<tr>
<td>chobTA-class ... 29</td>
</tr>
<tr>
<td>create_binding .. 30</td>
</tr>
<tr>
<td>Defaults ... 31</td>
</tr>
<tr>
<td>Delt ... 33</td>
</tr>
<tr>
<td>findPeaks .. 34</td>
</tr>
<tr>
<td>fittedModel .. 35</td>
</tr>
<tr>
<td>getDividends ... 37</td>
</tr>
<tr>
<td>getFinancials ... 39</td>
</tr>
<tr>
<td>getFX .. 40</td>
</tr>
<tr>
<td>getMetals ... 42</td>
</tr>
<tr>
<td>getModelData ... 43</td>
</tr>
<tr>
<td>getOptionChain .. 44</td>
</tr>
<tr>
<td>getQuote .. 45</td>
</tr>
<tr>
<td>getSplits ... 47</td>
</tr>
<tr>
<td>getSymbols .. 48</td>
</tr>
<tr>
<td>getSymbols.csv .. 52</td>
</tr>
<tr>
<td>getSymbols.FRED ... 53</td>
</tr>
<tr>
<td>getSymbols.google .. 55</td>
</tr>
<tr>
<td>getSymbols.MySQL ... 57</td>
</tr>
<tr>
<td>getSymbols.oanda ... 59</td>
</tr>
<tr>
<td>getSymbols.rda ... 61</td>
</tr>
<tr>
<td>getSymbols.SQLite .. 62</td>
</tr>
<tr>
<td>getSymbols.yahoo .. 64</td>
</tr>
<tr>
<td>getSymbols.yahooj ... 66</td>
</tr>
<tr>
<td>has.OHLC .. 68</td>
</tr>
<tr>
<td>internal-quantmod .. 69</td>
</tr>
<tr>
<td>is.quantmod .. 70</td>
</tr>
<tr>
<td>Lag .. 70</td>
</tr>
<tr>
<td>modelData ... 72</td>
</tr>
<tr>
<td>modelSignal .. 73</td>
</tr>
<tr>
<td>newTA ... 73</td>
</tr>
<tr>
<td>Next ... 77</td>
</tr>
<tr>
<td>OHLC.Transformations ... 78</td>
</tr>
<tr>
<td>options.expiry ... 81</td>
</tr>
<tr>
<td>periodReturn .. 82</td>
</tr>
</tbody>
</table>
The quantmod package for R is designed to assist the quantitative trader in the development, testing, and deployment of statistically based trading models.

What quantmod IS

A rapid prototyping environment, with comprehensive tools for data management and visualization, where quant traders can quickly and cleanly explore and build trading models.

What quantmod is NOT

A replacement for anything statistical. It has no ‘new’ modelling routines or analysis tool to speak of. It does now offer charting not currently available elsewhere in R, but most everything else is more of a wrapper to what you already know and love about the language and packages you currently use.

quantmod makes modelling easier by removing the repetitive workflow issues surrounding data management, modelling interfaces, and performance analysis.
addADX

Add Directional Movement Index

Usage

addADX(n = 14, maType="EMA", wilder=TRUE)

Arguments

n periods to use for DX calculation
maType moving average type
wilder should Welles Wilder EMA be used?

Details

See 'ADX' in TTR for specific details and references.

Value

An ADX indicator will be draw in a new window on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see ADX in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addADX()

End(Not run)
addBBands

Add Bollinger Bands to Chart

Description

Add Bollinger Bands to current chart.

Usage

addBBands(n = 20, sd = 2, maType = "SMA", draw = 'bands', on = -1)

Arguments

- **n**: number of moving average periods
- **maType**: type of moving average to be used
- **sd**: number of standard deviations
- **draw**: indicator to draw: bands, percent, or width
- **on**: which figure area of chart to apply to

Details

The primary addition to this function call over the TTR version is in the **draw** argument. ‘bands’ will draw standard Bollinger Bands, ‘percent’ will draw Bollinger %b and ‘width’ will draw Bollinger Bands Width. The last two will be drawn in new figure regions.

See bollingerBands in TTR for specific details as to implementation and references.

Value

Bollinger Bands will be drawn, or scheduled to be drawn, on the current chart. If **draw** is either percent or width a new figure will be added to the current TA figures charted.

A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

See bollingerBands in TTR written by Josh Ulrich

See Also

addTA
Examples

```r
## Not run:
addBBands()

## End(Not run)
```

addCCI
Add Commodity Channel Index

Description

Add Commodity Channel Index

Usage

```r
addCCI(n = 20, maType="SMA", c=0.015)
```

Arguments

- `n` periods to use for DX calculation
- `maType` moving average type
- `c` Constant to apply to the mean deviation.

Details

See `CCI` in **TTR** for specific details and references.

Value

An CCI indicator will be draw in a new window on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see CCI in **TTR** written by Josh Ulrich

See Also

addTA
Examples

```r
## Not run:
addCCI()

## End(Not run)
```

addExpire

Add Contract Expiration Bars to Chart

Description

Apply options or futures expiration vertical bars to current chart.

Usage

```r
addExpire(type = "options", lty = "dotted")
```

Arguments

- `type`: options or futures expiration
- `lty`: type of lines to draw

Details

See options.expiry and futures.expiry in _quantmod_ for details and limitations.

Value

Expiration lines will be drawn at appropriate dates. A chibTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

See Also

- `addTA`

Examples

```r
## Not run:
addExpire()

## End(Not run)
```
addMA

Add Moving Average to Chart

Description
Add one or more moving averages to a chart.

Usage
addSMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "brown")
addEMA(n = 10, wilder = FALSE, ratio=NULL, on = 1,
 with.col = Cl, overlay = TRUE, col = "blue")
addWMA(n = 10, wts=1:n, on = 1, with.col = Cl, overlay = TRUE, col = "green")
addDEMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "pink")
addEVWMA(n = 10, on = 1, with.col = Cl, overlay = TRUE, col = "yellow")
addZLEMA(n = 10, ratio=NULL, on = 1, with.col = Cl, overlay = TRUE, col = "red")

Arguments
n periods to average over
wilder logical; use wilder?
wts a vector of weights
ratio a smoothing/decay ratio
on apply to which figure (see below)
with.col using which column of data (see below)
overlay draw as overlay
col color of MA

Details
see the appropriate base MA functions in TTR for more details and references.

Value
A moving average indicator will be draw on the current chart. A chobTA object will be returned silently.

Author(s)
Jeffrey A. Ryan
addMACD

References

see MovingAverages in TTR written by Josh Ulrich

See Also

addTA

Examples

```r
## Not run:
addSMA()
addEMA()
addWMA()
addDEMA()
addEVMA()
addZLEMA()

## End(Not run)
```

addMACD

Add Moving Average Convergence Divergence to Chart

Description

Add Moving Average Convergence Divergence indicator to chart.

Usage

```r
addMACD(fast = 12, slow = 26, signal = 9, type = "EMA", histogram = TRUE, col)
```

Arguments

- `fast` : fast period
- `slow` : slow period
- `signal` : signal period
- `type` : type of MA to use. Single values will be replicated
- `histogram` : include histogram
- `col` : colors to use for lines (optional)

Details

See and 'MACD' in TTR for specific details and implementation references.

Value

A MACD indicator will be draw in a new window on the current chart. A chobTA object will be returned silently.
addROC

Author(s)

Jeffrey A. Ryan

References

see MACD in **TTR** written by Josh Ulrich

See Also

addTA

Examples

```r
## Not run:
addMACD()

## End(Not run)
```

addROC

Add Rate Of Change to Chart

Description

Add Rate Of Change indicator to chart.

Usage

```r
addROC(n = 1, type = c("discrete", "continuous"), col = "red")
```

Arguments

- `n` periods
- `type` compounding type
- `col` line color (optional)

Details

See 'ROC' in **TTR** for specific details and references.

Value

A ROC indicator will be draw in a new window on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan
addRSI

References

see ROC in **TTR** written by Josh Ulrich

See Also

addTA

Examples

```r
## Not run:
addROC()

## End(Not run)
```

addRSI
Add Relative Strength Index to Chart

Description

Add a Relative Strength Index indicator to chart.

Usage

```r
addRSI(n = 14, maType = "EMA", wilder = TRUE)
```

Arguments

- `n` periods
- `maType` type of MA to use
- `wilder` use wilder (see EMA)

Details

see 'RSI' in **TTR** for specific details and references.

Value

An RSI indicator will be draw in a new window on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see RSI in **TTR** written by Josh Ulrich
addSAR

See Also

addTA

Examples

Not run:
addRSI()

End(Not run)

Add Parabolic Stop and Reversal to Chart

Description

Add Parabolic Stop and Reversal indicator overlay to chart.

Usage

addSAR(accel = c(0.02, 0.2), col = "blue")

Arguments

accel Accelleration factors - see SAR
col color of points (optional)

Details

see 'SAR' in TTR for specific details and references.

Value

A SAR overlay will be drawn on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see SAR in TTR written by Josh Ulrich

See Also

addTA
addSMI

Examples

```r
## Not run:
addSAR()

## End(Not run)
```

Description

Add Stochastic Momentum Indicator to chart.

Usage

```r
addSMI(n=13, slow=25, fast=2, signal=9, ma.type="EMA")
```

Arguments

- `n`
 periods
- `slow`
 slow
- `fast`
 fast
- `signal`
 signal
- `ma.type`
 MA type to use, recycled as necessary

Details

see 'SMI in TTR for specifics and references.

Value

An SMI indicator will be draw in a new window on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see SMI in TTR written by Josh Ulrich

See Also

addTA
Examples

```r
## Not run:
addSMI()

## End(Not run)
```

addVo
Add Volume to Chart

Description

Add Volume of a series, if available, to the current chart. This is the default TA argument for all charting functions.

Usage

```r
addVo(log.scale=FALSE)
```

Arguments

- `log.scale`
 use log-scale for volume

Details

Add volume bars to current chart if data object contains appropriate volume column.
log.scale will transform the series via standard R graphics mechanisms.

Value

Volume will be draw in a new window on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

See Also

- `addTA`

Examples

```r
## Not run:
addVo()

## End(Not run)
```
Description

Add William’s percent R indicator to the current chart.

Usage

addWPR(n = 14)

Arguments

n periods

Details

see ’WPR’ in TTR for details and references.

Value

A William’s percent R indicator will be draw in a new window on the current chart. A chobTA object will be returned silently.

Author(s)

Jeffrey A. Ryan

References

see ’WPR’ in TTR written by Josh Ulrich

See Also

addTA

Examples

Not run:
addWPR()

End(Not run)
Description

Adjust all columns of an OHLC object for split and dividend.

Usage

```r
adjustOHLC(x, 
  adjust = c("split","dividend"),
  use.Adjusted = FALSE,
  ratio = NULL,
  symbol.name=deparse(substitute(x)))
```

Arguments

- `x` An OHLC object
- `adjust` adjust by split, dividend, or both (default)
- `use.Adjusted` use the ‘Adjusted’ column in Yahoo! data to adjust
- `ratio` ratio to adjust with, bypassing internal calculations
- `symbol.name` used if `x` is not named the same as the symbol adjusting

Details

This function calculates the adjusted Open, High, Low, and Close prices according to split and dividend information.

There are three methods available to calculate the new OHLC object prices.

By default, `getSplits` and `getDividends` are called to retrieve the respective information. These may dispatch to custom methods following the “.” methodology used by quantmod dispatch. See `getSymbols` for information related to extending quantmod. This information is passed to `adjRatios` from the `TTR` package, and the resulting ratio calculations are used to adjust to observed historical prices. This is the most precise way to adjust a series.

The second method works only on standard Yahoo! data containing an explicit Adjusted column.

A final method allows for one to pass a ratio into the function directly.

All methods proceed as follows:

New columns are derived by taking the ratio of adjusted value to original Close, and multiplying by the difference of the respective column and the original Close. This is then added to the modified Close column to arrive at the remaining ‘adjusted’ Open, High, Low column values.

If no adjustment is needed, the function returns the original data unaltered.

Value

An object of the original class, with prices adjusted for splits and dividends.
Warning

Using `useAdjusted = TRUE` will be less precise than the method that employs actual split and dividend information. This is due to loss of precision from Yahoo! using `Adjusted` columns of only two decimal places. The advantage is that this can be run offline, and for short series or those with few adjustments the loss of precision will be small.

The resulting precision loss will be from row observation to row observation, as the calculation will be exact for intraday values.

Author(s)

Jeffrey A. Ryan

References

See Also

`getSymbols.yahoo` `getSplits` `getDividends`

Examples

```r
## Not run:
getSymbols("AAPL", from="1990-01-01", src="yahoo")
head(AAPL)
head(AAPL.a <- adjustOHLC(AAPL))
head(AAPL.uA <- adjustOHLC(AAPL, use.Adjusted=TRUE))

# intraday adjustments are precise across all methods
# an example with Open to Close (OpCl)
head(cbind(OpCl(AAPL),OpCl(AAPL.a),OpCl(AAPL.uA)))

# Close to Close changes may lose precision
head(cbind(CLCl(AAPL),CLCl(AAPL.a),CLCl(AAPL.uA)))

## End(Not run)
```

Description

Attach a demand database (lazy load) as a new environment.
Usage

attachSymbols(DB = DDB_Yahoo(),
 pos = 2,
 prefix = NULL,
 postfix = NULL,
 mem.cache = TRUE,
 file.cache = !mem.cache,
 cache.dir = tempdir())

cacheSymbols(DB = DDB_Yahoo())

Arguments

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>A DDB data base object</td>
</tr>
<tr>
<td>pos</td>
<td>position in search path to attach DB</td>
</tr>
<tr>
<td>prefix</td>
<td>character to prefix all symbols with</td>
</tr>
<tr>
<td>postfix</td>
<td>character to postfix all symbols with</td>
</tr>
<tr>
<td>mem.cache</td>
<td>should objects be cached in memory</td>
</tr>
<tr>
<td>file.cache</td>
<td>should objects be cached in on disk</td>
</tr>
<tr>
<td>cache.dir</td>
<td>directory to use for file.cache=TRUE</td>
</tr>
</tbody>
</table>

Details

An experimental function to allow access to remote objects without requiring explicit calls to a loading function.

attachSymbols requires a DDB object to define where the data is to come from, as well as what symbols are loaded on-demand.

attachSymbols calls the method referred to by the DDB object. In the default case this is DDB_Yahoo. See this function for specific details about the Yahoo implementation.

The individual methods make use of getSymbols to load the data. This requires a corresponding getSymbols method.

Internally, attachSymbols makes use of quantmod’s unexported create.bindings to dynamically create active bindings to each symbol listed in the DDB object.

In turn, create.bindings uses one of two R methods to create the binding to the names required. This depends on the cache method requested.

Immediately after a call to attachSymbols, a new environment is attached that contains the names of objects yet to be loaded. This is similar to the lazy-load mechanism in R, though extended to be both more general and easier to use.

It is important to note that no data is loaded at this stage. What occurs instead is that these symbols now have active bindings using either delayedAssign (mem.cache) or makeActiveBinding (file.cache).

During all future requests for the object(s) in question, the binding will be used to determine how this data is loaded into R. mem.cache will simply load the data from its corresponding source (as defined by the DDB object) and leave it in the environment specified in the original call. The effect
of this is to allow lazy-loading of data from a variety of external sources (Yahoo in the default case). Once loaded, these are cached in R’s memory. Nothing further differentiates these from standard variables. This also means that the environment will grow as more symbols are loaded.

If the file.cache option is set, the data is loaded from its source the first time the symbol is referenced. The difference is that the data is then written to a temporary file and maintained there. Data is loaded and subsequently removed upon each request for the object. See makeActiveBinding for details of how this occurs at the R level.

A primary advantage of using the file.cache option is the ability to maintain hundreds or thousands of objects in your current session without using memory, or explicitly loading and removing. The main downside of this approach is that the data must be loaded from disk each time, with the corresponding (if generally negligible) overhead of file access.

Note
This function is new, and all aspects may change in the near future.

Author(s)
Jeffrey A. Ryan

References
Luke’s stuff and Mark Brevington and Roger Peng

See Also
delayedAssign, makeActiveBinding

Examples
```r
## Not run:
attachSymbols()
SBUX
QQQQ
ls()

## End(Not run)
```

```r
table

buildData Create Data Object for Modelling

Description
Create one data object from multiple sources, applying transformations via standard R formula mechanism.

Usage
buildData(formula, na.rm = TRUE, return.class = "zoo")
```
Arguments

formula: an object of class formula (or one that can be coerced to that class): a symbolic description of the desired output data object, with the dependent side corresponding to first column, and the independent parameters of the formula assigned to the remaining columns.

na.rm: drop rows with missing values?

return.class: one of "zoo","data.frame","ts","timeSeries"

Details

Makes available for use outside the quantmod workflow a dataset of appropriately transformed variables, using the same mechanism underlying specifyModel. Offers the ability to apply transformations to raw data using a common formula mechanism, without having to explicitly merge different data objects.

Interally calls specifyModel followed by modelData, with the returned object being coerced to the desired 'return.class' if possible, otherwise returns a zoo object.

See getSymbols and specifyModel for more information regarding proper usage.

Value

An object of class return.class.

Author(s)

Jeffrey A. Ryan

See Also

getsymbols, specifyModel, modelData

Examples

```r
## Not run:
buildData(Next(OpCl(DIA)) ~ Lag(TBILL) + I(Lag(OpHi(DIA))^2))
buildData(Next(OpCl(DIA)) ~ Lag(TBILL), na.rm=FALSE)
buildData(Next(OpCl(DIA)) ~ Lag(TBILL), na.rm=FALSE, return.class="ts")

## End(Not run)
```
Build quantmod model given specified fitting method

Description

Construct and attach a fitted model of type *method* to *quantmod* object.

Usage

`buildModel(x, method, training.per, ...)`

Arguments

- **x**
 An object of class `quantmod` created with `specifyModel` or an R formula

- **training.per**
 character vector representing dates in ISO 8601 format “CCYY-MM-DD” or “CCYY-MM-DD HH:MM:SS” of length 2

- **method**
 A character string naming the fitting method. See details section for available methods, and how to create new methods.

- **...**
 Additional arguments to method call

Details

Currently available methods include:

- `lm`, `glm`, `loess`, `step`, `ppr`, `rpart`, `tree`, `randomForest`, `mars`, `polymars`, `lars`, `rq`, `lqs`, `rml`, `svm`, `nnet`.

The `training.per` should match the underlying date format of the time-series data used in modelling. Any other style may not return what you expect.

Additional methods wrappers can be created to allow for modelling using custom functions. The only requirements are for a wrapper function to be constructed taking parameters `quantmod`, `training.data`, and `...`. The function must return the fitted model object and have a predict method available. It is possible to add predict methods if non exist by adding an S3 method for predictModel. The `buildModel.skeleton` function can be used for new methods.

Value

An object of class `quantmod` with fitted model attached

Note

See `buildModel.skeleton` for information on adding additional methods

Author(s)

Jeffrey Ryan
chartSeries

Create Financial Charts

Description

Charting tool to create standard financial charts given a time series like object. Serves as the base function for future technical analysis additions. Possible chart styles include candles, matches (1 pixel candles), bars, and lines. Chart may have white or black background. `rechart` allows for dynamic changes to the chart without having to respecify the full chart parameters.

Usage

```r
chartSeries(x, 
  type = c("auto", "candlesticks", "matchsticks", "bars","line"), 
  subset = NULL, 
  show.grid = TRUE, 
  name = NULL, 
  time.scale = NULL, 
  log.scale = FALSE, 
  TA = 'addVo()', 
  TAsep=':', 
  line.type = "1", 
  bar.type = "ohlc", 
  theme = chartTheme("black"), 
  layout = NA, 
  major.ticks='auto', minor.ticks=TRUE, 
  yrange=NULL, 
  plot=TRUE, 
  up.col,dn.col,color.vol = TRUE, multi.col = FALSE, 
  ...)

reChart(type = c("auto", "candlesticks", "matchsticks", "bars","line"), 
  subset = NULL, 
  show.grid = TRUE,
```
```r
name = NULL,
time.scale = NULL,
line.type = "l",
bar.type = "ohlc",
theme = chartTheme("black"),
major.ticks='auto', minor.ticks=TRUE,
yrange=NULL,
up.col,dn.col,color.vol = TRUE, multi.col = FALSE,
...)
```

Arguments

- `x` an OHLC object - see details
- `type` style of chart to draw
- `subset` xts style date subsetting argument
- `show.grid` display price grid lines?
- `name` name of chart
- `time.scale` what is the timescale? automatically deduced (broken)
- `log.scale` should the y-axis be log-scaled?
- `TA` a vector of technical indicators and params, or character strings
- `TAsSep` TA delimiter for TA strings
- `line.type` type of line in line chart
- `bar.type` type of barchart - ohlc or hlc
- `theme` a chart.theme object
- `layout` if NULL bypass internal layout
- `major.ticks` where should major ticks be drawn
- `minor.ticks` should minor ticks be draw?
- `yrange` override y-scale
- `plot` should plot be drawn
- `up.col` up bar/candle color
- `dn.col` down bar/candle color
- `color.vol` color code volume?
- `multi.col` 4 color candle pattern
- `...` additional parameters

Details

Currently displays standard style OHLC charts familiar in financial applications, or line charts when not passed OHLC data. Works with objects having explicit time-series properties. Line charts are created with close data, or from single column time series.

The `subset` argument can be used to specify a particular area of the series to view. The underlying series is left intact to allow for TA functions to use the full data set. Additionally, it is possible to use syntax borrowed from the `first` and `last` functions, e.g. ‘last 4 months’.
TA allows for the inclusion of a variety of chart overlays and technical indicators. A full list is available from addTA. The default TA argument is addVo() - which adds volume, if available, to the chart being drawn.

theme requires an object of class chart.theme, created by a call to chartTheme. This function can be used to modify the look of the resulting chart. See chart.theme for details.

line.type and bar.type allow further fine tuning of chart styles to user tastes.

multi.col implements a color coding scheme used in some charting applications, and follows the following rules:

- grey => Op[t] < Cl[t] and Op[t] < Cl[t-1]
- white => Op[t] < Cl[t] and Op[t] > Cl[t-1]
- red => Op[t] > Cl[t] and Op[t] < Cl[t-1]
- black => Op[t] > Cl[t] and Op[t] > Cl[t-1]

reChart takes any number of arguments from the original chart call — and redraws the chart with the updated parameters. One item of note: if multiple color bars/candles are desired, it is necessary to respecify the theme argument. Additionally it is not possible to change TA parameters at present. This must be done with addTA/dropTA/swapTA/moveTA commands.

Value

Returns a standard chart plus volume, if available, suitably scaled.

If plot=FALSE a chob object will be returned.

Note

Most details can be fine-tuned within the function, though the code does a reasonable job of scaling and labelling axes for the user.

The current implementation maintains a record of actions carried out for any particular chart. This is used to recreate the original when adding new indicator. A list of applied TA actions is available with a call to listTA. This list can be assigned to a variable and used in new chart calls to recreate a set of technical indicators. It is also possible to force all future charts to use the same indicators by calling setTA.

Additional motivation to add outlined candles to allow for scaling and advanced color coding is owed to Josh Ulrich, as are the base functions (from TTR) for the yet to be released technical analysis charting code.

Many improvements in the current version were the result of conversations with Gabor Grothendieck. Many thanks to him.

Author(s)

Jeffrey A. Ryan

References

Josh Ulrich - TTR package and multi.col coding
See Also

getSymbols, addTA, setTA, chartTheme

Examples

Not run:
getSymbols("YHOO")
chartSeries(YHOO)
chartSeries(YHOO, subset='last 4 months')
chartSeries(YHOO, subset='2007::2008-01')
chartSeries(YHOO, theme=chartTheme('white'))
chartSeries(YHOO,TA=NULL) # no volume
chartSeries(YHOO,TA=c(addVo(),addBBands())) # add volume and Bollinger Bands from TTR

addMACD() # add MACD indicator to current chart

setTA()
chartSeries(YHOO) # draws chart again, this time will all indicators present

End(Not run)

chartTheme

Create A Chart Theme

Description

Create a chart.theme object for use within chartSeries to manage desired chart colors.

Usage

chartTheme(theme = "black", ...)

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>theme</td>
<td>name of base theme</td>
</tr>
<tr>
<td>...</td>
<td>name=value pairs to modify</td>
</tr>
</tbody>
</table>

Details

Used as an argument to the chartSeries family of functions, chartTheme allows for on-the-fly mod-
ification of pre-specified chart ‘themes’. Users can modify a pre-built theme in-place, or copy the
theme to a new variable for use in subsequent charting calls.

Internally a chart.theme object is nothing more than a list of values organized by chart components.
The primary purpose of this is to facilitate minor modification on the fly, as well as provide a
template for larger changes.

Setting style arguments for TA calls via chartTheme requires the user to pass the styles as name=value
pairs with a name containing the TA call in question. See examples for assistance.
Current components that may be modified with appropriate values:
• fg.col foreground color
• bg.col background color
• grid.col grid color
• border border color
• minor.tick minor tickmark color
• major.tick major tickmark color
• up.col up bar/candle color
• dn.col down bar/candle color
• up.up.col up after up bar/candle color
• up.dn.col up after down bar/candle color
• dn.dn.col down after down bar/candle color
• dn.up.col down after up bar/candle color
• up.border up bar/candle border color
• dn.border down bar/candle border color
• up.up.border up after up bar/candle border color
• up.dn.border up after down bar/candle border color
• dn.dn.border down after down bar/candle border color
• dn.up.border down after up bar/candle border color

Value
A chart.theme object

Author(s)
Jeffrey A. Ryan

See Also
chartSeries

Examples

chartTheme()
chartTheme('white')
chartTheme('white', up.col='blue', dn.col='red')

A TA example
chartTheme(addRSI.col='red')

str(chartTheme())
Description

These are experimental functions for a new version of chartSeries in quantmod. Interface, behavior, and functionality will change.

Usage

```r
chart_Series(x, 
  name = deparse(substitute(x)), 
  type = "candlesticks", 
  subset = ",", 
  TA = ",", 
  pars = chart_pars(), 
  theme = chart_theme(), 
  clev = 0, 
  ...)
```

Arguments

- **x**: time series object
- **name**: name for chart
- **type**: one of:
- **subset**: an ISO8601 style character string indicating date range
- **TA**: a character string of semi-colon separated TA calls.
- **pars**: chart parameters
- **theme**: chart theme
- **clev**: color level (experimental). Indicates the degree of brightness 0 is darkest color.
- **...**: additional parameters

Details

These functions, when complete, will revert back to the original chartSeries naming convention.

Value

Called for graphical side effects.

Note

Highly experimental (read: alpha) use with caution.

Author(s)

Jeffrey A. Ryan
A Chart Object Class

Description

Internal Objects for Tracking and Plotting Chart Changes

Objects from the Class

Objects are created internally through the charting functions `chartSeries`, `barChart`, `lineChart`, and `candleChart`.

Slots

- `device`: Object of class "ANY" ~~
- `call`: Object of class "call" ~~
- `xdata`: Object of class "ANY" ~~
- `xsubset`: Object of class "ANY" ~~
- `name`: Object of class "character" ~~
- `type`: Object of class "character" ~~
- `passed.args`: Object of class "ANY" ~~
- `windows`: Object of class "numeric" ~~
- `xrange`: Object of class "numeric" ~~
- `yrange`: Object of class "numeric" ~~
- `log.scale`: Object of class "logical" ~~
- `length`: Object of class "numeric" ~~
- `color.vol`: Object of class "logical" ~~
- `multi.col`: Object of class "logical" ~~
- `show.vol`: Object of class "logical" ~~
- `show.grid`: Object of class "logical" ~~
- `line.type`: Object of class "character" ~~
- `bar.type`: Object of class "character" ~~
- `xlab`: Object of class "character" ~~
- `ylab`: Object of class "character" ~~
- `spacing`: Object of class "numeric" ~~
- `width`: Object of class "numeric" ~~
- `bp`: Object of class "numeric" ~~
- `x.labels`: Object of class "character" ~~
- `colors`: Object of class "ANY" ~~
- `layout`: Object of class "ANY" ~~
- `time.scale`: Object of class "ANY" ~~
- `major.ticks`: Object of class "ANY" ~~
- `minor.ticks`: Object of class "logical" ~
chobTA-class

Methods
No methods defined with class "chob" in the signature.

Author(s)
Jeffrey A. Ryan

See Also
chartSeries, or chobTA for links to other classes

Examples

tshow class("chob")

chobTA-class

A Technical Analysis Chart Object

Description
Internal storage class for handling arbitrary TA objects

Objects from the Class

Objects of class chobTA are created and returned invisibly through calls to addTA-style functions.

Slots

 call: Object of class "call" ~~
 on: Object of class "ANY" ~~
 new: Object of class "logical" ~~
 TA.values: Object of class "ANY" ~~
 name: Object of class "character" ~~
 params: Object of class "ANY" ~~

Methods

 show signature(object = "chobTA"): ...

Note
It is of no external vaule to handle chobTA objects directly

Author(s)
Jeffrey A. Ryan
See Also

addTA, ~~~ or chob for links to other classes

Examples

showClass("chobTA")
Note

This is code used internally by attachSymbols. User’s may modify this to accomodate different systems. The upstream functions needn’t maintain consistency with this interface.
Use as a guide or template.

Author(s)

Jeffrey A. Ryan

References

Mark, Roger, ?

Defaults

Manage Default Argument Values for quantmod Functions

Description

Use globally specified defaults, if set, in place of formally specified default argument values. Allows user to specify function defaults different than formally supplied values, e.g. to change poorly performing defaults, or satisfy a different preference.

Usage

```r
setDefaults(name, ...)  
unsetDefaults(name, confirm = TRUE)  
getDefaults(name = NULL, arg = NULL)  
importDefaults(calling.fun)
```

Arguments

- **name**: name of function, quoted or unquoted
- **...**: name=value default pairs
- **confirm**: prompt before unsetting defaults
- **arg**: values to retrieve
- **calling.fun**: name of function to act upon

Details

setDefaults Provides a wrapper to R options that allows the user to specify any name=value pair for a function’s formal arguments. Only formal name=value pairs specified will be updated.
Values do not have to be respecified in subsequent calls to setDefaults, so it is possible to add new defaults for each function one at a time, without having to retype all previous values.
Assigning NULL to any argument will remove the argument from the defaults list.

unsetDefaults Removes name=value pairs from the defaults list.
getDefaults Provides access to the stored user defaults. Single arguments need not be quoted, multiple arguments must be in a character vector.

importDefaults A call to importDefaults should be placed on the first line in the body of the function. It checks the user’s environment for globally specified default values for the called function. These defaults can be specified by the user with a call to setDefaults, and will override any default formal parameters, in effect replacing the original defaults with user supplied values instead. Any user-specified values in the parent function (that is, the function containing importDefaults) will override the values set in the global default environment.

Value

- **setDefaults** None. Used for it’s side effect of setting a list of default arguments by function.
- **unsetDefaults** None. Used for it’s side effect of unsetting default arguments by function.
- **getDefaults** A named list of defaults and associated values, similar to formals, but only returning values set by setDefaults for the name function. Calling getDefaults() (without arguments) returns in a character vector of all functions currently having defaults set (by setDefaults).

 This *does not* imply that the returned function names are able to accept defaults (via importDefaults), rather that they have been set to store user defaults. All values can also be viewed with a call to getOption(name_of_function.Default).
- **importDefaults** None. Used for its side-effect of loading all non-NULL user-specified default values into the current function’s environment, effectively changing the default values passed in the parent function call. Like formally defined defaults in the function definition, default values set by importDefaults take lower precedence than arguments specified by the user in the function call.

Note

- **setDefaults** At present it is not possible to specify NULL as a replacement for a non-NULL default, as the process interprets NULL values as being not set, and will simply use the value specified formally in the function. If NULL is what is desired, it is necessary to include this in the function call itself.

 Any arguments included in the actual function call will take precedence over setDefaults values, as well as the standard formal function values. This conforms to the current user experience in R.

 Like options, default settings are *not* kept across sessions. Currently, it is *not* possible to pass values for ...arguments, only formally specified arguments in the original function definition.

- **unsetDefaults** unsetDefaults removes the *all* entries from the options lists for the specified function. To remove single function default values simply set the name of the argument to NULL in setDefaults.

- **importDefaults** When a function implements importDefaults, non-named arguments *may* be ignored if a global default has been set (i.e. not NULL). If this is the case, simply name the arguments in the calling function.

 This *should* also work for functions retrieving formal parameter values from options, as it assigns a value to the parameter in a way that looks like it was passed in the function call. So any check on options would presumably disregard importDefaults values if an argument was passed to the function.
Delt

Calculate Percent Change

Description

Calculate the k-period percent difference within one series, or between two series. Primarily used to calculate the percent change from one period to another of a given series, or to calculate the percent difference between two series over the full series.

Usage

\[
\text{Delt}(x_1, x_2 = \text{NULL}, k = 0, \text{type} = \text{c}(\text{"arithmetic"}, \text{"log"}))
\]

Arguments

- \(x_1\): \(m \times 1\) vector
- \(x_2\): \(m \times 1\) vector
- \(k\): change over \(k\)-periods. default \(k=1\) when \(x_2\) is \(\text{NULL}\).
- \(\text{type}\): type of difference. log or arithmetic (default).

Examples

```r
my.fun <- function(x=3)
{
  importDefaults('my.fun')
  x^2
}
my.fun()  # returns 9
setDefaults(my.fun, x=10)
my.fun()  # returns 100
my.fun(x=4)  # returns 16
getDefaults(my.fun)
formals(my.fun)
unsetDefaults(my.fun, confirm=FALSE)
getDefaults(my.fun)
my.fun()  # returns 9
```
Details

When called with only \(x1\), the one period percent change of the series is returned by default. Internally this happens by copying \(x1\) to \(x2\). A two period difference would be specified with \(k=2\).

If called with both \(x1\) and \(x2\), the difference between the two is returned. That is, \(k=0\). A one period difference would be specified by \(k=1\). \(k\) may also be a vector to calculate more than one period at a time. The results will then be an \(m \times \text{length}(k)\).

Arithmetic differences are used by default: \(\text{Lag} = (x2(t) - x1(t-k))/x1(t-k)\)

Log differences are calculated: \(\text{Lag} = \log(x2(t)/x1(t-k))\)

Value

An matrix of \(\text{length}(x1)\) rows and \(\text{length}(k)\) columns.

Author(s)

Jeffrey A. Ryan

See Also

OpOp OpCl

Examples

```r
Stock.Open <- c(102.25, 102.87, 102.25, 100.87, 103.44, 103.87, 103.00)
Stock.Close <- c(102.12, 102.62, 100.12, 103.00, 103.87, 103.12, 105.12)

Delt(Stock.Open)               #one period pct. price change
Delt(Stock.Open,k=1)           #same
Delt(Stock.Open,type='arithmetic') #using arithmetic differences (default)
Delt(Stock.Open,type='log')     #using log differences
Delt(Stock.Open,Stock.Close)   #Open to Close pct. change
Delt(Stock.Open,Stock.Close,k=0:2) #...for 0, 1, and 2 periods
```

findPeaks

Find Peaks and Valleys In A Series

Description

Functions to find the peaks (tops) and valleys (bottoms) of a given series.

Usage

```r
findPeaks(x, thresh=0)
findValleys(x, thresh=0)
```
Arguments

x a time series or vector
thresh minimum peak/valley threshold

Value

A vector of integers corresponding to peaks/valleys.
As a peak[valley] is defined as the highest[lowest] value in a series, the function can only define it after a change in direction has occurred. This means that the function will always return the first period after the peak/valley of the data, so as not to accidentally induce a look-ahead bias.

Author(s)

Jeffrey A. Ryan

Examples

findPeaks(sin(1:10))
p <- findPeaks(sin(seq(1,10,.1)))
sin(seq(1,10,.1))[p]
plot(sin(seq(1,10,.1))[p])
plot(sin(seq(1,10,.1)),type='l')
points(p,sin(seq(1,10,.1))[p])

fittedModel quantmod Fitted Objects

Description

Extract and replace fitted models from quantmod objects built with buildModel. All objects fitted through methods specified in buildModel calls can be extracted for further analysis.

Usage

fittedModel(object)

S3 method for class 'quantmod'
formula(x, ...)

S3 method for class 'quantmod'
plot(x, ...)

S3 method for class 'quantmod'
coefficients(object, ...)
fittedModel

Arguments

- `object` a `quantmod` object
- `x` a suitable object
- `...` additional arguments

Details
Most often used to extract the final fitted object of the modelling process, usually for further analysis with tools outside the `quantmod` package.

Most common methods to apply to fitted objects are available to the parent `quantmod` object. At present, one can call directly the following S3 methods on a built model as if calling directly on the fitted object. See *Usage* section.

It is also possible to add a fitted model to an object. This may be of value when applying heuristic rule sets for trading approaches, or when fine tuning already fit models by hand.

Value
Returns an object matching that returned by a call to the method specified in `buildModel`.

Note
The replacement function `fittedModel<-` is highly experimental, and may or may not continue into further releases.
getDividends

The fitted model added *must* use the same names as appear in the quantmod object’s dataset.

Author(s)

Jeffrey A. Ryan

See Also

quantmod, buildModel

Examples

```r
## Not run:
x <- specifyModel(Next(OpCl(DIA)) ~ OpCl(VIX))
x.lm <- buildModel(x, method='lm', training.per=c('2001-01-01', '2001-04-01'))

fittedModel(x.lm)
coef(fittedModel(x.lm))
coef(x.lm)  # same
vcov(fittedModel(x.lm))
vcov(x.lm)  # same

## End(Not run)
```

getDividends

Load Financial Dividend Data

Description

Download, or download and append stock dividend data from Yahoo! Finance.

Usage

```r
getDividends(Symbol, 
              from = "1970-01-01", 
              to = Sys.Date(), 
              env = parent.frame(), 
              src = "yahoo", 
              auto.assign = FALSE, 
              auto.update = FALSE, 
              verbose = FALSE, 
              split.adjust = TRUE, ...)
```

Arguments

Symbol The Yahoo! stock symbol
from date from in CCYY-MM-DD format
to date to in CCYY-MM-DD format
env where to create object
src data source (only yahoo is valid at present)
auto.assign should results be loaded to env
auto.update automatically add dividend to data object
verbose display status of retrieval
split.adjust adjust dividends for splits (TRUE by default because that’s what Yahoo returns)
... currently unused

Details

Eventually destined to be a wrapper function along the lines of getSymbols to different sources - this currently only support Yahoo data.

Value

If auto.assign is TRUE, the symbol will be written to the environment specified in env with a .div appended to the name.

If auto.update is TRUE and the object is of class xts, the dividends will be included as an attribute of the original object and be reassigned to the environment specified by env.

All other cases will return the dividend data as an xts object.

Note

This function is very preliminary - and will most likely change significantly in the future.

Author(s)

Jeffrey A. Ryan

References

Yahoo! Finance: http://finance.yahoo.com

See Also

getSymbols
getFinancials

Examples

Not run:
getSymbols("MSFT")
getDividends("MSFT")
getDividends(MSFT)
End(Not run)

getFinancials

Download and View Financial Statements

Description

Usage

getFinancials(Symbol, env = parent.frame(), src = "google",
auto.assign = TRUE,
...)

viewFinancials(x, type=c('BS','IS','CF'), period=c('A','Q'),
subset = NULL)

Arguments

Symbol one or more valid google symbol, as a character vector or semi-colon delimited string
env where to create the object
src currently unused
auto.assign should results be loaded to the environment
... currently unused
x an object of class financials
type type of statement to view
period period of statement to view
subset ‘xts’ style subset string

Details

A utility to download financial statements for publically traded companies. The data is directly from Google finance. All use of the data is under there Terms of Service, available at http://www.google.com/accounts/TOS.

Individual statements can be accessed using standard R list extraction tools, or by using viewFinancials.
viewFinancials allows for the use of date subsetting as available in the \texttt{xts} package, as well as the specification of the type of statement to view. BS for balance sheet, IS for income statement, and CF for cash flow statement. The period argument is used to identify which statements to view - (A) for annual and (Q) for quarterly.

Value

Six individual matrices organized in a list of class `financials`:

- **IS**: a list containing (Q)uarterly and (A)nnual Income Statements
- **BS**: a list containing (Q)uarterly and (A)nnual Balance Sheets
- **CF**: a list containing (Q)uarterly and (A)nnual Cash Flow Statements

Note

As with all free data, you may be getting exactly what you pay for.

Author(s)

Jeffrey A. Ryan

References

Google Finance BETA: \url{http://finance.google.com/finance}

Examples

```r
## Not run:
getFinancials('JAVA') # returns JAVA.f to "env"
getFinancials('AAPL') # returns AAPL.f to "env"

viewFinancial('JAVA', 'IS', 'Q') # Quarterly Income Statement
viewFinancial('AAPL', 'CF', 'A') # Annual Cash Flows

str(AAPL.f)
## End(Not run)
```

getFX

Download Exchange Rates

Description

Download exchange rates or metals prices from oanda.
getFX

Usage

getFX(Currencies,
 from = Sys.Date() - 179,
 to = Sys.Date(),
 env = parent.frame(),
 verbose = FALSE,
 warning = TRUE,
 auto.assign = TRUE, ...)

Arguments

Currencies Currency pairs expressed as ‘CUR/CUR’
from start date expressed in ISO CCYY-MM-DD format
to end date expressed in ISO CCYY-MM-DD format
env which environment should they be loaded into
verbose be verbose
warning show warnings
auto.assign use auto.assign
... additional parameters to be passed to getSymbols.oanda method

Details

A convenience wrapper to getSymbols(x, src='oanda'). See getSymbols and getSymbols.oanda for more detail.

Value

The results of the call will be the data will be assigned automatically to the environment specified (parent by default). Additionally a vector of downloaded symbol names will be returned. See getSymbols and getSymbols.oanda for more detail.

Author(s)

Jeffrey A. Ryan

References

Oanda.com http://www.oanda.com

See Also

getSymbols, getSymbols.oanda
Examples

```r
## Not run:
getFX("USD/JPY")
getFX("EUR/USD",from="2005-01-01")

## End(Not run)
```

getMetals

Download Daily Metals Prices

Description

Download daily metals prices from oanda.

Usage

```r
gemetals(Metals, 
from = Sys.Date() - 179, 
to = Sys.Date(), 
base.currency="USD", 
env = parent.frame(), 
verbose = FALSE, 
warning = TRUE, 
auto.assign = TRUE, ...)
```

Arguments

- **Metals**: metals expressed in common name or symbol form
- **from**: start date expressed in ISO CCYY-MM-DD format
- **to**: end date expressed in ISO CCYY-MM-DD format
- **base.currency**: which currency should the price be in
- **env**: which environment should they be loaded into
- **verbose**: be verbose
- **warning**: show warnings
- **auto.assign**: use auto.assign
- **...**: additional parameters to be passed to getSymbols.oanda method

Details

A convenience wrapper to `getSymbols(x, src='oanda')`.

The most useful aspect of getMetals is the ability to specify the Metals in terms of underlying 3 character symbol or by name (e.g. XAU (gold), XAG (silver), XPD (palladium), or XPT (platinum)).

There are unique aspects of any continuously traded commodity, and it is recommended that the user visit http://www.oanda.com for details on specific pricing issues.

See getSymbols and getSymbols.oanda for more detail.
Value

Data will be assigned automatically to the environment specified (parent by default). If auto.assign is set to FALSE, the data from a single metal request will simply be returned from the function call. If auto.assign is used (the default) a vector of downloaded symbol names will be returned. See getSymbols and getSymbols.oanda for more detail.

Author(s)

Jeffrey A. Ryan

References

Oanda.com http://www.oanda.com

See Also

getsymbols, getSymbols.oanda

Examples

```r
## Not run:
getFX(c("gold","XPD"))
getFX("plat",from="2005-01-01")
## End(Not run)
```

`getModelData` *Update model's dataset*

Description

Update currently specified or built model with most recent data.

Usage

`getModelData(x, na.rm = TRUE)`

Arguments

- `x` An object of class `quantmod`
- `na.rm` Boolean. Remove NA values. Defaults to TRUE
getOptionChain

Details
Primarily used within specify model calls, getModelData is used to retrieve the appropriate underlying variables, and apply model specified transformations automatically. It can be used to also update a current model in memory with the most recent data.

Value
Returns object of class quantmod.OHLC

Author(s)
Jeffrey Ryan

See Also
getSymbols load data specifyModel create model structure buildModel construct model modelData extract model dataset

Examples
Not run:
my.model <- specifyModel(Next(OpCl(QQQ)) ~ Lag(Cl(MDX),0:5))
getModelData(my.model)

End(Not run)

getOptionChain Download Option Chains

Description
Function to download option chain data from data providers.

Usage
getOptionChain(Symbols, Exp = NULL, src="yahoo", ...)

Arguments
Symbols The name of the underlying symbol.
Exp One or more expiration dates, NULL, or an ISO-8601 style string. If Exp is missing, only the front month contract will be returned.
src Source of data. Currently only ‘yahoo’ is provided.
... Additional parameters.

Details
This function is a wrapper to data-provider specific APIs. By default the data is sourced from yahoo.
Value

A named list containing two data.frames, one for calls and one for puts. If more than one expiration was requested, this two-element list will be contained within list of length `length(Exp)`. Each element of this list will be named with the expiration month, day, and year (for Yahoo sourced data).

If `Exp` is set to `NULL`, all expirations will be returned. Not explicitly setting will only return the front month.

Author(s)

Jeffrey A. Ryan, Joshua M. Ulrich

References

http://finance.yahoo.com

Examples

```r
## Not run:
# Only the front-month expiry
AAPL.OPT <-getOptionChain("AAPL")
# All expiries
AAPL.OPTS <-getOptionChain("AAPL", NULL)
# All 2015 and 2016 expiries
AAPL.2015 <-getOptionChain("AAPL", "2015/2016")

## End(Not run)
```

getQuote

Download Current Stock Quote

Description

Fetch current stock quote(s) from specified source. At present this only handles sourcing quotes from Yahoo Finance, but it will be extended to additional sources over time.

Usage

```r
getQuote(Symbols, src = "yahoo", what, ...)
standardQuote(src="yahoo")
yahooQF(names)
yahooQuote.EOD
```
Arguments

Symbols character string of symbols, seperated by semi-colons
src source of data (only yahoo is implemented in `quantmod`)
what what should be retrieved
names which data should be retrieved
... currently unused

Value

A maximum of 200 symbols may be requested per call to Yahoo!, and all requested will be returned in one data.frame object. If more that 200 symbols are requested, multiple 200 symbol calls will be made and the results will be returned as one data object.

getQuote returns a data frame with rows matching the number of Symbols requested, and the columns matching the requested columns.

The what argument allows for specific data to be requested. For `getQuote.yahoo`, the value of what should be a `quoteFormat` object like that returned by `standardQuote` which contains Yahoo!’s formatting string. If not provided, the A list and interactive selection tool can be seen with `yahooQF`.

`standardQuote` currently only applied to Yahoo! data, and returns an object of class `quoteFormat`, for use within the `getQuote` function.

`yahooQuote.EOD` is a constant `quoteFormat` object for OHLCV data.

Author(s)

Jeffrey A. Ryan

References

See Also

`getSymbols`

Examples

```r
yahooQuote.EOD
## Not run:
getQuote("AAPL")
getQuote("QQQ;SPY;"VXN",what=yahooQF(c("Bid","Ask")))
standardQuote()
yahooQF()

## End(Not run)
```
getSplits

Load Financial Split Data

Description

Download, or download and append stock split data from Yahoo! Finance.

Usage

```r
getSplits(Symbol,
    from = "1970-01-01",
    to = Sys.Date(),
    env = parent.frame(),
    src = "yahoo",
    auto.assign = FALSE,
    auto.update = FALSE,
    verbose = FALSE, ...)
```

Arguments

- **Symbol**
 The Yahoo! stock symbol
- **from**
 date from in CCYY-MM-DD format
- **to**
 date to in CCYY-MM-DD format
- **env**
 where to create object
- **src**
 data source (only yahoo is valid at present)
- **auto.assign**
 should results be loaded to env
- **auto.update**
 automatically add split to data object
- **verbose**
 display status of retrieval
- **...**
 currently unused

Details

Eventually destined to be a wrapper function along the lines of `getSymbols` to different sources - this currently only support Yahoo data.

Value

If `auto.assign` is TRUE, the symbol will be written to the environment specified in `env` with a .div appended to the name.

If `auto.update` is TRUE and the object is of class `xts`, the dividends will be included as an attribute of the original object and be reassigned to the environment specified by `env`.

All other cases will return the split data as an `xts` object. NA is returned if there is no split data.
Note

This function is very preliminary - and will most likely change significantly in the future.

Author(s)

Josh Ulrich

References

Yahoo! Finance: http://finance.yahoo.com

See Also

getSymbols, getDividends

Examples

```r
## Not run:
getSymbols("MSFT")
getSplits("MSFT")

getsplits(MSFT)
## End(Not run)
```

getSymbols

Load and Manage Data from Multiple Sources

Description

Functions to load and manage Symbols in specified environment. Used by specifyModel to retrieve symbols specified in first step of modelling procedure. Not a true S3 method, but methods for different data sources follow an S3-like naming convention. Additional methods can be added by simply adhering to the convention.

Current src methods available are: yahoo, google, MySQL, FRED, csv, RData, and oanda.

Data is loaded silently without user assignment by default.

Usage

```r
getsymbols(Symbols = NULL,
   env = parent.frame(),
   reload.Symbols = FALSE,
   verbose = FALSE,
   warnings = TRUE,
   src = "yahoo",
   symbol.lookup = TRUE,
   auto.assign = getOption('getSymbols.auto.assign',TRUE),
```
getSymbols

...)

loadSymbols(Symbols = NULL,
 env = parent.frame(),
 reload.Symbols = FALSE,
 verbose = FALSE,
 warnings = TRUE,
 src = "yahoo",
 symbol.lookup = TRUE,
 auto.assign = getOption('loadSymbols.auto.assign',TRUE),
 ...
)

showSymbols(env=parent.frame())
removeSymbols(Symbols=NULL,env=parent.frame())
saveSymbols(Symbols = NULL,
 file.path=stop("must specify 'file.path'")
 env = parent.frame())

Arguments

Symbols a character vector specifying the names of each symbol to be loaded
env where to create objects. Setting env=NULL is equal to auto.assign=FALSE
reload.Symbols boolean to reload current symbols in specified environment. (FALSE)
verbose boolean to turn on status of retrieval. (FALSE)
warnings boolean to turn on warnings. (TRUE)
src character string specifying sourcing method. (yahoo)
symbol.lookup retrieve symbol’s sourcing method from external lookup (TRUE)
auto.assign should results be loaded to env If FALSE, return results instead. As of 0.4-0, this
 is the same as setting env=NULL. Defaults to TRUE
file.path character string of file location
... additional parameters

Details

getSymbols is a wrapper to load data from various sources, local or remote. Data is fetched via one
of the available getSymbols methods and either saved in the env specified - the parent.frame() by default – or returned to the caller. The functionality derives from base::load behavior and semantics, i.e. is assigned automatically to a variable in the specified environment without the user explicitly assigning the returned data to a variable. The assigned variable name is that of the respective Symbols value.

The previous sentence’s point warrants repeating - getSymbols is called for its side effects, and by default does not return the data object loaded. The data is ‘loaded’ silently by the function into the environment specified.

If automatic assignment is not desired, env may be set to NULL, or auto.assign set to FALSE.

The early versions of getSymbols assigned each object into the user’s .GlobalEnv by name (pre 2009 up to versions less than 0.4-0). This behavior is now supported by manually setting env=.GlobalEnv.
As of version 0.4-0, the environment is set to `parent.frame()`, which preserved the user workspace when called within another scope.

This behavior is expect to change for `getSymbols` as of 0.5-0, and all results will instead be explicitly returned to the caller unless a `auto.assign` is set to `TRUE`. Many thanks to Kurt Hornik and Achim Zeileis for suggesting this change, and further thanks to Dirk Eddelbuettel for encouraging the move to a more functional default by 0.5-0.

Using `auto.assign=TRUE`, the variable chosen is an R-legal name derived from the symbol being loaded. It is possible, using `setSymbolLookup` to specify an alternate name if the default is not desired. See that function for details.

If `auto.assign=FALSE` or `env=NULL` (as of 0.4-0) the data will be returned from the call, and will require the user to assign the results himself. Note that only one symbol at a time may be requested when auto assignment is disabled.

Most, if not all, documentation and functionality related to model construction and testing in `quantmod` assumes that `auto.assign` remains set to `TRUE` and `env` is a valid environment object for the calls related to those functions.

Upon completion a list of loaded symbols is stored in the specified environment under the name `.getsymbols`.

Objects loaded by `getSymbols` with `auto.assign=TRUE` can be viewed with `showSymbols` and removed by a call to `removeSymbols`. Additional data loading “methods” can be created simply by following the S3-like naming convention where `getSymbols.NAME` is used for your function NAME. See `getSymbols` source code.

`setDefaults(getSymbols)` can be used to specify defaults for `getSymbols` arguments. `setDefaults(getSymbols.MySQL)` may be used for arguments specific to `getSymbols.MySQL`, etc.

The “sourcing” of data is managed internally through a complex lookup procedure. If `symbol.lookup` is `TRUE` (the default), a check is made if any symbol has had its source specified by `setSymbolLookup`.

If not set, the process continues by checking to see if `src` has been specified by the user in the function call. If not, any `src` defined with `setDefaults(getSymbols, src=)` is used.

Finally, if none of the other source rules apply the default `getSymbols src` method is used (‘yahoo’).

Value

Called for its side-effect with `env` set to a valid environment and `auto.assign=TRUE`, `getSymbols` will load into the specified `env` one object for each `Symbol` specified, with class defined by `return.class`. Presently this may be `ts`, `zoo`, `xts`, or `timeSeries`.

If `env=NULL` or `auto.assign=FALSE` an object of type `return.class` will be returned.

Note

As of version 0.4-0, the default `env` value is now `parent.frame()`. In interactive use this should provide the same functionality as the previous version.

While it is possible to load symbols as classes other than `zoo`, `quantmod` requires most, if not all, data to be of class `zoo` or inherited from `zoo` - e.g. `xts`. The additional methods are meant mainly to be of use for those using the functionality outside of the `quantmod` workflow.
getSymbols

Author(s)
Jeffrey A. Ryan

See Also

Examples

```r
## Not run:
setSymbolLookup(QQQ='yahoo', SPY='google')

# loads QQQQ from yahoo (set with setSymbolLookup)
# loads SPY from MySQL (set with setSymbolLookup)
getSymbols(c('QQQ', 'SPY'))

# loads Ford market data from yahoo (the formal default)
getSymbols('F')

# loads symbol from MySQL database (set with setDefaults)
getSymbols('DIA', verbose=TRUE, src='MySQL')

# loads Ford as time series class ts
getSymbols('F', src='yahoo', return.class='ts')

# load into a new environment
data.env <- new.env()
getSymbols("YHOO", env=data.env)
ls.str(data.env)

# constrain to local scope
try本地( {
  getSymbols("AAPL")  # or getSymbols("AAPL", env=environment())
  str(AAPL)
})

exists("AAPL")  # FALSE

# assign into an attached environment
attach(NULL, name="DATA.ENV")
getSymbols("AAPL", env=as.environment("DATA.ENV"))
ls("DATA.ENV")
detach("DATA.ENV")

# directly return to caller
str( getSymbols("AAPL", env=NULL) )
str( getSymbols("AAPL", auto.assign=FALSE) )  # same

## End(Not run)
```
getSymbols.csv

Load Data from csv File

Description

Downloads Symbols to specified env from local comma seperated file. This method is not to be called directly, instead a call to `getSymbols(Symbols, src = 'csv')` will in turn call this method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to creating additional `getSymbols` `methods`.

Usage

```r
getSymbols.csv(Symbols, 
env, 
dir="", 
return.class = "xts", 
extension="csv", 
col.names=c("Open","High","Low","Close","Volume","Adjusted"), 
...)
```

Arguments

- **Symbols**: a character vector specifying the names of each symbol to be loaded
- **env**: where to create objects. (.GlobalEnv)
- **dir**: directory of csv file
- **return.class**: class of returned object
- **extension**: extension of csv file
- **col.names**: data column names
- ...: additional parameters

Details

Meant to be called internally by `getSymbols` (see also).

One of a few currently defined methods for loading data for use with `quantmod`. Essentially a simple wrapper to the underlying R `read.csv`.

Value

A call to `getSymbols.csv` will load into the specified environment one object for each Symbol specified, with class defined by `return.class`. Presently this may be `ts`, `zoo`, `xts`, or `timeSeries`.

Note

This has yet to be tested on a windows platform. It *should* work though file separators may be an issue.
getSymbols.FRED

Author(s)

Jeffrey A. Ryan

See Also

getsymbols, read.csv, setSymbolLookup

Examples

```
## Not run:
# All 3 getSymbols calls return the same
# MSFT to the global environment
# The last example is what NOT to do!

## Method #1
getsymbols('MSFT', src='csv')

## Method #2
setDefaults(getSymbols, src='csv')
# OR
setSymbolLookup(MSFT='csv')
getsymbols('MSFT')

###################################
## NOT RECOMMENDED!!!
###################################
## Method #3
getsymbols.csv('MSFT', verbose=TRUE, env=globalenv())

## End(Not run)
```

Description

R access to over 11,000 data series accessible via the St. Louis Federal Reserve Bank’s FRED system.

Downloads Symbols to specified env from ‘research.stlouisfed.org’. This method is not to be called directly, instead a call to getSymbols(Symbols, src='FRED') will in turn call this method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to creating additional getSymbols ‘methods’.
Usage

```r
getSymbols.FRED(Symbols, 
    env, 
    return.class = "xts", 
    ...)```

Arguments

- **Symbols**: a character vector specifying the names of each symbol to be loaded
- **env**: where to create objects. (.GlobalEnv)
- **return.class**: class of returned object
- **...**: additional parameters

Details

Meant to be called internally by `getSymbols` (see also).

One of many methods for loading data for use with `quantmod`. Essentially a simple wrapper to the underlying FRED data download site.

Naming conventions must follow those as seen on the Federal Reserve Bank of St Louis's website for FRED. A lookup facility will hopefully be incorporated into `quantmod` in the near future.

Value

A call to `getSymbols.FRED` will load into the specified environment one object for each symbol specified, with class defined by `return.class`. Presently this may be `ts`, `zoo`, `xts`, or `timeseries`.

Note

FRED changed its URL scheme for the downloads from http:// to https://. If `getSymbols.FRED` fails for this reason, try one of the following solutions:

1. Explicitly pass `method` via the `getSymbols` call (or via `setDefaults`).
2. Install `downloader`, which may be able to automagically determine a suitable method.
3. Set the `download.file.method` global option.

Author(s)

Jeffrey A. Ryan

References


See Also

getSymbols, setSymbolLookup
getSymbols.google

Examples

## Not run:
# All 3 getSymbols calls return the same
# CPI data to the global environment
# The last example is what NOT to do!

## Method #1
getSymbols('CPIAUCNS', src='FRED')

## Method #2
setDefaults(getSymbols, src='FRED')
# OR
setSymbolLookup(CPIAUCNS='FRED')
getSymbols('CPIAUCNS')

# NOT RECOMMENDED!!
# Method #3
getSymbols.FRED('CPIAUCNS', env=globalenv())

## End(Not run)

getSymbols.google  Download OHLC Data From Google Finance

Description

Downloads Symbols to specified env from ‘finance.google.com’. This method is not to be called directly, instead a call to getSymbols(Symbols, src='google') will in turn call this method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to creating additional getSymbols ‘methods’.

Usage

getSymbols.google(Symbols, env,
  return.class = 'xts',
  from = '2007-01-01',
  to = Sys.Date(),
  ...)

Arguments

  Symbols a character vector specifying the names of each symbol to be loaded
  env where to create objects (.GlobalEnv)
getSymbols.google

    return.class  class of returned object
    from          Retrieve no earlier than this date
    to            Retrieve though this date
    ...          additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a simple wrapper to the underlying Google Finance site for historical data.

A word of warning. Google is the home of BETA, and historic data is no exception. There is a BUG in practically all series that include the dates Dec 29, 30, and 31 of 2003. The data will show the wrong date and corresponding prices. This essentially makes it useless, but if they ever apply a fix the data is nice(r) than Yahoo, in so much as it is all split adjusted and there is forty years worth to be had. As long as you skip the holiday week of 2003. : )

Value

A call to getSymbols.google will load into the specified environment one object for each symbol specified, with class defined by return.class. Presently this may be ts, zoo, xts, or timeSeries.

Note

As mentioned in the details section, a serious flaw exists within the google database/SQL. A caution is issued when retrieving data via this method if this particular error is encountered, but one can only wonder what else may be wrong. Caveat emptor.

Author(s)

Jeffrey A. Ryan

References

Google Finance: http://finance.google.com

See Also

getSymbols, setSymbolLookup

Examples

    ## Not run:
    # All 3 getSymbols calls return the same
    # MSFT to the global environment
    # The last example is what NOT to do!

    ## Method #1
    getSymbols('MSFT', src='google')
getSymbols.MySQL

## Method #2

```r
setDefaults(getSymbols, src='google')
OR
setSymbolLookup(MSFT='google')

getSymbols('MSFT')
```

### NOT RECOMMENDED!!!

## Method #3

```r
getSymbols.google('MSFT', verbose=TRUE, env=globalenv())
```

## End (Not run)

---

### getSymbols.MySQL

**Retrieve Data from MySQL Database**

### Description

Fetch data from MySQL database. As with other methods extending the `getSymbols` function, this should NOT be called directly. Its documentation is meant to highlight the formal arguments, as well as provide a reference for further user contributed data tools.

### Usage

```r
getSymbols.MySQL(Symbols,

env,

return.class = 'xts',

db.fields = c("date", "o", "h", "l", "c", "v", "a"),

field.names = NULL,

user = NULL,

password = NULL,

dbname = NULL,

host = "localhost",

port = 3306,

...)
```

### Arguments

- **Symbols**: a character vector specifying the names of each symbol to be loaded
- **env**: where to create objects (.GlobalEnv)
- **return.class**: desired class of returned object. Can be xts, zoo, data.frame, or ts. (zoo)
- **db.fields**: character vector indicating names of fields to retrieve
- **field.names**: names to assign to returned columns
- **user**: username to access database
password: password to access database
dbname: database name
host: database host
port: database port

Details

Meant to be called internally by getSymbols (see also)

One of a few currently defined methods for loading data for use with quantmod. Its use requires the packages DBI and MySQL, along with a running MySQL database with tables corresponding to the Symbol name.

The purpose of this abstraction is to make transparent the 'source' of the data, allowing instead the user to concentrate on the data itself.

Value

A call to getSymbols.MySQL will load into the specified environment one object for each Symbol specified, with class defined by returnNclass.

Note

The default configuration needs a table named for the Symbol specified (e.g. MSFT), with column names date,o,h,l,c,v,a. For table layout changes it is best to use setDefaults(getSymbols.MySQL,...) with the new db.fields values specified.

Author(s)

Jeffrey A. Ryan

References

MySQL AB http://www.mysql.com
R-SIG-DB. DBI: R Database Interface

See Also

getSymbols, setSymbolLookup

Examples

## Not run:
# All 3 getSymbols calls return the same
# MSFT to the global environment
# The last example is what NOT to do!
getSymbols.oanda

```r
setDefaults(getSymbols.MySQL,user='jdoe',password='secret',
 dbname='tradedata')

Method #1
getSymbols('MSFT',src='MySQL')

Method #2
setDefaults(getSymbols,src='MySQL')
 # OR
setSymbolLookup(MSFT='MySQL')

getSymbols('MSFT')

##
NOT RECOMMENDED!!!
##
Method #3
getSymbols.MySQL('MSFT',env=globalenv())
```

# Download Currency and Metals Data from Oanda.com

## Description
Access to 191 currency and metal prices, downloadable as more that 36000 currency pairs from Oanda.com.

Downloads Symbols to specified env from www.oanda.com historical currency database. This method is not meant to be called directly, instead a call to getSymbols("x",src="oanda") will in turn call this method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to creating additional getSymbols 'methods'.

## Usage
```r
getSymbols.oanda(Symbols,
 env,
 return.class = "xts",
 from = Sys.Date() - 179,
 to = Sys.Date(),
 ...)
```

## Arguments

**Symbols** a character vector specifying the names of each symbol to be loaded - expressed as a currency pair. e.g. U.S. Dollar to Euro rate would be expressed as a string "USD/EUR". The naming convention follows from Oanda.com, and a table of possible values is available by calling oanda.currencies
getSymbols.oanda

env     where to create objects.
return.class  class of returned object
from     Start of series expressed as "CCYY-MM-DD"
to       Start of series expressed as "CCYY-MM-DD"
...     additional parameters

Details

Meant to be called internally by getSymbols only.

Oanda data is 7 day daily average price data, that is Monday through Sunday. Oanda only provides historical data for the past 180 days. getSymbols will return as much data as possible, and warn when the from date is more than 180 days ago.

Value

A call to getSymbols(Symbols,src="oanda") will load into the specified environment one object for each `Symbol` specified, with class defined by `return.class`. Presently this may be `ts`, `zoo`, `xts`, or `timeSeries`.

Note

Oanda rates are quoted as one unit of base currency to the equivalent amount of foreign currency.

Author(s)

Jeffrey A. Ryan

References

Oanda.com http://www.oanda.com

See Also

Currencies: getSymbols.FRED, getSymbols

Examples

## Not run:
getSymbols("USD/ EUR",src="oanda")
getSymbols("USD/ EUR",src="oanda",from="2005-01-01")

## End(Not run)
Description

Downloads symbols to specified env from local R data file. This method is not to be called directly, instead a call to getSymbols(Symbols, src='rda') will in turn call this method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to creating additional getSymbols ‘methods’.

Usage

getSymbols.rda(Symbols, 
   env, 
   dir="", 
   return.class = "xts", 
   extension="rda", 
   col.names=c("Open","High","Low","Close","Volume","Adjusted"), 
   ...)

Arguments

Symbols a character vector specifying the names of each symbol to be loaded
env where to create objects. (.GlobalEnv)
dir directory of rda/RData file
return.class class of returned object
extension extension of R data file
col.names data column names
... additional parameters

Details

Meant to be called internally by getSymbols (see also).

One of a few currently defined methods for loading data for use with quantmod. Essentially a simple wrapper to the underlying R load.

Value

A call to getSymbols.csv will load into the specified environment one object for each Symbol specified, with class defined by return.class. Presently this may be ts, zoo, xts, data.frame, or timeSeries.

Author(s)

Jeffrey A. Ryan
**getSymbols.SQLite**

*Retrieve Data from SQLite Database*

**Description**

Fetch data from SQLite database. As with other methods extending `getSymbols` this function should **NOT** be called directly.

**Usage**

```r
getSymbols.SQLite(Symbols,
 env,
 return.class = 'xts',
 db.fields = c("row_names",
 "Open",
 "High",
 "Low",
 "Close",
 "Volume", "Symbol"),
 verbose = FALSE)
```

**Examples**

```r
Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT',src='rda')
getSymbols('MSFT',src='RData')

Method #2
setDefaultsetdefaults(getSymbols,src='rda')
 # OR
setSymbollookup(method='getSymbols',src='rda')
 # OR
setSymbollookup(method='getSymbols',list(src='rda'))
getSymbols('MSFT')

##
NOT RECOMMENDED!!!
##
Method #3
getSymbols.rda('MSFT',verbose=TRUE,env=globalenv())

End(Not run)
```
getSymbols.SQLite

    "Close",
    "Volume",
    "Adjusted"},
field.names = NULL,
dbname = NULL,
POSIX = TRUE,
...

Arguments

  Symbols    a character vector specifying the names of each symbol to be loaded
  env        where to create the objects
  return.class desired class of returned object
  db.fields  character vector naming fields to retrieve
  field.names names to assign to returned columns
  dbname     database name
  POSIX      are rownames numeric
  ...        additional arguments

Details

  Meant to be called internally by getSymbols (see also)
  One of a few currently defined methods for loading data for use with 'quantmod'. Its use requires
  the packages 'DBI' and 'RSQLite', along with a SQLite database.
  The purpose of this abstraction is to make transparent the 'source' of the data, allowing instead the
  user to concentrate on the data itself.

Value

  A call to getSymbols.SQLite will load into the specified environment one object for each 'Symbol'
  specified, with class defined by 'return.class'.

Note

  This function is experimental at best, and has not been thoroughly tested. Use with caution, and
  please report any bugs to the maintainer of quantmod.

Author(s)

  Jeffrey A. Ryan

References

  SQLite http://www.sqlite.org
  David A. James RSQLite: SQLite interface for R
  R-SIG-DB. DBI: R Database Interface
getSymbols.yahoo

Description

Downloads symbols to specified env from 'finance.yahoo.com'. This method is not to be called directly, instead a call to getSymbols(Symbols, src='yahoo') will in turn call this method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to creating additional getSymbols 'methods'.

Usage

getSymbols.yahoo(Symbols, env, return.class = 'xts', index.class = 'Date', from = "2007-01-01", to = Sys.Date(), ..., periodicity = "daily")

Arguments

Symbols a character vector specifying the names of each symbol to be loaded
env where to create objects. (.GlobalEnv)
return.class class of returned object
index.class class of returned object index (xts only)
from Retrieve data no earlier than this date. (2007-01-01)
to Retrieve data through this date (Sys.Date())
... additional parameters
periodicity periodicity of data to query and return. Must be one of "daily", "weekly", "monthly". ("daily")
getSymbols.yahoo

Details

Meant to be called internally by getSymbols (see also).
One of a few currently defined methods for loading data for use with quantmod. Essentially a simple wrapper to the underlying Yahoo! finance site’s historical data download.

Value

A call to getSymbols.yahoo will load into the specified environment one object for each symbol specified, with class defined by return.class. Presently this may be ts, zoo, xts, or timeSeries.
In the case of xts objects, the indexing will be by Date. This can be altered with the index.class argument. See indexClass for more information on changing index classes.

Warning

As of quantmod 0.4-9, getSymbols.yahoo has been patched to work with changes to Yahoo Finance, which also included the following changes to the raw data:

- The adjusted close column appears to no longer include dividend adjustments
- The close column appears to be adjusted for splits twice
- The open, high, and low columns are adjusted for splits, and
- The raw data may contain missing values.

Author(s)

Jeffrey A. Ryan

References

Yahoo Finance: http://finance.yahoo.com

See Also

getSymbols, setSymbolLookup

Examples

```R
Not run:
All 3 getSymbols calls return the same
MSFT to the global environment
The last example is what NOT to do!

Method #1
getSymbols('MSFT', src='yahoo')

Method #2
setDefaults(getSymbols, src='yahoo')
OR
setSymbolLookup(MSFT='yahoo')
```
getSymbols('MSFT')

##############################################
## NOT RECOMMENDED!!!
##############################################
## Method #3
getSymbols.yahoo('MSFT', env = globalenv())

## End(Not run)

---

**getSymbols.yahoo**  *Download OHLC Data From Yahoo! Japan Finance*

**Description**

Downloads Symbols to specified env from 'finance.yahoo.co.jp'. This method is not to be called directly, instead a call to `getSymbols(Symbols, src = 'yahooj')` will in turn call this method. It is documented for the sole purpose of highlighting the arguments accepted, and to serve as a guide to creating additional getSymbols ‘methods’.

**Usage**

```r
getSymbols.yahooj(Symbols,
 env,
 return.class = 'xts',
 index.class = 'Date',
 from = "2007-01-01",
 to = Sys.Date(),
 ...
)
```

**Arguments**

- **Symbols**  
a character vector specifying the names of each symbol to be loaded
- **env**  
where to create objects. (.GlobalEnv)
- **return.class**  
class of returned object
- **index.class**  
class of returned object index (xts only)
- **from**  
Retrieve data no earlier than this date. (2007-01-01)
- **to**  
Retrieve data through this date (Sys.Date())
- **...**  
additional parameters
getSymbols.yahooj

Details

Meant to be called internally by getSymbols (see also).

One of the few currently defined methods for loading data for use with quantmod. Essentially a simple wrapper to the underlying Yahoo! Japan finance site’s historical data download.

The string ‘YJ’ will be prepended to the Symbols because Japanese ticker symbols usually start with a number and it is cumbersome to use variable names that start with a number in the R environment.

It is recommended to prepend the ticker symbols with 'YJ' yourself if you use setSymbolLookup. That will make it possible for the main getSymbols function to find the symbols in the lookup table.

Value

A call to getSymbols.yahooj will load into the specified environment one object for each Symbol specified, with class defined by return.class. Presently this may be ts, zoo, xts, or timeSeries.

In the case of xts objects, the indexing will be by Date. This can be altered with the index.class argument. See indexClass for more information on changing index classes.

Author(s)

Wouter Thielen

References

Yahoo! Japan Finance: http://finance.yahoo.co.jp

See Also

getSymbols, setSymbolLookup

Examples

## Not run:
# All 4 getSymbols calls return the same
# Sony (6758.T) OHLC to the global environment
# The last example is what NOT to do!

## Method #1
getSymbols('6758.T', src='yahooj')

## Method #2
getSymbols('YJ6758.T', src='yahooj')

## Method #3
setDefaults(getSymbols, src='yahooj')
# OR
setSymbolLookup(YJ6758.T='yahooj')

getSymbols('YJ6758.T')
### Check For OHLC Data

**Description**

A set of functions to check for appropriate OHLC and HLC column names within a data object, as well as the availability and position of those columns.

**Usage**

```r
is.OHLC(x)
has.OHLC(x, which = FALSE)

is.OHLCV(x)
has.OHLCV(x, which = FALSE)

is.HLC(x)
has.HLC(x, which = FALSE)

has.Op(x, which = FALSE)
has.Hi(x, which = FALSE)
has.Lo(x, which = FALSE)
has.Cl(x, which = FALSE)
has.Vo(x, which = FALSE)
has.Ad(x, which = FALSE)

is.BBO(x)
is.TBBO(x)

has.Ask(x, which = FALSE)
has.Bid(x, which = FALSE)
has.Price(x, which = FALSE)
has.Qty(x, which = FALSE)
has.Trade(x, which = FALSE)
```

**Arguments**

- `x` data object
- `which` disply position of match
Details

Mostly used internally by `quantmod`, they can be useful for checking whether an object can be used in OHLC requiring functions like `op`, `opCl`, etc.

Columns names must contain the full description of data, that is, Open, High, Low, Close, Volume or Adjusted. Abbreviations will return FALSE (or NA when which=TRUE). See `quantmod.OHLC` for details of `quantmod` naming conventions.

`is.OHLC` (and `is.HLC`, similarly) will only return TRUE is there are columns for Open, High, Low and Close. Additional columns will not affect the value.

Value

A logical value indicating success or failure by default.

If `which=TRUE`, a numeric value representing the column position will be returned.

`is.OHLC` and `is.HLC` return a single value of TRUE or FALSE.

Author(s)

Jeffrey A. Ryan

See Also

`quantmod.OHLC`, `OHLC.Transformations`

Examples

```r
Not run:
getSymbols("YHOO")

is.OHLC(YHOO)
has.OHLC(YHOO)

has.Ad(YHOO)

End(Not run)
```

Description

To be documented...
is.quantmod  
**Test If Object of Type quantmod**

Description

Test if object is of type quantmod or quantmodResults.

Usage

```
is.quantmod(x)
is.quantmodResults(x)
```

Arguments

- **x**: object to test

Value

Boolean TRUE or FALSE

Author(s)

Jeffrey A. Ryan

See Also

specifyModel, tradeModel

---

Lag  
**Lag a Time Series**

Description

Create a lagged series from data, with NA used to fill.

Usage

```
Lag(x, k = 1)
```

### S3 method for class 'quantmod.OHLC'
```
Lag(x, k = 1)
```

### S3 method for class 'zoo'
```
Lag(x, k = 1)
```

### S3 method for class 'data.frame'
Lag(x, k = 1)

## S3 method for class 'numeric'
Lag(x, k = 1)

**Arguments**

- `x`: vector or series to be lagged
- `k`: periods to lag.

**Details**

Shift series `k`-periods down, prepending NAs to front of series.
Specifically designed to handle `quantmod::OHLC` and `zoo` series within the `quantmod` workflow.
If no S3 method is found, a call to `lag` in `base` is made.

**Value**

The original `x` prepended with `k` NAs and missing the trailing `k` values.
The returned series maintains the number of obs. of the original.

**Note**

This function differs from `lag` by returning the original series modified, as opposed to simply changing the time series properties. It differs from the like named Lag in the `Hmisc` as it deals primarily with time-series like objects.

It is important to realize that if there is no applicable method for Lag, the value returned will be from `lag` in `base`. That is, coerced to `‘ts’` if necessary, and subsequently shifted.

**Author(s)**

Jeffrey A. Ryan

**See Also**

- `lag`

**Examples**

```r
Stock.Close <- c(102.12, 102.62, 100.12, 103.00, 103.87, 103.12, 105.12)

Lag(Stock.Close) # lag by 1 period
Lag(Stock.Close, k=1) # same
Lag(Stock.Close, k=1:3) # lag 1,2 and 3 periods
```
modelData

Extract Dataset Created by specifyModel

Description

Extract from a quantmod object the dataset created for use in modelling.
specifyModel creates a zoo object for use in subsequent workflow stages (buildModel, tradeModel) that combines all model inputs, from a variety of sources, into one model frame.
modelData returns this object.

Usage

modelData(x, data.window = NULL, exclude.training = FALSE)

Arguments

x
a quantmod object
data.window
a character vector of subset start and end dates to return
exclude.training
remove training period

Details

When a model is created by specifyModel, it is attached to the returned object. One of the slots of this S4 class is model.data.

Value

an object of class zoo containing all transformations to data specified in specifyModel.

Author(s)

Jeffrey A. Ryan

See Also

specifyModel, getModelData

Examples

## Not run:
m <- specifyModel(Next(OpCl(SPY)) - Cl(SPY) + OpHi(SPY) + Lag(Cl(SPY)))
modelData(m)

## End(Not run)
modelSignal

**Extract Model Signal Object**

**Description**

Extract model signal object from quantmodResults object as an object of class zoo.

**Usage**

```r
modelSignal(x)
```

**Arguments**

- `x` object of class quantmodResults

**Details**

For use after a call to `trademodel` to extract the generated signal of a given quantmod model. Normally this would not need to be called by the end user unless he was manually post processing the trade results.

**Value**

A zoo object indexed by signal dates.

**Author(s)**

Jeffrey A. Ryan

**See Also**

- `trademodel`

---

newTA

**Create A New TA Indicator For chartSeries**

**Description**

Functions to assist in the creation of indicators or content to be drawn on plots produced by chartSeries.
Usage

addTA(ta,
   order = NULL,
   on = NA,
   legend = "auto",
   yrange = NULL,
   ...
)

ewTA(FUN,
   preFUN,
   postFUN,
   on = NA,
   yrange = NULL,
   legend.name,
   fdots = TRUE,
   cdots = TRUE,
   data.at = 1,
   ...
)

Arguments

ta    data to be plotted
order which should the columns (if > 1) be plotted
legend what custom legend text should be added to the chart.
FUN    Main filter function name - as a symbol
preFUN Pre-filter transformation or extraction function
postFUN Post-filter transformation or extraction function
on    where to draw
yrange length 2 vector of y-axis range
legend.name optional legend heading, automatically derived otherwise
fdots should any ... be included in the main filter call
cdots should any ... be included in the resultant function object. fdots=TRUE will override this to TRUE.
data.at which argument to the main filter function is for data.
... any additional graphical parameters/default to be included.

Details

Both addTA and newTA can be used to dynamically add custom content to a displayed chart.
addTA takes a series of values, either in a form coercible to xts or of the same length as the charted series has rows, and displays the results in either a new TA sub-window, or over/underlaid on the main price chart. If the object can be coerced to xts, the time values present must only be within the original series time-range. Internally a merge of dates occurs and will allow for the plotting of discontinuous series.
The order argument allows for multiple column data to be plotted in an order that makes the most visual sense.

Specifying a legend will override the standard parsing of the addTA call to attempt a guess at a suitable title for the sub-chart. Specifying this will cause the standard last value to not be printed.

The \ldots arg to addTA is used to set graphical parameters interpretable by lines.

newTA acts as more of a skeleton function, taking functions as arguments, as well as charting parameters, and returns a function that can be called in the same manner as the built-in TA tools, such as addRSI and addMACD. Essentially a dynamic code generator that allows for highly customizable chart tools with minimal (possibly zero) coding. It is also possible to modify the resultant code to further change behavior.

To create a new TA function with newTA certain arguments must be specified.

The FUN argument is a function symbol (or coercible to such) that is the primary filter to be used on the core-data of a chartSeries chart. This can be like most of the functions within the TTR package — e.g. RSI or EMA. The resultant object of the function call will be equal to calling the function on the original data passed into the chartSeries function that created the chart. It should be coercible to a matrix object, of one or more columns of output. By default all columns of output will be added to the chart, unless suppressed by passing the appropriately positioned type='n' as the \ldots arg. Note that this will not suppress the labels added to the chart.

The preFUN argument will be called on the main chart’s data prior to passing it to FUN. This must be a function symbol or a character string of the name function to be called.

The postFUN argument will be called on the resultant data returned from the FUN filter. This is useful for extracting the relevant data from the returned filter data. Like preFUN it must be a function symbol or a character string of the name of the function to be called.

The yrange argument is used to provide a custom scale to the y-axis. If NULL the min and max of the data to be plotted will be used for the y-axis range.

The on is used to identify which subchart to add the graphic to. By default, on=NA will draw the series in a new subchart below the last indicator. Setting this to either a positive or negative value will allow for the series to be super-imposed on, or under, the (sub)chart specified, respectively. A value of 1 refers to the main chart, and at present is the only location supported.

legend.name will change the main label for a new plot.

fdots and cdots enable inclusion or suppression of the \ldots within the resulting TA code’s call to FUN, or the argument list of the new TA function, respectively. In order to facilitate user-specified graphical parameters it is usually desirable to not impose artificial limits on the end-user with constraints on types of parameters available. By default the new TA function will include the dots argument, and the internal FUN call will keep all arguments, including the dots. This may pose issues if the internal function then passes those \ldots arguments to a function that can’t handle them.

The final argument is data, at which is the position in the FUN argument list which expects the data to be passed in at. This default to the sensible first position, though can be changed at the time of creation by setting this argument to the required value.

While the above functions are usually sufficient to construct very pleasing graphical additions to a chart, it may be necessary to modify by-hand the code produced. This can be accomplished by dumping the function to a file, or using fix on it during an interactive session.

Another item of note, with respect to newTA is the naming of the main legend label. Following addTA convention, the first ‘add’ is stripped from the function name, and the rest of the call’s name
is used as the label. This can be overridden by specifying `legend.name` in the construction of the new TA call, or by passing `legend` into the new TA function. Subtle differences exist, with the former being the preferred solution.

While both functions can be used to build new indicators without any understanding of the internal chartSeries process, it may be beneficial in more complex cases to have a knowledge of the multi-step process involved in creating a chart via chartSeries.

to be added...

Value

`addTA` will invisibly return an S4 object of class `chobTA`. If this function is called interactively, the `chobTA` object will be evaluated and added to the current chart.

`newTA` will return a function object that can either be assigned or evaluated. Evaluating this function will follow the logic of any standard `addTA`-style call, returning invisibly a `chobTA` object, or adding to the chart.

Note

Both interfaces are meant to facilitate custom chart additions. `addTA` is for adding any arbitrary series to a chart, where-as `newTA` works with the underlying series with the main chart object. The latter also acts as a dynamic TA skeleton generation tool to help develop reusable TA generation code for use on any chart.

Author(s)

Jeffrey A. Ryan

See Also

`chartSeries`, `TA`, `chob`, `chobTA`

Examples

```r
Not run:
getSymbols('SBUX')
barChart(SBUX)
addTA(EMA(Cl(SBUX)), on=1, col=6)
addTA(OpCl(SBUX), col=4, type='b', lwd=2)
create new EMA TA function
newEMA <- newTA(EMA, Cl, on=1, col=7)
newEMA()
newEMA(on=NA, col=5)

End(Not run)
```
**Advance a Time Series**

**Description**

Create a new series with all values advanced forward one period. The value of period 1, becomes the value at period 2, value at 2 becomes the original value at 3, etc. The opposite of Lag. NA is used to fill.

**Usage**

Next(x, k = 1)

```r
S3 method for class 'quantmod.OHLC'
Next(x,k=1)

S3 method for class 'zoo'
Next(x,k=1)

S3 method for class 'data.frame'
Next(x,k=1)

S3 method for class 'numeric'
Next(x,k=1)
```

**Arguments**

- `x`: vector or series to be advanced
- `k`: periods to advance

**Details**

Shift series k-periods up, appending NAs to end of series.

Specifically designed to handle quantmod.OHLC and zoo series within the quantmod workflow.

If no S3 method is found, a call to lag in base is made, with the indexing reversed to shift the time series forward.

**Value**

The original x appended with k NAs and missing the leading k values.

The returned series maintains the number of obs. of the original.

Unlike Lag, only one value for k is allowed.
Note
This function’s purpose is to get the “next” value of the data you hope to forecast, e.g. a stock’s closing value at t+1. Specifically to be used within the quantmod framework of specifyModel, as a functional wrapper to the LHS of the model equation.

It is not magic - and thus will not get tomorrow’s values...

Author(s)
Jeffrey A. Ryan

See Also
specifyModel.Lag

Examples

```r
stockNclose <- c(102.12,102.62,100.12,103.00,103.87,103.12,105.12)
stockNclose <- zoo(stockNclose,closeNdates)

Next(stockNclose) # one period ahead
Next(stockNclose,k=1) # same
merge(Next(stockNclose),stockNclose)

Not run:
a simple way to build a model of next days
IBM close, given todays. Technically both
methods are equal, though the former is seen
as more intuitive...ymm
specifyModel(Next(Cl('IBM')) ~ Cl('IBM'))
specifyModel(Cl('IBM') ~ Lag(Cl('IBM')))

End(Not run)
```

OHL.C.Transformations Extract and Transform OHL.C Time-Series Columns

Description
Extract (transformed) data from a suitable OHL.C object. Column names must contain the complete description - either “Open”, “High”, “Low”, “Close”, “Volume”, or “Adjusted” - though may also contain additional characters. This is the default for objects returned from most getSymbols calls.

In the case of functions consisting of combined Op, Hi, Lo, Cl (e.g. ClCl(x)) the one period transformation will be applied.

For example, to return the Open to Close of a object it is possible to call OpCl(x). If multiple periods are desired a call to the function Delt is necessary.
seriesLo and seriesHi will return the low and high, respectively, of a given series.
seriesAccel, seriesDecel, seriesIncr, and seriesDecr, return a vector of logicals indicating if the series is accelerating, decelerating, increasing, or decreasing. This is managed by diff, which provides NA fill and suitable re-indexing. These are here to make trade rules easier to read.
HLC extracts the High, Low, and Close columns. OHLC extracts the Open, High, Low, and Close columns.
These functions are merely to speed the model specification process. All columns may also be extracted through standard R methods.
Assignment will not work at present.
getPrice will attempt to extract price column(s) from a time series, using sensible defaults. Additionally, the user may provide by symbol and price preference.

Usage

Op(x)
Hi(x)
Lo(x)
Cl(x)
Vo(x)
Ad(x)

seriesHi(x)
seriesLo(x)
seriesIncr(x, thresh=0, diff.=1L)
seriesDecr(x, thresh=0, diff.=1L)

OpCl(x)
ClCl(x)
HiCl(x)
LoCl(x)
LoHi(x)
OpHi(x)
OpLo(x)
OpOp(x)

HLC(x)
OHLHC(x)
OHLCV(x)

getPrice(x, symbol=NULL, prefer=NULL, ...)

Arguments

x A data object with columns containing data to be extracted.
thresh noise threshold (seriesIncr/seriesDecr)
diff. differencing (seriesIncr/seriesDecr)
symbol text string containing the symbol to extract
prefer price type preference (see Details)

... not currently used

Details

Internally, the code uses grep to locate the appropriate columns. Therefore it is necessary to use inputs with column names matching the requirements in the description section, though the exact naming convention is not as important.

prefer can be used with getPrice to extract many commonly used financial time series prices descriptions (e.g. open, high, low, close, bid, ask/offer, midpoint, trade, price). If the value of prefer does not match one of the currently supported types, it will be matched against the object column names using grep.

Value

Returns an object of the same class as the original series, with the appropriately column names if applicable and/or possible. The only exceptions are for quantmod.OHLC objects which will be returned as zoo objects, and calls to seriesLo and seriesHi which may return a numeric value instead of the original object type.

Author(s)

Jeffrey A. Ryan

See Also

specifyModel

Examples

```r
Not run:
getSymbols('IBM', src='yahoo')
Ad(IBM)
Cl(IBM)
C1c1(IBM)

seriesHi(IBM)
seriesHi(Lo(IBM))

removeSymbols('IBM')

End(Not run)
```
options.expiry

Calculate Contract Expirations

Description
Return the index of the contract expiration date. The third Friday of the month for options, the last third Friday of the quarter for futures.

Usage

options.expiry(x)
futures.expiry(x)

Arguments

x a time-indexed zoo object

Details
Designed to be used within a charting context via addExpiry, the values returned are based on the description above. Exceptions, though rare, are not accounted for.

Value
A numeric vector of values to index on.

Note
There is currently no accounting for holidays that may interfere with the general rule. Additionally all efforts have been focused on US equity and futures markets.

Author(s)
Jeffrey A. Ryan

References
~put references to the literature/web site here ~

See Also
addExpiry
Examples

```r
Not run:
gS::getSymbols("AAPL")

options.expiry(AAPL)
futures.expiry(AAPL)

AAPL[options.expiry(AAPL)]

End(Not run)
```

### Calculate Periodic Returns

**Description**

Given a set of prices, return periodic returns.

**Usage**

```r
periodReturn(x, period='monthly', subset=NULL, type='arithmetic', leading=TRUE, ...)
```

```r
dailyReturn(x, subset=NULL, type='arithmetic', leading=TRUE, ...)
weeklyReturn(x, subset=NULL, type='arithmetic', leading=TRUE, ...)
monthlyReturn(x, subset=NULL, type='arithmetic', leading=TRUE, ...)
quartReturn(x, subset=NULL, type='arithmetic', leading=TRUE, ...)
annualReturn(x, subset=NULL, type='arithmetic', leading=TRUE, ...)
yearlyReturn(x, subset=NULL, type='arithmetic', leading=TRUE, ...)
allReturns(x, subset=NULL, type='arithmetic', leading=TRUE)
```

**Arguments**

- `x` object of state prices, or an OHLC type object
- `period` character string indicating time period. Valid entries are 'daily', 'weekly', 'monthly', 'quarterly', 'yearly'. All are accessible from wrapper functions described below. Defaults to monthly returns (same as monthlyReturn)
periodReturn

subset an xts/ISO8601 style subset string
type type of returns: arithmetic (discrete) or log (continuous)
leading should incomplete leading period returns be returned
... passed along to to.period

Details

periodReturn is the underlying function for wrappers:

- allReturns: calculate all available return periods
- dailyReturn: calculate daily returns
- weeklyReturn: calculate weekly returns
- monthlyReturn: calculate monthly returns
- quarterlyReturn: calculate quarterly returns
- annualReturn: calculate annual returns

Value

Returns object of the class that was originally passed in, with the possible exception of monthly and quarterly return indices being changed to class yearmon and yearqtr where available. This can be overridden with the indexAt argument passed in the ...to the to.period function.

By default, if subset is NULL, the full dataset will be used.

Note

Attempts are made to re-convert the resultant series to its original class, if supported by the xts package. At present, objects inheriting from the ‘ts’ class are returned as xts objects. This is to make the results more visually appealing and informative. All xts objects can be converted to class ts with as.ts if that is desirable.

The first and final row of returned object will have the period return to last date, i.e. this week/month/quarter/year return to date even if the start/end is not the start/end of the period. Leading period calculations can be suppressed by setting leading=FALSE.

Author(s)

Jeffrey A. Ryan

See Also

getsymbols
Examples

```r
Not run:
getSymbols('QQQQ', src='yahoo')
allReturns(QQQQ) # returns all periods

periodReturn(QQQQ, period='yearly', subset='2003::') # returns years 2003 to present
periodReturn(QQQQ, period='yearly', subset='2003') # returns year 2003
rm(QQQQ)

End(Not run)
```

quantmod-class  

Class "quantmod"

Description

Objects of class `quantmod` help to manage the process of model building within the `quantmod` package. Created automatically by a call to `specifyModel` they carry information to be used by a variety of accessor functions and methods.

Objects from the Class

Objects can be created by calls of the form `new("quantmod", ...)`. Normally objects are created as a result of a call to `specifyModel`.

Slots

- `model.id`: Object of class "character" ~
- `model.spec`: Object of class "formula" ~
- `model.formula`: Object of class "formula" ~
- `model.target`: Object of class "character" ~
- `model.inputs`: Object of class "character" ~
- `build.inputs`: Object of class "character" ~
- `symbols`: Object of class "character" ~
- `product`: Object of class "character" ~
- `price.levels`: Object of class "zoo" ~
- `training.data`: Object of class "Date" ~
- `build.date`: Object of class "Date" ~
- `fitted.model`: Object of class "ANY" ~
- `model.data`: Object of class "zoo" ~
- `quantmod.version`: Object of class "numeric" ~
Methods

No methods defined with class "quantmod" in the signature.

Author(s)

Jeffrey A. Ryan

Examples

showClass("quantmod")

quantmod.OHLC  Create Open High Low Close Object

Description

Coerce an object with the appropriate columns to class quantmod.OHLC, which extends zoo.

Usage

as.quantmod.OHLC(x,
   col.names = c("Open", "High",
   "Low", "Close",
   "Volume", "Adjusted"),
   name = NULL, ...)

Arguments

x     object of class zoo
col.names     suffix for columns
name     name to attach unique column suffixes to, defaults to the object name
...     additional arguments (unused)

Details

quantmod.OHLC is actually just a renaming of an object of class zoo, with the convention of NAME.Open, NAME.High, ... for the column names.

Additionally methods may be written to handle or check for the above conditions within other functions - as is the case within the quantmod package.

Value

An object of class c('quantmod.OHLC', 'zoo')

Author(s)

Jeffrey A. Ryan
saveChart (Save Chart to External File)

Description
Save selected chart to an external file.

Usage
saveChart(.type = "pdf", ..., dev = dev.cur())

Arguments
- .type: type of export. See Details.
- ...: arguments to pass to device
- dev: which device should be exported

Details
This function wraps the base R function pdf, postscript, png, jpeg, and bitmap. The .type argument must specify which device driver is desired.
The currently active device is used if dev is missing. The result is an exact copy (within the device limits) of the chart specified.
The name of the resultant file is derived from the name of the chart, with the appropriate extension appended. (from .type). Specifying the appropriate device file/filename will override this name.
The caller may specify any parameters that are valid for the device called. Internally, effort is made to match the dimensions of the device being used to create the output file. User supplied dimensions will override this internal calculation.

Value
A file in the current directory (default) matching the type of the output requested.

Note
As this uses do.call internally to create the new output device, any device that makes use of R conventions should be acceptable as a value for .type

Author(s)
Jeffrey A. Ryan
setSymbolLookup

See Also

pdf png jpeg bitmap postscript

Examples

## Not run:
getSymbols("AAPL")
chartSeries(AAPL)
require(TTR)
addBBands()
saveChart('pdf')
saveChart('pdf', width=13)
## End(Not run)

---

setSymbolLookup  Manage Symbol Lookup Table

Description

Create and manage Symbol defaults lookup table within R session for use in getSymbols calls.

Usage

```r
setSymbolLookup(...)
getSymbolLookup(Symbols=NULL)
saveSymbolLookup(file,dir="")
loadSymbolLookup(file,dir="")
```

Arguments

```r
...
name=value pairs for symbol defaults
Symbols
name of symbol(s)
file
filename
dir
directory of filename
```

Details

Use of these functions allows the user to specify a set of default parameters for each Symbol to be loaded.

Different sources (e.g. yahoo, MySQL, csv), can be specified for each Symbol of interest. The sources must be valid getSymbols methods - see getSymbols for details on which methods are available, as well as how to add additional methods.
The argument list to `setSymbolLookup` is simply the unquoted name of the `Symbol` matched to the desired default source, or list of `Symbol` specific parameters.

For example, to signify that the stock data for Sun Microsystems (JAVA) should be downloaded from Yahoo! Finance, one would call `setSymbolLookup(JAVA='yahoo')` or `setSymbolLookup(JAVA=list(src='yahoo'))`.

It is also possible to specify additional, possibly source specific, lookup details on a per symbol basis. These include an alternate naming convention (useful for sites like Yahoo! where certain non-traded symbols are prepended with a caret, or more correctly a circumflex accent. In that case one would specify `setSymbolLookup(DJI=list(name="^DJI",src="yahoo"))` as well as passed parameters like `dbname` and `password` for database sources. See the specific `getSymbols` function related to the source in question for more details of each implementation.

If a single named list is passed into the function without naming the list as a parameter, the names of this list will be presumed to be symbol names to be added to the current list of symbols.

All changes are made to the current list, and will persist only until the end of the session. To always use the same defaults it is necessary to call `setSymbolLookup` with the appropriate parameters from a startup file (e.g. `.Rprofile`) or to use `saveSymbolLookup` and `loadSymbolLookup` to save and restore lookup tables.

To unset a specific Symbol’s defaults, simply assign `NULL` to the `Symbol`.

Value

Called for its side effects, the function changes the `options` value for the specified `Symbol` through a call to `options(getSymbols.sources=...)`

Note

Changes are NOT persistent across sessions, as the table is stored in the session options by default. This may change to allow for an easier to manage process, as for now it is designed to minimize the clutter created during a typical session.

Author(s)

Jeffrey A. Ryan

See Also

`getSymbols`, `options`,

Examples

```r
setSymbolLookup(QQQQ='yahoo',DIA='MySQL')
getSymbolLookup('QQQQ')
getSymbolLookup(c('QQQQ','DIA'))
```

```r
Not run:
Will download QQQQ from yahoo
and load DIA from MySQL
getSymbols(c('QQQQ','DIA'))
```
setTA

Manage TA Argument Lists

Description

Used to manage the TA arguments used inside chartSeries calls.

Usage

setTA(type = c("chartSeries", "barChart", "candleChart"))

listTA(dev)

Arguments

type the function to apply defaults TAs to

dev the device to display TA arguments for

Details

setTA and unsetTA provide a simple way to reuse the same TA arguments for multiple charts. By default all charting functions will be set to use the current chart’s defaults.

It is important to note that the current device will be used to extract the list of TA arguments to apply. This is done with a call to listTA internally, and followed by calls to setDefaults of the appropriate functions.

An additional way to set default TA arguments for subsequent charts is via setDefaults. See the examples.

Value

Called for its side-effect of setting the default TA arguments to quantmod’s charting functions.
Note

Using setDefaults directly will require the vector of default TA calls to be wrapped in a call to substitute to prevent unintended evaluations; OR a call to listTA to get the present TA arguments. This last approach is what setTA wraps.

Author(s)

Jeffrey A. Ryan

See Also

chartSeries, addTA

Examples

```r
Not run:
listTA()
setTA()

a longer way to accomplish the same
setDefaults(chartSeries,TA=listTA())
setDefaults(barCart,TA=listTA())
setDefaults(candleChart,TA=listTA())

setDefaults(chartSeries,TA=substitute(c(addVo(),addBBands())))

End(Not run)
```

**specifyModel**

*Specify Model Formula For quantmod Process*

Description

Create a single reusable model specification for subsequent buildModel calls. An object of class quantmod is created that can be then be reused with different modelling methods and parameters. No data frame is specified, as data is retrieved from potentially multiple environments, and internal calls to getSymbols.

Usage

```r
specifyModel(formula, na.rm=TRUE)
```

Arguments

- `formula` an object of class formula (or one that can be coerced to that class): a symbolic description of the model to be fitted. The details of model specification are given under Details.
- `na.rm` remove all incomplete rows.
**Details**

Models are specified through the standard formula mechanism.

As financial models may include a variety of financial and economic indicators, each differing in source, frequency, and/or class, a single mechanism to specify sources is included within a call to specifyModel. See `getModelData` for details of how this process works.

Currently, objects of class `quantmod.OHLC`, `zoo` and `ts` are supported within the model formula.

All symbols are first retrieved from the global environment, without inheritance. If an object is not found in the global environment, it is added to a list of objects to load through the `getSymbols` function. `getSymbols` retrieves each object specified by using information as to its location specified apriori via `setDefaults` or `setSymbolLookup`.

Internally all data is coerced to `zoo`, `data.frame`, or numeric classes.

**Value**

Returns an object of class `quantmod`. Use `modelData` to extract full data set as `zoo` object.

**Note**

It is possible to include any supported series in the formula by simply specifying the object’s symbol. See *Details* for a list of currently supported classes.

Use `getSymbols.skeleton` to create additional methods of data sourcing, e.g. from a proprietary data format or currently unimplemented source (Bloomberg, Oracle).

See `getSymbols.MySQL` and `getSymbols.yahoo` for examples of adding additional functionality.

**Author(s)**

Jeffrey Ryan

**References**

`quantmod.com` [http://www.quantmod.com](http://www.quantmod.com)

**See Also**

`getModelData`, `getSymbols`, `buildModel`, `tradeModel`, `formula`, `setSymbolLookup`

**Examples**

```r
Not run:
if QQQQ is not in the Global environment, an attempt will be made
to retrieve it from the source specified with getSymbols.Default

specifyModel(Next(OpCl(QQQQ)) ~ Lag(OpHi(QQQQ),0:3) + Hi(DIA))

End(Not run)
```
Add Technical Indicator to Chart

Description

Functions to add technical indicators to a chart.

Details

The general mechanism to add technical analysis studies or overlays to a financial chart created with `chartSeries`.

Functionality marked with a ‘*’ is via the `TTR` package.

General TA charting tool functions:

- `addTA` add data as custom indicator
- `dropTA` remove technical indicator
- `moveTA` move a technical indicator
- `swapTA` swap two technical indicators

Current technical indicators include:

- `addADX` add Welles Wilder’s Directional Movement Indicator*
- `addATR` add Average True Range *
- `addAroon` add Aroon Indicator *
- `addAroonOsc` add Aroon Oscillator *
- `addBBands` add Bollinger Bands *
- `addCCI` add Commodity Channel Index *
- `addCMF` add Chaiken Money Flow *
- `addChAD` add Chaiken Accumulation Distribution Line *
- `addChVol` add Chaiken Volatility *
- `addCMO` add Chande Momentum Oscillator *
- `addDEMA` add Double Exponential Moving Average *
- `addDPO` add Detrended Price Oscillator *
- `addEMA` add Exponential Moving Average *
- `addEMV` add Arm’s Ease of Movement *
- `addEnvelope` add Moving Average Envelope
- `addEVM` add Exponential Volume Weighted Moving Average *
- `addexpiry` add options or futures expiration lines
- `addKST` add Know Sure Thing *
- `addLines` add line(s)
• addMACD:add Moving Average Convergence Divergence *
• addMFI:add Money Flow Index *
• addMomentum:add Momentum *
• addOBV:add On-Balance Volume *
• addPoints:add point(s)
• addROC:add Rate of Change *
• addRSI:add Relative Strength Indicator *
• addSAR:add Parabolic SAR *
• addSMA:add Simple Moving Average *
• addSMI:add Stochastic Momentum Index *
• addTDI:add Trend Direction Index *
• addTRIX:add Triple Smoothed Exponential Oscillator *
• addV:add Volume if available
• addVolatility:add volatility *
• addWMA:add Weighted Moving Average *
• addWPR:add Williams Percent R *
• addZigZag:add Zig Zag *
• addZLEMA:add ZLEMA *

See the individual functions for specific implementation and argument details. Details of the underlying TTR implementations can be found in TTR.

The primary changes between the add*** version of an indicator and the TTR base function is the absence of the data argument in the former.

Notable additions include on, with.col.

Value

Called for its side effects, an object to class chobTA will be returned invisibly. If called from the R command line the method will draw the appropriate indicator on the current chart.

Note

Calling any of the above methods from within a function or script will generally require them to be wrapped in a plot call as they rely on the context of the call to initiate the actual charting addition.

Author(s)

Jeffrey A. Ryan

References

Josh Ulrich - TTR package
Simulate Trading of Fitted quantmod Object

Description

Simulated trading of fitted quantmod object. Given a fitted model, tradeModel calculates the signal generated over a given historical period, then applies specified trade.rule to calculate and return a tradeLog object. Additional methods can then be called to evaluate the performance of the model’s strategy.

Usage

```r
trademodelHxL
 signalNthreshold = c(0, 0),
 leverage = 1,
 returnNmodel = TRUE,
 plotNmodel = FALSE,
 tradeNdates = NULL,
 excludeNtraining = TRUE,
 retNtype = c("weeks", "months", "quarters", "years"),
 ...
```

Arguments

- `x` a quantmod object from buildModel
- `signalNthreshold` a numeric vector describing simple lower and upper thresholds before trade occurs
- `leverage` amount of leverage to apply - currently a constant
- `returnNmodel` should the full model be returned?
- `plotNmodel` plot the model?
- `tradeNdates` specific trade interval - defaults to full dataset
- `excludeNtraining` exclude the period trained on?
- `retNtype` a table of period returns
- `...` additional parameters needed by the underlying modelling function, if any

Details

Still highly experimental and changing. The purpose is to apply a newly constructed model from buildModel to a new dataset to investigate the model’s trading potential.

At present all parameters are very basic. The near term changes include allowing for a trade.rule argument to allow for a dynamic trade rule given a set of signals. Additional the application of variable leverage and costs will become part of the final structure.

Any suggestions as to inclusions or alterations are appreciated and should be directed to the maintainer of the package.
Value

A quantmodResults object

Author(s)

Jeffrey A. Ryan

See Also

specifyModel buildModel

Examples

### Not run:
m <- specifyModel(Next(OpCl(QQQQ)) ~ Lag(OpHi(QQQQ)))
m.built <- buildModel(m, method='rpart', training.per=c('2007-01-01', '2007-04-01'))

tradeModel(m.built)
tradeModel(m.built, leverage=2)

### End(Not run)

---

**zoomChart**

*Change Zoom Level Of Current Chart*

Description

Using *xts* style date subsetting, zoom into or out of the current chart.

Usage

```
zooom(n=1, eps=2)
zooomChart(subset, xrange=NULL)
```

Arguments

- `n`: the number of interactive view changes per call
- `eps`: the distance between clicks to be considered a valid subset request
- `subset`: a valid subset string
- `xrange`: override y-scale
Details

These functions allow for viewing of specific areas of a chart produced by \texttt{chartSeries} by simply specifying the dates of interest.

\texttt{zoom} is an interactive chart version of \texttt{zoomChart} which utilizes the standard \texttt{R} device interaction tool \texttt{locator} to estimate the subset desired. This estimate is then passed to \texttt{zoomChart} for actual redrawing. At present it is quite experimental in its interface and arguments. Its usage entails a call to \texttt{zoom()} followed by the selection of the leftmost and rightmost points desired in the newly zoomed chart. This selection is accomplished by the user left-clicking each extreme point. Two clicks are required to determine the level of zooming. Double clicking will reset the chart to the full data range. The arguments and internal working of this function are likely to change dramatically in future releases, though its use will likely remain.

Standard format for the \texttt{subset} argument is the same as the subsetting for \texttt{xts} objects, which is how the data is stored internally for rendering.

Calling \texttt{zoomChart} with no arguments (\texttt{NULL}) resets the chart to the original data.

Examples include '2007' for all of the year 2007, '2007::2008' for years 2007 through 2008, '::2007' for all data from the beginning of the set to the end of 2007, '2007:.' all data from the beginning of 2007 through the end of the data. For specifics regarding the level of detail and internal interpretation please see \texttt{?.xts}

Value

This function is called for its side effect - notably changing the perspective of the current chart, and changing its formal subset level. The underlying data attached to the chart is left unchanged.

Author(s)

Jeffrey A. Ryan

See Also

\texttt{chartSeries}

Examples

```r
Not run:
data(sample_matrix)
chartSeries(sample_matrix)
zoomChart('2007-04::')
zoomChart()

zoom() # interactive example

End(Not run)
```
Index

*Topic **IO**
  * getQuote, 45

*Topic **aplot**
  * newTA, 73
  * saveChart, 86
  * TA, 92

*Topic **classes**
  * chob-class, 28
  * chobTA-class, 29
  * quantmod-class, 84

*Topic **datagen**
  * buildData, 19
  * Lag, 70
  * Next, 77

*Topic **datasets**
  * getModelData, 43
  * getSymbols.oanda, 59

*Topic **data**
  * getQuote, 45
  * getSymbols, 48
  * getSymbols.csv, 52
  * getSymbols.FRED, 53
  * getSymbols.google, 55
  * getSymbols.MySQL, 57
  * getSymbols.rda, 61
  * getSymbols.yahoo, 64
  * getSymbols.yahoo, 66
  * modelData, 72
  * quantmod.OHLHC, 85

*Topic **device**
  * saveChart, 86

*Topic **dplot**
  * chart.Series, 27
  * newTA, 73
  * saveChart, 86

*Topic **hplot**
  * newTA, 73

*Topic **misc**
  * adjustOHLC, 16
  * attachSymbols, 17
  * create.binding, 30
  * findPeaks, 34
  * Lag, 70
  * Next, 77

*Topic **models**
  * buildModel, 21
  * fittedModel, 35
  * specifyModel, 90
  * tradeModel, 94

*Topic **package**
  * quantmod-package, 3

*Topic **ts**
  * Lag, 70

*Topic **utilities**
  * addADX, 4
  * addBBands, 5
  * addCCI, 6
  * addExpirey, 7
  * addMA, 8
  * addMACD, 9
  * addROC, 10
  * addRSI, 11
  * addSAR, 12
  * addSMI, 13
  * addVo, 14
  * addWPR, 15
  * chartSeries, 22
  * chartTheme, 25
  * Defaults, 31
  * Delt, 33
  * getDividends, 37
  * getFinancials, 39
  * getFX, 40
  * getMetals, 42
  * getOptionChain, 44
  * getSplits, 47
  * getSymbols.SQLite, 62
  * has.OHLC, 68
internal-quantmod, 69
is.quantmod, 70
modelData, 72
modelSignal, 73
OHLCTransformations, 78
options.expiry, 81
periodReturn, 82
setSymbolLookup, 87
setTA, 89
zoomChart, 95
.quantmodEnv (internal-quantmod), 69
Ad(OHLCTransformations), 78
add_axis (chart_Series), 27
add_Bbands (chart_Series), 27
add_DEMA (addMA), 8
add_EMA (addMA), 8
add_EVWMA (addMA), 8
add_GMA (addMA), 8
add_MACD (chart_Series), 27
add_RSI (chart_Series), 27
add_Series (chart_Series), 27
add_SMA (addMA), 8
add_SMI (chart_Series), 27
add_TA (chart_Series), 27
add_VMA (addMA), 8
add_Vo (chart_Series), 27
add_VWAP (addMA), 8
add_NMA (addMA), 8
addADX, 4
addAroon (TA), 92
addAroonOsc (TA), 92
addATR (TA), 92
addBbands, 5
addCCI, 6
addChAd (TA), 92
addChVol (TA), 92
addCLV (TA), 92
addCMF (TA), 92
addCMO (TA), 92
addDEMA (addMA), 8
addDPO (TA), 92
addEMA (addMA), 8
addEMV (TA), 92
addEnvelope (TA), 92
addEVWMA (addMA), 8
addExpirey, 7, 81
addKST (TA), 92
addLines (TA), 92
addMA, 8
addMACD, 9
addMFI (TA), 92
addMomentum (TA), 92
addOBV (TA), 92
addPoints (TA), 92
addROC, 10
addRSE, 11
addSAR, 12
addShading (internal-quantmod), 69
addSMA (addMA), 8
addSMI, 13
addTA, 4–7, 9–15, 25, 30, 90
addTA (newTA), 73
addTDI (TA), 92
addTRIX (TA), 92
addVo, 14
addVolatility (TA), 92
addWMA (addMA), 8
addWPR, 15
addZigZag (TA), 92
addZLEMA (addMA), 8
adjustOHLCT, 16
allReturns (periodReturn), 82
annualReturn (periodReturn), 82
anova.quantmod (fittedModel), 35
as.quantmod.OHLCT (quantmod.OHLCT), 85
attachSymbols, 17
aXTicksByTime2 (chart_Series), 27
aXTicksByValue (chart_Series), 27
barChart (chartSeries), 22
bitmap, 87
buildData, 19
buildModel, 21, 37, 44, 91, 95
candleChart (chartSeries), 22
chart_pars (chart_Series), 27
chart_Series, 27
chart_theme (chart_Series), 27
chartSeries, 22, 26, 29, 76, 90, 96
chartShading (internal-quantmod), 69
chartTA (newTA), 73
chartTheme, 25, 25
chob, 30, 76
chob-class, 28
chobTA, 29, 76
chobTA-class, 29
Cl (OHLCTransformations), 78
INDEX

CLC (OHLC.Transformations), 78
coef.quantmod(fittedModel), 35
coefficients.quantmod(fittedModel), 35
create.binding, 30
dailyReturn (periodReturn), 82
Defaults, 31
Delt, 33
dropTA (TA), 92
findPeaks, 34
findValleys (findPeaks), 34
fitted.quantmod(fittedModel), 35
fitted.values.quantmod(fittedModel), 35
fittedModel, 35
fittedModel<= (fittedModel), 35
fittedModel<=, quantmod-method
(quantmod-class), 84
fittedModel<=--methods (quantmod-class), 84
flushSymbols (attachSymbols), 17
formula, 97
formula.quantmod(fittedModel), 35
futures.expiry (options.expiry), 81
getDefaults (Defaults), 31
getDividends, 17, 37, 48
getFin (getFinancials), 39
getFinancials, 39
getFX, 40, 51
getMetals, 42, 51
getModelData, 43, 51, 72, 91
ggetOptionChain, 44
getPrice (OHLC.Transformations), 78
getQuote, 45
getSplits, 17, 47
getSymbolLookup (setSymbolLookup), 87
getSymbols, 20, 25, 38, 41, 43, 44, 46, 48, 49,
53, 54, 56, 58, 60, 62, 64, 65, 67, 83,
86, 88, 91
getSymbols.csv, 51, 52
getSymbols.FRED, 51, 53, 60
getSymbols.google, 51, 55
getSymbols.MySQL, 57
getSymbols.mysql (getSymbols.MySQL), 57
getSymbols.oanda, 41, 43, 51, 59
getSymbols.rda, 61
getSymbols.RData, 51
getSymbols.RData (getSymbols.rda), 61
getSymbols.SQLite, 62
getSymbols.yahoo, 17, 51, 64
getSymbols.yahooj, 66
has.A (has.OHLC), 68
has.Ask (has.OHLC), 68
has.Bid (has.OHLC), 68
has.Cl (has.OHLC), 68
has.Hi (has.OHLC), 68
has.HLC (has.OHLC), 68
has.Lo (has.OHLC), 68
has.OHLC, 68
has.OHLCV (has.OHLC), 68
has.Op (has.OHLC), 68
has.Price (has.OHLC), 68
has.Qty (has.OHLC), 68
has.Trade (has.OHLC), 68
has.Vo (has.OHLC), 68
Hi (OHLC.Transformations), 78
HiCl (OHLC.Transformations), 78
HLC (OHLC.Transformations), 78
importDefaults (Defaults), 31
internal-quantmod, 69
is.BBO (has.OHLC), 68
is.HLC (has.OHLC), 68
is.OHLC (has.OHLC), 68
is.OHLCV (has.OHLC), 68
is.quantmod, 70
is.quantmodResults (is.quantmod), 70
is.TBBO (has.OHLC), 68
jpeg, 87
Lag, 70, 78
lag, 71
lineChart (chartSeries), 22
listTA (setTA), 89
Lo (OHLC.Transformations), 78
load, 62
loadSymbolLookup (setSymbolLookup), 87
loadSymbols (getSymbols), 48
LoCl (OHLC.Transformations), 78
logLik.quantmod(fittedModel), 35
LoHi (OHLC.Transformations), 78
matchChart (chartSeries), 22
modelData, 20, 44, 72
modelSignal, 73
monthlyReturn (periodReturn), 82
moveTA (TA), 92
new.replot (chart_Series), 27
newTA, 73
Next, 77

oanda.currencies (getSymbols.oanda), 59
OHL (OHL.Transformations), 78
OHL.Transformations, 69, 78, 86
OHL.CV (OHL.Transformations), 78
Op (OHL.Transformations), 78
OpCl, 34
OpCl (OHL.Transformations), 78
OpHi (OHL.Transformations), 78
OpLo (OHL.Transformations), 78
OpOp, 34
OpOp (OHL.Transformations), 78
options, 33, 88
options.expiry, 81
pdf, 87
peak (findPeaks), 34
periodReturn, 82
plot.quantmod (fittedModel), 35
png, 87
postscript, 87
quantmod, 37
quantmod (quantmod-package), 3
quantmod-class, 84
quantmod-package, 3
quantmod.OHL, 69, 85
quantmodenv (quantmod-package), 3
quantmodResults-class (quantmod-class), 84
quantmodReturn-class (quantmod-class), 84
quarterlyReturn (periodReturn), 82

read.csv, 53
reChart (chartSeries), 22
removeSymbols (getSymbols), 48
resid.quantmod (fittedModel), 35
residuals.quantmod (fittedModel), 35

saveChart, 86
saveSymbolLookup (setSymbolLookup), 87
saveSymbols (getSymbols), 48
seriesAccel (OHL.Transformations), 78
seriesDecel (OHL.Transformations), 78
seriesDecr (OHL.Transformations), 78
seriesHi (OHL.Transformations), 78
seriesIncr (OHL.Transformations), 78
seriesLo (OHL.Transformations), 78
setDefaults (Defaults), 31
setSymbolLookup, 51, 53, 54, 56, 58, 62, 65, 67, 87, 91
setTA, 25, 89
show, chobTA-method (chobTA-class), 29
show, quantmod-method (quantmod-class), 84
show, quantmodResults-method (quantmod-class), 84
show, tradeLog-method (quantmod-class), 84
showSymbols (getSymbols), 48
specifyModel, 20–22, 44, 48, 51, 70, 72, 78, 80, 90, 95
standardQuote (getQuote), 45
summary, quantmod-method (quantmod-class), 84
swapTA (TA), 92

TA, 76, 92
tradeLog-class (quantmod-class), 84
tradeModel, 22, 70, 73, 91, 94

unsetDefaults (Defaults), 31
unsetTA (setTA), 89

valley (findPeaks), 34
vcov.quantmod (fittedModel), 35
viewFin (getFinancials), 39
viewFinancials (getFinancials), 39
Vo (OHL.Transformations), 78
weeklyReturn (periodReturn), 82

yahooQF (getQuote), 45
yahooQuote.EOD (getQuote), 45
yearlyReturn (periodReturn), 82

zoom (zoomChart), 95
zoom_Chart (chart_Series), 27
zoomChart, 95
zoom (zoomChart), 95