Package ‘quickmatch’

August 24, 2018

Type Package
Title Quick Generalized Full Matching
Version 0.2.1
Date 2018-08-24
Description Provides functions for constructing near-optimal generalized full matching.
 Generalized full matching is an extension of the original full matching method to situations with more intricate study designs. The package is made with large data sets in mind and derives matches more than an order of magnitude quicker than other methods.
Depends R (>= 3.4.0), distances
Imports sandwich, scclust (>= 0.2.0), stats
Suggests testthat
NeedsCompilation yes
License GPL (>= 3)
URL https://github.com/fsavje/quickmatch
BugReports https://github.com/fsavje/quickmatch/issues
Encoding UTF-8
RoxygenNote 6.1.0
Author Fredrik Savje [aut, cre],
 Jasjeet Sekhon [aut],
 Michael Higgins [aut]
Maintainer Fredrik Savje <fredrik.savje@yale.edu>
Repository CRAN
Date/Publication 2018-08-24 21:00:02 UTC

R topics documented:

 quickmatch-package .. 2
covariate_averages ... 2
quickmatch-package quickmatch: Quick Generalized Full Matching

Description

Provides functions for constructing near-optimal generalized full matchings. Generalized full matching is an extension of the original full matching method to situations with more intricate study designs. The package is made with large data sets in mind and derives matchings more than an order of magnitude quicker than other methods.

Details

See quickmatch for the main matching function.

See the package’s website for more information: https://github.com/fsavje/quickmatch.

Bug reports and suggestions are greatly appreciated. They are best reported here: https://github.com/fsavje/quickmatch/issues.

References

covariate_averages Covariate averages in matched sample

Description

covariate_averages derives covariate averages for treatment groups in matched samples.

Usage

covariate_averages(treatments, covariates, matching = NULL,
 target = NULL)
Arguments

- **treatments**: factor specifying the units’ treatment assignments.
- **covariates**: vector, matrix or data frame with covariates to calculate averages for.
- **matching**: `qm_matching` or `scclust` object with the matched groups. If NULL, averages are derived for the unmatched sample.
- **target**: units to target the averages for. If NULL, the averages will be the raw average over all units in the sample (i.e., ATE). A non-null value specifies a subset of units to derive averages for (e.g., ATT or ATC). If target is a logical vector with the same length as the sample size, units indicated with TRUE will be targeted. If target is an integer vector, the units with indices in target are targeted. If target is a character vector, it should contain treatment labels, and the corresponding units (as given by treatments) will be targeted. If matching is NULL, target is ignored.

Details

covariate_averages calculates covariate averages by first deriving the average for each covariate for each treatment conditions in each matched group. It then aggregates the group averages by a weighted average, where the target parameter decides the weights. If a matched group contains many units not targeted (e.g., control units when ATT is of interest), those units will contribute less to the covariate average for the corresponding treatment condition than units in matched groups with many targeted units. This means that the covariate average is calculated in the same way as the potential outcomes are estimated. In fact, covariate_averages can be used as an estimator for potential outcomes by calling it with the outcome variable as a covariate.

When the average treatment effect (ATE) is of interest (i.e., target == NULL), the matched groups will be weighted by their sizes. When target indicates that some subset of units is of interest, the number of such units in each matched group will decide its weight. For example, if we are interested in the average treatment effect of the treated (ATT), the weight of a group will be proportional to the number of treated units in that group.

In practice, the function first derives the unit-level weights implied by the matching. In detail, let $S(g)$ be the number of units indicated by target in group g. Let T be the total number of units indicated by target in the sample. Let $A(t, g)$ be the number of units assigned to treatment t in group g. The weight for a unit in group g that is assigned to treatment t is given by:

$$\frac{S(g)}{T \times A(t, g)}.$$

See matching_weights for more details.

covariate_averages focuses on means, but higher moments and interactions can be investigated by adding corresponding columns to the covariate matrix (see examples below).

Value

Returns a matrix with the average of each covariate for each treatment group. The rows in the matrix correspond to the covariates in order and the columns correspond to the treatment groups. For example, a possible output with three treatment groups ("C", "T1" and "T2") and four covariates is:
which indicates that the average of the first covariate in the matched sample is 3.0 for units assigned to condition "C", and that the average of the third covariate is 0.2 for units assigned to condition "T1".

Examples

```r
# Construct example data
data <- data.frame(y = rnorm(100),
x1 = runif(100),
x2 = runif(100),
treatment = factor(sample(rep(c("T1", "T2", "C"), c(25, 25, 50)))))

# Make distances
distances <- distances(data, dist_variables = c("x1", "x2"))

# Treatment group averages in unmatched sample
covariate_averages(data[,c("x1", "x2")])

# Make matching
matching <- quickmatch(distances, data[,treatment])

# Treatment group averages in matched sample
covariate_averages(data[,c("x1", "x2")], matching)

# Averages in matched sample for ATT
covariate_averages(data[,c("x1", "x2")],
                    data[,c("x1", "x2")],
                    matching,
                    target = c("T1", "T2"))

# Second-order moments and interactions
mod_covs <- data.frame(x1 = data$x1,
                        x2 = data$x2,
                        x1sq = data$x1^2,
                        x2sq = data$x2^2,
                        x1x2 = data$x1 * data$x2)
covariate_averages(data[,treatment], mod_covs, matching)
```
covariate_balance

description

covariate_balance derives measures of covariate balance between treatment groups in matched samples. The function calculates normalized mean differences between all pairs of treatment conditions for each covariate.

usage

covariate_balance(treatments, covariates, matching = NULL, target = NULL, normalize = TRUE, all_differences = FALSE)

arguments

treatments factor specifying the units’ treatment assignments.
covariates vector, matrix or data frame with covariates to derive balance for.
mapping qm.matching or scclus object with the matched groups. If NULL, balance is derived for the unmatched sample.
target units to target the balance measures for. If NULL, the measures will be the raw average over all units in the sample (i.e., ATE). A non-null value specifies a subset of units to derive balance measures for (e.g., ATT or ATC). If target is a logical vector with the same length as the sample size, units indicated with TRUE will be targeted. If target is an integer vector, the units with indices in target are targeted. If target is a character vector, it should contain treatment labels, and the corresponding units (as given by treatments) will be targeted. If matching is NULL, target is ignored.
normalize logical scalar indicating whether differences should be normalized by the sample standard deviation of the corresponding covariates.
all_differences logical scalar indicating whether full matrices of differences should be reported. If FALSE, only the maximum difference for each covariate is returned.

details

covariate_balance calculates covariate balance by first deriving the (normalized) mean difference between all treatment conditions for each covariate in each matched group. It then aggregates the differences by a weighted average, where the target parameter decides the weights. When the average treatment effect (ATE) is of interest (i.e., target == NULL), the matched groups will be weighted by their sizes. When target indicates that some subset of units is of interest, the number of such units in each matched group will decide its weight. For example, if we are interested in the average treatment effect of the treated (ATT), the weight of a group will be proportional to the number of treated units in that group. The reweighting of the groups captures that we are prepared to accept greater imbalances in groups with few units of interest.

By default, the differences are normalized by the sample standard deviation of the corresponding covariate (see the normalize parameter). In more detail, the sample variance of the covariate is derived separately for each treatment group. The square root of the mean of these variances is then used for the normalization. The matching is ignored when deriving the normalization factor so that balance can be compared across different matchings or with the unmatched sample.
covariate_balance focuses on mean differences, but higher moments and interactions can be investigated by adding corresponding columns to the covariate matrix (see examples below).

Value

Returns the mean difference between treatment groups in the matched sample for each covariate. When all_differences = TRUE, the function returns a matrix for each covariate with the mean difference for each possible pair of treatment conditions. Rows in the matrices indicate minuends in the differences and columns indicate subtrahends. For example, when differences are normalized, the matrix:

```
   a   b   c
  a 0.0  0.3  0.5
  b-0.3  0.0  0.2
  c-0.5 -0.2  0.0
```

reports that the mean difference for the corresponding covariate between treatments "a" and "b" is 30% of a sample standard deviation of the covariate. The maximum difference (in absolute value) is also reported in a separate vector. For example, the maximum difference for the covariate in the example above is 0.5.

When all_differences = FALSE, only the maximum differences are reported.

Examples

```r
# Construct example data
my_data <- data.frame(y = rnorm(100),
                      x1 = runif(100),
                      x2 = runif(100),
                      treatment = factor(sample(rep(c("T1", "T2", "C"), c(25, 25, 50)))))

# Make distances
my_distances <- distances(my_data, dist_variables = c("x1", "x2"))

# Balance in unmatched sample (maximum for each covariate)
covariate_balance(my_data$treatment, my_data[c("x1", "x2"),])

# Make matching
covariate_balance(my_data$treatment, my_data[c("x1", "x2")], my_matching)

# Balance in matched sample for ATT
covariate_balance(my_data$treatment,
                  my_data[c("x1", "x2")],
                  my_matching,
                  target = c("T1", "T2"))
```

Balance on second-order moments and interactions
is.qm_matching

is.qm_matching checks whether the provided object is a valid instance of the \texttt{qm_matching} class.

Usage

\begin{verbatim}
is.qm_matching(x)
\end{verbatim}

Arguments

\begin{itemize}
 \item \texttt{x} \hspace{1cm} object to check.
\end{itemize}

Details

is.qm_matching does not check whether the matching itself is sensible or whether it satisfies some set of constraints. See \texttt{check_clustering} for that functionality.

Value

Returns \texttt{TRUE} if \texttt{x} is a valid \texttt{qm_matching} object, otherwise \texttt{FALSE}.

```r
balance_cov <- data.frame(x1 = my_data$x1,
                         x2 = my_data$x2,
                         x1sq = my_data$x1^2,
                         x2sq = my_data$x2^2,
                         x1x2 = my_data$x1 * my_data$x2)
covariate_balance(my_data$treatment, balance_cov, my_matching)

# Report all differences (not only maximum for each covariate)
covariate_balance(my_data$treatment,
                 my_data[c("x1", "x2")],
                 my_matching,
                 all_differences = TRUE)
```
lm_match

Regression-based matching estimator of treatment effects

Description

lm_match estimates treatment effects in matched samples. The function expects the user to provide the outcomes, treatment indicators, and a matching object. It returns point estimates of the average treatment effects and variance estimates. It is possible to estimate treatment effects for subsets of the observations, such as estimates of the average treatment effect for the treated (ATT).

Usage

```r
lm_match(outcomes, treatments, matching, covariates = NULL, target = NULL)
```

Arguments

- `outcomes`: numeric vector with observed outcomes.
- `treatments`: factor specifying the units’ treatment assignments.
- `matching`: `qm_matching` or `scclust` object with the matched groups.
- `covariates`: vector, matrix or data frame with covariates to include in the estimation. If NULL, no covariates are included.
- `target`: units to target the estimation for. If NULL, the effect is estimated for all units in the sample (i.e., ATE). A non-null value specifies a subset of units for which the effect should be estimated (e.g., ATT or ATC). If target is a logical vector with the same length as the sample size, units indicated with TRUE will be targeted. If target is an integer vector, the units with indices in target are targeted. If target is a character vector, it should contain treatment labels, and the effect for the corresponding units (as given by treatments) will be estimated.

Details

lm_match estimates treatment effects using weighted regression. The function first derives the unit-level weights implied by the matching. In detail, let $S(g)$ be the number of units indicated by target in group g. Let T be the total number of units indicated by target in the sample. Let $A(t, g)$ be the number of units assigned to treatment t in group g. The weight for a unit in group g that is assigned to treatment t is given by:

$$\frac{S(g)}{T \times A(t, g)}.$$

See matching_weights for more details.

The function uses the derived weights in a weighted least squares regression (using the `lm` function) with indicator variables for the treatment conditions. Optionally, covariates can be added to the regression (e.g., a common recommendation is to include the covariates used to construct the matching). Standard errors are estimated with the heteroskedasticity-robust "HC1" estimator in the `vcovHC` function. Units not assigned to matched groups and units assigned weights of zero are excluded from the estimation.
Value

A list with two numeric matrices with all estimated treatment effects and their estimated variances is returned. The first matrix (effects) contains estimated treatment effects. Rows in this matrix indicate minuends in the treatment effect contrast and columns indicate subtrahends. For example, in the matrix:

\[
\begin{array}{ccc}
 a & b & c \\
 a & 0.0 & 4.5 & 5.5 \\
 b & -4.5 & 0.0 & 1.0 \\
 c & -5.5 & -1.0 & 0.0 \\
\end{array}
\]

the estimated treatment effect between conditions \(a\) and \(b\) is 4.5, and the estimated treatment effect between conditions \(c\) and \(b\) is -1.0. In symbols, \(E[Y(a) - Y(b) | S] = 4.5\) and \(E[Y(c) - Y(b) | S] = -1.0\) where \(S\) is the condition set indicated by the target parameter.

The second matrix (effect_variances) contains estimates of variances of the corresponding effect estimators.

References

Examples

```r
# Construct example data
my_data <- data.frame(y = rnorm(100),
                      x1 = runif(100),
                      x2 = runif(100),
                      treatment = factor(sample(rep(c("T1", "T2", "C"), c(25, 25, 50)))))

# Make distances
my_distances <- distances(my_data, dist_variables = c("x1", "x2"))

# Make matching
my_matching <- quickmatch(my_distances, my_data$treatment)

# ATE without covariates
lm_match(my_data$y, my_data$treatment, my_matching)

# ATE with covariates
lm_match(my_data$y, my_data$treatment, my_matching, my_data[\(\text{c("x1", "x2")}]\)

# ATT for T1
lm_match(my_data$y, my_data$treatment, my_matching, my_data[\(\text{c("x1", "x2")}]\)
```

matching_weights

\[S(g) \]

\[T \times A(t, g) \]

Consider, for example, a matched group with one treated unit and two control units when we are interested in the average effect of the treated (ATT) and we have 50 treated units in total (\(T = 50 \)). For all three units in the group, we have \(S(g) = 1 \). For the treated unit we have \(A(t, g) = 1 \), so its weight becomes 1/50. The two control units have \(A(t, g) = 2 \), so their weights are both 1/100.
These weights are such that the difference between the weighted averages of the outcomes in two
treatment conditions is the same as the average within-group difference-in-means between the two
conditions.

If a matched group g with $S(g) > 0$ lacks some treatment condition t, no weights exist for the
units assigned to t (in other groups) so to replicate group g; the matching does not contain enough
information to impute the missing treatment in group g. Subsequently, all units assigned to t will
be given the weight NA. There is two ways to solve this problem. First, one can change the target
estimand by setting $S(g) = 0$ for all groups that are missing units assigned to t. This is done with
the target parameter. Second, one can change the matching so that all groups contain at least one
unit assigned to t (e.g., by merging groups).

Units not assigned to matched groups are given zero weights.

Value

Returns a numeric vector with the weights of the units in the matching.

Examples

```r
# Construct example data
my_data <- data.frame(y = rnorm(100),
                      x1 = runif(100),
                      x2 = runif(100),
                      treatment = factor(sample(rep(c("T1", "T2", "C"), c(25, 25, 50)))))

# Make distances
my_distances <- distances(my_data, dist_variables = c("x1", "x2"))

# Make matching
my_matching <- quickmatch(my_distances, my_data$treatment)

# Weights for ATE
weights_ate <- matching_weights(my_data$treatment, my_matching)

# Weights for ATT for T1
weights_att <- matching_weights(my_data$treatment, my_matching, target = "T1")

# Estimate treatment effects with WLS estimator (see `lm_match`)
effects <- lm(y ~ treatment + x1 + x2, data = my_data, weights = weights_att)
```

qm_matching

Construct for qm_matching objects

Description

The qm_matching function constructs a qm_matching object from existing matched group labels.
The function does not derive matchings from sets of data points; see quickmatch for that function-
ality.
Usage

`qm_matching(group_labels, unassigned_labels = NULL, ids = NULL)`

Arguments

- `group_labels` : a vector containing each unit’s group label.
- `unassigned_labels` : labels that denote unassigned units. If NULL, NA values in `group_labels` are used to denote unassigned points.
- `ids` : IDs of the units. Should be a vector of the same length as `group_labels` or NULL. If NULL, the IDs are set to `1:length(group_labels)`.

Details

`qm_matching` objects are based on integer vectors, and it indexes matched groups starting with zero. The `qm_matching` class inherits from the `scclust` class.

Value

Returns a `qm_matching` object with the matching described by the provided labels.

Examples

```r
# 10 units in 3 matched groups

# 8 units in 3 matched groups, 2 units unassigned
m2 <- qm_matching(c(1, 1, 2, 3, 2, NA, 3, 1, NA, 2))

# Custom labels indicating unassigned units
unassigned_labels = "NONE")

# Two different labels indicating unassigned units
m4 <- qm_matching(c("A", "A", "B", "C", "NONE", "C", "C", "0", "B", "B"),
unassigned_labels = c("NONE", "0"))

# Custom unit IDs
ids = letters[1:10])
```
quickmatch

Derive generalized full matchings

Description

quickmatch constructs near-optimal generalized full matchings. The function expects the user to provide distances measuring the similarity of units and a set of matching constraints. It then constructs a matching so that units assigned to the same group are as similar as possible while satisfying the matching constraints.

Usage

```r
quickmatch(distances, treatments, treatment_constraints = NULL,
           size_constraint = NULL, target = NULL, caliper = NULL, ...)
```

Arguments

- `distances`: *distances* object or a numeric vector, matrix or data frame. The parameter describes the similarity of the units to be matched. It can either be preprocessed distance information using a *distances* object, or raw covariate data. When called with covariate data, Euclidean distances are calculated unless otherwise specified.

- `treatments`: factor specifying the units’ treatment assignments.

- `treatment_constraints`: named integer vector with the treatment constraints. If `NULL`, the function ensures that each matched group contains one unit from each treatment condition.

- `size_constraint`: integer with the required total number of units in each group. Must be greater or equal to the sum of `treatment_constraints`. If `NULL`, no constraints other than the treatment constraints are imposed.

- `target`: units to target the matching for. All units indicated by `target` are ensured to be assigned to a matched group (disregarding eventual caliper setting). Units not indicated by `target` could be left unassigned if they are not necessary to satisfy the matching constraints. If `NULL`, quickmatch targets the complete sample and ensures that all units are assigned to a group. If `target` is a logical vector with the same length as the sample size, units indicated with `TRUE` will be targeted. If `target` is an integer vector, the units with indices in `target` are targeted. Indices start at 1 and `target` must be sorted. If `target` is a character vector, it should contain treatment labels, and the corresponding units (as given by `treatments`) will be targeted.

- `caliper`: restrict the maximum within-group distance.

- `...`: additional parameters to be sent either to the `distances` function when the `distances` parameter contains covariate data, or to the underlying `sc_clustering` function.
Details

The treatment_constraints parameter should be a named vector with treatment-specific constraints. For example, in a sample with treatment conditions "A", "B" and "C", the vector \(c(\text{"A"} = 1, \text{"B"} = 2, \text{"C"} = 0) \) specifies that each matched group should contain at least one unit with treatment "A", at least two units with treatment "B" and any number of units with treatment "C". Treatments not specified in the vector defaults to zero. For example, the vector \(c(\text{"A"} = 1, \text{"B"} = 2) \) is identical to the previous one. When treatment_constraints is NULL, the function requires at least one unit for each treatment in each group. In our current example, NULL would be shorthand for \(c(\text{"A"} = 1, \text{"B"} = 1, \text{"C"} = 1) \).

The size_constraint parameter can be used to constrain the matched groups to contain at least a certain number of units in total (independently of treatment assignment). For example, if treatment_constraints = \(c(\text{"A"} = 1, \text{"B"} = 2) \) and total_size_constraint = 4, each matched group will contain at least one unit assigned to "A", at least two units assigned to "B" and at least four units in total, where the fourth unit can be from any treatment condition.

The target parameter can be used to control which units are included in the matching. When target is NULL (the default), all units will be assigned to a matched group. When not NULL, the parameter indicates that some units must be assigned to matched group and that the remaining units can safely be ignored. This can be useful, for example, when one is interested in estimating treatment effects only for a certain type of units (e.g., the average treatment effect for the treated, ATT). It is particularly useful when units of interest are not represented in the whole covariate space (i.e., an one-sided overlap problem). Without the target parameter, the function would in such cases try to assign every unit to a group, including units in sparse regions that we are not interested in. This could lead to unnecessarily large and diverse matched groups. By specifying that some units are of interest only insofar as they help us satisfy the matching constraints (i.e., setting the target parameter to the appropriate value), we can avoid such situations.

Consider, as an example, a study with two treatment conditions, "A" and "B". Units assigned to "B" are more numerous and tend to have more extreme covariate values. We are, however, only interested in estimating the treatment effect for units assigned to "A". By specifying target = "A", the function ensures that all "A" units are assigned to matched groups. Some units assigned to treatment "B" – in particular the units with extreme covariate values – will be left unassigned. However, as those units are not of interest, they can safely be ignored, and we avoid groups of poor quality.

Even if some of the units that can be ignored are not needed to satisfy the matching constraints, it is rarely beneficial to discard them blindly; they can occasionally provide useful information. The default behavior when target is non-NULL is to assign as many of the ignorable units as possible given that the within-group distances do not increase too much (using secondary_unassigned_method = "estimated_radius"). This behavior might, however, reduce covariate balance in some instances. If called with secondary_unassigned_method = "ignore", units not specified in target will be discarded unless they are absolutely needed to satisfying the matching constraints. This tends to reduce bias since the within-group distances are minimized, but it could increase variance since we ignore potentially useful information in the sample. An intermediate alternative is to specify an aggressive caliper for the ignorable units, which is done with the secondary_radius parameter. (These parameters are part of the sc_clustering function that quickmatch calls. The target parameter corresponds to the primary_data_points parameter in that function.)

The caliper parameter constrains the maximum distance between units assigned to the same matched group. This is implemented by restricting the edge weight in the graph used to construct the matched groups (see sc_clustering for details). As a result, the caliper will affect all
groups in the matching and, in general, make it harder for the function to find good matches even for groups where the caliper is not binding. In particular, a too tight caliper can lead to discarded units that otherwise would be assigned to a group satisfying both the matching constraints and the caliper. For this reason, it is recommended to set the caliper value quite high and only use it to avoid particularly poor matches. It strongly recommended to use the caliper parameter only when primary_unassigned_method = "closest_seed" in the underlying sc_clustering function (which is the default behavior).

quickmatch calls sc_clustering with seed_method = "inwards_updating". The seed_method parameter governs how the seeds are selected in the nearest neighborhood graph that is used to construct the matched groups (see sc_clustering for details). The "inwards_updating" option generally works well and is safe with most datasets. Using seed_method = "exclusion_updating" often leads to better performance (in the sense of matched groups with more similar units), but it may increase run time. Discrete data (or more generally when units tend to be at equal distance to many other units) will lead to particularly poor run time with this option. If the data set has at least one continuous covariate, "exclusion_updating" is typically reasonably quick. A third option is seed_method = "lexical", which decreases the run time relative to "inwards_updating" (sometimes considerably) at the cost of performance. quickmatch passes parameters on to sc_clustering, so to change seed_method, call quickmatch with the parameter specified as usual: quickmatch(..., seed_method = "exclusion_updating").

Value

Returns a qm_matching object with the matched groups.

References

See Also

See sc_clustering for the underlying function used to construct the matched groups.

Examples

Construct example data
my_data <- data.frame(y = rnorm(100),
 x1 = runif(100),
 x2 = runif(100),
 treatment = factor(sample(rep(c("T1", "T2", "C"), c(25, 25, 50)))))

Make distances
my_distances <- distances(my_data, dist_variables = c("x1", "x2"))

Make matching with one unit from "T1", "T2" and "C" in each matched group
quickmatch(my_distances, my_data$treatment)

Require at least two "C" in each group
quickmatch(my_distances, my_data$treatment, treatment_constraints = c("T1" = 1, "T2" = 1, "C" = 2))
Require groups with at least six units in total
quickmatch(my_distances,
 my_data$treatment,
 treatment_constraints = c("T1" = 1, "T2" = 1, "C" = 2),
 size_constraint = 6)

Focus the matching to units assigned to "T1" and "T2" (i.e., all
units assigned to "T1" or T2 will be assigned to a matched group).
Units assigned to treatment "C" will be assigned to groups so to
ensure that each group contains at least one unit of each treatment
condition. Remaining "C" units could be left unassigned.
quickmatch(my_distances,
 my_data$treatment,
 target = c("T1", "T2"))

Impose caliper
quickmatch(my_distances,
 my_data$treatment,
 caliper = 0.25)

Call `quickmatch` directly with covariate data (i.e., not pre-calculating distances)
quickmatch(my_data[c("x1", "x2")], my_data$treatment)

Call `quickmatch` directly with covariate data using Mahalanobis distances
quickmatch(my_data[c("x1", "x2")],
 my_data$treatment,
 normalize = "mahalanobize")
Index

check_clustering, 7
covariate_averages, 2
covariate_balance, 4
distances, 13
is.qm_matching, 7
lm, 8
lm_match, 8
matching_weights, 3, 8, 10
qm_matching, 3, 5, 7, 8, 10, 11, 15
quickmatch, 2, 11, 13
quickmatch-package, 2
sc_clustering, 13–15
scclust, 3, 5, 8, 10, 12
vcovHC, 8