Package ‘quickpsy’

October 27, 2016

Type Package

Title Fits Psychometric Functions for Multiple Groups

Version 0.1.4

URL http://dlinares.org/quickpsy.html

Description Quickly fits and plots psychometric functions (normal, logistic,
 Weibull or any or any function defined by the user) for multiple groups.

Depends R (>= 3.1.2), DEoptim, dplyr, ggplot2

Imports MPDiR

Encoding UTF-8

License MIT + file LICENSE

LazyData true

RoxygenNote 5.0.1

NeedsCompilation no

Author Linares Daniel [aut, cre],
 López-Moliner Joan [aut]

Maintainer Linares Daniel <danilinares@gmail.com>

Repository CRAN

Date/Publication 2016-10-27 00:21:52

R topics documented:

 aic .. 2
 avbootstrap .. 3
 cum_normal_fun 3
 deviance .. 4
 devianceboot 4
 get_functions 5
 inv_cum_normal_fun 5
 inv_logistic_fun 6
 inv_weibull_fun 6
aic
calculates the AICs.

Usage

aic(qp)

Arguments

qp output from quickpsy
avbootstrap

Description

avbootstrap creates bootstrap samples

Usage

```r
avbootstrap(qp, bootstrap = "parametric", B = 100)
```

Arguments

- `qp`: output from quickpsy
- `bootstrap`: `'parametric'` performs parametric bootstrap; `'nonparametric'` performs non-parametric bootstrap; `'none'` does not perform bootstrap (default is `'parametric'`).
- `B`: number of bootstrap samples (default is 100 ONLY).

cum_normal_fun

Description

Cumulative normal function.

Usage

```r
cum_normal_fun(x, p)
```

Arguments

- `x`: Vector of values of the explanatory variable.
- `p`: Vector of parameters `p = c(mean, standard_deviation)`.

Value

Probability at each `x`.

See Also

inv_cum_normal_fun

Examples

```r
xseq <- seq(0, 4,.01)
yseq <- cum_normal_fun(xseq, c(2, .5))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```
Calculates the deviances

Description

deviance calculates the deviances.

Usage

```
deviance(qp)
```

Arguments

- `qp` output from quickpsy

Examples

```r
library(mpdir) # contains the vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
                grouping = .(Direction, Waveform, TempFreq), B = 20)
deviance(fit)
```

Calculates the bootstrap deviances

Description

devianceboot calculates the bootstrap deviances.

Usage

```
devianceboot(qp)
```

Arguments

- `qp` output from quickpsy

Examples

```r
library(mpdir) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
                grouping = .(Direction, Waveform, TempFreq), B = 20)
devianceboot(fit)
```
get_functions

Predefined functions

Description
getfunctions lists the predefined functions in quickpsy.

Usage
get_functions()

See Also
cum_normal_fun, logistic_fun, weibull_fun

inv_cum_normal_fun
Inverse cumulative normal function

Description
Inverse cumulative normal function

Usage
inv_cum_normal_fun(prob, p)

Arguments
 prob Vector of probabilities.
 p Vector of parameters p = c(mean, standard_deviation).

Value
x at each probability. #’ @seealso cum_normal_fun

Examples
yseq <- seq(0, 1, .01)
xseq <- inv_cum_normal_fun(yseq, c(2, .5))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
inv_logistic_fun

Inverse logistic function

Description

Inverse logistic function

Usage

inv_logistic_fun(q, p)

Arguments

q Vector of probabilities.
P Vector of parameters \(p = (\alpha, \beta) \).

Value

x at each probability.

See Also

logistic_fun

Examples

yseq <- seq(0, 1, .01)
xseq <- inv_logistic_fun(yseq, c(2, 4))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()

inv_weibull_fun

Inverse Weibull function

Description

Inverse Weibull function

Usage

inv_weibull_fun(q, p)

Arguments

q Vector of probabilities.
P Vector of parameters \(p = (\alpha, \beta) \).
logistic_fun

Value

x at each probability.

See Also

weibull_fun

Examples

```r
xseq <- seq(0, 1, .01)
yseq <- logistic_fun(xseq, c(2, 4))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```

logistic_fun Logistic function

Description

Logistic function of the form \((1 + \exp(-\beta \cdot (x - \alpha)))^{(c - 1)}\)

Usage

```r
logistic_fun(x, p)
```

Arguments

- **x**: Vector of values of the explanatory variable.
- **p**: Vector of parameters \(p = c(\alpha, \beta)\).

Value

Probability at each x.

See Also

inv_logistic_fun

Examples

```r
xseq <- seq(0, 4, .01)
yseq <- logistic_fun(xseq, c(2, 4))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```
logliks

Calculates the loglikelihoods

Description

Calculates the loglikelihoods.

Usage

```r
call logliks(qp)
```

Arguments

- `qp` output from quickpsy

logliksboot

Calculates the bootstrap loglikelihoods

Description

logliksboot calculates the bootstrap loglikelihoods.

Usage

```r
call logliksboot(qp)
```

Arguments

- `qp` output from quickpsy

Examples

```r
library(MPDIR) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
                grouping = .(Direction, Waveform, TempFreq), B = 20)
logliksboot(fit)
```
logliksbootsaturated

Calculates the bootstrap loglikelihoods for the saturated model

Description

logliks calculates the bootstrap loglikelihoods for the saturated model.

Usage

logliksbootsaturated(qp)

Arguments

qp
output from quickpsy

Examples

```r
library(MDiR)  # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
                grouping = .(Direction, Waveform, TempFreq), B = 20)
logliksbootsaturated(fit)
```

loglikssaturated

Calculates the loglikelihoods of the saturated model

Description

loglikssaturated calculates the loglikelihoods of the saturated model.

Usage

loglikssaturated(qp)

Arguments

qp
output from quickpsy

Examples

```r
library(MDiR)  # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
                grouping = .(Direction, Waveform, TempFreq), B = 20)
loglikssaturated(fit)
```
parbootstrap

Description

parbootstrap creates bootstrap samples of the parameters.

Usage

```r
parbootstrap(qp)
```

Arguments

- `qp`: output from quickpsy

plotcurves

Description

plotcurves plot the curves.

Usage

```r
plotcurves(qp, panel = NULL, xpanel = NULL, ypanel = NULL, color = NULL, 
            averages = T, curves = T, thresholds = T, ci = T)
```

Arguments

- `qp`: output from quickpsy
- `panel`: Name of the variable to be split in panels.
- `xpanel`: Name of the variable to be split in horizontal panels.
- `ypanel`: Name of the variable to be split in vertical panels.
- `color`: Name of the variable coded by color.
- `averages`: If FALSE averaged probabilities are not plotted (default is TRUE).
- `curves`: If FALSE curves are not plotted (default is TRUE)
- `thresholds`: If FALSE thresholds are not plotted (default is TRUE)
- `ci`: If FALSE confidence intervals are not plotted (default is TRUE)

See Also

```r
plotcurves_
```
Examples

library(MPdir) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, WaveForm, TempFreq), B = 5)
plotcurves(fit)
plotcurves(fit, xpanel = Direction)
plotcurves(fit, xpanel = Direction, color = WaveForm, ci = FALSE)

\section*{Description}

\textit{plotcurves} is the standard evaluation SE function associated to the non-standard evaluation NSE function \textit{plotcurves}. SE functions can be more easily called from other functions. In SE functions, you need to quote the names of the variables.

\section*{Usage}

\begin{verbatim}
plotcurves_(qp, panel = NULL, xpanel = NULL, ypanel = NULL,
 color = NULL, averages = TRUE, curves = TRUE, thresholds = TRUE,
 ci = TRUE)
\end{verbatim}

\section*{Arguments}

- \texttt{qp} \hspace{1cm} output from \textit{quickpsy}
- \texttt{panel} \hspace{1cm} Name of the variable to be split in panels.
- \texttt{xpanel} \hspace{1cm} Name of the variable to be split in horizontal panels.
- \texttt{ypanel} \hspace{1cm} Name of the variable to be split in vertical panels.
- \texttt{color} \hspace{1cm} Name of the variable coded by color.
- \texttt{averages} \hspace{1cm} If FALSE averaged probabilities are not plotted (default is TRUE).
- \texttt{curves} \hspace{1cm} If FALSE curves are not plotted (default is TRUE)
- \texttt{thresholds} \hspace{1cm} If FALSE thresholds are not plotted (default is TRUE)
- \texttt{ci} \hspace{1cm} If FALSE confidence intervals are not plotted (default is TRUE)

\section*{See Also}

\textit{plotcurves}
Examples

library(MPDir) # contains the Vernier data
data(Vernier) # ?Vernier for the reference
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 5)

plotcurves(fit, xpanel = 'Direction')
plotcurves(fit, color = 'Direction')
plotcurves(fit, xpanel = 'Direction', color = 'Waveform', ci = FALSE)

plotpar

Plot the values of the parameters

Description

plotpar plot the values of the parameters.

Usage

plotpar(qp, x = NULL, panel = NULL, xpanel = NULL, ypanel = NULL,
 color = NULL, geom = "bar", ci = T)

Arguments

qp output from quickpsy.
x Name of the variable to displayed in the x-axis.
panel Name of the variable to be split in panels.
xpanel Name of the variable to be split in horizontal panels.
ypanel Name of the variable to be split in vertical panels.
color Name of the variable codd by color.
geom If 'bar' displays bars. If 'point' displays points (default is 'bar').

See Also

plotpar_

Examples

library(MPDir) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 10)
plotpar(fit)
plotpar(fit, x = Waveform)
plotpar(fit, xpanel = Direction)
plotpar(fit, color = Direction)
plotpar(fit, color = Direction, ypanel = Waveform, geom = 'point')
plotpar_

Plot the values of the parameters

Description

plotpar_ is the standard evaluation SE function associated to the non-standard evaluation NSE function plotpar. SE functions can be more easily called from other functions. In SE functions, you need to quote the names of the variables.

Usage

plotpar_(qp, x = NULL, panel = NULL, xpanel = NULL, ypanel = NULL,
color = NULL, geom = "bar", ci = T)

Arguments

qp output from quickpsy.
x Name of the variable to displayed in the x-axis.
panel Name of the variable to be split in panels.
xpanel Name of the variable to be split in horizontal panels.
ypanel Name of the variable to be split in vertical panels.
color Name of the variable coed by color.
geom If 'bar' displays bars. If 'point' displays points (default is 'bar').
ci If FALSE confidence intervals are not plotted (default is TRUE).

See Also

plotpar

Examples

library(MDoR) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), bootstrap = 'none')

plotpar_(fit, x = 'WaveForm')
plotpar_(fit, xpanel = 'Direction')
plotpar_(fit, color = 'Direction')
plotpar_(fit, color = 'Direction', ypanel = 'WaveForm', geom = 'point')
plotthresholds

Plot the thresholds

Description

plotthresholds plot the thresholds.

Usage

plotthresholds(qp, x = NULL, panel = NULL, xpanel = NULL, ypanel = NULL,
color = NULL, geom = "bar", ci = T, sizeerrorbar = 0.5)

Arguments

- **qp**: output from quickpsy.
- **x**: Name of the variable to displayed in the x-axis.
- **panel**: Name of the variable to be split in panels.
- **xpanel**: Name of the variable to be split in horizontal panels.
- **ypanel**: Name of the variable to be split in vertical panels.
- **color**: Name of the variable codded by color.
- **geom**: If 'bar' displays bars.
- **ci**: If FALSE confidence intervals are not plotted (default is TRUE).
- **sizeerrorbar**: Line width of the error bars. If 'point' displays points (default is 'bar').

See Also

plotthresholds_

Examples

library(MPDiR) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 10)
plotthresholds(fit)
plotthresholds(fit, x = Waveform)
plotthresholds(fit, xpanel = Direction)
plotthresholds(fit, color = Direction, ypanel = Waveform, geom = 'point')
plotthresholds_

Plot the thresholds

Description

plotthresholds_ is the standard evaluation SE function associated to the non-standard evaluation NSE function plotthresholds. SE functions can be more easily called from other functions. In SE functions, you need to quote the names of the variables.

Usage

plotthresholds_(qp, x = NULL, panel = NULL, xpanel = NULL, ypanel = NULL, color = NULL, geom = "bar", ci = T, sizeerrorbar = 0.5)

Arguments

qp
 output from quickpsy.

x
 Name of the variable to displayed in the x-axis.

panel
 Name of the variable to be split in panels.

xpanel
 Name of the variable to be split in horizontal panels.

ypanel
 Name of the variable to be split in vertical panels.

color
 Name of the variable codded by color.

geom
 If 'bar' displays bars.

ci
 If FALSE confidence intervals are not plotted (default is TRUE).

sizeerrorbar
 Line width of the error bars. If 'point' displays points (default is 'bar').

See Also

plotthresholds

Examples

library(MPDiR) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 10)

plotthresholds_(fit, x = 'WaveForm')
plotthresholds_(fit, xpanel = 'Direction')
plotthresholds_(fit, color = 'Direction')
plotthresholds_(fit, color = 'Direction', ypanel = 'WaveForm', geom = 'point')
Description

It is part of the data associated with the paper 'Motion signal and the perceived positions of moving objects'.

Usage

qpdat

Format

An object of class grouped_df (inherits from tbl_df, tbl, data.frame) with 6240 rows and 8 columns.

References

quickpsy

Fits psychometric functions

Description

quickpsy fits, by direct maximization of the likelihood (Prins and Kingdom, 2010; Knoblauch and Maloney, 2012), psychometric functions of the form

\[\psi(x) = \gamma + (1 - \gamma - \lambda) \ast \text{fun}(x) \]

where \(\gamma \) is the guess rate, \(\lambda \) is the lapse rate and \(\text{fun} \) is a sigmoidal-shape function with asymptotes at 0 and 1.

Usage

quickpsy(d, x = x, k = k, n = n, grouping, random, within, between,
 xmin = NULL, xmax = NULL, log = FALSE, fun = cum_normal_fun,
 parini = NULL, guess = 0, lapses = 0, prob = NULL, thresholds = T,
 bootstrap = "parametric", B = 100, ci = 0.95, optimization = "optim")
Arguments

d Data frame with the results of a Yes-No experiment to fit. It should have a tidy form in which each column corresponds to a variable and each row is an observation.

x Name of the explanatory variable.

k Name of the response variable. The response variable could be the number of trials in which a yes-type response was given or a vector of 0s (or -1s; no-type response) and 1s (yes-type response) indicating the response on each trial.

n Only necessary if k refers to the number of trials in which a yes-type response was given. It corresponds to the name of the variable indicating the total number of trials.

grouping Name of the grouping variables. It should be specified as grouping = .(variable_name1L variable_nameR).

random Name of the random variable. It should be specified as random = .(variable_name1L variable_name2).

In the current version of quickpsy, the random variable has not special treatment. It does the same as grouping.

within Name of the within variable. It should be specified as within = .(variable_name1L variable_name2).

In the current version of quickpsy, the within variable has not special treatment. It does the same as grouping.

between Name of the between variable. It should be specified as between = .(variable_name1L variable_name2).

In the current version of quickpsy, the between variable has not special treatment. It does the same as grouping.

xmin Minimum value of the explanatory variable for which the curves should be calculated (the default is the minimum value of the explanatory variable).

xmax Maximum value of the explanatory variable for which the curves should be calculated (the default is the maximum value of the explanatory variable).

log If TRUE, the logarithm of the explanatory variable is used to fit the curves (default is FALSE).

fun Name of the shape of the curve to fit. It could be a predefined shape (cum_normal_fun, logistic_fun, weibull_fun) or the name of a function introduced by the user (default is cum_normal_fun).

parini Initial parameters. quickpsy calculates default initial parameters using probit analysis, but it is also possible to specify a vector of initial parameters or a list of the form list(par1min, par1max), c(par2min, par2max)) to constraint the lower and upper bounds of the parameters (when optimization = 'DE', parini should be also a list).

guess Value indicating the guess rate γ (default is 0). If TRUE, the guess rate is estimated as the $i + 1$ parameter where i corresponds to the number of parameters of fun. If, for example, fun is a predefined shape with parameters $p1$ and $p2$, then the guess rate corresponds to parameter $p3$. If the guess rate is also estimated, $p3$ will be the guess rate and $p4$ the lapse rate.

lapses Value indicating the lapse rate λ (default is 0). If TRUE, the lapse rate is estimated as the $i + 1$ parameter where i corresponds to the number of parameters of fun plus one if the guess rate is estimated. If, for example, fun is a predefined shape with parameters $p1$ and $p2$, then the lapse rate corresponds to parameter $p3$. If the guess rate is also estimated, $p3$ will be the guess rate and $p4$ the lapse rate.
Probability to calculate the threshold (default is \(\text{guess} + 0.5 \times (1 - \text{guess}) \)).

If FALSE, thresholds are not calculated (default is TRUE).

'parametric' performs parametric bootstrap; 'nonparametric' performs non-parametric bootstrap; 'none' does not perform bootstrap (default is 'parametric').

Number of bootstrap samples (default is 100 ONLY).

Confidence intervals level based on percentiles (default is .95).

Method used for optimization. The default is 'optim' which uses the optim function. It can also be 'DE' which uses de function DEoptim from the package DEoptim, which performs differential evolution optimization. By using DEoptim, it is less likely that the optimization finishes in a local minimum, but the optimization is slow. When 'DE' is used, parini should be specified as a list with lower and upper bounds.

A list containing the following components:

- \(x, k, n \)
- groups The grouping variables.
- funname String with the name of the shape of the curve.
- psyfunguesslapses Curve including guess and lapses.
- limits Limits of the curves.
- parini Initial parameters.
- optimization Method to optimize.
- pariniset FALSE if initial parameters are not given.
- ypred Predicted probabilities at the values of the explanatory variable.
- curves Curves.
- par Fitted parameters and its confidence intervals.
- curvesbootstrap Bootstrap curves.
- thresholds Thresholds.
- thresholds.ci Confidence intervals for the thresholds.
- logliks Log-likelihoods of the model.
- loglikssaturated Log-likelihoods of the saturated model.
- deviance Deviance of the model and the p-value calculated by bootstraping.
- aic AIC of the model defined as

\[
-2 \times \text{loglik} + 2 \times k
\]

where \(k \) is the number of parameters of the model.
References

See Also

quickpsy_

Examples

make sure that all the requires packages are installed
and loaded; instructions at https://github.com/danilinares/quickpsy
library(MPDIR) # contains the Vernier data; use ?Vernier for the reference
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = c(Direction, Waveform, TempFreq), B = 10)
plotcurves(fit)
plotpar(fit)
plotthresholds(fit, geom = 'point')

quickpsy_ Fits psychometric functions

Description

quickpsy_ is the standard evaluation SE function associated to the non-standard evaluation NSE function quickpsy. SE functions can be more easily called from other functions. In SE functions, you need to quote the names of the variables.

Usage

quickpsy_(d, x = "x", k = "k", n = "n", grouping, random, within, between,
 xmin = NULL, xmax = NULL, log = FALSE, fun = "cum_normal_fun",
 parini = NULL, guess = 0, lapses = 0, prob = NULL, thresholds = T,
 bootstrap = "parametric", B = 100, ci = 0.95, optimization = "optim")

Arguments

d Data frame with the results of a Yes-No experiment to fit. It should have a tidy form in which each column corresponds to a variable and each row is an observation.

x Name of the explanatory variable.

k Name of the response variable. The response variable could be the number of trials in which a yes-type response was given or a vector of 0s (or -1s; no-type response) and 1s (yes-type response) indicating the response on each trial.
n

Only necessary if k refers to the number of trials in which a yes-type response was given. It corresponds to the name of the variable indicating the total number of trials.

grouping

Name of the grouping variables. It should be specified as grouping = .(variable_name1, variable_name2).

random

Name of the random variable. It should be specified as random = .(variable_name1, variable_name2). In the current version of quickpsy, the random variable has no special treatment. It does the same as grouping.

within

Name of the within variable. It should be specified as within = .(variable_name1, variable_name2). In the current version of quickpsy, the within variable has no special treatment. It does the same as grouping.

between

Name of the between variable. It should be specified as between = .(variable_name1, variable_name2). In the current version of quickpsy, the between variable has no special treatment. It does the same as grouping.

xmin

Minimum value of the explanatory variable for which the curves should be calculated (the default is the minimum value of the explanatory variable).

xmax

Maximum value of the explanatory variable for which the curves should be calculated (the default is the maximum value of the explanatory variable).

log

If TRUE, the logarithm of the explanatory variable is used to fit the curves (default is FALSE).

fun

Name of the shape of the curve to fit. It could be a predefined shape (cum_normal_fun, logistic_fun, weibull_fun) or the name of a function introduced by the user (default is cum_normal_fun).

parini

Initial parameters. quickpsy calculates default initial parameters using probit analysis, but it is also possible to specify a vector of initial parameters or a list of the form list(c(par1minL par1max), c(par2min, par2max)) to constraint the lower and upper bounds of the parameters (when optimization = 'DE', parini should be also a list).

guess

Value indicating the guess rate \(\gamma \) (default is 0). If TRUE, the guess rate is estimated as the \(i + 1 \) parameter where \(i \) corresponds to the number of parameters of fun. If, for example, fun is a predefined shape with parameters p1 and p2, then the guess rate corresponds to parameter p3.

lapses

Value indicating the lapse rate \(\lambda \) (default is 0). If TRUE, the lapse rate is estimated as the \(i + 1 \) parameter where \(i \) corresponds to the number of parameters of fun plus one if the guess rate is estimated. If, for example, fun is a predefined shape with parameters p1 and p2, then the lapse rate corresponds to parameter p3. If the guess rate is also estimated, p3 will be the guess rate and p4 the lapse rate.

prob

Probability to calculate the threshold (default is guess + .5 * (1 - guess)).

thresholds

If FALSE, thresholds are not calculated (default is TRUE).

bootstrap

'parametric' performs parametric bootstrap; 'nonparametric' performs nonparametric bootstrap; 'none' does not perform bootstrap (default is 'parametric').

B

number of bootstrap samples (default is 100 ONLY).

ci

Confidence intervals level based on percentiles (default is .95).
optimization

Method used for optimization. The default is 'optim' which uses the optim function. It can also be 'DE' which uses de function DEoptim from the package DEoptim, which performs differential evolution optimization. By using DEoptim, it is less likely that the optimization finishes in a local minimum, but the optimization is slow. When 'DE' is used, parini should be specified as a list with lower and upper bounds.

See Also

quickpsy

quickreadfiles

Reads several files

Description

quickreadfiles builds a data frame from several txt files. It assumes that in each file, the first row has the names of the variables.

Usage

quickreadfiles(path = getwd(), extension = "txt", ...)

Arguments

path Path of the file (default is the working directory).
extension Specify whether the file extension is 'txt' or 'csv'.
... arguments of the form name_var = c('value1', 'value2'...). A new column with variable name name_var is added to the data frame.

Examples

download the 3 files in
https://github.com/danilinares/quickpsy/tree/master/inst/extdata/example1
and add them to your working directory
dat <- quickreadfiles(subject = c('aa', 'bb', 'cc'), session = c('1', '2'))
fit <- quickpsy(dat, phase, resp, grouping=(subject), lapses = T, guess = T)
plotcurves(fit)
sse

Sum of squared errors of prediction

Description

ypred calculates the sum of squared errors of prediction

Usage

```r
sse(qp)
```

Arguments

- `qp` output from quickpsy

summary.quickpsy

Plot the parameters and its confidence intervals

Description

Plot the parameters and its confidence intervals summary Plot the parameters and its confidence intervals

Usage

```r
## S3 method for class 'quickpsy'
summary(object, ...)
```

Arguments

- `object` An object for which a summary is desired.
- `...` Additional arguments affecting the summary produced.
weibull_fun
Weibull function

Description
Weibull function of the form $(1 - \exp(-(x/\alpha)^\beta))$

Usage
```
weibull_fun(x, p)
```

Arguments
- **x**: Vector of values of the explanatory variable.
- **p**: Vector of parameters $p = c(\alpha, \beta)$.

Value
Probability at each x.

Examples
```
xseq <- seq(0, 4, .01)
yseq <- weibull_fun(xseq, c(2, 4))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```

ypred
Predicted probabilities

Description
ypred calculates the predicted probabilities at the values of the explanatory variable.

Usage
```
ypred(qp)
```

Arguments
- **qp**: output from quickpsy

Examples
```
library(MPDiR) # contains the Vernier data
data(Vernier) # ?Vernier for the reference
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
                grouping = .(Direction, Waveform, TempFreq), B = 20)
ypred(fit)
```
Index

*Topic datasets
 _qpdat, 16

aic, 2
avbootstrap, 3
cum_normal_fun, 3, 5
deviance, 4
devianceboot, 4
get_functions, 5
inv_cum_normal_fun, 3, 5
inv_logistic_fun, 6, 7
inv_weibull_fun, 6
logistic_fun, 5, 6, 7
loglik, 8
loglikboot, 8
loglikbootsaturated, 9
loglikssaturated, 9
parbootstrap, 10
plotcurves, 10, 11
plotcurves_, 10, 11
plotpar, 12, 13
plotpar_, 12, 13
plotthresholds, 14, 15
plotthresholds_, 14, 15
_qpdat, 16
quickpsy, 16, 21
quickpsy_, 19, 19
quickreadfiles, 21

sse, 22
summary.quickpsy, 22

weibull_fun, 5, 7, 23

ypred, 23