Package ‘quickpsy’

June 12, 2018

Type Package
Title Fits Psychometric Functions for Multiple Groups
Version 0.1.5
URL http://dlinaresNorg/quickpsy.html
Description Quickly fits and plots psychometric functions (normal, logistic, Weibull or any or any function defined by the user) for multiple groups.
Depends R (>= 3.1.2), DEoptim, dplyr, ggplot2
Imports MPDiR
Encoding UTF-8
License MIT + file LICENSE
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Author Linares Daniel [aut, cre], L<U+00F3>pez-Moliner Joan [aut]
Maintainer Linares Daniel <danilinares@gmail.com>
Repository CRAN
Date/Publication 2018-06-12 14:05:14 UTC

R topics documented:

aic ... 2
avbootstrap .. 3
cum_normal_fun ... 3
deviance .. 4
devianceboot .. 4
get_functions .. 5
inv_cum_normal_fun .. 5
inv_logistic_fun ... 6
inv_weibull_fun ... 6
aic

Calculates the AICs

Description

aic calculates the AICs.

Usage

aic(qp)

Arguments

qp output from quickpsy
avbootstrap

`avbootstrap` *Creates bootstrap samples*

Description

`avbootstrap` creates bootstrap samples.

Usage

```
avbootstrap(qp, bootstrap = "parametric", B = 100)
```

Arguments

- `qp` output from `quickpsy`
- `bootstrap` 'parametric' performs parametric bootstrap; 'nonparametric' performs non-parametric bootstrap; 'none' does not perform bootstrap (default is 'parametric').
- `B` number of bootstrap samples (default is 100 ONLY).

cum_normal_fun
Cumulative normal function

Description

Cumulative normal function.

Usage

```
cum_normal_fun(x, p)
```

Arguments

- `x` Vector of values of the explanatory variable.
- `p` Vector of parameters `p = c(mean, standard_deviation)`.

Value

Probability at each `x`.

See Also

`inv_cum_normal_fun`

Examples

```r
xseq <- seq(0,4,.01)
yseq <- cum_normal_fun(xseq, c(2,.5))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```
deviance

Calculates the deviances

Description

deviance calculates the deviances.

Usage

```r
deviance(qp)
```

Arguments

- `qp` output from quickpsy

Examples

```r
library(mpdiR) # contains the vernier data
fit <- quickpsy(vernier, Phaseshift, NumUpward, N, grouping = .(Direction, Waveform, TempFreq), B = 20)
deviance(fit)
```

devianceboot

Calculates the bootstrap deviances

Description

devianceboot calculates the bootstrap deviances.

Usage

```r
devianceboot(qp)
```

Arguments

- `qp` output from quickpsy

Examples

```r
library(mpdiR) # contains the vernier data
fit <- quickpsy(vernier, Phaseshift, NumUpward, N, grouping = .(Direction, Waveform, TempFreq), B = 20)
devianceboot(fit)
```
Description

getfunctions lists the predefined functions in quickpsy.

Usage

get_functions()

See Also

cum_normal_fun, logistic_fun, weibull_fun

inv_cum_normal_fun

Description

Inverse cumulative normal function

Usage

inv_cum_normal_fun(probL p)

Arguments

prob
Vector of probabilities.

p
Vector of parameters \(p = (\text{mean}, \text{standard}_{\text{deviation}}) \).

Value

\(x \) at each probability. #’ @seealso cum_normal_fun

Examples

yseq <- seq(0, 1, .01)
xseq <- inv_cum_normal_fun(yseq, c(2, .5))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
inv_logistic_fun

Inverse logistic function

Description

Inverse logistic function

Usage

inv_logistic_fun(q, p)

Arguments

- **q** Vector of probabilities.
- **p** Vector of parameters \(p = (\alpha, \beta) \).

Value

\(x \) at each probability.

See Also

logistic_fun

Examples

```r
yseq <- seq(0, 1, .01)
xseq <- inv_logistic_fun(yseq, c(2, 4))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```

inv_weibull_fun

Inverse Weibull function

Description

Inverse Weibull function

Usage

inv_weibull_fun(q, p)

Arguments

- **q** Vector of probabilities.
- **p** Vector of parameters \(p = (\alpha, \beta) \).
logistic_fun

Value

x at each probability.

See Also

weibull_fun

Examples

```r
yseq <- seq(0, 1, .01)
xseq <- inv_weibull_fun(yseq, c(2, 4))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```

Description

Logistic function of the form \((1 + \exp(-\beta \cdot (x - \alpha)))^(-1)\)

Usage

```r
logistic_fun(x, p)
```

Arguments

- **x**
 Vector of values of the explanatory variable.
- **p**
 Vector of parameters \(p = c(\alpha, \beta) \).

Value

Probability at each x.

See Also

inv_logistic_fun

Examples

```r
xseq <- seq(0, 4, .01)
yseq <- logistic_fun(xseq, c(2, 4))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```
logliks

Calculates the loglikelihoods

Summary: logliks calculates the loglikelihoods.

Usage

logliks(qp)

Arguments

qp output from quickpsy

logliksboot

Calculates the bootstrap loglikelihoods

Summary: logliksboot calculates the bootstrap loglikelihoods.

Usage

logliksboot(qp)

Arguments

qp output from quickpsy

Examples

library(MPDiR) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 20)
logliksboot(fit)
logliksbootsaturated
Calculates the bootstrap loglikelihoods for the saturated model

Description
logliksbootsaturated calculates the bootstrap loglikelihoods for the saturated model.

Usage
logliksbootsaturated(qp)

Arguments
qp output from quickpsy

Examples
library(MPDir) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 20)
logliksbootsaturated(fit)

loglikssaturated
Calculates the loglikelihoods of the saturated model

Description
loglikssaturated calculates the loglikelihoods of the saturated model.

Usage
loglikssaturated(qp)

Arguments
qp output from quickpsy

Examples
library(MPDir) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 20)
loglikssaturated(fit)
parbootstrap

Creates bootstrap samples of the parameters

Description

parbootstrap creates bootstrap samples of the parameters.

Usage

```r
parbootstrap(qp)
```

Arguments

- `qp` output from `quickpsy`

plotcurves

Plot the curves

Description

plotcurves plot the curves.

Usage

```r
plotcurves(qp, panel = NULL, xpanel = NULL, ypanel = NULL, color = NULL,
            averages = T, curves = T, thresholds = T, ci = T)
```

Arguments

- `qp` output from `quickpsy`
- `panel` Name of the variable to be split in panels.
- `xpanel` Name of the variable to be split in horizontal panels.
- `ypanel` Name of the variable to be split in vertical panels.
- `color` Name of the variable coded by color.
- `averages` If FALSE averaged probabilities are not plotted (default is TRUE).
- `curves` If FALSE curves are not plotted (default is TRUE)
- `thresholds` If FALSE thresholds are not plotted (default is TRUE)
- `ci` If FALSE confidence intervals are not plotted (default is TRUE)

See Also

- `plotcurves_`
plotcurves

Examples

library(MDiR) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 5)
plotcurves(fit)
plotcurves(fit, xpanel = Direction)
plotcurves(fit, xpanel = Direction, color = Waveform, ci = FALSE)

plotcurves_ Plot the curves

Description

plotcurves_ is the standard evaluation SE function associated to the non-standard evaluation NSE function plotcurves. SE functions can be more easily called from other functions. In SE functions, you need to quote the names of the variables.

Usage

plotcurves_(qp, panel = NULL, xpanel = NULL, ypanel = NULL,
 color = NULL, averages = TRUE, curves = TRUE, thresholds = TRUE,
 ci = TRUE)

Arguments

qp output from quickpsy
panel Name of the variable to be split in panels.
xpanel Name of the variable to be split in horizontal panels.
ypanel Name of the variable to be split in vertical panels.
color Name of the variable coded by color.
averages If FALSE averaged probabilities are not plotted (default is TRUE).
curves If FALSE curves are not plotted (default is TRUE)
thresholds If FALSE thresholds are not plotted (default is TRUE)
ci If FALSE confidence intervals are not plotted (default is TRUE)

See Also

plotcurves
Examples

library(MPDir) # contains the Vernier data
data(Vernier) # ?Vernier for the reference
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 5)

plotcurves(fit, xpanel = 'Direction')
plotcurves(fit, color = 'Direction')
plotcurves(fit, xpanel = 'Direction', color = 'Waveform', ci = FALSE)

plotpar

Plot the values of the parameters

Description

plotpar plot the values of the parameters.

Usage

plotpar(qp, x = NULL, panel = NULL, xpanel = NULL, ypanel = NULL,
 color = NULL, geom = 'bar', ci = T)

Arguments

qp output from quickpsy.

x Name of the variable to displayed in the x-axis.

panel Name of the variable to be split in panels.

xpanel Name of the variable to be split in horizontal panels.

ypanel Name of the variable to be split in vertical panels.

color Name of the variable coded by color.

geom If 'bar' displays bars. If 'point' displays points (default is 'bar').

ci If FALSE confidence intervals are not plotted (default is TRUE).

See Also

plotpar

Examples

library(MPDir) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 10)

plotpar(fit)
plotpar(fit, x = Waveform)
plotpar(fit, xpanel = Direction)
plotpar(fit, color = Direction)
plotpar(fit, color = Direction, ypanel = Waveform, geom = 'point')
plotpar_

Plot the values of the parameters

Description

plotpar_ is the standard evaluation SE function associated to the non-standard evaluation NSE function plotpar. SE functions can be more easily called from other functions. In SE functions, you need to quote the names of the variables.

Usage

```r
plotpar_(qp, x = NULL, panel = NULL, xpanel = NULL, ypanel = NULL,
       color = NULL, geom = "bar", ci = T)
```

Arguments

- **qp**
 output from quickpsy.

- **x**
 Name of the variable to displayed in the x-axis.

- **panel**
 Name of the variable to be split in panels.

- **xpanel**
 Name of the variable to be split in horizontal panels.

- **ypanel**
 Name of the variable to be split in vertical panels.

- **color**
 Name of the variable coded by color.

- **geom**
 If 'bar' displays bars. If 'point' displays points (default is 'bar').

- **ci**
 If FALSE confidence intervals are not plotted (default is TRUE).

See Also

- **plotpar**

Examples

```r
library(MPDiR) # contains the Vernier data
defit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
                  grouping = .(Direction, Waveform, TempFreq), bootstrap = 'none')

plotpar_(fit, x = 'WaveForm')
plotpar_(fit, xpanel = 'Direction')
plotpar_(fit, color = 'Direction')
plotpar_(fit, color = 'Direction', ypanel = 'WaveForm', geom = 'point')
```
plotthresholds

Plot the thresholds

Description

plotthresholds plot the thresholds.

Usage

plotthresholds(qp, x = NULL, panel = NULL, xpanel = NULL, ypanel = NULL,
color = NULL, geom = "bar", ci = T, sizeerrorbar = 0.5)

Arguments

qp output from quickpsy.

x Name of the variable to displayed in the x-axis.

panel Name of the variable to be split in panels.

xpanel Name of the variable to be split in horizontal panels.

ypanel Name of the variable to be split in vertical panels.

color Name of the variable codded by color.

geom If 'bar' displays bars.

ci If FALSE confidence intervals are not plotted (default is TRUE).

sizeerrorbar Line width of the error bars. If 'point' displays points (default is 'bar').

See Also

plotthresholds_

Examples

library(MPDiR) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = .(Direction, Waveform, TempFreq), B = 10)
plotthresholds(fit)
plotthresholds(fit, x = Waveform)
plotthresholds(fit, xpanel = Direction)
plotthresholds(fit, color = Direction, ypanel = Waveform, geom = 'point')
plotthresholds_

Plot the thresholds

Description

plotthresholds_ is the standard evaluation SE function associated to the non-standard evaluation NSE function plotthresholds. **SE functions can be more easily called from other functions.** In SE functions, you need to quote the names of the variables.

Usage

plotthresholds_(qpL x = nullL panel = nullL xpanel = nullL, ypanel = nullL, color = nullL, geom = "bar", ci = T, sizeerrorbar = 0.5)

Arguments

- `qp`: output from quickpsy.
- `x`: Name of the variable to displayed in the x-axis.
- `panel`: Name of the variable to be split in panels.
- `xpanel`: Name of the variable to be split in horizontal panels.
- `ypanel`: Name of the variable to be split in vertical panels.
- `color`: Name of the variable coded by color.
- `geom`: If 'bar' displays bars.
- `ci`: If FALSE confidence intervals are not plotted (default is TRUE).
- `sizeerrorbar`: Line width of the error bars. If 'point' displays points (default is 'bar').

See Also

plotthresholds

Examples

library(MPDiR) # contains the Vernier data
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N, grouping = .(Direction, Waveform, TempFreq), B = 10)

plotthresholds_(fit, x = 'WaveForm')
plotthresholds_(fit, xpanel = 'Direction')
plotthresholds_(fit, color = 'Direction')
plotthresholds_(fit, color = 'Direction', ypanel = 'WaveForm', geom = 'point')
Data set for demonstration

Description

It is part of the data associated with the paper 'Motion signal and the perceived positions of moving objects'.

Usage

qdpat

Format

An object of class grouped_df (inherits from tbl_df, tbl, data.frame) with 6240 rows and 8 columns.

References

Fits psychometric functions

Description

quickpsy fits, by direct maximization of the likelihood (Prins and Kingdom, 2010; Knoblauch and Maloney, 2012), psychometric functions of the form

\[\psi(x) = \gamma + (1 - \gamma - \lambda) \ast \text{fun}(x) \]

where \(\gamma \) is the guess rate, \(\lambda \) is the lapse rate and \(\text{fun} \) is a sigmoidal-shape function with asymptotes at 0 and 1.

Usage

quickpsy(d, x = x, k = k, n = n, grouping, random, within, between, xmin = NULL, xmax = NULL, log = FALSE, fun = cum_normal_fun, parini = NULL, guess = 0, lapses = 0, prob = NULL, thresholds = T, bootstrap = "parametric", B = 100, ci = 0.95, optimization = "optim")
Arguments

d Data frame with the results of a Yes-No experiment to fit. It should have a tidy form in which each column corresponds to a variable and each row is an observation.

x Name of the explanatory variable.

k Name of the response variable. The response variable could be the number of trials in which a yes-type response was given or a vector of 0s (or -1s; no-type response) and 1s (yes-type response) indicating the response on each trial.

n Only necessary if k refers to the number of trials in which a yes-type response was given. It corresponds to the name of the variable indicating the total number of trials.

grouping Name of the grouping variables. It should be specified as `grouping = .(variable_name1, variable_name2)`.

random Name of the random variable. It should be specified as `random = .(variable_name1, variable_name2)`. In the current version of quickpsy, the random variable has not special treatment. It does the same as `grouping`.

within Name of the within variable. It should be specified as `within = .(variable_name1, variable_name2)`. In the current version of quickpsy, the within variable has not special treatment. It does the same as `grouping`.

between Name of the between variable. It should be specified as `between = .(variable_name1, variable_name2)`. In the current version of quickpsy, the between variable has not special treatment. It does the same as `grouping`.

xmin Minimum value of the explanatory variable for which the curves should be calculated (the default is the minimum value of the explanatory variable).

xmax Maximum value of the explanatory variable for which the curves should be calculated (the default is the maximum value of the explanatory variable).

log If TRUE, the logarithm of the explanatory variable is used to fit the curves (default is FALSE).

fun Name of the shape of the curve to fit. It could be a predefined shape (`cum_normal_fun`, `logistic_fun`, `weibull_fun`) or the name of a function introduced by the user (default is `cum_normal_fun`).

parini Initial parameters. quickpsy calculates default initial parameters using probit analysis, but it is also possible to specify a vector of initial parameters or a list of the form `list(c(par1min, par1max), c(par2min, par2max))` to constraint the lower and upper bounds of the parameters (when `optimization = 'DE'`, parini should be also a list).

guess Value indicating the guess rate γ (default is 0). If TRUE, the guess rate is estimated as the $i + 1$ parameter where i corresponds to the number of parameters of `fun`. If, for example, `fun` is a predefined shape with parameters p_1 and p_2, then the guess rate corresponds to parameter p_3.

lapses Value indicating the lapse rate λ (default is 0). If TRUE, the lapse rate is estimated as the $i + 1$ parameter where i corresponds to the number of parameters of `fun` plus one if the guess rate is estimated. If, for example, `fun` is a predefined shape with parameters p_1 and p_2, then the lapse rate corresponds to parameter p_3. If the guess rate is also estimated, p_3 will be the guess rate and p_4 the lapse rate.
prob Probability to calculate the threshold (default is \(\text{guess} + 0.5 \times (1 - \text{guess}) \)).

thresholds If \(\text{FALSE} \), thresholds are not calculated (default is \(\text{TRUE} \)).

bootstrap 'parametric' performs parametric bootstrap; 'nonparametric' performs non-parametric bootstrap; 'none' does not perform bootstrap (default is 'parametric').

B number of bootstrap samples (default is 100 ONLY).

ci Confidence intervals level based on percentiles (default is .95).

optimization Method used for optimization. The default is 'optim' which uses the \text{optim} function. It can also be 'DE' which uses \text{de} function \text{DEoptim} from the package \text{DEoptim}, which performs differential evolution optimization. By using \text{DEoptim}, it is less likely that the optimization finishes in a local minimum, but the optimization is slow. When 'DE' is used, \text{parini} should be specified as a list with lower and upper bounds.

Value

A list containing the following components:

- \(\text{x, k, n} \)
- \(\text{groups} \) The grouping variables.
- \(\text{funname} \) String with the name of the shape of the curve.
- \(\text{psyfunguesslapses} \) Curve including guess and lapses.
- \(\text{limits} \) Limits of the curves.
- \(\text{parini} \) Initial parameters.
- \(\text{optimization} \) Method to optimize.
- \(\text{pariniset FALSE} \) if initial parameters are not given.
- \(\text{ypred} \) Predicted probabilities at the values of the explanatory variable.
- \(\text{curves} \) Curves.
- \(\text{par} \) Fitted parameters and its confidence intervals.
- \(\text{curvesbootstrap} \) Bootstrap curves.
- \(\text{thresholds} \) Thresholds.
- \(\text{thresholdsci} \) Confidence intervals for the thresholds.
- \(\text{logliks} \) Log-likelihoods of the model.
- \(\text{loglikssaturated} \) Log-likelihoods of the saturated model.
- \(\text{deviance} \) Deviance of the model and the p-value calculated by bootstraping.
- \(\text{aic} \) AIC of the model defined as

\[
-2 \times \loglik + 2 \times k
\]

where \(k \) is the number of parameters of the model.
References

See Also

quickpsy

Examples

make sure that all the requires packages are installed
and loaded; instructions at https://github.com/danilinares/quickpsy
library(MPDir) # contains the Vernier data; use ?Vernier for the reference
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
 grouping = c(Direction, Waveform, TempFreq), B = 10)
plotcurves(fit)
plotpar(fit)
plotthresholds(fit, geom = "point")

quickpsy_ Fits psychometric functions

Description

quickpsy_ is the standard evaluation SE function associated to the non-standard evaluation NSE function quickpsy. SE functions can be more easily called from other functions. In SE functions, you need to quote the names of the variables.

Usage

quickpsy_(d, x = "x", k = "k", n = "n", grouping, random, within, between,
 xmin = NULL, xmax = NULL, log = FALSE, fun = "cum_normal_fun",
 parini = NULL, guess = 0, lapses = 0, prob = NULL, thresholds = T,
 bootstrap = "parametric", B = 100, ci = 0.95, optimization = "optim")

Arguments

d Data frame with the results of a Yes-No experiment to fit. It should have a tidy form in which each column corresponds to a variable and each row is an observation.

x Name of the explanatory variable.

k Name of the response variable. The response variable could be the number of trials in which a yes-type response was given or a vector of 0s (or -1s; no-type response) and 1s (yes-type response) indicating the response on each trial.
n
Only necessary if \(k \) refers to the number of trials in which a yes-type response was given. It corresponds to the name of the variable indicating the total number of trials.

grouping
Name of the grouping variables. It should be specified as `grouping = N(variable_name1, variable_name2)`.

random
Name of the random variable. It should be specified as `random = N(variable_name1, variable_name2)`. In the current version of quickpsy, the random variable has not special treatment. It does the same as grouping.

within
Name of the within variable. It should be specified as `within = N(variable_name1, variable_name2)`. In the current version of quickpsy, the within variable has not special treatment. It does the same as grouping.

between
Name of the between variable. It should be specified as `between = N(variable_name1, variable_name2)`. In the current version of quickpsy, the between variable has not special treatment. It does the same as grouping.

xmin
Minimum value of the explanatory variable for which the curves should be calculated (the default is the minimum value of the explanatory variable).

xmax
Maximum value of the explanatory variable for which the curves should be calculated (the default is the maximum value of the explanatory variable).

log
If `true`, the logarithm of the explanatory variable is used to fit the curves (default is `false`).

fun
Name of the shape of the curve to fit. It could be a predefined shape (`cum_normal_fun`, `logistic_fun`, `weibull_fun`) or the name of a function introduced by the user (default is `cum_normal_fun`).

parini
Initial parameters. quickpsy calculates default initial parameters using probit analysis, but it is also possible to specify a vector of initial parameters or a list of the form `list(c(par1min, par1max), c(par2min, par2max))` to constraint the lower and upper bounds of the parameters (when `optimization = 'DE'`, `parini` should be also a list).

guess
Value indicating the guess rate \(\gamma \) (default is 0). If `true`, the guess rate is estimated as the \(i + 1 \) parameter where \(i \) corresponds to the number of parameters of `fun`. If, for example, `fun` is a predefined shape with parameters \(p_1 \) and \(p_2 \), then the guess rate corresponds to parameter \(p_3 \).

lapses
Value indicating the lapse rate \(\lambda \) (default is 0). If `true`, the lapse rate is estimated as the \(i + 1 \) parameter where \(i \) corresponds to the number of parameters of `fun` plus one if the guess rate is estimated. If, for example, `fun` is a predefined shape with parameters \(p_1 \) and \(p_2 \), then the lapse rate corresponds to parameter \(p_3 \). If the guess rate is also estimated, \(p_3 \) will be the guess rate and \(p_4 \) the lapse rate.

prob
Probability to calculate the threshold (default is `guess + .5 * (1 - guess)`).

thresholds
If `false`, thresholds are not calculated (default is `true`).

bootstrap
'parametric' performs parametric bootstrap; 'nonparametric' performs non-parametric bootstrap; 'none' does not perform bootstrap (default is 'parametric').

B
Number of bootstrap samples (default is 100 ONLY).

ci
Confidence intervals level based on percentiles (default is .95).
Method used for optimization. The default is 'optim' which uses the optim function. It can also be 'DE' which uses de function DEoptim from the package DEoptim, which performs differential evolution optimization. By using DEoptim, it is less likely that the optimization finishes in a local minimum, but the optimization is slow. When 'DE' is used, parini should be specified as a list with lower and upper bounds.

See Also

quickpsy

Description

quickreadfiles builds a data frame from several txt files. It assumes that in each file, the first row has the names of the variables.

Usage

quickreadfiles(path = getwd(), extension = "txt", ...)

Arguments

 path Path of the file (default is the working directory).
 extension Specify whether the file extension is 'txt' or 'csv'.
 ... arguments of the form name_var = c('value1', 'value2',...). A new column with variable name name_var is added to the data frame.

Examples

download the 3 files in
https://github.com/danilinares/quickpsy/tree/master/inst/extdata/example1
and add them to your working directory
dat <- quickreadfiles(subject = c('aa', 'bb', 'cc'), session = c('1', '2'))
fit <- quickpsy(dat, phase, resp, grouping=(subject), lapses = T, guess = T)
plotcurves(fit)
sse

Sum of squared errors of prediction

Description

`ypred` calculates the sum of squared errors of prediction

Usage

```r
sse(qp)
```

Arguments

- `qp` output from `quickpsy`

summary.quickpsy

Plot the parameters and its confidence intervals summary

Description

Plot the parameters and its confidence intervals summary Plot the parameters and its confidence intervals

Usage

```r
## S3 method for class 'quickpsy'
summary(object, ...)
```

Arguments

- `object` An object for which a summary is desired.
- `...` Additional arguments affecting the summary produced.
weibull_fun

Weibull function

Description
Weibull function of the form \(1 - \exp(-\frac{x}{\alpha})^{\beta}\)

Usage
weibull_fun(x, p)

Arguments
- \(x\) : Vector of values of the explanatory variable.
- \(p\) : Vector of parameters \(p = c(\alpha, \beta)\).

Value
Probability at each \(x\).

Examples
```r
xseq <- seq(0, 4, .01)
yseq <- weibull_fun(xseq, c(2, 4))
curve <- data.frame(x = xseq, y = yseq)
ggplot(curve, aes(x = x, y = y)) + geom_line()
```

ypred

Predicted probabilities

Description
ypred calculates the predicted probabilities at the values of the explanatory variable.

Usage
ypred(qp)

Arguments
- \(qp\) : output from quickpsy

Examples
```r
library(MPDiR) # contains the Vernier data
data(Vernier) # ?Vernier for the reference
fit <- quickpsy(Vernier, Phaseshift, NumUpward, N,
                grouping = .(Direction, Waveform, TempFreq), B = 20)
ypred(fit)
```
Index

*Topic datasets
 qpdat, 16

aic, 2
avbootstrap, 3
cum_normal_fun, 3, 5
deviance, 4
devianceboot, 4
get_functions, 5
inv_cum_normal_fun, 3, 5
inv_logistic_fun, 6, 7
inv_weibull_fun, 6
logistic_fun, 5, 6, 7
logliks, 8
logliksboot, 8
logliksbootsaturated, 9
loglikssaturated, 9
parbootstrap, 10
plotcurves, 10, 11
plotcurves_, 10, 11
plotpar, 12, 13
plotpar_, 12, 13
plotthresholds, 14, 15
plotthresholds_, 14, 15
qpdat, 16
quickpsy, 16, 21
quickpsy_, 19, 19
quickreadfiles, 21
sse, 22
summary.quickpsy, 22
weibull_fun, 5, 7, 23
ypred, 23