| Name | Last modified | Size | Description | |
|---|---|---|---|---|
| Parent Directory | - | |||
| README.html | 2020-09-12 15:50 | 24K | ||
These tools help you to assess if a financial portfolio aligns with climate goals. They summarize key metrics attributed to the portfolio (e.g. production, emission factors), and calculate targets based on climate scenarios. They implement in R the last step of the free software ‘PACTA’ (Paris Agreement Capital Transition Assessment; https://2degrees-investing.org/). Financial institutions use ‘PACTA’ to study how their capital allocation impacts the climate.
Before you install r2dii.analysis you may want to:
When you are ready, install the released version of r2dii.analysis from CRAN with:
Or install the development version of r2dii.analysis from GitHub with:
library() to attach the packages you need. r2dii.analysis does not depend on the packages r2dii.data and r2dii.match; but we suggest you install them – with install.packages(c("r2dii.data", "r2dii.match")) – so you can reproduce our examples.r2dii.match::match_name() to identify matches between your loanbook and the asset level data.target_sda() to calculate SDA targets of CO2 emissions.matched %>%
target_sda(
ald = ald_demo,
co2_intensity_scenario = co2_intensity_scenario_demo
)
#> Warning: Removing ald rows where `emission_factor` is NA
#> # A tibble: 208 x 4
#> sector year emission_factor_metric emission_factor_value
#> <chr> <dbl> <chr> <dbl>
#> 1 automotive 2002 projected 0.228
#> 2 automotive 2003 projected 0.226
#> 3 automotive 2004 projected 0.224
#> 4 automotive 2005 projected 0.222
#> 5 automotive 2006 projected 0.220
#> 6 automotive 2007 projected 0.218
#> 7 automotive 2008 projected 0.216
#> 8 automotive 2009 projected 0.214
#> 9 automotive 2010 projected 0.212
#> 10 automotive 2011 projected 0.210
#> # … with 198 more rowstarget_market_share to calculate market-share scenario targets at the portfolio level:matched %>%
target_market_share(
ald = ald_demo,
scenario = scenario_demo_2020,
region_isos = region_isos_demo
)
#> # A tibble: 1,170 x 8
#> sector technology year region scenario_source metric production
#> <chr> <chr> <int> <chr> <chr> <chr> <dbl>
#> 1 autom… electric 2020 global demo_2020 proje… 145942.
#> 2 autom… electric 2020 global demo_2020 corpo… 8134869.
#> 3 autom… electric 2020 global demo_2020 targe… 145942.
#> 4 autom… electric 2020 global demo_2020 targe… 145942.
#> 5 autom… electric 2020 global demo_2020 targe… 145942.
#> 6 autom… electric 2021 global demo_2020 proje… 148212.
#> 7 autom… electric 2021 global demo_2020 corpo… 8183411.
#> 8 autom… electric 2021 global demo_2020 targe… 148361.
#> 9 autom… electric 2021 global demo_2020 targe… 160625.
#> 10 autom… electric 2021 global demo_2020 targe… 149016.
#> # … with 1,160 more rows, and 1 more variable: technology_share <dbl>matched %>%
target_market_share(
ald = ald_demo,
scenario = scenario_demo_2020,
region_isos = region_isos_demo,
by_company = TRUE
)
#> Warning: You've supplied `by_company = TRUE` and `weight_production = TRUE`.
#> This will result in company-level results, weighted by the portfolio
#> loan size, which is rarely useful. Did you mean to set one of these
#> arguments to `FALSE`?
#> # A tibble: 15,945 x 9
#> sector technology year region scenario_source name_ald metric production
#> <chr> <chr> <int> <chr> <chr> <chr> <chr> <dbl>
#> 1 autom… electric 2020 global demo_2020 shangha… proje… 5140.
#> 2 autom… electric 2020 global demo_2020 shangha… corpo… 8134869.
#> 3 autom… electric 2020 global demo_2020 shangha… targe… 5140.
#> 4 autom… electric 2020 global demo_2020 shangha… targe… 5140.
#> 5 autom… electric 2020 global demo_2020 shangha… targe… 5140.
#> 6 autom… electric 2020 global demo_2020 sichuan… proje… 2992.
#> 7 autom… electric 2020 global demo_2020 sichuan… corpo… 8134869.
#> 8 autom… electric 2020 global demo_2020 sichuan… targe… 2992.
#> 9 autom… electric 2020 global demo_2020 sichuan… targe… 2992.
#> 10 autom… electric 2020 global demo_2020 sichuan… targe… 2992.
#> # … with 15,935 more rows, and 1 more variable: technology_share <dbl>The target_*() functions provide shortcuts for common operations. They wrap some utility functions that you may also use directly:
join_ald_scenario() to join a matched dataset to the relevant scenario data, and to pick assets in the relevant regions.loanbook_joined_to_ald_scenario <- matched %>%
join_ald_scenario(
ald = ald_demo,
scenario = scenario_demo_2020,
region_isos = region_isos_demo
)summarize_weighted_production() with different grouping arguments to calculate scenario-targets:# portfolio level
loanbook_joined_to_ald_scenario %>%
summarize_weighted_production(scenario, tmsr, smsp, region)
#> # A tibble: 702 x 9
#> sector_ald technology year scenario tmsr smsp region weighted_produc…
#> <chr> <chr> <int> <chr> <dbl> <dbl> <chr> <dbl>
#> 1 automotive electric 2020 cps 1 0 global 145942.
#> 2 automotive electric 2020 sds 1 0 global 145942.
#> 3 automotive electric 2020 sps 1 0 global 145942.
#> 4 automotive electric 2021 cps 1.12 0.00108 global 148212.
#> 5 automotive electric 2021 sds 1.16 0.00653 global 148212.
#> 6 automotive electric 2021 sps 1.14 0.00137 global 148212.
#> 7 automotive electric 2022 cps 1.24 0.00213 global 150481.
#> 8 automotive electric 2022 sds 1.32 0.0131 global 150481.
#> 9 automotive electric 2022 sps 1.29 0.00273 global 150481.
#> 10 automotive electric 2023 cps 1.35 0.00316 global 152751.
#> # … with 692 more rows, and 1 more variable: weighted_technology_share <dbl>
# company level
loanbook_joined_to_ald_scenario %>%
summarize_weighted_production(scenario, tmsr, smsp, region, name_ald)
#> # A tibble: 9,567 x 10
#> sector_ald technology year scenario tmsr smsp region name_ald
#> <chr> <chr> <int> <chr> <dbl> <dbl> <chr> <chr>
#> 1 automotive electric 2020 cps 1 0 global shangha…
#> 2 automotive electric 2020 cps 1 0 global sichuan…
#> 3 automotive electric 2020 cps 1 0 global singula…
#> 4 automotive electric 2020 cps 1 0 global south-e…
#> 5 automotive electric 2020 cps 1 0 global suzuki …
#> 6 automotive electric 2020 cps 1 0 global tata gr…
#> 7 automotive electric 2020 cps 1 0 global tesla i…
#> 8 automotive electric 2020 cps 1 0 global toyota …
#> 9 automotive electric 2020 cps 1 0 global volkswa…
#> 10 automotive electric 2020 cps 1 0 global wheego
#> # … with 9,557 more rows, and 2 more variables: weighted_production <dbl>,
#> # weighted_technology_share <dbl>This project has received funding from the European Union LIFE program and the International Climate Initiative (IKI). The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) supports this initiative on the basis of a decision adopted by the German Bundestag. The views expressed are the sole responsibility of the authors and do not necessarily reflect the views of the funders. The funders are not responsible for any use that may be made of the information it contains.