Package ‘r2dii.plot’

May 23, 2023

Title Visualize the Climate Scenario Alignment of a Financial Portfolio

Version 0.3.1

Description Create plots to visualize the alignment of a corporate lending financial portfolio to climate change scenarios based on climate indicators (production and emission intensities) across key climate relevant sectors of the ‘PACTA’ methodology (Paris Agreement Capital Transition Assessment; <https://www.transitionmonitor.com/>). Financial institutions use ‘PACTA’ to study how their capital allocation decisions align with climate change mitigation goals.

License MIT + file LICENSE

URL https://github.com/RMI-PACTA/r2dii.plot,
 https://rmi-pacta.github.io/r2dii.plot/

BugReports https://github.com/RMI-PACTA/r2dii.plot/issues

Depends R (>= 3.4)

Imports dplyr, forcats, ggplot2, ggrepel, glue, magrittr, r2dii.data, rlang, stringr, scales, lifecycle

Suggests covr, r2dii.analysis, r2dii.match, rmarkdown, spelling, testthat (>= 3.0.0)

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.2.3

NeedsCompilation no

Author Monika Furdyna [aut, ctr, cre]
 (https://orcid.org/0000-0002-3728-0646),
 Mauro Lepore [aut, ctr] (https://orcid.org/0000-0002-1986-7988),
 Alex Axthelm [aut, ctr] (https://orcid.org/0000-0001-8579-8565),
 Rocky Mountain Institute [cph, fnd]
market_share

An example of a market_share-like dataset

Description

Dataset imitating the output of r2dii.analysis::target_market_share().

Usage

market_share

Format

An object of class spec_tbl_df (inherits from tbl_df, tbl, data.frame) with 802 rows and 10 columns.

See Also

r2dii.analysis::target_market_share().

Other datasets: r2dii_colours, sda

Examples

market_share
plot_emission_intensity

Create an emission intensity plot

Description
Create an emission intensity plot

Usage

```r
plot_emission_intensity(data, span_5yr = FALSE, convert_label = identity)
```

Arguments

- `data` A data frame. Requirements:
 - The structure must be like `sda`.
 - The column sector must have a single value (e.g. "cement").
 - (Optional) If present, the column label is used for data labels.

- `span_5yr` Logical. Use `TRUE` to restrict the time span to 5 years from the start year (the default behavior of `qplot_emission_intensity()`), or use `FALSE` to impose no restriction.

- `convert_label` A symbol. The unquoted name of a function to apply to y-axis labels. For example:
 - To convert labels to uppercase use `convert_label = toupper`.
 - To get the default behavior of `qplot_emission_intensity()` use `convert_label = to_title`.

Value
An object of class "ggplot".

See Also

- `sda`.

Examples

```r
# 'data' must meet documented "Requirements"
data <- subset(sda, sector == "cement" & region == "global")
plot_emission_intensity(data)

# plot with `qplot_emission_intensity()`' parameters
plot_emission_intensity(
data,
  span_5yr = TRUE,
  convert_label = to_title
)
```
Create a techmix plot

Usage

```r
plot_techmix(
  data,
  span_5yr = FALSE,
  convert_label = identity,
  convert_tech_label = identity
)
```

Arguments

data: A data frame. Requirements:
 • The structure must be like `market_share`.
 • The following columns must have a single value: `sector`, `region`, `scenario_source`.
 • The column `metric` must have a portfolio (e.g. "projected"), a benchmark (e.g. "corporate_economy"), and a single scenario (e.g. "target_sds").
 • (Optional) If present, the column `label` is used for data labels.
 • (Optional) If present, the column `label_tech` is used for technology labels.

span_5yr: Logical. Use `TRUE` to restrict the time span to 5 years from the start year (the default behavior of `qplot_techmix()`), or use `FALSE` to impose no restriction.

convert_label: A symbol. The unquoted name of a function to apply to y-axis labels. For example:
 • To convert labels to uppercase use `convert_label = toupper`.
 • To get the default behavior of `qplot_techmix()` use `convert_label = recode_metric_techmix`.

convert_tech_label: A symbol. The unquoted name of a function to apply to technology legend labels. For example, to convert labels to uppercase use `convert_tech_label = toupper`. To get the default behavior of `qplot_techmix()` use `convert_tech_label = spell_out_technology`.

Value

An object of class "ggplot".

See Also

`market_share`.
plot_trajectory

Examples

`data` must meet documented "Requirements"
data <- subset(
 market_share,
 scenario_source == "demo_2020" &
 sector == "power" &
 region == "global" &
 metric %in% c("projected", "corporate_economy", "target_sds")
)
plot_techmix(data)

plot with `qplot_techmix()` parameters
plot_techmix(
 data,
 span_5yr = TRUE,
 convert_label = recode_metric_techmix,
 convert_tech_label = spell_out_technology
)

plot_trajectory (Create a trajectory plot)

Description

Create a trajectory plot

Usage

plot_trajectory(
 data,
 span_5yr = FALSE,
 convert_label = identity,
 center_y = FALSE,
 value_col = "percentage_of_initial_production_by_scope",
 perc_y_scale = FALSE
)

Arguments

data A data frame. Requirements:
 • The structure must be like market_share.
 • The following columns must have a single value: sector, technology, region, scenario_source.
 • (Optional) If present, the column label is used for data labels.

span_5yr Logical. Use TRUE to restrict the time span to 5 years from the start year (the default behavior of qplot_trajectory()), or use FALSE to impose no restriction.
convert_label A symbol. The unquoted name of a function to apply to y-axis labels. For example:

- To convert labels to uppercase use convert_label = toupper.
- To get the default behavior of qplot_trajectory() use convert_label = recode_metric_trajectory.

center_y Logical. Use TRUE to center the y-axis around start value (the default behavior of qplot_trajectory()), or use FALSE to not center.

value_col Character. Name of the column to be used as a value to be plotted.

perc_y_scale Logical. FALSE defaults to using no label conversion. Use TRUE to convert labels on y-axis to percentage using scales::percent (the default behavior of qplot_trajectory()).

Value

An object of class "ggplot".

See Also

market_share.

Examples

'data' must meet documented "Requirements"
data <- subset(
 market_share,
 sector == "power" &
 technology == "renewables_cap" &
 region == "global" &
 scenario_source == "demo_2020"
)

plot_trajectory(data)

plot with `qplot_trajectory()` parameters
plot_trajectory(
 data,
 span_5yr = TRUE,
 convert_label = recode_metric_trajectory,
 center_y = TRUE,
 value_col = "percentage_of_initial_production_by_scope",
 perc_y_scale = TRUE
)
qplot_emission_intensity

Create a quick emission intensity plot

Description

Compared to `plot_emission_intensity()` this function:

- is restricted to plotting future as 5 years from the start year,
- outputs formatted labels, based on emission metric column,
- outputs a title,
- outputs formatted axis labels.

Usage

```r
qplot_emission_intensity(data)
```

Arguments

data A data frame. Requirements:

- The structure must be like `sda`.
- The column `sector` must have a single value (e.g. "cement").
- (Optional) If present, the column `label` is used for data labels.

Value

An object of class "ggplot".

See Also

`plot_emission_intensity`

Examples

```r
# `data` must meet documented "Requirements"
data <- subset(sda, sector == "cement" & region == "global")

qplot_emission_intensity(data)
```
Create a quick techmix plot

Description

Compared to `plot_techmix()` this function:

- is restricted to plotting future as 5 years from the start year,
- outputs pretty bar labels, based on metric column,
- outputs pretty legend labels, based on technology column,
- outputs a title.

Usage

```
qplot_techmix(data)
```

Arguments

- `data` A data frame. Requirements:
 - The structure must be like `market_share`.
 - The following columns must have a single value: `sector`, `region`, `scenario_source`.
 - The column `metric` must have a portfolio (e.g. "projected"), a benchmark (e.g. "corporate_economy"), and a single scenario (e.g. "target_sds").
 - (Optional) If present, the column `label` is used for data labels.
 - (Optional) If present, the column `label_tech` is used for technology labels.

Value

An object of class "ggplot".

See Also

`plot_techmix`

Examples

```
# `data` must meet documented "Requirements"

data <- subset(
  market_share,
  sector == "power" &
  region == "global" &
  scenario_source == "demo_2020" &
  metric %in% c("projected", "corporate_economy", "target_sds")
)

data`

qplot_techmix(data)
```
qplot_trajectory

Create a quick trajectory plot

Description

Compared to plot_trajectory() this function:

- is restricted to plotting only 5 years from the start year,
- outputs pretty legend labels, based on the column holding metrics,
- outputs a title,
- outputs a subtitle,
- outputs informative axis labels in sentence case.

Usage

qplot_trajectory(data)

Arguments

data A data frame. Requirements:

- The structure must be like market_share.
- The following columns must have a single value: sector, technology, region, scenario_source.
- (Optional) If present, the column label is used for data labels.

Value

An object of class "ggplot".

See Also

plot_trajectory

Examples

'data' must meet documented "Requirements"
data <- subset(
 market_share,
 sector == "power" &
 technology == "renewablecap" &
 region == "global" &
 scenario_source == "demo_2020"
)
qplot_trajectory(data)
r2dii_colours

Colour datasets

Description

All datasets have at least two columns:

- **label**: Text label of the colour.
- **hex**: Hex code of the colour.

Usage

- `palette_colours`
- `scenario_colours`
- `sector_colours`
- `technology_colours`

Format

An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 9 rows and 2 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 5 rows and 2 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 8 rows and 2 columns.
An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 18 rows and 3 columns.

Details

In `scenario_colours`, colours are ordered from red to green to be used in trajectory charts.

See Also

Other datasets: `market_share`, `sda`

Examples

- `palette_colours`
- `scenario_colours`
- `sector_colours`
- `technology_colours`
scale_colour_r2dii Custom 2DII colour and fill scales

Description

A custom discrete colour and fill scales with colours from 2DII palette.

Usage

scale_colour_r2dii(labels = NULL, ...)
scale_fill_r2dii(labels = NULL, ...)

Arguments

labels A character vector. Specifies colour labels to use and their order. Run unique(r2dii.plot:::palette_colours$label) to see available labels. Similar to value parameter in ggplot2::scale_colour_manual().

... Other parameters passed on to ggplot2::discrete_scale().

Value

An object of class "ScaleDiscrete".

See Also

Other r2dii scales: scale_colour_r2dii_sector(), scale_colour_r2dii_tech()

Examples

library(ggplot2, warn.conflicts = FALSE)

ggplot(mpg) +
 geom_point(aes(displ, hwy, color = class)) +
 scale_colour_r2dii()

ggplot(mpg) +
 geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
 scale_fill_r2dii()
scale_colour_r2dii_sector

Custom 2DII sector colour and fill scales

Description

A custom discrete colour and fill scales with colours from 2DII sector palette.

Usage

scale_colour_r2dii_sector(sectors = NULL, ...)
scale_fill_r2dii_sector(sectors = NULL, ...)

Arguments

sectors A character vector. Specifies sector colours to use and their order. Run
unique(r2dii.plot:::sector_colours$label) to see available labels. Similar to value parameter in ggplot2::scale_colour_manual().

... Other parameters passed on to ggplot2::discrete_scale().

Value

An object of class "ScaleDiscrete".

See Also

Other r2dii scales: scale_colour_r2dii_tech(), scale_colour_r2dii()

Examples

library(ggplot2, warn.conflicts = FALSE)

ggplot(mpg) +
 geom_point(aes(displ, hwy, color = class)) +
 scale_colour_r2dii_sector()

ggplot(mpg) +
 geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) +
 scale_fill_r2dii_sector()
scale_colour_r2dii_tech

Custom 2DII technology colour and fill scales

Description
A custom discrete colour and fill scales with colours from 2DII technology palette.

Usage
scale_colour_r2dii_tech(sector, technologies = NULL, ...)
scale_fill_r2dii_tech(sector, technologies = NULL, ...)

Arguments
sector A string. Sector name specifying a colour palette. Run `unique(r2dii.plot:::technology_colours$sector)` to see available sectors.
technologies A character vector. Specifies technologies to use as colours and their order. Run `unique(r2dii.plot:::technology_colours$technology)` to see available technologies (pay attention if they match the sector). Similar to value parameter in `ggplot2::scale_colour_manual()`.
... Other parameters passed on to `ggplot2::discrete_scale()`.

Value
An object of class "ScaleDiscrete".

See Also
Other r2dii scales: `scale_colour_r2dii_sector()`, `scale_colour_r2dii()`

Examples
library(ggplot2, warn.conflicts = FALSE)

```r
ggplot(mpg) + geom_point(aes(displ, hwy, color = class)) + scale_colour_r2dii_tech("automotive")
```

```r
ggplot(mpg) + geom_histogram(aes(cyl, fill = class), position = "dodge", bins = 5) + scale_fill_r2dii_tech("automotive")
```
sda

An example of an sda-like dataset

Description

Dataset imitating the output of \texttt{r2dii.analysis::target_sda()}.

Usage

\texttt{sda}

Format

An object of class \texttt{spec_tbl_df} (inherits from \texttt{tbl_df, tbl, data.frame}) with 110 rows and 6 columns.

Source

See Also

\texttt{r2dii.analysis::target_sda()}.

Other datasets: \texttt{market_share, r2dii_colours}

Examples

\texttt{sda}

theme_2dii

Complete theme

Description

A \texttt{ggplot} theme which can be applied to all graphs to appear according to 2DII plotting aesthetics.

Usage

\begin{verbatim}
theme_2dii(
 base_size = 12,
 base_family = "Helvetica",
 base_line_size = base_size/22,
 base_rect_size = base_size/22
)
\end{verbatim}
Arguments

- **base_size**: base font size, given in pts.
- **base_family**: base font family
- **base_line_size**: base size for line elements
- **base_rect_size**: base size for rect elements

Value

An object of class "theme", "gg".

See Also

`ggplot2::theme_classic`.

Examples

```r
library(ggplot2, warn.conflicts = FALSE)

ggplot(mtcars) +
  geom_histogram(aes(mpg), bins = 10) +
  theme_2dii()
```

to_title

Replicate labels produced with `qplot_*(*)` functions

Description

- `to_title()` converts labels like `qplot_emission_intensity()`.
- `recode_metric_trajectory()` converts labels like `qplot_trajectory()`.
- `recode_metric_techmix()` converts labels like `qplot_techmix()`.
- `spell_out_technology()` converts technology labels like `qplot_techmix()`.

Usage

```r
to_title(x)
recode_metric_techmix(x)
recode_metric_trajectory(x)
spell_out_technology(x)
```

Arguments

- **x**: A character vector.
Value

A character vector.

Examples

to_title(c("a.string", "another_STRING"))

metric <- c("projected", "corporate_economy", "target_xyz", "else")
recode_metric_trajectory(metric)

recode_metric_techmix(metric)

spell_out_technology(c("gas", "ice", "coalcap", "hdv"))
Index

* datasets
 market_share, 2
 r2dii_colours, 10
 sda, 14
* plotting functions
 theme_2dii, 14
* r2dii scales
 scale_colour_r2dii, 11
 scale_colour_r2dii_sector, 12
 scale_colour_r2dii_tech, 13
 ggplot2::discrete_scale(), 11–13
 ggplot2::scale_colour_manual(), 11–13
 ggplot2::theme_classic, 15
 market_share, 2, 4–6, 8–10, 14
 palette_colours (r2dii_colours), 10
 plot_emission_intensity, 3
 plot_emission_intensity(), 7
 plot_techmix, 4
 plot_techmix(), 8
 plot_trajectory, 5
 plot_trajectory(), 9
 qplot_emission_intensity, 7
 qplot_emission_intensity(), 15
 qplot_techmix, 8
 qplot_techmix(), 15
 qplot_trajectory, 9
 qplot_trajectory(), 15
 r2dii.analysis::target_market_share(), 2
 r2dii.analysis::target_sda(), 14
 r2dii_colours, 2, 10, 14
 recode_metric_techmix (to_title), 15
 recode_metric_trajectory (to_title), 15
 scale_color_r2dii_sector
 (scale_colour_r2dii_sector), 12
 scale_color_r2dii_tech
 (scale_colour_r2dii_tech), 13
 scale_colour_r2dii, 11, 12, 13
 scale_colour_r2dii_sector, 11, 12, 13
 scale_colour_r2dii_tech, 11, 12, 13
 scale_fill_r2dii (scale_colour_r2dii), 11
 scale_fill_r2dii_sector
 (scale_colour_r2dii_sector), 12
 scale_fill_r2dii_tech
 (scale_colour_r2dii_tech), 13
 scenario_colours (r2dii_colours), 10
 sda, 2, 3, 7, 10, 14
 sector_colours (r2dii_colours), 10
 spell_out_technology (to_title), 15
 technology_colours (r2dii_colours), 10
 theme_2dii, 14
 to_title, 15

17