Package ‘rDecode’

December 18, 2019

Type Package
Title Descent-Based Calibrated Optimal Direct Estimation
Version 0.1.0
Author Chi Seng Pun, Matthew Zakharia Hadimaja
Maintainer Chi Seng Pun <cspun@ntu.edu.sg>
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.0.0
Depends R (>= 2.10)
Imports stats
NeedsCompilation no
Repository CRAN
Date/Publication 2019-12-18 14:20:05 UTC

R topics documented:

decode .. 2
decodeLDA .. 3
decodePM ... 4
lung.test ... 5
lung.train ... 6

Index 7
Description

Implement DECODE for sigma and beta to estimate $\Sigma^{-1}\beta$ where sigma is an estimator of Σ and beta is an estimator of β.

Usage

```
decode(sigma, beta, lambda0, decode.tol = 1e-06, decode.maxit = 100,
        trace = FALSE, solver = c("apg", "homotopy"), solver.tol = 1e-08,
        solver.maxit = 10000, return.sigma = FALSE, return.beta = FALSE,
        return.param = FALSE)
```

Arguments

- `sigma` $p \times p$ positive semidefinite symmetric matrix. `sigma` will be perturbed if needed.
- `beta` p-length vector.
- `lambda0` number between 0 and 1.
- `decode.tol` error tolerance for DECODE.
- `decode.maxit` maximum iterations for DECODE.
- `trace` logical. If TRUE, will return η, θ, and λ found during each iteration of DECODE.
- `solver` solver for ℓ_1-RQP problem inside DECODE.
- `solver.tol` tolerance for solver.
- `solver.maxit` maximum iterations for solver (only for APG).
- `return.sigma` logical. If TRUE the `sigma` entered is returned.
- `return.beta` logical. If TRUE the `beta` entered is returned.
- `return.param` logical. If TRUE the parameters used are returned.

Value

An object of class `decode` containing:

- `eta` DECODE of $\Sigma^{-1}\beta$.
- `theta` final θ of the DECODE.
- `lambda` final λ of the DECODE.
- `sigma.mult` multiplier applied on σ to ensure convergence.
- `total.iter` number of iterations until convergence.
- `call` the matched call.
- `method` the solver used, if requested.
- `lambda0` the `lambda0` entered, if requested.
`decodeLDA`

```
  decode.tol  the decode.tol used, if requested.
  decode.maxit the decode.maxit used, if requested.
  trace        the trace used, if requested.
  solver.tol   the solver.tol used, if requested.
  solver.maxit the solver.maxit used, if requested.
  eta.trace    matrix of $\eta$ used in each iteration, if requested.
  theta.trace  vector of $\theta$ used in each iteration, if requested.
  lambda.trace vector of $\lambda$ used in each iteration, if requested.
```

References

Examples

```
# estimate $A^{(-1)} b$ with a certain lambda0
X <- matrix(rnorm(100), 10, 10)
A <- t(X) %*% X
b <- rnorm(10)
object <- decode(A, b, lambda0 = 0.8)

object
summary(object)

coef(object)
```

Description

Implement DECODE for simple LDA. The LDA assumes both classes have equal prior probabilities. This implementation is used in Hadimaja and Pun (2018).

Usage

```
decodeLDA(X, y, lambda0 = NULL, ...)
```

Arguments

- `X`
 $n \times p$ data matrix.
- `y`
 binary n-length vector containing the class of each observation.
- `lambda0`
 number between 0 and 1. If NULL, will use $\sqrt{2 \log p/n}$.
- `...`
 additional arguments to be passed to general decode function.
decodePM

Value

An object of class decodeLDA containing:

- **eta**: \(\Omega \delta \)
- **X**: training data used
- **y**: training label used

and various outputs from decode function.

References

Examples

for efficiency, we will only use 500 variables

load the training data (Lung cancer data, cleaned)
data(lung.train) # 145 x 1578
X.train <- lung.train[,1:500]
y.train <- lung.train[,1578]

build the DECODE object
object <- decodeLDA(X.train, y.train)

object
summary(object)
coef(object)

test on test data
data(lung.test)
X.test <- lung.test[,1:500]
y.test <- lung.test[,1578]
y.pred <- predict(object, X.test)
table(y.pred, y.test)

decodePM

Implement DECODE for simple precision matrix estimation

Description

Implement DECODE to estimate a precision matrix of \(X \). This implementation is used in Hadimaja and Pun (2018).

Usage

decodePM(X, lambda0 = NULL, ...)

Arguments

- **X**

 $n \times p$ data matrix.

- **lambda0**

 number between 0 and 1. If NULL, will use $\sqrt{2 \log p/n}$.

- **...**

 additional arguments to be passed to general decode function.

Value

An object of class `decodePM` containing:

- **Omega**

 DECODE of Ω.

- **lambda0**

 the lambda0 used.

- **X**

 data used.

- **theta**

 final θ for each column.

- **lambda**

 final λ for each column.

- **total.iter**

 number of iterations until convergence for each column.

References

Examples

```r
# estimate the precision matrix of iris data
object <- decodePM(iris[,1:4], lambda0 = 0.01)

object
summary(object)
object$Omega
```

lung.test

Lung cancer test data set from Gordon et al. (2002)

Description

Preprocessed lung cancer test data of 1577 genes from 36 patients with lung cancer. There are 30 patients with adenocarcinoma (AD) and 6 patients with malignant pleural mesothelioma (MPM). The original data was used in Gordon et al. (2002), with this preprocessed version used in Pun and Hadimaja (2018).

Usage

`data(lung.test)`
lung.train

Format
A data frame with 36 observations on 1577 variables.

Source
http://dx.doi.org/10.17632/ynp2tst2hh.4#file-673c9416-39ed-446d-9be9-37ac74353029

References

l lung.train
Lung cancer training data set from Gordon et al. (2002)

Description
Preprocessed lung cancer training data of 1577 genes from 145 patients with lung cancer. There are 120 patients with adenocarcinoma (AD) and 25 patients with malignant pleural mesothelioma (MPM). The original data was used in Gordon et al. (2002), with this preprocessed version used in Pun and Hadimaja (2018).

Usage
data(lung.train)

Format
A data frame with 145 observations on 1577 variables.

Source
http://dx.doi.org/10.17632/ynp2tst2hh.4#file-673c9416-39ed-446d-9be9-37ac74353029

References
Index

*Topic data
 lung.test, 5
 lung.train, 6

decode, 2
decodeLDA, 3
decodePM, 4

lung.test, 5
lung.train, 6