Package ‘rFSA’

October 14, 2022

<table>
<thead>
<tr>
<th>Type</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Feasible Solution Algorithm for Finding Best Subsets and Interactions</td>
</tr>
<tr>
<td>Version</td>
<td>0.9.6</td>
</tr>
<tr>
<td>Date</td>
<td>2020-06-10</td>
</tr>
</tbody>
</table>

Description

Assists in statistical model building to find optimal and semi-optimal higher order interactions and best subsets. Uses the `lm()`, `glm()`, and other R functions to fit models generated from a feasible solution algorithm. Discussed in Subset Selection in Regression, A Miller (2002). Applied and explained for least median of squares in Hawkins (1993) [doi:10.1016/0167-9473(93)90246-P]. The feasible solution algorithm comes up with model forms of a specific type that can have fixed variables, higher order interactions and their lower order terms.

License GPL-2

LazyData TRUE

Imports parallel, methods, tibble, rPref, tidyr, hash

RoxygenNote 7.1.0

NeedsCompilation no

Author Joshua Lambert [aut, cre], Liyu Gong [aut], Corrine Elliott [aut], Sarah Janse [ctb]

Maintainer Joshua Lambert <joshua.lambert@uc.edu>

Repository CRAN

Date/Publication 2020-06-10 20:20:03 UTC

R topics documented:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>adj.r.squared</td>
<td></td>
</tr>
<tr>
<td>apress</td>
<td></td>
</tr>
</tbody>
</table>

1
adj.r.squared

An rFSA Criterion Function.

Description

rFSA Criterion Function to compute Adjusted R-Squared.

Usage

adj.r.squared(model, name = "Adj R Squared")

Arguments

model lm or glm fit to be passed.
name passed to print.FSA
apress

Description
An rFSA Criterion Function.

rFSA Criterion Function to Allen’s Press Statistic.

Usage
apress(model, name = "PRESS")

Arguments
model
lm or glm fit to be passed.
name
passed to print.FSA

bdist

Description
An rFSA Criterion Function.

rFSA Criterion Function to compute the Bhattacharyya distance.

Usage
bdist(model, name = "B Distance")

Arguments
model
lm or glm fit to be passed.
name
passed to print.FSA

Examples
#To use Bhattacharyya Distance and FSA the response must be binary, and you must
#be considering searching for two way continuous interactions.
data(mtcars)
fit<-FSA(formula = "am~gear*hp", data = mtcars,
fitfunc = glm,family="binomial",m = 2,cores=1,
interactions = TRUE,criterion = bdist,minmax = "max")
fitmodels

Model fitting function for FSA solutions

Description

Model fitting function for FSA solutions

Usage

fitmodels(object, ...)

Arguments

object
FSA object to construct models on.

...
other parameters passed to lm or glm. See help(lm) or help(glm) for other potential arguments.

Value

list of FSA models that have been fitted.

Examples

#use mtcars package see help(mtcars)
data(mtcars)
colnames(mtcars)
fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",
 quad=FALSE,m=2,numrs=10,save_solutions=FALSE,cores=1)
fitmodels(fit)

fitted.FSA

Fitted Values for FSA solutions

Description

Fitted Values for FSA solutions

Usage

S3 method for class 'FSA'
fitted(object, ...)

Arguments

object
FSA object to get fitted values from.

...
other parameters passed to fitmodels or fitted function. See help(fitmodels) or help(fitted) for assistance.
Value
list of fitted values from each FSA model.

Examples

```r
# use mtcars package see help(mtcars)
data(mtcars)
colnames(mtcars)
fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",
quad=FALSE,m=2,numrs=10,save_solutions=FALSE,cores=1)
fitted(fit)
```

Description
A function using a Feasible Solution Algorithm to find a set of feasible solutions for a statistical model of a specific form that could include mth-order interactions (Note that these solutions are optimal in the sense that no one swap to any of the variables will increase the criterion function.)

Usage

```r
FSA(
  formula,
  data,
  fitfunc = lm,
  fixvar = NULL,
  quad = FALSE,
  m = 2,
  numrs = 1,
  cores = 1,
  interactions = T,
  criterion = AIC,
  minmax = "min",
  checkfeas = NULL,
  var4int = NULL,
  min.nonmissing = 1,
  return.models = FALSE,
  fix.formula = NULL,
  ...
)
```

```r
lmFSA(...) glmFSA(...)```
Arguments

- **formula**: an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
- **data**: a data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model.
- **fitfunc**: the method that should be used to fit the model. For Example: lm, glm, or other methods that rely on formula, data, and other inputs.
- **fixvar**: variable(s) to fix in the model. Usually a covariate that should always be included (Example: Age, Sex). Will still consider it with interactions. Default is NULL.
- **quad**: whether to include interactions in model. Defaults to TRUE.
- **m**: order of terms to include. If interactions is set to TRUE then m is the order of interactions to be considered. For Subset selection (interaction=F), m is the size of the subset to examine. Defaults to 2.
- **numrs**: number of random starts to perform.
- **cores**: number of cores to use while running. Note: Windows can only use 1 core. See mclapply for details. If function detects a Windows user it will automatically set cores=1.
- **criterion**: which criterion function to either maximize or minimize. For linear models one can use: r.squared, adj.r.squared, cv5.lmFSA (5 Fold Cross Validation error), cv10.lmFSA (10 Fold Cross Validation error), apress (Allen’s Press Statistic), int.p.val (Interaction P-value), AIC, BIC.
- **minmax**: whether to minimize or maximize the criterion function.
- **checkfeas**: vector of variables that could be a feasible solution. These variables will be used as the last random start.
- **var4int**: specification of which variables to check for marginal feasiiblity. Default is NULL
- **min.nonmissing**: the combination of predictors will be ignored unless this many of observations are not missing
- **return.models**: bool value to specify whether return all the fitted models which have been checked
- **fix.formula**: ...

Value

matrix of results

Functions

- **FSA**: find best set of variables for statistical models
- **lmFSA**: alias for FSA(fitfunc=lm,...)
- **glmFSA**: alias for FSA(fitfunc=glm,...)
Examples

```r
N <- 10 # number of obs
P <- 100 # number of variables
data <- data.frame(matrix(rnorm(N*(P+1)), nrow = N, ncol = P+1))

sln <- FSA(formula = "X101~1", data = data, cores = 1, m = 2,
interactions = FALSE, criterion = AIC, minmax = "min",
numrs = 10)
sln
```

### int.p.val

An rFSA Criterion Function.

**Description**

rFSA Criterion Function to compute Likelihood Ratio Test Statistics p-value for the largest order interaction term.

**Usage**

```r
int.p.val(model, name = "Interaction P-Value")
```

**Arguments**

- `model` lm or glm fit to be passed.
- `name` passed to print.FSA

### list.criterion

List all included Criteria function for lmFSA and glmFSA.

**Description**

List all included Criteria function for lmFSA and glmFSA.

**Usage**

```r
list.criterion()
```
max_abs_resid

Return maximum absolute residual from a model

Description

Return maximum absolute residual from a model

Usage

max_abs_resid(model)

Arguments

model model obj

nextswap

Variables to include in the >1st step of an mth order interaction model
determined from the Feasible Solution Algorithm.

Description

Finds the swaps available given a current position given previous picks.

Usage

nextswap(curpos, n, prevpos, quad)

Arguments

curpos A vector of length greater than 2 of what current explanatory variables are being
used in the model.
n The number of explanatory variables in available to swap.
prevpos A vector of previous best spots
quad Whether to include quadratic terms. ie (x1*x1) as potential swaps.

Value

a matrix with the possible forms by column.
Description

A function using a Feasible Solution Algorithm to estimate a set of models which are on the Pareto frontiers for chosen criteria

Usage

pFSA(
  numFronts = 2,
  pselExpr = NULL,
  plot.it = TRUE,
  formula,
  data,
  fitfunc = lm,
  fixvar = NULL,
  quad = FALSE,
  m = 2,
  numrs = 1,
  cores = 1,
  interactions = T,
  criterion = AIC,
  minmax = "min",
  checkfeas = NULL,
  var4int = NULL,
  min.nonmissing = 1,
  return.models = FALSE,
  fix.formula = NULL,
  ...
)

Arguments

numFronts integer number of estimated frontiers to return
pselExpr expression used by function psel to estimate pareto frontiers. help(psel).
plot.it TRUE/FALSE for whether to plot the pareto frontiers
formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
data a data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model.
fitfunc the method that should be used to fit the model. For Example: lm, glm, or other methods that rely on formula, data, and other inputs.
variable(s) to fix in the model. Usually a covariate that should always be included (Example: Age, Sex). Will still consider it with interactions. Default is NULL.

quad  Include quadratic terms or not. Logical.

m    order of terms to include. If interactions is set to TRUE then m is the order of interactions to be considered. For Subset selection (interaction=F), m is the size of the subset to examine. Defaults to 2.

numrs number of random starts to perform.

cores number of cores to use while running. Note: Windows can only use 1 core. See mclapply for details. If function detects a Windows user it will automatically set cores=1.

interactions whether to include interactions in model. Defaults to TRUE.

criterion which criterion function to either maximize or minimize. For linear models one can use: r.squared, adj.r.squared, cv5.lmFSA (5 Fold Cross Validation error), cv10.lmFSA (10 Fold Cross Validation error), apress (Allen’s Press Statistic), int.p.val (Interaction P-value), AIC, BIC.

minmax whether to minimize or maximize the criterion function

checkfeas vector of variables that could be a feasible solution. These variables will be used as the last random start.

var4int specification of which variables to check for marginal feasiblity. Default is NULL

min.nonmissing the combination of predictors will be ignored unless this many of observations are not missing

return.models bool value to specify whether return all the fitted models which have been checked

fix.formula ... see arguments taken by function FSA or other functions. help(FSA).

Value

list of a matrix of all models obtained from FSA (fits) and their criteria. Also a matrix of the estimated frontiers that were requested. The Key column in fits, and pbound refers to the column number of the variables contined in the model fit. For instance, Key="42.96" would refer to the model which contains the variable in the 42nd column and 96th column of the designated dataset.

Examples

N <- 1000 #number of obs
P <- 100 #number of variables
data <- data.frame(matrix(rnorm(N*(P+1)), nrow = N, ncol = P+1))
sln <- pFSA(formula = "X101~1", data = data, m = 2, criterion = c(max_abs_resid,r.squared),
            minmax = c("min","max"),numrs = 10,numFronts = 2,
pseExpr = rPref::low(max_abs_resid)*rPref::high(r.squared),plot.it = TRUE)
plot.FSA  Diagnostic Plots for FSA solutions

Description
Diagnostic Plots for FSA solutions

Usage
## S3 method for class 'FSA'
plot(x, ask = F, easy = T, ...)

Arguments
x  FSA object to see diagnostic plots on.
ask  logical; if TRUE, the user is asked before each plot. See help(plot.lm).
easy  logical; should diagnostic plots be presented in easy to read format?
...  arguments to be passed to other functions.

Value
diagnostic plots to plot window.

Examples
#use mtcars package see help(mtcars)
data(mtcars)
colnames(mtcars)
fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",
quad=FALSE,m=2,numrs=10,save_solutions=FALSE,cores=1)
plot(x=fit)

predict.FSA  Prediction function for FSA solutions

Description
Prediction function for FSA solutions

Usage
## S3 method for class 'FSA'
predict(object, ...)
Arguments

object  FSA object to conduct predictions on.
...
other parameters passed to fitmodels or predict functions. See help(fitmodels) or help(predict) for assistance.

Value

list of predicted values from each FSA model.

Examples

#use mtcars package see help(mtcars)
data(mtcars)
colnames(mtcars)
fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",
quad=FALSE,m=2,numrs=10,save_solutions=FALSE,cores=1)
predict(fit)
predict(fit,newdata=mtcars[1:15,])

print.FSA

Printing function for FSA solutions

Description

Printing function for FSA solutions

Usage

## S3 method for class 'FSA'
print(x, ...)

Arguments

x  FSA object to print details about.
...
arguments to be passed to other functions.

Value

list of Feasible Solution Formula’s, Original Fitted model formula and criterion function and times converged to details.

Examples

#use mtcars package see help(mtcars)
data(mtcars)
colnames(mtcars)
fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",
quad=FALSE,m=2,numrs=10,save_solutions=FALSE,cores=1)
print(fit)
Return `QICu.geeglm` for `geepack::geeglm`

### Description
Computes quasi-likelihood under the independence criterion (QICu)

### Usage
```
QICu.geeglm(gee.obj)
```

### Arguments
- `gee.obj` geeglm obj

---

**r.squared**
An rFSA Criterion Function.

### Description
rFSA Criterion Function to compute R squared.

### Usage
```
r.squared(model, name = "R Squared")
```

### Arguments
- `model` lm or glm fit to be passed.
- `name` passed to `print.FSA`

---

**rmse**
An rFSA Criterion Function.

### Description
rFSA Criterion Function to compute Root Mean Squared Error.

### Usage
```
rmse(model, name = "RMSE")
```

### Arguments
- `model` lm or glm fit to be passed.
- `name` passed to `print.FSA`
**summary.FSA**  
*Summary function for FSA solutions*

**Description**
Summary function for FSA solutions

**Usage**
```r
S3 method for class 'FSA'
summary(object, ...)
```

**Arguments**
- **object**  
  FSA object to see summaries on.
- **...**  
  arguments to be passed to other functions.

**Value**
list of summarized lm or glm output.

**Examples**
```r
use mtcars package see help(mtcars)
data(mtcars)
colnames(mtcars)
fit<-lmFSA(formula="mpg~hp*wt",data=mtcars,fixvar="hp",quad=FALSE,m=2,numrs=10,save_solutions=FALSE,cores=1)
summary(fit)
```

---

**swaps**  
*Variables to include in first step of an mth order interaction model determined from the Feasible Solution Algorithm.*

**Description**
Finds the swaps available given a current position.

**Usage**
```r
swaps(cur, n, quad = FALSE, yindex)
```
Arguments

cur A vector of length greater than 2 of what current explanatory variables are being used in the model.
n The number of explanatory variables in available to swap.
quad Whether to include quadratic terms. ie (x1*x1) as potential swaps.
yindex index of response variable.

Value

a matrix with the possible forms by column.

description

A function for termwise feasibility

Usage

twFSA(
  formula,
  data,
  fitfunc = lm,
  fixvar = NULL,
  quad = FALSE,
  cores = 1,
  criterion = AIC,
  minmax = "min",
  checkfeas = NULL,
  var4int = NULL,
  min.nonmissing = 1,
  ...
)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.
data a data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model.
fitfunc the method that should be used to fit the model. For Example: lm, glm, or other methods that rely on formula, data, and other inputs.
fixvar variable(s) to fix in the model. Usually a covariate that should always be included (Example: Age, Sex). Will still consider it with interactions. Default is NULL.
quad Include quadratic terms or not. Logical.
cores number of cores to use while running. Note: Windows can only use 1 core. See mclapply for details. If function detects a Windows user it will automatically set cores=1.
criterion which criterion function to either maximize or minimize. For linear models one can use: r.squared, adj.r.squared, cv5.lmFSA (5 Fold Cross Validation error), cv10.lmFSA (10 Fold Cross Validation error), apress (Allen’s Press Statistic), int.p.val (Interaction P-value), AIC, BIC.
minmax whether to minimize or maximize the criterion function
checkfeas vector of variables that could be a feasible solution. These variables will be used as the last random start.
var4int specification of which variables to check for marginal feasiblity. Default is NULL
min.nonmissing the combination of predictors will be ignored unless this many of observations are not missing
... other arguments passed to fitfunc.

Value

matrix of results

which.max.na

An rFSA Internal Function.

Description

rFSA function to compute the maximum value from a vector with NA's.

Usage

which.max.na(vec)

Arguments

vec Vector to be passed.
which.min.na

An rFSA Internal Function.

Description

rFSA function to compute the minimum value from a vector with NA's.

Usage

which.min.na(vec)

Arguments

vec Vector to be passed.
Index

adj.r.squared, 2
apress, 3
bdist, 3
fitmodels, 4
fitted.FSA, 4
FSA, 5
glmFSA (FSA), 5
int.p.val, 7
list.criterion, 7
lmFSA (FSA), 5
max_abs_resid, 8
nextswap, 8
pFSA, 9
plot.FSA, 11
predict.FSA, 11
print.FSA, 12
QICu.geeglm, 13
r.squared, 13
rmse, 13
summary.FSA, 14
swaps, 14
twFSA, 15
which.max.na, 16
which.min.na, 17