A Quick Start for The R Interface to LINDO API

August 12, 2013

1 Introduction

The package \texttt{rLindo} is an R interface to LINDO API C functions. It supports Linear, Integer, Quadratic, Conic, General Nonlinear, Global, and Stochastic models.

2 Installation

To install the package, it requires the installation of LINDO API 8.0 as well. See file \texttt{INSTALL} for details of the installation and platform specifications.

3 Usage

To use the package users must have a valid license file named lndapi80.lic under the folder LINDOAPI_HOME/license. The R interface function names use the convention of ‘r’ + name of LINDO API function, e.g. \texttt{rLScreateEnv} in the R interface corresponds to \texttt{LScreateEnv} in LINDO API. All LINDO parameters and constants are the same with LINDO API.

4 General commands

To load the package, use the command:

\begin{verbatim}
> library(rLindo)
\end{verbatim}

To generate a LINDO API environment object, use the command:

\begin{verbatim}
> rEnv <- rLScreateEnv()
\end{verbatim}
To generate a LINDO API model object, use the command:

```r
> rModel <- rLScreateModel(rEnv)
```

5 An application to the least absolute deviations estimation

5.1 Least absolute deviations (LAD) estimation

Let

- n = number of observations,
- k = number of explanatory variables,
- d_i = value of the dependent variable in observation i, for $i = 1, 2, ..., n$,
- e_{ij} = value of the jth independent variable in observation i, for $i = 1, 2, ..., n$ and $j = 1, 2, ..., k$,
- x_j = prediction coefficient applied to the jth explanatory variable,
- ω_i = error of the forecast formula applied to the ith observation,

A LAD regression can be described as the following:

Minimize

$$|\omega_1| + |\omega_2| + |\omega_3| + ... + |\omega_n|$$

subject to

$$\omega_i = d_i - x_0 - \sum_{j=1}^{k} e_{ij} x_j$$

where ω_j, x_j are unconstrained in sign.

Linear programming can be applied to this problem if we define:

$$u_i - v_i = \omega_i$$

then the LAD regression model can be rewritten as:

Minimize

$$u_1 + v_1 + u_2 + v_2 + ... + u_n + v_n$$

subject to

$$u_i - v_i = d_i - x_0 - \sum_{j=1}^{k} e_{ij} x_j$$

where u_i and v_i are nonnegative, x_j are unconstrained in sign.
5.2 An example

We have five observations on a single explanatory variable,

\[
\begin{array}{cc}
 d_i & e_{i1} \\
 2 & 1 \\
 3 & 2 \\
 4 & 4 \\
 5 & 6 \\
 8 & 7 \\
\end{array}
\]

Then the linear programming model for the LAD regression is:

Minimize

\[
U_1 + V_1 + U_2 + V_2 + U_3 + V_3 + U_4 + V_4 + U_5 + V_5
\]

subject to

\[
\begin{align*}
U_1 - V_1 &= 2 - X_0 - X_1 \\
U_2 - V_2 &= 3 - X_0 - 2X_1 \\
U_3 - V_3 &= 4 - X_0 - 4X_1 \\
U_4 - V_4 &= 5 - X_0 - 6X_1 \\
U_5 - V_5 &= 8 - X_0 - 7X_1
\end{align*}
\]

All variables are nonnegative.

5.3 Solve the linear programming model in R

Using the R interface to LINDO API, we can solve the above linear programming model.

```r
#load the package
> library(rLindo)

#create LINDO enviroment object
> rEnv <- rLScreateEnv()

#create LINDO model object
> rModel <- rLScreateModel(rEnv)

#disable printing log
> rLSsetPrintLogNull(rModel)

$ErrorCode
[1] 0
```
Number of variables
> nVars <- 12

Number of constraints
> nCons <- 5

Maximize or minimize the objective function
> nDir <- LS_MIN

Objective constant
> dObjConst <- 0.

Objective coefficients
> adC <- c(1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0.)

Right hand side coefficients of the constraints
> adB <- c(2., 3., 4., 5., 8.)

Constraint types are all Equality
> acConTypes <- "EEEE"

Number of nonzeros in LHS of the constraints
> nNZ <- 20

Index of the first nonzero in each column
> anBegCol <- c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20)

Nonzero coefficients of the constraint matrix by column
> adA <- c(1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0, 1.0, -1.0,
> 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 4.0, 6.0, 7.0)

Row indices of the nonzeros in the constraint matrix by column
> anRowX <- c(0, 0, 1, 2, 3, 3, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4)

Lower bound of each variable (X0 and X1 are unconstrained)
> pdLower <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -LS_INFINITY, -LS_INFINITY)

Load the data into the model object
> rLSloadLPData(rModel, nCons, nVars, nDir, dObjConst, adC, adB, acConTypes,
 nNZ, anBegCol, NULL, adA, anRowX, pdLower, NULL)
$ErrorCode
[1] 0

#solve the model.
> rLSoptimize(rModel,LS_METHOD_FREE)

$ErrorCode
[1] 0

$pnStatus
[1] 2

#retrieve value of the objective and display it
> rLSgetDInfo(rModel,LS_DINFO_POBJ)

$ErrorCode
[1] 0

$pdResult
[1] 2.666667

#get primal solution and display it
> rLSgetPrimalSolution(rModel)

$ErrorCode
[1] 0

$padPrimal
[1] 0.0000000 0.0000000 0.3333333 0.0000000 0.0000000 0.0000000 0.0000000
[8] 0.3333333 2.0000000 0.0000000 1.3333333 0.6666667

#get dual solution and display it
> rLSgetDualSolution(rModel)

$ErrorCode
[1] 0

$padDual
[1] -0.3333333 1.0000000 -0.6666667 -1.0000000 1.0000000

#delete environment and model objects to free memory
> rLSdeleteModel(rModel)
Then the optimal value for X_0 and X_1 specify the prediction formula:

$$d_i = 1.3333 + 0.666667e_{i1}$$