Package ‘rMIDAS’

January 30, 2021

Title Multiple Imputation with Denoising Autoencoders

Version 0.3.0

Description A tool for multiply imputing missing data using 'MIDAS', a deep learning method based on denoising autoencoder neural networks. This algorithm offers significant accuracy and efficiency advantages over other multiple imputation strategies, particularly when applied to large datasets with complex features. Alongside interfacing with 'Python' to run the core algorithm, this package contains functions for processing data before and after model training, running imputation model diagnostics, generating multiple completed datasets, and estimating regression models on these datasets.

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

Depends R (>= 3.6.0), data.table, mltools, reticulate

Imports

Suggests testthat, knitr, rmarkdown

VignetteBuilder knitr

License Apache License (>= 2.0)

URL https://github.com/MIDASverse/rMIDAS

BugReports https://github.com/MIDASverse/rMIDAS/issues

NeedsCompilation no

Author Thomas Robinson [aut, cre, cph]
 (<https://orcid.org/0000-0001-7097-1599>),
 Ranjit Lall [aut, cph] (<https://orcid.org/0000-0003-1455-3506>),
 Alex Stenlake [ctb, cph]

Maintainer Thomas Robinson <ts.robinson1994@gmail.com>

Repository CRAN

Date/Publication 2021-01-30 05:50:02 UTC
add_bin_labels

Reverse numeric conversion of binary vector

Description
Helper function to re-apply binary variable labels post-imputation.

Usage
add_bin_labels(x, one, zero, fast = TRUE)

Arguments
x A numeric vector or column, scaled between 0 and 1
one A character string, the label associated with binary value 1
zero A character string, the label associated with binary value 0
fast Boolean indicating whether to return binary value 1 if predicted probability >= 0.5 (TRUE), or take random draw using predicted probability as weighting.

Value
Vector of character strings corresponding to binary values
add_missingness

Examples

```r
ex_bin <- c(1,0,0,1,1,0,0,1,0)
cat <- "cat"
dog <- "dog"

add_bin_labels(x = ex_bin, one = cat, zero = dog)
```

Description

Helper function to re-apply binary variable labels post-imputation.

Usage

```r
add_missingness(X, prop, cols = NULL)
```

Arguments

- `X` A data.frame or similar
- `prop` Numeric between 0 and 1; the proportion of observations set to missing
- `cols` A vector of column names to be corrupted; if NULL, all columns are used

Value

Data with missing values

Examples

```r
whole_data <- data.frame(a = rnorm(1000),
                         b = rnorm(1000))

missing_data <- add_missingness(whole_data, 0.1)
```
coalesce_one_hot

Coalesce one-hot encoding back to a single variable

Description

Helper function to reverse one-hot encoding post-imputation.

Usage

```r
coalesce_one_hot(X, var_name, fast = TRUE)
```

Arguments

- `X`:
 A data.frame, data.table or matrix, for a single variable
- `var_name`:
 A character string, with the original variable label
- `fast`:
 Boolean, indicating whether to choose category with highest predicted probability (TRUE), or use predicted probabilities as weights in draw from random distribution

Value

A vector of length equal to `nrow(X)`, containing categorical labels corresponding to the columns of `X`

Examples

```r
ex_num <- runif(100, 1, 10)
scaled <- col_minmax(ex_num)
```
combine

Estimate and combine regression models from multiply-imputed data

Description

`combine()` calculates \(m \) individual regression models, then applies "Rubin’s Rules" to produce a single, combined estimate of the regression parameters and uncertainty.

Usage

```r
combine(formula, df_list, dof_adjust = TRUE, ...)
```

Arguments

- `formula`: A formula, or character string coercible to a formula
- `df_list`: A list, containing data.frames or objects coercible to data.frames
- `dof_adjust`: Boolean, indicating whether or not to apply the Rubin and Barnard (1999) degrees of freedom adjustment for small-samples
- `...`: Further arguments passed onto `glm()`

Value

Data.frame of combined model results.

Examples

```r
cat <- c(1, 2, 3, 4, 5)
sample <- sample(cat, 100)
sample[5] <- NA

midas_res <- combine("a ~ b + c", df_list = test_dfs)
```

complete

Impute missing values using imputation model

Description

Having trained an imputation model, `complete()` produces \(m \) completed datasets, saved as a list.
Usage

```r
complete(
  mid_obj,
  m = 10L,
  unscale = TRUE,
  bin_label = TRUE,
  cat_coalesce = TRUE,
  fast = FALSE,
  file = NULL,
  file_root = NULL
)
```

Arguments

- `mid_obj`: Object of class midas, the result of running `rMIDAS::train()`
- `m`: An integer, the number of completed datasets required
- `unscale`: Boolean, indicating whether to unscale any columns that were previously min-max scaled between 0 and 1
- `bin_label`: Boolean, indicating whether to add back labels for binary columns
- `cat_coalesce`: Boolean, indicating whether to decode the one-hot encoded categorical variables
- `fast`: Boolean, indicating whether to impute category with highest predicted probability (TRUE), or to use predicted probabilities to make weighted sample of category levels (FALSE)
- `file`: Path to save completed datasets. If `NULL`, completed datasets are only loaded into memory.
- `file_root`: A character string, used as the root for all filenames when saving completed datasets if a filepath is supplied. If no `file_root` is provided, completed datasets will be saved as "file/midas_impute_yymmdd_hhmmss_m.csv"

Value

List of length `m`, each element of which is a completed data.frame (i.e. no missing values)

Examples

```r
# Generate raw data, with numeric, binary, and categorical variables
# Run where Python available
if (reticulate::py_module_available("numpy")) {
  set.seed(89)
  n_obs <- 10000
  raw_data <- data.table(a = sample(c("red","yellow","blue",NA),n_obs, replace = TRUE),
                         b = 1:n_obs,
                         c = sample(c("YES","NO",NA),n_obs,replace=TRUE),
                         d = runif(n_obs,1,10),
                         e = sample(c("YES","NO"), n_obs, replace = TRUE),
                         f = sample(c("male","female","trans","other",NA), n_obs, replace = TRUE))
```
Names of bin./cat. variables
test_bin <- c("c","e")
test_cat <- c("a","f")

Pre-process data
test_data <- convert(raw_data,
 bin_cols = test_bin,
 cat_cols = test_cat,
 minmax_scale = TRUE)

Run imputations
test_imp <- train(test_data)

Generate datasets
complete_datasets <- complete(test_imp, m = 5, fast = FALSE)

Use Rubin's rules to combine m regression models
midas_pool <- combine(formula = d~a+c+e+f,
 complete_datasets)
}

convert

Pre-process data for Midas imputation

Description

convert pre-processes datasets to enable user-friendly interface with the main train() function.

Usage

convert(data, bin_cols = NULL, cat_cols = NULL, minmax_scale = FALSE)

Arguments

data

Either an object of class data.frame, data.table, or a path to a regular, delimited file

bin_cols, cat_cols

A vector, column names corresponding to binary and categorical variables respectively

minmax_scale

Boolean, indicating whether to scale all numeric columns between 0 and 1, to improve model convergence

Details

The function has two advantages over manual pre-processing:

1. Utilises data.table for fast read-in and processing of large datasets
2. Outputs an object that can be passed directly to train() without re-specifying column names etc.
Value
Returns custom S3 object of class ‘midas_preproc’ containing:

- **data** – processed version of input data,
- **bin_list** – vector of binary variable names
- **cat_lists** – embedded list of one-hot encoded categorical variable names
- **minmax_params** – list of min. and max. values for each numeric object scaled

List containing converted data, categorical and binary labels to be imported into the imputation model, and scaling parameters for post-imputation transformations.

Examples
```r
data = data.frame(a = sample(c("red","yellow","blue",NA),100, replace = TRUE),
                  b = 1:100,
                  c = sample(c("YES","NO",NA),100,replace = TRUE),
                  d = runif(100),
                  e = sample(c("YES","NO"), 100, replace = TRUE),
                  f = sample(c("male","female","trans","other",NA), 100, replace = TRUE),
                  stringsAsFactors = FALSE)

bin <- c("c","e")
cat <- c("a","f")

convert(data, bin_cols = bin, cat_cols = cat)
```

import_midas

Instantiate Midas class

Description
Import Midas class into R environment, and instantiates passed parameters.

Usage
```r
import_midas(...)```

Arguments
... Arguments passed to the MIDAS class for instantiating network

Value
Object of class ‘midas’
**midas_setup**

Manually set up Python connection

---

**Description**

This function allows users to initialise a custom Python configuration to run MIDAS, having manually set a Python version using `reticulate::use_python`, `reticulate::use_virtualenv`, `reticulate::use_condaenv`, or `reticulate::use_miniconda`.

**Usage**

`midas_setup()`

**Note**

This function is primarily for users who wish to have complete control over configuring Python versions and environments.

This function call is **not** required if users either use the `rMIDAS::set_python_env()` function or leave settings at their default.

If users set a custom binary/environment, this must be completed prior to the first call to either `train()` or `complete()`.

---

**mid_py_setup**

Configure python for MIDAS imputation

---

**Description**

This helper function checks if the required Python dependencies are installed, and if not, checks with user before installing them. Users should not call this function directly. Users can set a custom python install using `set_python_env()` so long as this is done prior to the first call to `train()` or `complete()`.

**Usage**

`mid_py_setup()`
na_to_nan

Replace NA missing values with NaN

Description

Helper function to convert NA values in a data.frame to NaN. This ensures the correct conversion of missing values when reticulate converts R objects to their Python equivalent. See the reticulate package documentation on type conversions for more information.

Usage

na_to_nan(df)

Arguments

df Data frame, or object coercible to one.

Value

Data frame with NA values replaced with NaN values.

Examples

na_to_nan(data.frame(a = c(1,NA,0,0,NA,NA)))

overimpute

Perform overimputation diagnostic test

Description

overimpute() spikes additional missingness into the input data and reports imputation accuracy at training intervals specified by the user. overimpute() works like train() – users must specify input data, binary and categorical columns (if data is not generated via convert(), model parameters for the neural network, and then overimputation parameters (see below for full details).

Usage

overimpute(
    data,
    binary_columns = NULL,
    softmax_columns = NULL,
    spikein = 0.3,
    training_epochs,
    report_ival = 35,
    plot_vars = FALSE,
    skip_plot = FALSE,
spike_seed = NULL,
save_path = "",
layer_structure = c(256, 256, 256),
learn_rate = 4e-04,
input_drop = 0.8,
seed = 123L,
train_batch = 16L,
latent_space_size = 4,
cont_adj = 1,
binary_adj = 1,
softmax_adj = 1,
dropout_level = 0.5,
vae_layer = FALSE,
vae_alpha = 1,
vae_sample_var = 1
)

Arguments

data A data.frame (or coercible) object, or an object of class midas_pre created from rMIDAS::convert()
binary_columns A vector of column names, containing binary variables. NOTE: if data is a midas_pre object, this argument will be overwritten.
softmax_columns A list of lists, each internal list corresponding to a single categorical variable and containing names of the one-hot encoded variable names. NOTE: if data is a midas_pre object, this argument will be overwritten.
spikein A numeric between 0 and 1; the proportion of observed values in the input dataset to be randomly removed.
training_epochs An integer, specifying the number of overimputation training epochs.
report_ival An integer, specifying the number of overimputation training epochs between calculations of loss. Shorter intervals provide a more granular view of model performance but slow down the overimputation process.
plot_vars Boolean, specifies whether to plot the distribution of original versus overimputed values. This takes the form of a density plot for continuous variables and a barplot for categorical variables (showing proportions of each class).
skip_plot Boolean, specifies whether to suppress the main graphical output. This may be desirable when users are conducting a series of overimputation exercises and are primarily interested in the console output. Note, when skip_plot = FALSE, users must manually close the resulting pyplot window before the code will terminate.
spike_seed, seed An integer, to initialize the pseudo-random number generators. Separate seeds can be provided for the spiked-in missingness and imputation, otherwise spike_seed is set to seed (default = 123L).
save_path  String, indicating path to directory to save overimputation figures. Users should include a trailing "/" at the end of the path i.e. save_path = "path/to/figures/".

layer_structure  A vector of integers, The number of nodes in each layer of the network (default = c(256, 256, 256), denoting a three-layer network with 256 nodes per layer). Larger networks can learn more complex data structures but require longer training and are more prone to overfitting.

learn_rate  A number, the learning rate $\gamma$ (default = 0.0001), which controls the size of the weight adjustment in each training epoch. In general, higher values reduce training time at the expense of less accurate results.

input_drop  A number between 0 and 1. The probability of corruption for input columns in training mini-batches (default = 0.8). Higher values increase training time but reduce the risk of overfitting. In our experience, values between 0.7 and 0.95 deliver the best performance.

train_batch  An integer, the number of observations in training mini-batches (default = 16).

latent_space_size  An integer, the number of normal dimensions used to parameterize the latent space.

cont_adj  A number, weights the importance of continuous variables in the loss function

binary_adj  A number, weights the importance of binary variables in the loss function

softmax_adj  A number, weights the importance of categorical variables in the loss function

dropout_level  A number between 0 and 1, determines the number of nodes dropped to "thin" the network

vae_layer  Boolean, specifies whether to include a variational autoencoder layer in the network

vae_alpha  A number, the strength of the prior imposed on the Kullback-Leibler divergence term in the variational autoencoder loss functions.

vae_sample_var  A number, the sampling variance of the normal distributions used to parameterize the latent space.

Details

Accuracy is measured as the RMSE of imputed values versus actual values for continuous variables and classification error for categorical variables (i.e., the fraction of correctly predicted classes subtracted from 1). Both metrics are reported in two forms:

1. their summed value over all Monte Carlo samples from the estimated missing-data posterior – "Aggregated RMSE" and "Aggregated softmax error";
2. their aggregated value divided by the number of such samples – "Individual RMSE" and "Individual softmax error".

In the final model, we recommend selecting the number of training epochs that minimizes the average value of these metrics — weighted by the proportion (or substantive importance) of continuous and categorical variables — in the overimputation exercise. This "early stopping" rule reduces the risk of overtraining and thus, in effect, serves as an extra layer of regularization in the network.
Value

Object of class midas, and outputs both overimputation loss values to the console and generates overimputation graphs.

See Also

train for the main imputation function.

Examples

```r
Run where Python available
if (reticulate::py_module_available("numpy")) {

 raw_data <- data.table(a = sample(c("red","yellow","blue",NA),1000, replace = TRUE),
 b = 1:1000,
 c = sample(c("YES","NO",NA),1000,replace=TRUE),
 d = runif(1000,1,10),
 e = sample(c("YES","NO"), 1000, replace = TRUE),
 f = sample(c("male","female","trans","other",NA),1000, replace = TRUE))

 # Names of bin./cat. variables
 test_bin <- c("c","e")
 test_cat <- c("a","f")

 # Pre-process data
 test_data <- convert(raw_data,
 bin_cols = test_bin,
 cat_cols = test_cat,
 minmax_scale = TRUE)

 # Overimpute - without plots
 test_imp <- overimpute(test_data,
 spikein = 0.3,
 plot_vars = FALSE,
 skip_plot = TRUE,
 training_epochs = 10,
 report_ival = 5)
}
```

Description

Internal function. Checks if Python has already been initialised, and if not, completes the required setup to run the MIDAS algorithm. This function is called automatically, and users should not call it directly. To configure which Python install/environment/conda is used, see documentation for set_python_env().
Usage

python_init()

set_python_env(python, type = "auto", ...)

Arguments

python Character string, path to python binary, or directory of virtualenv, or name of conda environment

type Character string, specifies whether to set a python binary ("auto"), "virtualenv", or "conda"

... Further arguments passed to reticulate::use_condaenv()

Value

Boolean indicating whether the custom python environment was activated.

skip_if_no_numpy

Skip test where 'numpy' not available.

Description

Check if Python’s numpy is available, and skip test if not. This function is called within some tests to ensure server tests involving reticulate calls execute properly.

Usage

skip_if_no_numpy()

Value

NULL
Train an imputation model using Midas

Description

Build and run a MIDAS neural network on the supplied missing data.

Usage

```r
train(
 data,
 binary_columns = NULL,
 softmax_columns = NULL,
 training_epochs = 10L,
 layer_structure = c(256, 256, 256),
 learn_rate = 4e-04,
 input_drop = 0.8,
 seed = 123L,
 train_batch = 16L,
 latent_space_size = 4,
 cont_adj = 1,
 binary_adj = 1,
 softmax_adj = 1,
 dropout_level = 0.5,
 vae_layer = FALSE,
 vae_alpha = 1,
 vae_sample_var = 1
)
```

Arguments

data A data.frame (or coercible) object, or an object of class `midas_pre` created from `rMIDAS::convert()`

binary_columns A vector of column names, containing binary variables. NOTE: if data is a `midas_pre` object, this argument will be overwritten.

softmax_columns A list of lists, each internal list corresponding to a single categorical variable and containing names of the one-hot encoded variable names. NOTE: if data is a `midas_pre` object, this argument will be overwritten.

training_epochs An integer, indicating the number of forward passes to conduct when running the model.

layer_structure A vector of integers. The number of nodes in each layer of the network (default = c(256, 256, 256), denoting a three-layer network with 256 nodes per layer). Larger networks can learn more complex data structures but require longer training and are more prone to overfitting.
learn_rate A number, the learning rate $\gamma$ (default = 0.0001), which controls the size of the weight adjustment in each training epoch. In general, higher values reduce training time at the expense of less accurate results.

input_drop A number between 0 and 1. The probability of corruption for input columns in training mini-batches (default = 0.8). Higher values increase training time but reduce the risk of overfitting. In our experience, values between 0.7 and 0.95 deliver the best performance.

seed An integer, the value to which Python’s pseudo-random number generator is initialized. This enables users to ensure that data shuffling, weight and bias initialization, and missingness indicator vectors are reproducible.

train_batch An integer, the number of observations in training mini-batches (default = 16).

latent_space_size An integer, the number of normal dimensions used to parameterize the latent space.

cont_adj A number, weights the importance of continuous variables in the loss function

binary_adj A number, weights the importance of binary variables in the loss function

softmax_adj A number, weights the importance of categorical variables in the loss function

dropout_level A number between 0 and 1, determines the number of nodes dropped to “thin” the network.

vae_layer Boolean, specifies whether to include a variational autoencoder layer in the network.

vae_alpha A number, the strength of the prior imposed on the Kullback-Leibler divergence term in the variational autoencoder loss functions.

vae_sample_var A number, the sampling variance of the normal distributions used to parameterize the latent space.

Value

Object of class midas from which completed datasets can be drawn, using rMIDAS::complete()

Examples

# Generate raw data, with numeric, binary, and categorical variables

# Run where Python available
if (reticulate::py_module_available("numpy")) {
  set.seed(89)
  n_obs <- 10000
  raw_data <- data.table(a = sample(c("red","yellow","blue",NA),n_obs, replace = TRUE),
                         b = 1:n_obs,
                         c = sample(c("YES","NO",NA),n_obs,replace=TRUE),
                         d = runif(n_obs,1,10),
                         e = sample(c("YES","NO"), n_obs, replace = TRUE),
                         f = sample(c("male","female","trans","other",NA), n_obs, replace = TRUE))

# Names of bin./cat. variables
  test_bin <- c("e","e")
test_cat <- c("a","f")

# Pre-process data
test_data <- convert(raw_data,
    bin_cols = test_bin,
    cat_cols = test_cat,
    minmax_scale = TRUE)

# Run imputations
test_imp <- train(test_data)

# Generate datasets
complete_datasets <- complete(test_imp, m = 5, fast = FALSE)

# Use Rubin's rules to combine m regression models
midas_pool <- combine(formula = d~a+c+e+f,
    complete_datasets)

undo_minmax

Reverse minmax scaling of numeric vector

Description

Helper function to reverse minmax scaling applied in the pre-processing step.

Usage

undo_minmax(s, s_min, s_max)

Arguments

s  A numeric vector or column, scaled between 0 and 1.
s_min A numeric value, the minimum of the unscaled vector
s_max A numeric value, the maximum of the unscaled vector

Value

Vector re-scaled using original parameters s_min and s_max

Examples

ex_num <- runif(100,1,10)
scaled <- col_minmax(ex_num)
undo_scale <- undo_minmax(scaled, s_min = min(ex_num), s_max = max(ex_num))

# Prove two are identical
all.equal(ex_num, undo_scale)
Index

* **diagnostics**
  overimpute, 10

* **import**
  combine, 5

* **imputation**
  complete, 5
  import_midas, 8
  train, 15

* **postprocessing**
  add_bin_labels, 2
  coalesce_one_hot, 4
  undo_minmax, 17

* **preprocessing**
  add_missingness, 3
  col_minmax, 4
  convert, 7
  na_to_nan, 10

* **setup**
  mid_py_setup, 9
  midas_setup, 9
  python_init, 13
  set_python_env, 14
  skip_if_no_numpy, 14
  train, 13, 15
  undo_minmax, 17