Package ‘rQCC’

May 23, 2022

Title Robust Quality Control Chart

Version 2.22.5

Date 2022-05-23

Author Chanseok Park [aut, cre] (<https://orcid.org/0000-0002-2208-3498>), Min Wang [ctb] (<https://orcid.org/0000-0002-9233-7844>)

Maintainer Chanseok Park <statpnu@gmail.com>

Depends R (>= 3.2.3)

Description Constructs various robust quality control charts based on the median or Hodges-Lehmann estimator (location) and the median absolute deviation (MAD) or Shamos estimator (scale). The estimators used for the robust control charts are all unbiased with a sample of finite size. For more details, see Park, Kim and Wang (2022) <doi:10.1080/03610918.2019.1699114>. In addition, using this R package, the conventional quality control charts such as X-bar, S, R, p, np, u, c, g and h charts are also easily constructed. This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2017R1A2B4004169).

License GPL-2 | GPL-3

BugReports https://GitHub.com/AppliedStat/R/issues

Encoding UTF-8

LazyData yes

NeedsCompilation no

Repository CRAN

Date/Publication 2022-05-23 06:30:02 UTC

R topics documented:

- attributes.control.chart.unbalanced
- empirical.variance
- factors.for.control.chart

1
Attributes control chart with balanced/unbalanced samples

Description

Constructs the attributes control charts with balanced/unbalanced samples.

Usage

acc(x, n, type=c("p", "np", "c", "u", "g", "h"), parameter, pEstimator=c("Wald", "Wilson"),
gEstimator = c("ML", "MVU"), location.shift = 0,
sigmaFactor = 3, nk)

Arguments

x a numeric vector of the number of nonconforming units.
n a numeric vector of sample sizes.
type a character string specifying the type of control chart.
parameter a known Bernoulli parameter value for the corresponding chart. If not known, it is estimated. For more details, refer to vignette("acc", package="rQCC").
pEstimator a method for estimating the Bernoulli parameter for p and np charts.
gEstimator a method for estimating the Bernoulli parameter for g and h charts.
location.shift a known location shift parameter value for g and h charts.
sigmaFactor a factor for the standard deviation (\(\sigma\)). For example, the American Standard uses "3*sigma" limits (0.27% false alarm rate), while the British Standard uses "3.09*sigma" limits (0.20% false alarm rate).
nk sample size for Phase-II. If nk is missing, the average of the subsample sizes is used.
Details

acc constructs the attributes control charts for nonconforming units (p and np charts) and for non-conformities per unit (c and u charts).

Value

acc returns an object of class "acc". The function summary is used to obtain and print a summary of the results and the function plot is used to plot the control chart.

Author(s)

Chanseok Park

References

doi: 10.1080/09720510.2013.777576

doi: 10.1080/03610926.2022.2044492

Examples

Example 1a: p chart (balanced)
Refer to Table 31 of ASTM (2010).
x = c(1, 3, 0, 7, 2, 0, 1, 0, 8, 5, 2, 0, 1, 0, 3)
n = 400

The conventional p chart with the balanced samples.
Print LCL, CL, UCL.
result = acc(x, n)
print(result)

Summary of a control chart.
summary(result)

Plot of a control chart.
plot(result, cex.text=0.8)
text(15, 0.5, labels="p chart (with balanced sample)")
The p chart based on the Wilson confidence interval.
acc(x, n, pEstimator="Wilson")

Example 1b: np chart (balanced)
The data are the same as in Example 1a.
The conventional np chart with the balanced samples.
Print LCL, CL, UCL.
result = acc(x, n, type="np")
print(result)
summary(result)
plot(result, cex.text=0.8)
text(15, 25, labels="np chart")

The np chart based on the Wilson confidence interval.
acc(x, n, type="np", pEstimator="Wilson")

Example 2a: p chart (unbalanced)
Refer to Table 32 of ASTM (2010).
x = c(9, 7, 3, 9, 13, 14, 14, 10, 12, 14, 6, 12, 7, 11, 5,
 4, 2, 4, 7, 9, 7, 12, 8, 5, 18, 7, 8, 8, 15, 3, 5)
n = c(580, 550, 580, 640, 880, 880, 640, 550, 880, 880,
 800, 800, 580, 580, 550, 330, 330, 640, 580, 550,
 510, 640, 300, 330, 880, 880, 800, 580, 880, 880, 330)

The conventional p chart with the unbalanced samples.
Print LCL, CL, UCL.
result = acc(x, n, nk=880)
print(result)
summary(result)
plot(result, cex.text=0.8)
text(15, 0.2, labels="p chart (with unbalanced sample")

Example 2b: p chart (unbalanced)
Refer to Table 7.4 of Montgomery (2013).
x = c(12, 8, 6, 9, 10, 12, 11, 16, 10, 6, 20, 15, 9, 8, 6, 8, 10, 7, 5, 8, 5, 8, 10, 6, 9)
n = c(100, 80, 80, 100, 110, 110, 100, 100, 90, 90, 90, 110, 120, 120, 120, 110, 80, 80, 80, 90, 100, 100, 100, 100, 90, 90)

The conventional p chart with the unbalanced samples.
Print LCL, CL, UCL.
If nk is missing, the average sample size is used.
result = acc(x, n)
print(result)

Summary of a control chart.
summary(result)

Plot of a control chart.
Refer to Figure 7.8 of Montgomery (2013).
plot(result, cex.text=0.8)
text(15, 0.2, labels="p chart (with unbalanced sample)")

Example 2c: p chart (unbalanced)
p is known

Refer to Table 41 of ASTM (2010).
x = c(2, 2, 1, 5, 2, 0, 3, 0, 15, 7, 2, 5, 2, 0, 3, 0, 4, 8, 4)
n = c(600,1300,2000,2500,1550,2000,1550,780,260,2000,1550,950,950,950,35,330,200,600,1300,780)

The fraction nonconforming is known as 0.0020
The control limits at the size nk=600.
If nk (sample size for Phase II) is unknown, the average of subsample sizes is used.
result = acc(x, n, parameter=0.002, nk=600)
summary(result)

Example 3a: u chart (balanced)

Refer to Table 33 of ASTM (2010).
x = c(17, 14, 6, 23, 5, 7, 10, 19, 29, 18, 25, 5,
 8, 11, 18, 13, 22, 6, 23, 22, 9, 15, 20, 6, 24)
n = 10

The u chart with the balanced samples.
Print LCL, CL, UCL.
result = acc(x, n, type="u")
print(result)

Summary of a control chart
summary(result)

Plot of a control chart
plot(result, cex.text=0.8)
text(13, 3, labels="u chart")

Example 3b: u chart (unbalanced)

Refer to Table 34 of ASTM (2010).
x = c(72, 38, 76, 35, 62, 81, 97, 78, 103, 56,
The u chart with the unbalanced samples.
Print LCL, CL, UCL.
result = acc(x, n, type="u", nk=20)
print(result)

Summary of a control chart
summary(result)

Plot of a control chart
plot(result, cex.text=0.8)
text(12, 3.5, labels="u chart (with unbalanced sample)"

Example 4: c chart
Refer to Table 35 of ASTM (2010).
x = c(0, 1, 1, 0, 2, 1, 3, 4, 5, 3, 0, 1, 1, 2, 4, 0, 1, 1, 0,
 6, 4, 3, 2, 0, 0, 9, 10, 8, 8, 6, 14, 0, 1, 2, 4, 5, 7, 1, 3,
 3, 2, 0, 1, 5, 3, 4, 3, 5, 4, 2, 0, 1, 2, 5, 9, 4, 2, 5, 3)

Print LCL, CL, UCL.
result = acc(x, type="c")
print(result)

Summary of a control chart
summary(result)

Plot of a control chart
plot(result, cex.text=0.8)
text(40, 14, labels="c chart"

Example 5: g and h charts
Refer to Kaminsky et al. (1992).
tmp = c(11, 2, 8, 2, 4, 1, 1, 11, 2, 1, 1, 7, 1, 1, 9,
 5, 1, 3, 6, 5, 13, 2, 3, 3, 4, 3, 2, 6, 1, 5,
 2, 2, 8, 3, 1, 1, 3, 4, 6, 5, 2, 8, 1, 1, 4,
 13, 10, 15, 5, 2, 3, 6, 1, 5, 8, 9, 1, 18, 3, 1,
 3, 7, 14, 3, 1, 7, 7, 1, 8, 1, 4, 1, 6, 1, 1,
 1, 14, 2, 3, 7, 19, 9, 7, 1, 8, 5, 1, 1, 6, 1,
 9, 5, 6, 2, 2, 8, 15, 2, 3, 3, 4, 7, 11, 4, 6,
 7, 5, 1, 14, 8, 3, 3, 5, 21, 10, 11, 1, 6, 1, 2,
 4, 1, 2, 11, 5, 3, 5, 4, 10, 3, 1, 0, 4, 7, 3, 2,
 3, 5, 4, 2, 3, 5, 1, 4, 11, 17, 1, 13, 13, 2, 1)
data = matrix(tmp, byrow=TRUE, ncol=5)
empirical.variance

g chart with ML method.
Print LCL, CL, UCL.
result = acc(data, type="g", location=1)
print(result)

Summary of a control chart
summary(result)

plot(result, cex.text=0.8)

h chart with MVU method.
acc(data, type="h", location=1, gEstimator="MVU")

Example 6: g and h charts (unbalanced data)

x1 = c(11, 2, 8, 2, 4)
x2 = c(1, 11, 2, 1)
x3 = c(1, 7, 1)
x4 = c(5, 1, 3, 6, 5)
x5 = c(13, 2, 3, 3)
x6 = c(3, 2, 6, 1, 5)
x7 = c(2, 2, 8, 3, 1)
x8 = c(1, 3, 4, 6, 5)
x9 = c(2, 8, 1, 1, 4)
data = list(x1, x2, x3, x4, x5, x6, x7, x8, x9)

result = acc(data, type="g", location=1, gEstimator="MVU", nk=5)
summary(result)
plot(result)

empirical.variance Empirical variances of robust estimators

Description
This function calculate or estimate the variances of the mean, median, Hodges-Lehmann (HL1, HL2, HL3), standard deviation, range, median absolute deviation (MAD) and Shamos estimators.

Usage
evar (n, estimator=c("mean", "median", "HL1", "HL2", "HL3", "sd", "range", "mad", "shamos"), poolType=c("A", "B", "C"), correction=TRUE)

Arguments

n a vector of sample sizes. For "HL1", "sd", "range" and "shamos", \(n \geq 2 \). For others, \(n \geq 2 \).
empirical.variance

estimator a character string specifying the estimator, must be one of "mean" (default), "median", "HL1", "HL2", "HL3", "sd", "range", "mad", and "shamos".
poolType Type for how to pool estimators, must be one of "A" (default), "B", and "C".
correction logical. A finite-sample bias correction for the estimator with a single sample. TRUE (default) adjusts a finite-sample bias correction for a scale estimator using c4.factor function.

Details

This function calculates or estimates the variance of a specific estimator when a random sample is from the standard normal distribution.

For the mean, standard deviation (sd) and range, their exact variances are calculated, but the others are empirically estimated through the extensive Monte Carlo simulation with 1E07 replicates for \(n = 1, 2, \ldots, 100 \). For the case of \(n > 100 \), the empirical variances are obtained using the method of Hayes (2014).

Value

It returns a numeric value.

Author(s)

Chanseok Park and Min Wang

References

See Also

RE[rQCC] for the relative efficiency.
n.times.eVar.of.HL1[rQCC] for the empirical variance of the HL1 estimator (times n).
n.times.eVar.of.HL2[rQCC] for the empirical variance of the HL2 estimator (times n).
n.times.eVar.of.HL3[rQCC] for the empirical variance of the HL3 estimator (times n).
n.times.eVar.of.mad[rQCC] for the empirical variance of the MAD estimator (times n).
n.times.eVar.of.median[rQCC] for the empirical variance of the median estimator (times n).
n.times.eVar.of.shamos[rQCC] for the empirical variance of the Shamos estimator (times n).

Examples

Empirical variance of the Hodges-Lehmann estimator (HL2) under the standard normal distribution.
evar (n=10, estimator="HL2")

Multiple samples
evar (n=c(4,5), estimator="mad", poolType="C")
Factors for constructing control charts

Description

Factors for constructing control charts.

Usage

```
                     "d2", "d3", "D1", "D2", "D3", "D4", "E1", "E2", "E3"), sigmaFactor=3)
```

Arguments

- `n` sample size ($n \geq 1$).
- `factor` a character string specifying the factor.
 - "c2", "c4", "d2", "d3" for control chart lines;
 - "B1", "B2", "B3", "B4", "B5", "B6" for standard deviations;
 - "D1", "D2", "D3", "D4" for ranges; and
 - "E1", "E2", "E3" for individuals. For "d3", the calculation is not accurate when $n > 100$.
- `sigmaFactor` a factor for the standard deviation (σ).

Details

The values of the factors are used for constructing various control charts.

For example, the conventional \bar{X} chart with the sample standard deviation is given by

$$\bar{X} \pm A_3 \bar{S}.$$

For more details, refer to vignette("factors.cc", package="rQCC").

Value

It returns a numeric value.

Author(s)

Chanseok Park
References

See Also

c4.factor for \(c_4 \) factor for the finite-sample unbiasing factor to estimate the standard deviation \((\sigma) \) under the normal distribution using various estimators such as the sample standard deviation, the sample range, the median absolute deviation (MAD), and the Shamos estimator.

Examples

```r
## A3 is used for constructing the conventional X-bar chart
# with the sample standard deviation.
factors.cc(n=10, factor="A3")

## Unbiasing factor for the standard deviation
# using the sample standard deviation.
factors.cc(n=10, factor="c4")
# The above is the same as below:
c4.factor(n=10, estimator="sd")

## Unbiasing factor for the standard deviation
# using the sample range.
factors.cc(n=10, factor="d2")
# The above is the same as below:
c4.factor(n=10, estimator="range")

## Table B2 in Supplement B of ASTM (1951).
char = c("A","A1","A2","c2","B1","B2","B3","B4","d2","d3","D1","D2","D3","D4")
nn = 2L:25L
res=NULL
for(n in nn){tmp=NULL;for(ch in char) tmp=c(tmp,factors.cc(n,ch));res=rbind(res,tmp)}
rownames(res) = paste0("n=",nn)
round(res,4)

## Table 49 in Chapter 3 of ASTM (2010).
char = c("A","A2","A3","c4","B3","B4","B5","B6","d2","d3","D1","D2","D3","D4")
nn = 2L:25L
res=NULL
for(n in nn){tmp=NULL;for(ch in char) tmp=c(tmp,factors.cc(n,ch));res=rbind(res,tmp)}
rownames(res) = paste0("n=",nn)
round(res,4)
```
Table 50 in Chapter 3 of ASTM (2010).

```r
char = c("E2", "E3")
nn = 2L:25L

res=NULL
for(n in nn)
    tmp=NULL
    for(ch in char) tmp=c(tmp,factors.cc(n,ch)); res=rbind(res,tmp)
rownames(res) = paste0("n=",nn)
round(res,3)
```

finite.sample.breakdown

Finite-sample breakdown point

Description

Calculates the finite-sample breakdown point of the mean, median, Hodges-Lehmann estimators (HL1, HL2, HL3), standard deviation, range, MAD (median absolute deviation) and Shamos estimators. Note that for the case of the mean, standard deviation and range, the finite-sample breakdown points are always zero.

Usage

```r
finite.breakdown (n, estimator=c("mean","median","HL1","HL2","HL3",
                       "sd","range","mad","shamos"))
```

Arguments

- `n`: a numeric vector of sample sizes.
- `estimator`: a character string specifying the estimator, must be one of "mean" (default), "median", "HL1", "HL2", "HL3", "sd", "range", "mad", and "shamos".

Details

`finite.breakdown` gives the finite-sample breakdown point of the specified estimator.

The Hodges-Lehmann (HL1) is defined as

\[
HL1 = \text{median}_{i<j} \left(\frac{X_i + X_j}{2} \right)
\]

where \(i, j = 1, 2, \ldots, n\).

The Hodges-Lehmann (HL2) is defined as

\[
HL2 = \text{median}_{i\leq j} \left(\frac{X_i + X_j}{2} \right).
\]

The Hodges-Lehmann (HL3) is defined as

\[
HL3 = \text{median}_{\forall (i,j)} \left(\frac{X_i + X_j}{2} \right).
\]
Hodges-Lehmann

Value
It returns a numeric value.

Author(s)
Chanseok Park and Min Wang

References

See Also
HL[rQCC] for the Hodges-Lehmann estimator.

Examples

```r
# finite-sample breakdown point of the Hodges-Lehmann (HL1) with size n=10.
finite.breakdown(n=10, estimator="HL2")

# finite-sample breakdown points of the median with sizes n=4,5,6
finite.breakdown(n=4:6, estimator="median")
```

Hodges-Lehmann estimator

Description
Calculates the Hodges-Lehmann estimator.

Usage

```r
HL(x, estimator = c("HL1", "HL2", "HL3"), na.rm = FALSE)
```

Arguments

- `x`: a numeric vector of observations.
- `estimator`: a character string specifying the estimator, must be one of "HL1" (default), "HL2" and "HL3".
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.
Details

`HL` computes the Hodges-Lehmann estimators (one of "HL1", "HL2", "HL3").

The Hodges-Lehmann (HL1) is defined as

\[
HL1 = \text{median}_{i<j} \left(\frac{X_i + X_j}{2} \right)
\]

where \(i, j = 1, 2, \ldots, n\).

The Hodges-Lehmann (HL2) is defined as

\[
HL2 = \text{median}_{i \leq j} \left(\frac{X_i + X_j}{2} \right).
\]

The Hodges-Lehmann (HL3) is defined as

\[
HL3 = \text{median}_{\forall (i, j)} \left(\frac{X_i + X_j}{2} \right).
\]

Value

It returns a numeric value.

Author(s)

Chanseok Park and Min Wang

References

See Also

`mean{base}` for calculating sample mean and `median{stats}` for calculating sample median.

`finite.breakdown{rQCC}` for calculating the finite-sample breakdown point.

Examples

```r
x = c(0:10, 50)
HL(x, estimator="HL2")
```
Description

Calculates the unbiased median absolute deviation (MAD) estimator and the unbiased squared MAD under the normal distribution which are adjusted by the Fisher-consistency and finite-sample unbiasing factors.

Usage

```r
mad.unbiased(x, center = median(x), constant=1.4826, na.rm = FALSE)
mad2.unbiased(x, center = median(x), constant=1.4826, na.rm = FALSE)
```

Arguments

- `x`: a numeric vector of observations.
- `center`: optionally, the center: defaults to the median.
- `constant`: correction factor for the Fisher-consistency under the normal distribution
- `na.rm`: a logical value indicating whether NA values should be stripped before the computation proceeds.

Details

The unbiased MAD (mad.unbiased) is defined as the mad{stats} divided by \(c_5(n) \), where \(c_5(n) \) is the finite-sample unbiasing factor. Note that \(c_5(n) \) notation is used in Park et. al (2022), and \(c_5(n) \) is calculated using the function `c4.factor`{rQCC} with estimator="mad" option. The default value (constant=1.4826) ensures the Fisher-consistency under the normal distribution. Note that the original MAD was proposed by Hampel (1974).

The unbiased squared MAD (mad2.unbiased) is defined as the squared mad{stats} divided by \(w_5(n) \) where \(w_5(n) \) is the finite-sample unbiasing factor. Note that \(w_5(n) \) notation is used in Park et. al (2022), and \(w_5(n) \) is calculated using the function `w4.factor`{rQCC} with estimator="mad2" option. The default value (constant=1.4826) ensures the Fisher-consistency under the normal distribution. Note that the square of the conventional MAD is Fisher-consistent for the variance (\(\sigma^2 \)) under the normal distribution, but it is not unbiased with a sample of finite size.

Value

They return a numeric value.

Author(s)

Chanseok Park and Min Wang
References

See Also

c4.factor[rQCC] for finite-sample unbiasing factor for the standard deviation under the normal distribution.

w4.factor[rQCC] for finite-sample unbiasing factor for the variance under the normal distribution.

shamos[rQCC] for robust Fisher-consistent estimator of the standard deviation under the normal distribution.

shamos.unbiased[rQCC] for robust finite-sample unbiased estimator of the standard deviation under the normal distribution.

mad[stats] for calculating the sample MAD.

finite.breakdown[rQCC] for calculating the finite-sample breakdown point.

Examples

```r
x = c(0:10, 50)

# Fisher-consistent MAD, but not unbiased with a finite sample.
mad(x)

# Unbiased MAD.
mad.unbiased(x)

# Fisher-consistent squared MAD, but not unbiased.
mad(x)^2

# Unbiased squared MAD.
mad2.unbiased(x)
```

<table>
<thead>
<tr>
<th>n.times.eBias</th>
<th>Empirical biases (times n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(times n)</td>
<td></td>
</tr>
</tbody>
</table>

Description

n times the empirical biases of the median absolute deviation (MAD) and Shamos estimators.

Usage

n.times.eBias.of.mad

n.times.eBias.of.shamos
Details

\(n \) times the empirical biases of the median absolute deviation (MAD) and Shamos estimators under the standard normal distribution, where \(n \) is the sample size and \(n \) is from 1 to 100. For the MAD estimator, \texttt{mad(stats)} is used. For the Shamos estimator, the Fisher-consistent Shamos estimator, \texttt{shamos[rQCC]}, is used.

These estimators are not unbiased with a finite sample. The empirical biases are obtained using the extensive Monte Carlo simulation with 1E07 replicates.

Value

They return a vector of 100 values.

Author(s)

Chanseok Park and Min Wang

References

n.times.eVar
Empirical variances (times n)

Description

\(n \) times the empirical variances of the Hodges-Lehmann (HL1, HL2, HL3), the median, the median absolute deviation (MAD), and the Shamos estimators.

Usage

\texttt{n.times.eVar.of.HL1}
\texttt{n.times.eVar.of.HL2}
\texttt{n.times.eVar.of.HL3}
\texttt{n.times.eVar.of.median}
Details

\(n \) times the empirical variances of the Hodges-Lehmann (HL1, HL2, HL3), the median, the median absolute deviation (MAD), and the Shamos estimators under the standard normal distribution, where \(n \) is the sample size and \(n \) is from 1 to 100.

For the MAD estimators, \texttt{mad(stats)} is used. For the Hodges-Lehmann, \texttt{HL[rQCC]} is used. For the Shamos, the Fisher-consistent Shamos estimator, \texttt{shamos[rQCC]}, is used.

The empirical variances are obtained using the Monte Carlo simulation with \(1 \times 10^7 \) replicates.

Value

They return a vector of 100 values.

Author(s)

Chanseok Park and Min Wang

References

Usage

```r
## S3 method for class 'acc'
plot(x, digits=getOption("digits")-2, col.line="cyan4",
    col.background="ivory", col.boundary="ivory4",
    cex.text=0.7, x.text, text.offset=0, LCL, CL, UCL, ...)

## S3 method for class 'rcc'
plot(x, digits=getOption("digits")-2, col.line="cyan4",
    col.background="ivory", col.boundary="ivory4",
    cex.text=0.7, x.text, text.offset=0, LCL, CL, UCL, ...)

## S3 method for class 'racc'
plot(x, digits=getOption("digits")-2, col.line="cyan4",
    col.background="ivory", col.boundary="ivory4",
    cex.text=0.7, x.text, text.offset=0, LCL, CL, UCL, ...)
```

Arguments

- **x**: an object of class "rcc".
- **digits**: number of significant digits to use, see `print`.
- **col.line**: line color connecting subgroup estimates.
- **col.background**: background color for in-control region.
- **col.boundary**: boundary color for in-control region.
- **cex.text**: magnification to be used for the text labels (LCL, CL, UCL).
- **x.text**: a vector of x-coordinates where the text labels (LCL, CL, UCL) should be written. If missing, the text labels will be written on the right side.
- **text.offset**: an offset value for the text labes (LCL, CL, UCL).
- **LCL**: lower control limit. If missing, use the value from an object of class "rcc" or "acc".
- **CL**: center line. If missing, use the value from an object of class "rcc" or "acc".
- **UCL**: upper control limit. If missing, use the value from an object of class "rcc" or "acc".
- **...**: additional parameters to plot.

Author(s)

Chanseok Park

See Also

`rcc`, `rcc`, `acc`, `plot`
pooled.Estimator

Description

This function calculates the pooled estimator based on the unbiased estimators such as the mean, median, Hodges-Lehmann (HL1, HL2, HL3), standard deviation, range, median absolute deviation (MAD) and Shamos estimators.

Usage

pooledEstimator(x, estimator = c("mean", "median", "HL1", "HL2", "HL3", "sd", "range", "mad", "shamos"),
 poolType=c("A", "B", "C"))

Arguments

- **x**: a numeric list of observations.
- **estimator**: a character string specifying the estimator, must be one of "mean" (default), "median", "HL1", "HL2", "HL3", "sd", "range", "mad", and "shamos".
- **poolType**: Type for how to pool estimators, must be one of "A" (default), "B", and "C".

Details

This function calculates the pooled estimator based on one of "mean" (default), "median", "HL1", "HL2", "HL3", "sd", "range", "mad", and "shamos", which are all unbiased. There are three different methods of pooling the estimators, denoted by "A" (default), "B", and "C". For more details on how to pool them, refer to vignette.

Value

They return a numeric value.

Author(s)

CHANSEOK PARK

References

doi: 10.3390/math8050698

doi: 10.1080/03610918.2019.1699114
Examples

```r
x1 = c(1,2,4)
x2 = c(2,5,9)
x = list(x1,x2)

# Pooled sample mean (default) by type "A" pooling
pooledEstimator(x)

# Pooled sample sd by type "B" pooling
pooledEstimator(x, estimator="sd", pool="B")
```

relative.efficiency Relative efficiency (RE)

Description

RE calculates the relative efficiency value of a location estimator ("median", "HL1", "HL2", "HL3") with respect to the sample mean and that of a scale estimator ("range", "mad", "shamos") with respect to the sample standard deviation.

Usage

```r
RE(n, estimator=c("mean", "median", "HL1", "HL2", "HL3", "sd", "range", "mad", "shamos"),
    poolType =c("A", "B", "C"),
    baseEstimator, basePoolType, correction=TRUE, correctionBase)
```

Arguments

- `n`: a vector of sample sizes ($n_i \geq 1$).
- `estimator`: a character string specifying the estimator, must be one of "mean" (default), "median", "HL1", "HL2", "HL3", "sd", "range", "mad", and "shamos".
- `poolType`: Type for how to pool estimators, must be one of "A" (default), "B", and "C".
- `baseEstimator`: a character string specifying the baseline estimator on the numerator of the relative efficiency, must be one of "mean" (default), "median", "HL1", "HL2", "HL3", "sd", "range", "mad", and "shamos".
- `basePoolType`: Type for how to pool baseline estimator, must be one of "A", "B", and "C". If missing, basePoolType <- poolType is used.
- `correction`: logical. A finite-sample bias correction for the estimator with a single sample. TRUE (default) adjusts a finite-sample bias correction for a scale estimator using c4.factor function.
- `correctionBase`: logical. A finite-sample bias correction for the baseline estimator with a single sample. If missing, correctionBase <- correction is used.
Details

Under the assumption of the normal distribution, the function calculates the relative efficiency value of the mean, median and Hodges-Lehmann (HL1, HL2, HL3) estimators with respect to the selected baseline estimator (default is the sample mean) and that of the standard deviation, range, median absolute deviation (MAD) and Shamos estimators with respect to the selected baseline estimator (default is the sample standard deviation).

For the case of the sample mean, standard deviation and range, it is possible to derive their variances in analytic form, but, for the other case, it may be impossible. In this case, the variances with $n = 1, 2, \ldots, 100$ are obtained using the extensive Monte Carlo simulation with $1E07$ replicates. For $n > 100$, the variances are approximated based on the method of Hayes (2014).

To obtain the relative efficiency value of the unbiased scale estimators, use `correction=TRUE` option. Note that the location estimators ("mean", "median", "HL1", "HL2", "HL3") are unbiased.

If `n` is a vector of multiple values (multiple samples), the RE function calculates the relative efficiency value of the pooled estimator. In this case, only unbiased pooled estimator and baseline estimator are considered. That is, we use `correction=TURE` and `correctionBase=TURE` for multiple samples.

Note that the relative efficiency (RE) of $\hat{\theta}_2$ with respect to $\hat{\theta}_1$ is defined as

$$RE(\hat{\theta}_2|\hat{\theta}_1) = \frac{\text{Var}(\hat{\theta}_1)}{\text{Var}(\hat{\theta}_2)}.$$

Value

It returns a numeric value.

Author(s)

Chanseok Park

References

See Also

- `n.times.eVar.of.HL1{rQCC}` for the empirical variance of the HL1 estimator (times n).
- `n.times.eVar.of.HL2{rQCC}` for the empirical variance of the HL2 estimator (times n).
- `n.times.eVar.of.HL3{rQCC}` for the empirical variance of the HL3 estimator (times n).
- `n.times.eVar.of.mad{rQCC}` for the empirical variance of the MAD estimator (times n).
- `n.times.eVar.of.median{rQCC}` for the empirical variance of the median estimator (times n).
- `n.times.eVar.of.shamos{rQCC}` for the empirical variance of the Shamos estimator (times n).
Examples

#################
Single sample
#################

RE of the Hodges-Lehmann (HL2) estimator
with respect to the sample standard deviation under the normal distribution.
RE(n=5, estimator="HL2")

RE of the unbiased Shamos estimator
with respect to the unbiased sample standard deviation under the normal distribution.
RE(n=5, estimator="shamos")

RE of the original Shamos estimator
with respect to the sample standard deviation under the normal distribution.
RE(n=5, estimator="shamos", correction=FALSE)

RE of the unbiased range ((maximum - minimum) / d2)
with respect to the unbiased sample standard deviation under the normal distribution.
RE(n=6, estimator="range")

RE of the original range (maximum minus minimum)
with respect to the sample standard deviation under the normal distribution.
RE(n=6, estimator="range", correction=FALSE)

####################
Multiple samples
####################

With multiple samples, only the unbiased pooled estimators are considered.

RE of the pooled median (pooling type A) with respect to the mean (pooling type A)
RE(n=c(4,5), estimator="median")

RE of the pooled median (pooling type A) with respect to the median (pooling type C)
RE(n=c(4,5), estimator="median", baseEstimator="median", basePoolType="C")

RE of the pooled mad (pooling type A) with respect to the standard deviation (pooling type A)
RE(n=c(4,5), estimator="mad")

RE of the pooled mad (pooling type A) with respect to the standard deviation (pooling type C)
RE(n=c(4,5), estimator="mad", basePoolType="C")

RE of the pooled standard deviation (pooling type A) with respect to the sd (pooling type C)
RE(n=c(4,5), estimator="sd", baseEstimator="sd", basePoolType="C")
Description
Constructs the robust g and h attributes control charts with balanced/unbalanced samples.

Usage
```
racc (x, gamma, type=c("g","h"), parameter, gEstimator = c("cdf", "MM"),
       location.shift = 0, sigmaFactor=3, nk)
```

Arguments
- **x**: a numeric vector of the number of nonconforming units.
- **gamma**: a numeric value for an inlier proportion. gamma should be between 0 and 1 (smaller value means more trimming).
- **type**: a character string specifying the type of control chart.
- **parameter**: a known Bernoulli parameter value for the g and h charts. If not known, it is estimated. For more details, refer to vignette("racc", package="rQCC").
- **gEstimator**: a method for estimating the Bernoulli parameter for g and h charts. "cdf" is based on the memoryless property and "MM" is based on the truncated geometric distribution.
- **location.shift**: a known location shift parameter value for g and h charts.
- **sigmaFactor**: a factor for the standard deviation (σ). For example, the American Standard uses "$3*sigma" limits (0.27% false alarm rate), while the British Standard uses "3.09*sigma" limits (0.20% false alarm rate).
- **nk**: sample size for Phase-II. If nk is missing, the average of the subsample sizes is used.

Details
`racc` constructs the attributes control charts for nonconforming units (p and np charts) and for nonconformities per unit (c and u charts).

Value
`racc` returns an object of class "racc". The function `summary` is used to obtain and print a summary of the results and the function `plot` is used to plot the control chart.

Author(s)
Chanseok Park

References

Examples

================
Example 1: g and h charts
================
Refer to Kaminsky et al. (1992) and Table 2 of Park, et al. (2021).

tmp = c(11, 2, 8, 2, 4, 1, 1, 11, 2, 1, 1, 7, 1, 1, 9, 5, 1, 3, 6, 5, 13, 2, 3, 3, 4, 3, 2, 6, 1, 5, 2, 2, 8, 3, 1, 1, 3, 4, 6, 5, 2, 8, 1, 1, 4, 13, 10, 15, 5, 2, 3, 6, 1, 5, 8, 9, 1, 18, 3, 1, 3, 7, 14, 3, 1, 7, 7, 1, 8, 1, 4, 1, 6, 1, 1, 1, 14, 2, 3, 7, 19, 9, 7, 1, 8, 5, 1, 1, 6, 1, 9, 5, 6, 2, 2, 8, 15, 2, 3, 3, 4, 7, 11, 4, 6, 7, 5, 1, 14, 8, 3, 3, 5, 21, 10, 11, 1, 6, 1, 2, 4, 1, 2, 11, 5, 3, 5, 4, 10, 3, 1, 4, 7, 3, 2, 3, 5, 4, 2, 3, 5, 1, 4, 11, 17, 1, 13, 13, 2, 1)
data = matrix(tmp, byrow=TRUE, ncol=5)

g chart with cdf (trimming) method.
Print LCL, CL, UCL.
result = racc(data, gamma=0.9, type="g", location=1)
print(result)

Summary of a control chart
summary(result)
plot(result, cex.text=0.8)

h chart with MM (truncated geometric) method.
racc(data, gamma=0.9, type="h", location=1, gEstimator="MM")

================
Example 2: g and h charts (unbalanced data)
================

x1 = c(11, 2, 8, 2, 4)
x2 = c(1, 1, 11, 2, 1)
x3 = c(1, 7, 1)
x4 = c(5, 1, 3, 6, 5)
x5 = c(13, 2, 3, 3)
x6 = c(3, 2, 6, 1, 5)
x7 = c(2, 2, 8, 3, 1)
x8 = c(1, 3, 4, 6, 5)
x9 = c(2, 8, 1, 1, 4)
data = list(x1, x2, x3, x4, x5, x6, x7, x8, x9)

result = racc(data, gamma=0.9, type="g", location=1, gEstimator="cdf", nk=5)
summary(result)
plot(result)
Robust quality control chart with balanced/unbalanced samples

Description

Constructs the robust control charts with balanced/unbalanced samples.

Usage

```r
rcc (x, location = c("mean", "median", "HL1", "HL2", "HL3"),
     scale = c("sd", "range", "mad", "shamos"), type = c("Xbar", "S", "R"),
     poolLoc = c("A", "B", "C"), poolScale = c("A", "B", "C"), sigmaFactor=3, nk)
```

Arguments

- `x`: a numeric matrix or list of vectors. Each row or vector contains a sub-sample.
- `location`: a character string specifying the location estimator, must be one of "mean" (default), "median", "HL1", "HL2" and "HL3".
- `scale`: a character string specifying the scale estimator, must be one of "sd" (default), "range", "mad" and "shamos".
- `type`: a character string specifying the type of control chart.
- `poolLoc`: pooling type for location.
- `poolScale`: pooling type for scale.
- `sigmaFactor`: a factor for the standard deviation (σ). For example, the American Standard uses "3*sigma" limits (0.27% false alarm rate), while the British Standard uses "3.09*sigma" limits (0.20% false alarm rate).
- `nk`: sample size for Phase-II. If `nk` is missing, the average sample size is used.

Details

`rcc` constructs the robust X-bar, S and R control charts. Using various robust location and scale estimators, one can construct the robust control charts. For more details on the control charts, refer to vignette("rcc", package="rQCC").

Note that the location and scale estimators used in this function are all unbiased. For more details on how to pool the location and scale estimators, refer to vignette("pooledEstimator", package="rQCC").

In addition, one can also construct the conventional \(\bar{X} \) chart with \(S \) and \(\bar{X} \) chart with \(R \).

Value

`rcc` returns an object of class "rcc". The function `summary` is used to obtain and print a summary of the results and the function `plot` is used to plot the control chart.
Author(s)
Chanseok Park

References

Examples

```
# X-bar chart 
#
#
# Example 1a 
# ----------
# The conventional X-bar chart with the standard deviation.
# Refer to Example 3 in Section 3.31 of ASTM (2010).
# The data below are from Table 29 in Section 3.31 of ASTM (2010).
# Each subgroup has a sample of size n=6. There are m=10 subgroups.
x1 = c(0.5005, 0.5000, 0.5008, 0.5000, 0.5005, 0.5000)
x2 = c(0.4998, 0.4997, 0.4998, 0.4994, 0.4999, 0.4998)
x3 = c(0.4995, 0.4995, 0.4995, 0.4995, 0.4995, 0.4996)
x4 = c(0.4998, 0.5005, 0.5005, 0.5002, 0.5003, 0.5004)
x5 = c(0.5000, 0.5005, 0.5008, 0.5007, 0.5008, 0.5010)
x6 = c(0.5008, 0.5009, 0.5010, 0.5005, 0.5006, 0.5009)
x7 = c(0.5000, 0.5001, 0.5002, 0.4995, 0.4996, 0.4997)
x8 = c(0.4993, 0.4994, 0.4999, 0.4996, 0.4996, 0.4997)
x9 = c(0.4995, 0.4995, 0.4997, 0.4992, 0.4995, 0.4992)
x10= c(0.4994, 0.4998, 0.5000, 0.4990, 0.5000, 0.5000)
data1 = rbind(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)
 # Print LCL, CL, UCL.
# The mean and standard deviation are used.
result = rcc(data1, loc="mean", scale="sd", type="Xbar")
# Note: X-bar chart is a default with the mean and sd
print(result)
```
Summary of a control chart
summary(result)
RE(n=6, estimator="sd", correction=TRUE)

The above limits are also calculated as
A3 = factors.cc(n=6, "A3")

xbarbar = mean(data1)
 # xbarbar = mean(unlist(data1)) # for list
sbar = mean(apply(data1, 1, sd))
c(xbarbar-A3*sbar, xbarbar, xbarbar+A3*sbar)

Plot a control chart
plot(result, cex.text=0.8)
abline(v=5.5, lty=1, lwd=2, col="gold")
text(c(3,8), c(0.5005, 0.5005), labels=c("Group 1", "Group 2"))

Example 1b
Refer to Example 5 in Section 3.31 of ASTM (2010).
The data are the same as in Example 1a.

Print LCL, CL, UCL.
The range is used for the scale estimator.
result = rcc(data1, loc="mean", scale="range")
print(result)

Summary of a control chart
Note: the RE is calculated based on the unbiased estimators.
summary(result)
RE(n=6, estimator="range", correction=TRUE)

The above limits are also calculated as
A2 = factors.cc(n=6, "A2")

xbarbar = mean(data1)
 # xbarbar = mean(unlist(data1)) # for list
Rbar = mean(apply(data1, 1, function(x) {diff(range(x))}))
 # Rbar = mean(apply(sapply(data1,range),2,diff)) # for list
c(xbarbar-A2*Rbar, xbarbar, xbarbar+A2*Rbar)

Plot a control chart
plot(result, cex.text=0.8)
abline(v=5.5, lty=1, lwd=2, col="gold")
text(c(3,8), c(0.5005, 0.5005), labels=c("Group 1", "Group 2"))

Example 1c
The median-MAD chart.
Refer to Table 4.2 in Section 4.7 of Ryan (2000).
Data: 20 subgroups with 4 observations each.
tmp = c(72, 84, 79, 49, 56, 87, 33, 42, 55, 73, 22, 60, 44, 80, 80, 54, 74, 97, 26, 48, 58, 83, 89, 91, 62, 47, 66, 53, 58, 88, 50, 84, 69, 57, 47, 41, 46, 13, 10, 30, 32, 26, 39, 52, 48, 46, 27, 63, 34, 49, 62, 78, 87, 71, 63, 82, 55, 71, 58, 69, 70, 67, 69, 70, 94, 55, 63, 72, 49, 49, 51, 55, 76, 72, 80, 61, 59, 61, 74, 62, 57)
data2 = matrix(tmp, ncol=4, byrow=TRUE)

Print LCL, CL, UCL.
The median (location) and MAD (scale) are used.
rcc(data2, loc="median", scale="mad")

Note: the RE is calculated based on the unbiased estimators.
RE(n=4, estimator="median", correction=TRUE)

The HL2-Shamos chart.
The data are the same as in Example 1c.

Print LCL, CL, UCL.
The HL2 (location) and Shamos (scale) are used.
rcc(data2, loc="HL2", scale="shamos")

Note: the RE is calculated based on the unbiased estimators.
RE(n=4, estimator="HL2", correction=TRUE)

The conventional S chart with the standard deviation.
Refer to Example 3 in Section 3.31 of ASTM (2010).

Print LCL, CL, UCL.
The standard deviaion (default) is used for the scale estimator.
result = rcc(data1, type="S")
print(result)

The above limits are also calculated as
B3 = factors.cc(n=6, "B3")
B4 = factors.cc(n=6, "B4")
sbar = mean(apply(data1, 1, sd))
\[c(B_3sbar, sbar, B_4sbar) \]

Plot a control chart
plot(result, cex.text=0.8)
abline(v=5.5, lty=1, lwd=2, col="gold")
text(c(3,8), c(0.0005, 0.0005), labels=c("Group 1", "Group 2"))

=========
Example 2b
=========
The S-type chart with the MAD.
The data are the same as in Example 2a.

Print LCL, CL, UCL.
The mad (scale) are used.
result = rcc(data1, scale="mad", type="S")
print(result)

Plot a control chart
plot(result, cex.text=0.8)
abline(v=5.5, lty=1, lwd=2, col="gold")
text(c(3,8), c(0.00045, 0.00045), labels=c("Group 1", "Group 2"))

#################
R chart
#################

===========
Example 3a
===========
The conventional R chart with the range.
Refer to Example 5 in Section 3.31 of ASTM (2010).
The data are the same as in Example 1a.

Print LCL, CL, UCL.
The range is used for the scale estimator.
Unlike the S chart, scale="range" is not a default.
Thus, for the conventional R chart, use the option (scale="range") as below.
result = rcc(data1, scale="range", type="R")
print(result)

The above limits are also calculated as
D3 = factors.cc(n=6, "D3")
D4 = factors.cc(n=6, "D4")
Rbar = mean(apply(data1, 1, function(x) (diff(range(x)))))
Rbar = mean(sapply(data1,range),2,diff) # for list
c(D3*Rbar, Rbar, D4*Rbar)

Plot a control chart
plot(result, cex.text=0.8)
abline(v=5.5, lty=1, lwd=2, col="gold")
text(c(3,8), c(0.00135, 0.00135), labels=c("Group 1", "Group 2"))

===========
Example 3b
===========
The R-type chart with the Shamos.
Refer to Example 5 in Section 3.31 of ASTM (2010).
The data are the same as in Example 3a.

Print LCL, CL, UCL.
The mad (scale) are used.
result = rcc(data1, scale="shamos", type="R")
print(result)

Plot a control chart
plot(result, cex.text=0.8)
abline(v=5.5, lty=1, lwd=2, col="gold")
text(c(3,8), c(0.00135, 0.00135), labels=c("Group 1", "Group 2"))

############################
Unbalanced Data
############################

===========
Example 4
===========
Refer to Example 4 in Section 3.31 of ASTM (2010).
Data set is from Table 30 in Section 3.31 of ASTM (2010).

x1 = c(73, 73, 73, 75, 75)
x2 = c(70, 71, 71, 71, 72)
x3 = c(74, 74, 74, 74, 75)
x4 = c(70, 70, 70, 72, 73)
x5 = c(70, 70, 70, 70, 70)
x6 = c(65, 65, 66, 69, 70)
x7 = c(72, 72, 74, 76)
x8 = c(69, 70, 71, 73, 73)
x9 = c(71, 71, 71, 71, 72)
x10 = c(71, 71, 71, 71, 72)
x11 = c(71, 71, 72, 72, 72)
x12 = c(70, 71, 71, 72, 72)
x13 = c(73, 74, 74, 75, 75)
x14 = c(74, 74, 75, 75, 75)
x15 = c(72, 72, 72, 73, 73)
x16 = c(75, 75, 75, 76)
x17 = c(68, 69, 69, 69, 70)
x18 = c(71, 71, 72, 72, 73)
x19 = c(72, 73, 73, 73, 73)
x20 = c(68, 69, 70, 71, 71)
x21 = c(69, 69, 69, 69, 69)
For unbalanced data set, use list.
data = list(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10,
 x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21)

Xbar chart (w/ nk=5)
rcc(data, nk=5)

S chart (w/ nk=4)
rcc(data, type="S", nk=4)

=========
Example 5a
=========
Data set is from Example 6.4 of Montgomery (2013)
Statistical Quality Control (7th ed), Wiley.
Data set for Phase I
x1 = c(74.030, 74.002, 74.019, 73.992, 74.008)
x2 = c(73.995, 73.992, 74.001)
x3 = c(73.988, 74.024, 74.021, 74.005, 74.002)
x4 = c(74.002, 73.996, 73.993, 74.015, 74.009)
x5 = c(73.992, 74.007, 74.015, 73.989, 74.014)
x6 = c(74.009, 73.994, 73.997, 73.985)
x7 = c(73.995, 74.006, 73.994, 74.000)
x8 = c(73.985, 74.003, 73.993, 74.015, 73.988)
x9 = c(74.008, 73.995, 74.009, 74.005)
x10 = c(73.998, 74.000, 73.990, 74.007, 73.995)
x11 = c(73.994, 73.998, 73.994, 73.995, 73.990)
x12 = c(74.004, 74.000, 74.007, 74.000, 73.996)
x13 = c(73.983, 74.002, 73.998)
x14 = c(74.006, 73.967, 73.994, 74.000, 73.984)
x15 = c(74.012, 74.014, 73.998)
x16 = c(74.000, 73.984, 74.005, 73.998, 73.996)
x17 = c(73.994, 74.012, 73.986, 74.005)
x18 = c(74.006, 74.010, 74.018, 74.003, 74.000)
x19 = c(73.984, 74.002, 74.003, 74.005, 73.997)
x20 = c(74.000, 74.010, 74.013)
x21 = c(73.982, 74.001, 74.015, 74.005, 73.996)
x22 = c(74.004, 73.999, 73.990, 74.006, 74.009)
x23 = c(74.010, 73.989, 73.990, 74.009, 74.014)
x24 = c(74.015, 74.008, 73.993, 74.000, 74.010)
x25 = c(73.982, 73.984, 73.995, 74.017, 74.013)

For unbalanced data set, use list.
data = list(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25)

Xbar chart (w/ nk=5)
rcc(data, nk=5)

S chart (w/ nk=5)
rcc(data, type="S", nk=5)
Example 5b

With contaminated data set.
Two contaminated observations are added
in the first subgroup (70.5, 77.0) of Example 5a.
datan = data
datan[[1]] = c(data[[1]], 70.5, 77.0)

Xbar chart with non-robust estimators
rcc(datan, nk=5)

Xbar chart with robust estimators (median and mad)
rcc(datan, loc="median", sc="mad", nk=5)

sd.unbiased

Unbiased standard deviation

Description
This function computes the unbiased standard deviation of the values in `x`. If `na.rm` is TRUE, then missing values are removed before computation proceeds.

Usage

```r
sd.unbiased(x, na.rm = FALSE)
```

Arguments

- `x`: a numeric vector or an R object which is coercible to one by `as.double(x)`.
- `na.rm`: logical. If TRUE, then missing values are removed before computation proceeds.

Details

`sd` is not unbiased. This function computes `sd` divided by \(c_4(n)\), where \(c_4(n)\) is obtained by `c4.factor(n, estimator="sd")`\{rQCC\}.

Author(s)

Chanseok Park

See Also

`sd` for the square root of `var`, but it is biased.
Refer to `mad.unbiased`\{rQCC\} for finite-sample unbiased median absolute deviation (MAD) estimator, the most robust alternative.
Examples

```r
sd.unbiased(1:2)
```

Description

Calculates the conventional Shamos, unbiased Shamos and unbiased squared Shamos estimators. The conventional Shamos is calculated by `shamos` which is Fisher-consistent under the normal distribution. Note that it is not unbiased with a sample of finite size. The unbiased Shamos estimator under the normal distribution is calculated by `shamos.unbiased` with a finite-sample unbiasing factor. The unbiased squared Shamos estimator under the normal distribution is calculated by `shamos2.unbiased` with a finite-sample unbiasing factor.

Usage

```r
shamos(x, constant=1.048358, na.rm = FALSE, IncludeEqual=FALSE)
shamos.unbiased(x, constant=1.048358, na.rm = FALSE, IncludeEqual=FALSE)
shamos2.unbiased(x, constant=1.048358, na.rm = FALSE, IncludeEqual=FALSE)
```

Arguments

- `x` a numeric vector of observations.
- `constant` Correction factor for the Fisher-consistency under the normal distribution
- `na.rm` a logical value indicating whether NA values should be stripped before the computation proceeds.
- `IncludeEqual` FALSE (default) calculates median of $|X_i - X_j|$ with $i < j$, while TRUE calculates median of $|X_i - X_j|$ with $i \leq j$.

Details

The Shamos estimator is defined as

$$\text{Shamos} = \text{constant} \times \text{median}_{i<j} (|X_i - X_j|)$$

where $i, j = 1, 2, \ldots, n$. The default value (constant=1.048358) ensures the Fisher-consistency under the normal distribution. Note that constant = $1/\{\sqrt{2} \Phi^{-1}(3/4)\} \approx 1.048358$.

The unbiased Shamos is defined as

$$\text{Shamos} = \text{constant} \times \text{median}_{i<j} (|X_i - X_j|)/c_6(n)$$

for $i, j = 1, 2, \ldots, n$, where $c_6(n)$ is the finite-sample unbiasing factor. Note that $c_6(n)$ notation is used in Park et. al (2022), and $c_6(n)$ is calculated using the function `c4.factor{rQCC}` with estimator="shamos" option.
The unbiased squared Shamos is defined as the squared shamos\{rQCC\} divided by $w_6(n)$ where $w_6(n)$ is the finite-sample unbiasing factor. Note that $w_6(n)$ notation is used in Park et. al (2022), and $w_6(n)$ is calculated using the function w4.factor\{rQCC\} with estimator="shamos2" option. Note that the square of the conventional Shamos estimator is Fisher-consistent for the variance (σ^2) under the normal distribution, but it is not unbiased with a sample of finite size.

Value

They return a numeric value.

Author(s)

Chanseok Park and Min Wang

References

See Also

mad.unbiased\{rQCC\} for calculating the unbiased sample MAD.

mad\{stats\} for calculating the Fisher-consistent sample MAD.

c4.factor\{rQCC\} for finite-sample unbiasing factor for the standard deviation (σ) under the normal distribution.

w4.factor\{rQCC\} for finite-sample unbiasing factor for the squared Shamos estimator of the variance (σ^2) under the normal distribution.

finite.breakdown\{rQCC\} for calculating the finite-sample breakdown point.

Examples

```r
x = c(0:10, 50)

# Fisher-consistent Shamos, but not unbiased with a finite sample.
shamos(x)

# Unbiased Shamos.
shamos.unbiased(x)

# Fisher-consistent squared Shamos, but not unbiased with a finite sample.
shamos(x)^2
```
unbiasing.factor

Unbiased squared Shamos.
shamos2.unbiased(x)

unbiasing.factor

Finite-sample unbiasing factor

Description
Finite-sample unbiasing factor for estimating the standard deviation (σ) and the variance (σ^2) under the normal distribution.

Usage

c4.factor(n, estimator=c("sd", "range", "mad", "shamos"))
w4.factor(n, estimator=c("mad2", "shamos2"))

Arguments

n sample size ($n \geq 1$).
estimator a character string specifying the estimator, must be one of "sd" (default), "range", "mad", "shamos" for c4.factor, and one of "mad2" (default), "shamos2" for w4.factor.

Details
The conventional sample standard deviation, range, median absolute deviation (MAD) and Shamos estimators are Fisher-consistent under the normal distribution, but they are not unbiased with a sample of finite size.

Using the sample standard deviation, an unbiased estimator of the standard deviation (σ) is calculated by

$$\frac{\text{sd}(x)}{c_4(n, \text{estimator}=\text{"sd"})}$$

Using the range (maximum minus minimum), an unbiased estimator of σ is calculated by

$$\frac{\text{diff}(|x|)}{c_4(n, \text{estimator}=\text{"range"})}$$

Using the median absolute deviation ($\text{mad}(|x|)$), an unbiased estimator of σ is calculated by

$$\frac{\text{mad}(x)}{c_4(n, \text{estimator}=\text{"mad"})}$$

Using the Shamos estimator ($\text{shamos}(x)$), an unbiased estimator of σ is calculated by

$$\frac{\text{shamos}(x)}{c_4(n, \text{estimator}=\text{"shamos"})}$$

Note that the formula for the unbiasing factor $c_4(n)$ is given by

$$c_4(n) = \sqrt{\frac{2}{n-1} \cdot \frac{\Gamma(n/2)}{\Gamma((n-1)/2)}}.$$
The squared MAD and squared Shamos are Fisher-consistent for the variance (σ^2) under the normal distribution, but they are not unbiased with a sample of finite size.

An unbiased estimator of the variance (σ^2) is obtained using the finite-sample unbiasing factor (w4.factor).

Using the squared MAD, an unbiased estimator of σ^2 is calculated by

```r
mad(x)^2/w4.factor(length(x), estimator="mad2")
```

Using the squared Shamos estimator, an unbiased estimator of σ^2 is calculated by

```r
shamos(x)^2/w4.factor(length(x), estimator="shamos2")
```

The finite-sample unbiasing factors for the median absolute deviation (MAD) and Shamos estimators are obtained for $n = 1, 2, \ldots, 100$ using the extensive Monte Carlo simulation with 1×10^7 replicates. For the case of $n > 100$, they are obtained using the method of Hayes (2014).

Value

It returns a numeric value.

Author(s)

Chanseok Park

References

See Also

- `mad{stats}` for the Fisher-consistent median absolute deviation (MAD) estimator of the standard deviation (σ) under the normal distribution.
- `mad.unbiased{rQCC}` for finite-sample unbiased median absolute deviation (MAD) estimator of the standard deviation (σ) under the normal distribution.
- `shamos{rQCC}` for the Fisher-consistent Shamos estimator of the standard deviation (σ) under the normal distribution.
- `shamos.unbiased{rQCC}` for finite-sample unbiased Shamos estimator of the standard deviation (σ) under the normal distribution.
- `n.times.eBias.of.mad{rQCC}` for the values of the empirical bias of the median absolute deviation (MAD) estimator under the standard normal distribution.
- `n.times.eBias.of.shamos{rQCC}` for the values of the empirical bias of the Shamos estimator under the standard normal distribution.
unbiasing.factor

mad2.unbiased[rQCC] for finite-sample unbiased squared MAD estimator of the variance (σ^2) under the normal distribution.

shamos2.unbiased[rQCC] for finite-sample unbiased squared Shamos estimator of the variance (σ^2) under the normal distribution.

n.times.evar.of.mad[rQCC] for the values of the empirical variance of the median absolute deviation (MAD) estimator under the standard normal distribution.

n.times.evar.of.shamos[rQCC] for the values of the empirical variance of the Shamos estimator under the standard normal distribution.

Examples

unbiasing factor for estimating the standard deviation
c4.factor(n=10, estimator="sd")
c4.factor(n=10, estimator="mad")
c4.factor(n=10, estimator="shamos")

Note: d2 notation is widely used for the bias-correction of the range.
d2 = c4.factor(n=10, estimator="range")
d2

unbiasing factor for estimating the variance
w4.factor(n=10, "mad2")
w4.factor(n=10, "shamos2")
Index

* bias
 n.times.eBias, 15
* breakdown
 finite.sample.breakdown, 11
* control chart
 attributes.control.chart.unbalanced, 2
 factors.for.control.chart, 9
 robust.attributes.control.chart.unbalanced, 22
 robust.control.chart.unbalanced, 25
* datasets
 n.times.eBias, 15
 n.times.eVar, 16
* factor
 factors.for.control.chart, 9
 unbiased.factor, 35
* robust
 finite.sample.breakdown, 11
 Hodges-Lehmann, 12
 MAD, 14
 robust.control.chart.unbalanced, 25
 Shamos, 33
* unbalanced
 attributes.control.chart.unbalanced, 2
 empirical.variance, 7
 pooled.Estimator, 19
 robust.attributes.control.chart.unbalanced, 22
 robust.control.chart.unbalanced, 25
* univar
 Hodges-Lehmann, 12
 MAD, 14
 pooled.Estimator, 19
 sd.unbiased, 32
 Shamos, 33
* variance
 empirical.variance, 7
 n.times.eVar, 16
 relative.efficiency, 20
 unbiased.factor, 35
 acc (attributes.control.chart.unbalanced), 2
 attributes.control.chart.unbalanced, 2
 c4.factor (unbiased.factor), 35
 class, 3, 18, 23, 25
 empirical.variance, 7
 evar (empirical.variance), 7
 factors.cc (factors.for.control.chart), 9
 finite.breakdown (finite.sample.breakdown), 11
 finite.sample.breakdown, 11
 HL (Hodges-Lehmann), 12
 Hodges-Lehmann, 12
 MAD, 14
 mad, 14–17, 34–36
 mad.unbiased (MAD), 14
 mad2.unbiased (MAD), 14
 mean, 13
 median, 13
 n.times.eBias, 15
 n.times.eVar, 16
 plot, 17, 18
 pooled.Estimator, 19
 pooledEstimator (pooled.Estimator), 19
print, 18
print.acc
 (attributes.control.chart.unbalanced), 2
print.racc
 (robust.attributes.control.chart.unbalanced), 22
print.rcc
 (robust.control.chart.unbalanced), 25
racc
 (robust.attributes.control.chart.unbalanced), 22
rcc (robust.control.chart.unbalanced), 25
RE (relative.efficiency), 20
relative.efficiency, 20
robust.attributes.control.chart.unbalanced, 22
robust.control.chart.unbalanced, 25
rQCC (robust.control.chart.unbalanced), 25
sd, 32
sd.unbiased, 32
Shamos, 33
shamos (Shamos), 33
shamos2.unbiased (Shamos), 33
summary.acc
 (attributes.control.chart.unbalanced), 2
summary.racc
 (robust.attributes.control.chart.unbalanced), 22
summary.rcc
 (robust.control.chart.unbalanced), 25
unbiasing.factor, 35
var, 32
w4.factor (unbiasing.factor), 35