Package ‘rRAP’

October 31, 2016

Type Package
Title Real-Time Adaptive Penalization for Streaming Lasso Models
Version 1.1
Date 2016-09-29
Author Ricardo Pio Monti
Maintainer Ricardo Pio Monti <ricardo.monti08@gmail.com>
Depends lars, lassoshooting, MASS
Description An implementation of the Real-time Adaptive Penalization (RAP) algorithm through which to iteratively update a regularization parameter in a streaming context.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2016-10-31 16:53:55

R topics documented:

 rRAP-package .. 1
 predict.RAP ... 2
 RAP .. 3
 update.RAP ... 5

Index 7

rRAP-package Real-Time Adaptive Penalization for Streaming Lasso Models

Description

This package provides an implementation of the Real-time adaptive penalization (RAP) algorithm through which to iteratively update a regularization parameter in a streaming context.

Details
Author(s)

Ricardo Pio Monti Maintainer: Ricardo Pio Monti <ricardo.monti08@gmail.com>

References

See Also

RAP, update.RAP, predict.RAP

Examples

Recreate Figure 1 from Monti et al 2016
library(lars)
data(diabetes)
Data = cbind(diabetes$y, diabetes$x)
initialize RAP object
R = RAP(X = matrix(diabetes$x[1,], nrow=1), y = diabetes$y[1], r = .995, eps = 0.0005, l0 = .1)
iteratively update:
not run:
for (i in 2:nrow(Data)){
 R = update.RAP(RAPobj=R, Ynew = diabetes$y[i], Xnew=matrix(diabetes$x[i,], nrow=1))
}
end(not run)

predict.RAP

Predict method for RAP objects

Description

Obtain prediction based on current estimate of sparse linear regression model

Usage

S3 method for class 'RAP'
predict(object, Xnew, ...)

Arguments

- **object**: Current RAP object
- **xnew**: New observation from which to predict
- ... Additional arguments

Value

Produces a matrix of predicted values

Author(s)

Ricardo Pio Monti

References

See Also

`RAP`, `update.RAP`

Examples

```r
#
library(lars)
data(diabetes)
Data = cbind(diabetes$y, diabetes$x)
# initialize RAP object with a burn in of 50 observations
R = RAP(X = matrix(diabetes$x[1:50,], nrow=50),
        y = diabetes$y[1:50], r = .995, eps = 0.005, l0 = .1)
# make predictions:
#predict.RAP(object = R, xnew = diabetes$x[50:70,])
```

Description

This function initializes and RAP object. This contains a Lasso regression model together with methods to iteratively update the regularization parameter.

Usage

```
RAP(X, y, r = 0.95, eps = 0.01, l0 = 0.1, approx = FALSE)
```
Arguments

- **x**: Burn in training data. Can either be a single observation (in this case a matrix with 1 row) or several. This must be a matrix.
- **y**: Burn in response data
- **r**: Fixed forgetting factor used to update
- **eps**: Fixed stepsize used to update regularization parameter
- **l0**: Initial guess for regularization parameter
- **approx**: Boolean indicating whether exact or approximate gradient should be calculated when updating regularization parameter.

Details

Value

A RAP object is returned with the following elements:

- **r**: Fixed forgetting factor
- **eps**: Step size used to update regularization parameter
- **w**: Current measure of effective sample size
- **xbar**: st
- **regparam**: Current estimate of regularization parameter
- **l1track**: Vector storing all past estimates of regularization parameter
- **beta**: Current estimate of regression coefficients
- **approx**: Boolean indicating whether exact or approximate gradient should be calculated when updating regularization parameter.

The object has the following methods:

- **update**: Update regularization parameters and regression coefficients based on new data
- **predict**: Predict based on current model

Note

Warning that this implementation uses the shooting algorithm (co-ordinate gradient descent) to update regression coefficients. A more efficient implementation would employ stochastic gradient descent.

Author(s)

Ricardo Pio Monti

References

update.RAP

See Also

update.RAP, update.RAP

Examples

```r
# Recreate Figure 1 from
library(lars)
data(diabetes)
Data = cbind(diabetes$y, diabetes$x)
# initialize RAP object
R = RAP(X = matrix(diabetes$x[1,], nrow=1), y = diabetes$y[1], r = .995, eps = 0.0005, l0 = .1)
# iteratively update:
## not run:
for (i in 2:nrow(Data)){
  R = update.RAP(RAPobj=R, Ynew = diabetes$y[i], Xnew=matrix(diabetes$x[i,], nrow=1))
}
## end(not run)
```

update.RAP

Update sparsity parameter and regression coefficients

Description

Update regularization parameter and the associated Lasso regression coefficients, Updates can either be mini-batch or single observations.

Usage

```r
## S3 method for class 'RAP'
update(object, Ynew, Xnew, ...)
```

Arguments

- **object**: Current RAP object
- **Ynew**: New response. In the case of mini-batch updates a vector should be provided.
- **Xnew**: New covariates. This should be a matrix.
- **...**: Additional arguments

Details

See Monti et al 2016

Value

A RAP object is returned where the regularization parameter and the estimated regression coefficients have been updated.
Note

Warning that this implementation uses the shooting algorithm (co-ordinate gradient descent) to update regression coefficients. A more efficient implementation would employ stochastic gradient descent.

Author(s)

Ricardo Pio Monti

References

See Also

RAP, predict.RAP

Examples

Recreate Figure 1 from
library(lars)
data(diabetes)
Data = cbind(diabetes$y, diabetes$x)
initialize RAP object
R = RAP(X = matrix(diabetes$x[1,], nrow=1), y = diabetes$y[1], r = .995, eps = 0.0005, l0 = .1)
iteratively update:
not run:
for (i in 2:nrow(Data)) {
 R = update.RAP(object=R, Ynew = diabetes$y[i], Xnew=matrix(diabetes$x[i,], nrow=1))
}
End(not run)
Index

*Topic package
 rRAP-package, 1

predict.RAP, 2, 2, 6

RAP, 2, 3, 3, 6
rRAP (rRAP-package), 1
rRAP-package, 1

update.RAP, 2, 3, 5, 5