Package ‘rWind’

November 29, 2018

Encoding UTF-8
Type Package
Title Download, Edit and Include Wind Data in Ecological and Evolutionary Analysis
Version 1.0.4
BugReports https://github.com/jabiologo/rWind
Maintainer Javier Fernández-López <jflopez.bio@gmail.com>
URL http://allthiswasfield.blogspot.com.es/
License GPL (>= 3)
LazyData TRUE
Imports raster (>= 2.5-8), gdistance, Matrix, lubridate
Suggests testthat, rmarkdown, knitr
VignetteBuilder knitr
Depends R (>= 3.4)
NeedsCompilation no
Repository CRAN
RoxygenNote 6.1.1
Author Javier Fernández-López [aut, cre],
Klaus Schliep [aut]
Date/Publication 2018-11-29 13:30:03 UTC

R topics documented:

rWind-package ... 2
arrowDir .. 2
cost.FMGS .. 4
Description

rWind contain tools for downloading, editing and transforming wind data from Global Forecast System (GFS). It also allows to use wind data to compute the minimum cost path from wind speed and direction to perform connectivity analysis.

Details

The complete list of functions can be displayed with `library(help = rWind)`. For more information, please check: http://allthiswasfield.blogspot.com.es/

Author(s)

Javier Fernández-López
Klaus Schliep
Maintainer: Javier Fernández-López <jflopez.bio@gmail.com>

Description

arrowDir adapts wind direction value to be used by Arrowhead function from "shape" package to plot wind direction for each coordinate.

Usage

`arrowDir(W)`
arrowDir

Arguments

\(W \)
An object of class rWind or a data.frame which should content a column named "dir".

Details

Angle argument of Arrowhead function from "shape" package needs to be fed in an anti-clockwise way, relative to x-axis, in degrees \([0,360]\). arrowDir function adapts wind direction provided by wind.fit (clockwise, relative to y-axis) to requirements of Arrowhead.

Value

A vector with angles for each arrow to be plotted by Arrowhead.

Note

arrowDir function works always together with Arrowhead function from "shape" package.

Author(s)

Javier Fernández-López

References

See Also

windNdl

Examples

data(wind.data)

Create a vector with wind direction (angles) adapted
alpha <- arrowDir(wind.data)

Not run:
Now, you can plot wind direction with Arrowhead function from shapes package
Load "shape package
require(shape)
plot(wind.data$lon, wind.data$lat, type="n")
Arrowhead(wind.data$lon, wind.data$lat, angle=alpha,
 arr.length = 0.1, arr.type="curved")

End(Not run)
Description

`flow.dispersion` computes movement conductance through a flow either, sea or wind currents. It implements the formula described in Felícisimo et al. 2008:

Usage

```r
cost.FMGS(wind.direction, wind.speed, target, type = "active")
```

```r
flow.dispersion(x, fun = cost.FMGS, output = "transitionLayer", ...)```

**Arguments**

- `wind.direction`: A vector or scalar containing wind directions.
- `wind.speed`: A vector or scalar containing wind speeds.
- `target`: Direction of the target cell.
- `type`: Could be either "passive" or "active". In "passive" mode, movement against flow direction is not allowed (deviations from the wind direction higher than 90). In "active" mode, the movement can go against flow direction, by increasing the cost.
- `x`: RasterStack object with layers obtained from wind2raster function ("rWind" package) with direction and speed flow values.
- `fun`: A function to compute the cost to move between cells. The default is `cost.FMGS` from Felícisimo et al. (2008), see details.
- `output`: This argument allows to select different kinds of output. "raw" mode creates a matrix (class "dgCMatrix") with transition costs between all cells in the raster. "transitionLayer" creates a TransitionLayer object with conductance values to be used with "gdistance" package.
- `...`: Further arguments passed to or from other methods.

**Details**

Cost=(1/Speed)*(HorizontalFactor)

being HorizontalFactor a "function that incrementaly penalized angular deviations from the wind direction" (Felícisimo et al. 2008).

**Value**

In "transitionLayer" output, the function returns conductance values (1/cost) to move between all cells in a raster having into account flow speed and direction obtained from wind.fit function("rWind" package). As wind or sea currents implies directionality, flow.dispersion produces an anisotropic
tidy

conductance matrix (asymmetric). Conductance values are used later to build a TransitionLayer object from "gdistance" package.

In "raw" output, flow.dispersion creates a sparse Matrix with cost values.

Note

Note that for large data sets, it could take a while. For large study areas is strongly advised perform the analysis in a remote computer or a cluster.

Author(s)

Javier Fernández-López; Klaus Schliep

References


See Also

wind.nl, wind2raster

Examples

```r
require(gdistance)

data(wind.data)

wind <- wind2raster(wind.data)

Conductance <- flow.dispersion(wind, type="passive")

transitionMatrix(Conductance)
image(transitionMatrix(Conductance))
```

tidy

Transforming a rWind_series object into a data.frame

Description

The output of tidy is always a data.frame. It is therefore suited for further manipulation by packages like dplyr, reshape2, ggplot2 and ggvis.
Usage

```
tidy(x, ...)
```

## S3 method for class 'rWind_series'
tidy(x, ...)

Arguments

- **x**: An object to be converted into a tidy data.frame
- **...**: extra arguments

Examples

```r
data(wind_series)
df <- tidy(wind_series)
head(df)
```

Not run:

# use the tidyverse
library(dplyr)
mean_speed <- tidy(wind.series) %>% group_by(lat, lon) %>%
  summarise(speed=mean(speed))
wind_average2 <- wind.mean(wind.series)
all.equal(wind_average2$speed, mean_speed$speed)

## End(Not run)

---

**uv2ds**

*Transform U and V components in direction and speed and vice versa*

Description

Transform U and V components in direction and speed and vice versa

Usage

```
uv2ds(u, v)
ds2uv(d, s)
```

Arguments

- **u**: U component.
- **v**: U component.
- **d**: direction (degrees).
- **s**: speed (m/s).
Value
"uv2ds" returns a matrix with direction and speed values
"ds2uv" returns a matrix with U and V values

Note
Multiple U and V values can be processed.

Author(s)
Javier Fernández-López (jflopez@rjb.csic.es)

See Also
windNmean, wind2raster

Examples

```r
(ds <- uv2ds(c(1,1,3,1), c(1,1.7,3,1)))
ds2uv(ds[,1], ds[,2])
```

---

**wind.data**

Wind data example

Description
This is an example of wind data obtained with wind.dl function for the Iberian Peninsula coordinates on 12/February/2015 at 00:00 (UTC)

Format
A list with one data.frame with 651 observations on the following 7 variables:

- list("time (UTC)") a numeric with selected time of wind data
- list("latitude (degrees_north)") a numeric with latitude values
- list("longitude (degrees_east)") a numeric with longitude values
- list("ugrd10m (m s-1)") a numeric with U component of wind data
- list("vgrd10m (m s-1)") a numeric with V component of wind data
- list("dir") a numeric with direction of wind data
- list("speed") a numeric with speed of wind data
Details

This data set is the result of:

\[
\text{wind.data} \leftarrow \text{wind.dl}(2015, 2, 12, 0, -10, 5, 35, 45)
\]

Source


References


Examples

\[
\begin{align*}
\text{data(wind.data)} \\
\text{str(wind.data)} \\
\text{head(wind.data[[1]])}
\end{align*}
\]

---

### wind.dl

**Wind-data download**

Description

wind.dl downloads wind data from the Global Forecast System (GFS) of the USA’s National Weather Service (NWS) (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forecast-system-gfs). Wind data are taken from NOAA/NCEP Global Forecast System (GFS) Atmospheric Model collection. Geospatial resolution is 0.5 degrees (approximately 50 km), and wind is calculated for Earth surface, at 10 m. More metadata information: http://oos.soest.hawaii.edu/erddap/info/NCEP_Global_Best/index.html

Usage

\[
\text{wind.dl}(\text{yyyy}, \text{mm}, \text{dd}, \text{tt}, \text{lon1}, \text{lon2}, \text{lat1}, \text{lat2}, \text{type} = \text{"read-data"}, \\
\quad \text{trace} = 1)
\]

\[
\text{read.rWind(file)}
\]

Arguments

- **yyyy**: Selected year.
- **mm**: Selected month.
- **dd**: Selected day.
- **tt**: Selected time. There are currently several options at the GFS database: 00:00 - 03:00 - 06:00 - 09:00 - 12:00 - 15:00 - 18:00 - 21:00 (UTC).
- **lon1**: Western longitude
wind.dll

lon2  Eastern longitude
lat1  Southern latitude
lat2  Northern latitude

type  Output type. "read-data" is selected by default, creating an R object. If you choose "csv", wind.dll create a a CSV file in your working directory named "wind_yyyy_mm_dd_tt.csv".

trace  if trace = 1 (by default) track downloaded files
file   file name of the saved "csv" files.

Details

The output type is determined by type="csv" or type="read-data". If type="csv" is selected, the function creates a "wind_yyyy_mm_dd_tt.csv" file that is downloaded at the work directory. If type="read-data" is selected, an R object (data.frame) is created.

Value

"rWind" and "data.frame" class object or .csv file with U and V vector components and wind direction and speed for each coordinate in the study area defined by lon1/lon2 and lat1,lat2.

Note

Longitude coordinates are provided by GFS dataset in 0/360 notation and transformed internally into -180/180.

Author(s)

Javier Fernández-López (jflopez@rjb.csic.es)

References

http://www.digital-geography.com/cloud-gis-getting-weather-data/#.WDOWmbV1DCL
http://oos.soest.hawaii.edu/erddap/griddap/NCEP_Global_Best.graph

See Also

wind.dll, wind2raster

Examples

# Download wind for Iberian Peninsula region at 2015, February 12, 00:00
## Not run:

wind.dll(2015,2,12,0,-10,5,35,45)

## End(Not run)
wind.dl_2

Wind-data download

Description
wind.dl_2 downloads time-series wind data from the Global Forecast System (GFS) of the USA’s National Weather Service (NWS) (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forecast-system-gfs). Wind data are taken from NOAA/NCEP Global Forecast System (GFS) Atmospheric Model collection. Geospatial resolution is 0.5 degrees (approximately 50 km), and wind is calculated for Earth surface, at 10 m. More metadata information: http://oos.soest.hawaii.edu/erddap/info/NCEP_Global_Best

Usage
wind.dl_2(time, lon1, lon2, lat1, lat2, type = "read-data", trace = 1)

## S3 method for class 'rWind_series'

Arguments
time a scalar or vector of POSIXt or Date objects or an character which can transformed into those, see example below. There are currently these options at the GFS database for the hours: 00:00 - 03:00 - 06:00 - 09:00 - 12:00 - 15:00 - 18:00 - 21:00 (UTC) (TO).
lon1 Western longitude
lon2 Eastern longitude
lat1 Southern latitude
lat2 Northern latitude
type Output type. "read-data" is selected by default, creating an R object. If you choose "csv", wind.dl create a a CSV file in your work directory named "wind_yyyy_mm_dd_tt.csv".
trace if trace = 1 (by default) track downloaded files
x object from which to extract element(s).
i indices specifying elements to extract.
extact Controls possible partial matching (not used yet).

Details
To get the same format as wind.dl, you should run tidy function from wind.dl_2 output. The output type is determined by type="csv" or type="read-data". If type="csv" is selected, the function creates a "wind_yyyy_mm_dd_tt.csv" file that is downloaded at the work directory. If type="read-data" is selected, an rWind_series object is created.

Value
an object of class rWind_series or .csv file/s with U and V vector components and wind direction and speed for each coordinate in the study area defined by lon1/lon2 and lat1/lat2.
Note

wind.dl_2 requires two dates that represent the boundaries of the time lapse to download wind series data. U and V vector components allow you to create wind averages or tendencies for each coordinate at the study area. Longitude coordinates are provided by GFS dataset in 0/360 notation and transformed internally into -180/180.

Author(s)

Javier Fernández-López (jflopez@rjb.csic.es)

References

http://www.digital-geography.com/cloud-gis-getting-weather-data/#.WDOWmbV1DCL
http://oos.soest.hawaii.edu/erddap/griddap/NCEP_Global_Best.graph

See Also

wind.mean, wind2raster, wind.dl.as_datetime, as.POSIXct

Examples

```r
Download wind for Iberian Peninsula region at 2015, February 12, 00:00
Not run:

wind.dl_2("2018/3/15 9:00:00",-10,5,35,45)

library(lubridate)

dt <- seq(ymd_hms(paste(2018,1,1,00,00,00, sep="-")),
 ymd_hms(paste(2018,1,2,21,00,00, sep="-")),by="3 hours")

ww <- wind.dl_2(dt,-10,5,35,45)
tidy (ww)

End(Not run)
```

### wind.mean

Wind-data mean

Description

wind.mean computes the mean (average) wind speed and wind direction of a time series dataset of winds of the same region. Summaries of time series are not trivial to compute. We compute the arithmetic mean for the wind speed. The direction as the circular mean, see https://en.wikipedia.org/wiki/Mean_of_circular_quantities for more details. The U and V components are afterwards transformed from these values.
Usage
wind.mean(x)

Arguments
x  An object of class rWind_series

Value
An object of class rWind, which is a data.frame

Note
For large time series, it could take a while.

Author(s)
Javier Fernández-López (jflopez@rjb.csic.es)

References

See Also
wind.dl

Examples
data(wind.series)
wind_average<- wind.mean(wind.series)

Description
This is an example of a wind series data obtained with wind.dl function for New Zealand area on 3/January/2015 at all the available times: 00:00 - 03:00 - 06:00 - 09:00 - 12:00 - 15:00 - 18:00 - 21:00 (UTC)
Format

The format is an rWind list of 8 data.frame. Each data.frame contain 961 observations on the following 7 variables:

- list("time (UTC)") a factor with selected time of wind data
- list("latitude (degrees_north)") a factor with latitude values
- list("longitude (degrees_east)") a factor with longitude values
- list("ugrd10m (m s-1)") a factor with U component of wind data
- list("vgrd10m (m s-1)") a factor with V component of wind data
- list("dir") a numeric with direction of wind data
- list("speed") a numeric with speed of wind data

Details

This data set is the result of:

```r
library(lubridate) dt <- seq(ymd_h(paste(RP1UL1LSLR1L sep"M"Il ymd_h(paste(RP1UL1LSLPPL sep"M"Il by"S hours"Il MSSI wind.series <- wind.dl_2(dt, 164, 179, -48, -33)
```

Source


References


Examples

```r
data(wind.series)
str(tidy(wind.series))
```

## wind2raster

### Wind-data to raster file

Description

wind2raster creates a raster stack (gridded) with 2 layers: wind speed and wind direction for an object of rWind. Latitude and logitude values are used to locate raster file and to create raster using rasterFromXYZ function from raster package. If the input file is a list of wind data created by wind.dl, a list of raster stacks will be returned.
Usage

wind2raster(x)

Arguments

x an "rWind list" obtained by wind.fit

Details

WGS84 datum (non-projected) CRS is selected by default to build the raster file.

Value

A raster stack or a list of raster stacks representing wind direction and speed.

Author(s)

Javier Fernández-López (jflopez@rjb.csic.es)

See Also

wind.dl

Examples

data(wind.data)

# Create raster stack from the downloaded data with wind direction and speed
# layers

wind2raster(wind.data)
Index

*Topic \textasciitildeanisotropy
  cost.FMGS, 4

*Topic \textasciitildeconductance
  cost.FMGS, 4

*Topic \textasciitildedegfs
  wind.dl, 8
  wind.dl_2, 10
  wind2raster, 13

*Topic \textasciitildekwdf1
  wind.mean, 11

*Topic \textasciitildekwdf2
  wind.mean, 11

*Topic \textasciitildewind
  arrowDir, 2
  uvds, 6
  wind.dl, 8
  wind.dl_2, 10
  wind2raster, 13

*Topic datasets,
  wind.data, 7

*Topic datasets
  wind.series, 12

*Topic download
  wind.data, 7

*Topic package
  rWind-package, 2

*Topic wind,
  wind.data, 7
  [.rWind_series (wind.dl_2), 10

  arrowDir, 2
  as.POSIXct, 11
  as_datetime, 11

  cost.FMGS, 4

  ds2uv (uvds), 6

  flow.dispersion (cost.FMGS), 4

  read.rWind (wind.dl), 8

rWind (rWind-package), 2
rWind-package, 2
tidy, 5
uvds, 6
wind.data, 7
wind.dl, 3, 5, 8, 11, 12, 14
wind.dl_2, 9, 10
wind.mean, 7, 11, 11
wind.series, 12
wind2raster, 5, 7, 9, 11, 13