Package 'rabhit'

October 14, 2022

```
Type Package
Title Inference Tool for Antibody Haplotype
Version 0.2.4
Description Infers V-D-J haplotypes and gene deletions from AIRR-seq data for Ig and TR chains,
      based on J, D, or V genes as anchor, by adapting a Bayesian framework.
      It also calculates a Bayes factor, a number that indicates the certainty level of the infer-
      ence, for each haplotyped gene.
      Citation:
      Gidoni, et al (2019) <doi:10.1038/s41467-019-08489-3>.
      Peres and Gidoni, et al (2019) <doi:10.1093/bioinformatics/btz481>.
License CC BY-SA 4.0
URL https://yaarilab.bitbucket.io/RAbHIT/
BugReports https://bitbucket.org/yaarilab/rabhit/issues
LazyData true
BuildVignettes true
VignetteBuilder knitr
Encoding UTF-8
Depends R (>= 3.5.0), ggplot2 (>= 3.2.0)
Imports dplyr (>= 1.0.0), reshape2 (>= 1.4.3), plotly (>= 4.7.1),
      gtools (>= 3.5.0), cowplot (>= 0.9.1), readr (>= 2.1.1),
      dendextend (>= 1.9.0), data.table (>= 1.12.2), plyr (>= 1.8.5),
      ggdendro (>= 0.1.20), gridExtra (>= 2.3.0), alakazam (>=
      1.0.0), tigger (>= 1.0.0), methods (>= 3.4.4), htmlwidgets (>=
      1.3.0), gtable (>= 0.3.0), rlang (>= 0.4.0), RColorBrewer (>=
      1.1.2), tidyr (>= 1.0.0), stringi (>= 1.4.3), grid (>= 3.4.4),
      splitstackshape (>= 1.4.8), fastmatch (>= 1.1.0)
Suggests knitr, rmarkdown, stats, graphics, grDevices
RoxygenNote 7.2.0
NeedsCompilation no
Collate 'Data.R' 'rabhit.R' 'internal_functions.R' 'functions.R'
```

'graphic_functions.R' 'zzz.R'

2 .onAttach

Author Ayelet Peres [aut, cre],		
Moriah Gidoni [aut],		
Gur Yaari [aut, cph]		
Maintainer Ayelet Peres <pre><pre></pre></pre>		
Repository CRAN		
Date/Publication 2022-09-22 15:10:02 LITC		

R topics documented:

	.onAttach	2
	createFullHaplotype	3
	deletionHeatmap	5
	deletionsByBinom	6
	deletionsByVpooled	7
	GENE.loc	9
	geneUsage	9
		10
	hapDendo	10
		11
		13
		13
		14
		14
		15
		15
	nonReliableVGenes	16
		17
		18
		19
	1 1 11	20
		21
	1 •1	21
	1 1 11	22
	F	
Index		23
		—
. onA	tach .onAttach start message	

Description

.onAttach start message

Usage

.onAttach(libname, pkgname)

createFullHaplotype 3

Arguments

libname defunct pkgname defunct

Value

invisible()

createFullHaplotype

Anchor gene haplotype inference

Description

The createFullHaplotype functions infers haplotype based on an anchor gene.

Usage

```
createFullHaplotype(
  clip_db,
  toHap_col = c("v_call", "d_call"),
  hapBy_col = "j_call",
  hapBy = "IGHJ6",
  toHap_GERM = NULL,
  relative_freq_priors = TRUE,
  kThreshDel = 3,
  rmPseudo = TRUE,
  deleted_genes = c(),
  nonReliable_Vgenes = c(),
  min_minor_fraction = 0.3,
  single_gene = TRUE,
  chain = c("IGH", "IGK", "IGL", "TRB"))
```

Arguments

clip_db a data. frame in AIRR format. See details.

toHap_col a vector of column names for which a haplotype should be inferred. Default is

v_call and d_call

hapBy_col column name of the anchor gene. Default is j_call hapBy a string of the anchor gene name. Default is IGHJ6.

toHap_GERM a vector of named nucleotide germline sequences matching the allele calls in

toHap_col columns in clip_db.

relative_freq_priors

if TRUE, the priors for Bayesian inference are estimated from the relative frequencies in clip_db. Else, priors are set to c(0.5,0.5). Default is TRUE

kThreshDel the minimum lK (log10 of the Bayes factor) to call a deletion. Default is 3. rmPseudo if TRUE non-functional and pseudo genes are removed. Default is TRUE.

deleted_genes double chromosome deletion summary table. A data.frame created by deletionsByBinom. nonReliable_Vgenes

a list of known non reliable gene assignments. A list created by nonReliableVGenes.

min_minor_fraction

the minimum minor allele fraction to be used as an anchor gene. Default is 0.3

single_gene if to only consider genes from single assignment. If true then calls where genes

appear with others are discarded. If false then the calls are seperated an counted

for all genes that appeared. Default is True.

chain the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.

Details

Function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

• 'subject': The subject name

• 'v_call': V allele call(s) (in an IMGT format)

• 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)

• 'j_call': J allele call(s) (in an IMGT format)

Value

A data.frame, in which each row is the haplotype inference summary of a gene from the column selected in toHap_col.

The output containes the following columns:

- subject: the subject name.
- gene: the gene name.
- Anchor gene allele 1: the haplotype inference for chromosome one. The column name is the anchor gene with the first allele.
- Anchor gene allele 2: the haplotype inference for chromosome two. The column name is the anchor gene with the second allele.
- alleles: allele calls for the gene.
- proirs_row: priors based on relative allele usage of the anchor gene.
- proirs_col: priors based on relative allele usage of the inferred gene.
- counts1: the appereance count on each chromosome of the first allele from alleles, the counts are seperated by a comma.
- k1: the Bayesian factor value for the first allele (from alleles) inference.
- counts2: the appereance count on each chromosome of the second allele from alleles, the counts are seperated by a comma.
- k2: the Bayesian factor value for the second allele (from alleles) inference.

deletionHeatmap 5

• counts3: the appereance count on each chromosome of the third allele from alleles, the counts are seperated by a comma.

- k3: the Bayesian factor value for the third allele (from alleles) inference.
- counts4: the appereance count on each chromosome of the fourth allele from alleles, the counts are seperated by a comma.
- k4: the Bayesian factor value for the fourth allele (from alleles) inference.

Examples

```
# Load example data and germlines
data(samples_db, HVGERM, HDGERM)

# Selecting a single individual
clip_db = samples_db[samples_db$subject=='I5', ]

# Infering haplotype
haplo_db = createFullHaplotype(clip_db,toHap_col=c('v_call','d_call'),
hapBy_col='j_call',hapBy='IGHJ6',toHap_GERM=c(HVGERM,HDGERM))
```

deletionHeatmap

Graphical output of single chromosome deletions

Description

The deletionHeatmap function generates a graphical output of the single chromosome deletions in multiple samples.

Usage

```
deletionHeatmap(
  hap_table,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  kThreshDel = 3,
  genes_order = NULL,
  html_output = FALSE
)
```

Arguments

hap_table haplotype summary table. See details.

the IG chain: IGH,IGK,IGL. Default is IGH.

kThreshDel the minimum IK (log10 of the Bayes factor) used in createFullHaplotype to call a deletion. Indicates the color for strong deletion. Default is 3.

genes_order A vector of the genes by the desired order. Default is by GENE.loc

html_output If TRUE, a html5 interactive graph is outputed instead of the normal plot. Default is FALSE

6 deletionsByBinom

Details

A data. frame created by createFullHaplotype.

Value

A single chromosome deletion visualization.

Examples

```
# Plotting single choromosme deletion from haplotype inference
deletionHeatmap(samplesHaplotype)
```

deletionsByBinom

Double chromosome deletion by relative gene usage

Description

The deletionsByBinom function inferes double chromosome deletion events by relative gene usage.

Usage

```
deletionsByBinom(
  clip_db,
  chain = c("IGH", "IGK", "IGL"),
  nonReliable_Vgenes = c(),
  genes_order = NULL
)
```

Arguments

Details

The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)

deletionsByVpooled 7

Value

A data. frame, in which each row is the double chomosome deletion inference of a gene.

The output containes the following columns:

- subject: the subject name.
- gene: the gene call
- frac: the relative gene usage of the gene
- cutoff: the the cutoff of for the binomial test
- pval: the p-value of the binomial test
- deletion: if a double chromosome deletion event of a gene occured.

Examples

```
# Load example data and germlines
data(samples_db)

# Selecting a single individual
clip_db = samples_db[samples_db$subject=='I5', ]
# Infering haplotype
del_binom_df = deletionsByBinom(clip_db)
head(del_binom_df)
```

deletionsByVpooled

Single chromosomal D or J gene deletions inferred by the V pooled method

Description

The deletionsByVpooled function inferes single chromosomal deletion for D and J gene .

Usage

```
deletionsByVpooled(
  clip_db,
  chain = c("IGH", "IGK", "IGL"),
  deletion_col = c("d_call", "j_call"),
  count_thresh = 50,
  deleted_genes = "",
  min_minor_fraction = 0.3,
  kThreshDel = 3,
  nonReliable_Vgenes = c()
)
```

deletionsByVpooled

Arguments

clip_db a data. frame in AIRR format. See details. the IG chain: IGH.IGK.IGL. Default is IGH. chain a vector of column names for which single chromosome deletions should be deletion_col inferred. Default is j_call and d_call. count_thresh integer, the minimun number of sequences mapped to a specific V gene to be included in the V pooled inference. double chromosome deletion summary table. A data.frame created by deletionsByBinom. deleted_genes min_minor_fraction the minimum minor allele fraction to be used as an anchor gene. Default is 0.3 the minimum lK (log10 of the Bayes factor) to call a deletion. Default is 3. kThreshDel

a list of known non reliable gene assignments. A list created by nonReliableVGenes.

Details

The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

• 'subject': The subject name

nonReliable_Vgenes

- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)

Value

A data. frame, in which each row is the single chomosome deletion inference of a gene.

The output containes the following columns:

- subject: the subject name.
- gene: the gene call
- deletion: chromosome deletions inferred. Encoded 1 for deletion and 0 for no deletion.
- k: the Bayesian factor value for the deletion inference.
- counts: the appereance count of the gene on each chromosome, the counts are seperated by a comma.

```
data(samples_db)
# Infering V pooled deletions
del_db <- deletionsByVpooled(samples_db)
head(del_db)</pre>
```

GENE.loc 9

GENE.loc

Human Gene order on the chromosome

Description

A list of the chains genes order by their location on the chromosomes

Usage

```
GENE.loc
```

Format

A nested list with three enteries, each a vector of the IG chains (IGH, IGL, and IGK) genes ordered by location.

geneUsage

Double chromosome deletion by relative gene usage

Description

The geneUsage function calculates the relative gene usage.

Usage

```
geneUsage(
  clip_db,
  chain = c("IGH", "IGK", "IGL", "TRB"),
  genes_order = NULL,
  rmPseudo = TRUE
)
```

Arguments

clip_db a data.frame in AIRR format. See details.

chain the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.

genes_order A vector of the genes by the desired order. Default is by GENE.loc rmPseudo if TRUE non-functional and pseudo genes are removed. Default is TRUE.

Details

The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)

10 hapDendo

Value

A data. frame, in which each row is the relative gene usage value per individual.

The output containes the following columns:

• subject: the subject name.

• gene: the gene call

• frac: the relative gene usage of the gene

GERM

Human germlines

Description

A list of the germline genes from the human immunoglobulin loci

Usage

GERM

Format

Values correspond to IMGT-gaped nuceltoide sequences (with nucleotides capitalized and gaps represented by '.').

hapDendo

Hierarchical clustering of haplotypes graphical output

Description

The hapDendo function generates a graphical output of an hierarchical clustering based on the Jaccard distance between multiple samples' haplotypes.

Usage

```
hapDendo(
  hap_table,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  genes_order = NULL,
  removeIGH = TRUE,
  mark_low_lk = TRUE,
  lk_cutoff = 1
)
```

hapHeatmap 11

Arguments

hap_table	haplotype summary table. See details.
chain	the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
genes_order	A vector of the genes by the desired order. Default is by GENE.loc
removeIGH	if TRUE, 'IGH'\'IGK'\'IGL' prefix is removed from gene names. Default is TRUE.
mark_low_lk	if TRUE, a texture is add for low lK values. Default is TRUE.
lk_cutoff	the lK cutoff value to be considerd low for texture layer. Default is lK<1.

Details

A data. frame created by createFullHaplotype.

Value

A multitple samples visualization of the distances between haplotypes.

Examples

```
# Plotting haplotype hierarchical clustering based on the Jaccard distance
hapDendo(samplesHaplotype)
```

hapHeatmap

Graphical output of alleles division by chromosome

Description

The hapHeatmap function generates a graphical output of the alleles per gene in multiple samples.

Usage

```
hapHeatmap(
  hap_table,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  genes_order = NULL,
  removeIGH = TRUE,
  lk_cutoff = 1,
  mark_low_lk = TRUE,
  size_annot = 1.5,
  color_y = NULL,
  order_subject = NULL,
  file = NULL,
  size_text = NULL,
  ylabel_size = 1
)
```

12 hapHeatmap

Arguments

hap_table haplotype summary table. See details. chain the IG chain: IGH,IGK,IGL. Default is IGH. A vector of the genes by the desired order. Default is by GENE.loc genes_order removeIGH if TRUE, 'IGH'\'IGK'\'IGL'\'TRB' prefix is removed from gene names. 1k_cutoff the lK cutoff value to be considered low for texture layer. Default is lK<1. if TRUE, a texture is add for low lK values. Default is TRUE. mark_low_lk size_annot size of bottom annotation text. Default is 1.5. named list of the colors for y axis labels. color_y order_subject order subject by a vector. file file path for rendering the plot to pdf. If non is supplied than the plot is returned as object. Default is NULL. size_text text size for annotations.

Details

ylabel_size

A data.frame created by createFullHaplotype.

text size for y axis labels.

Value

A list with the following:

- 'p': heat-map visualization of the haplotype inference for multiple samples.
- 'width': Optimal width value for rendering plot.
- 'height': Optimal width value for rendering plot.

When a file is supplied the graph is also rendered to pdf.

```
# Plotting haplotpe heatmap
p <- hapHeatmap(samplesHaplotype)
p$p</pre>
```

HDGERM 13

HDGERM

Human IGHD germlines

Description

A character vector of all 37 human IGHD germline gene segment alleles in IMGT Gene-db release 2018-12-4.

Usage

HDGERM

Format

Values correspond to IMGT nuceltoide sequences.

References

Xochelli *et al.* (2014) Immunoglobulin heavy variable (IGHV) genes and alleles: new entities, new names and implications for research and prognostication in chronic lymphocytic leukaemia. *Immunogenetics*. 67(1):61-6.

HJGERM

Human IGHJ germlines

Description

A character vector of all 13 human IGHJ germline gene segment alleles in IMGT Gene-db release 2018-12-4.

Usage

HJGERM

Format

Values correspond to IMGT nuceltoide sequences.

References

Xochelli *et al.* (2014) Immunoglobulin heavy variable (IGHV) genes and alleles: new entities, new names and implications for research and prognostication in chronic lymphocytic leukaemia. *Immunogenetics*. 67(1):61-6.

14 KJGERM

HVGERM

Human IGHV germlines

Description

A character vector of all 342 human IGHV germline gene segment alleles in IMGT Gene-db release 2018-12-4.

Usage

HVGERM

Format

Values correspond to IMGT-gaped nuceltoide sequences (with nucleotides capitalized and gaps represented by '.').

References

Xochelli *et al.* (2014) Immunoglobulin heavy variable (IGHV) genes and alleles: new entities, new names and implications for research and prognostication in chronic lymphocytic leukaemia. *Immunogenetics*. 67(1):61-6.

KJGERM

Human IGKJ germlines

Description

A character vector of all 342 human IGKJ germline gene segment alleles in IMGT Gene-db release 2019-11-18.

Usage

KJGERM

Format

Values correspond to IMGT-gaped nuceltoide sequences (with nucleotides capitalized and gaps represented by '.').

KVGERM 15

KVGERM

Human IGKV germlines

Description

A character vector of all 342 human IGKV germline gene segment alleles in IMGT Gene-db release 2019-11-18.

A character vector of all 342 human IGLV germline gene segment alleles in IMGT Gene-db release 2019-11-18.

Usage

KVGERM

LVGERM

Format

Values correspond to IMGT-gaped nuceltoide sequences (with nucleotides capitalized and gaps represented by '.').

Values correspond to IMGT-gaped nuceltoide sequences (with nucleotides capitalized and gaps represented by '.').

LJGERM

Human IGLJ germlines

Description

A character vector of all 342 human IGLJ germline gene segment alleles in IMGT Gene-db release 2019-11-18.

Usage

LJGERM

Format

Values correspond to IMGT-gaped nuceltoide sequences (with nucleotides capitalized and gaps represented by '.').

16 nonReliable V Genes

nanDal	ish	1eVGenes	
nonkei	1 an	revuenes	

Detect non reliable gene assignment

Description

nonReliableVGenes Takes a data. frame in AIRR format and detect non reliable IGHV genes. A non reliable gene is when the ratio of the multiple assignments with a gene is below the threshold.

Usage

```
nonReliableVGenes(clip_db, thresh = 0.9, appearance = 0.01)
```

Arguments

clip_db a data. frame in AIRR format. See details.

thresh the threshold to consider non reliable gene. Default is 0.9

appearance the minimum fraction of gene appearance to be considered for reliability check.

Default is 0.01.

Details

The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

```
• 'subject': subject names
```

• 'v_call': V allele call(s) (in an IMGT format)

Value

a nested list of non reliable genes for all subject.

```
# Example IGHV call data frame
clip_db <- data.frame(subject=rep('S1',6),
v_call=c('IGHV1-69*01','IGHV1-69*01','IGHV1-69*01,IGHV1-69*02',
'IGHV4-59*01,IGHV4-61*01','IGHV4-59*01,IGHV4-31*02','IGHV4-59*01'))
# Detect non reliable genes
nonReliableVGenes(clip_db)</pre>
```

plotDeletionsByBinom 17

plotDeletionsByBinom Graphical output of double chromosome deletions

Description

The plotDeletionsByBinom function generates a graphical output of the double chromosome deletions in multiple samples.

Usage

```
plotDeletionsByBinom(
  GENE.usage.df,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  genes.low.cer = c("IGHV3-43", "IGHV3-20"),
  genes.dup = c("IGHD4-11", "IGHD5-18"),
  genes_order = NULL
)
```

Arguments

GENE. usage.df double chromosome deletion summary table. See details.

chain the IG chain: IGH,IGK,IGL. Default is IGH.

genes.low.cer a vector of IGH genes known to be with low certantiny in the binomial test.

Default is IGHV3-43 and IGHV3-20

genes.dup a vector of IGH genes known to have a duplicated gene. Default is IGHD4-11

that his duplicate is IGHD4-4 and IGHD5-18 that his duplicate is IGHD5-5

genes_order A vector of the genes by the desired order. Default is by GENE.loc

Details

A data.frame created by binom_test_deletion.

Value

A double chromosome deletion visualization.

```
# Load example data and germlines
data(samples_db)

# Infering haplotype
deletions_db = deletionsByBinom(samples_db);
plotDeletionsByBinom(deletions_db)
```

plotDeletionsByVpooled

 $Graphical\ output\ for\ single\ chromosome\ D\ or\ J\ gene\ deletions\ according\ to\ V\ pooled\ method$

Description

The plotDeletionsByVpooled function generates a graphical output for single chromosome D or J gene deletions (for heavy chain only).

Usage

```
plotDeletionsByVpooled(
  del.df,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  K_ranges = c(3, 7)
)
```

Arguments

del.df a data.frame created by deletionsByVpooled chain the IG chain: IGH,IGK,IGL. Default is IGH..

K_ranges vector of one or two integers for log(K) certainty level thresholds

Details

A data.frame created by deletionsByVpooled.

Value

A single chromosome deletion visualization.

```
# Load example data and germlines
data(samples_db)
del_db <- deletionsByVpooled(samples_db)
plotDeletionsByVpooled(del_db)</pre>
```

plotHaplotype 19

plotHaplotype	Graphical output of an inferred haplotype

Description

The plotHaplotype functions visualizes an inferred haplotype.

Usage

```
plotHaplotype(
  hap_table,
  html_output = FALSE,
  genes_order = NULL,
  text_size = 14,
  removeIGH = TRUE,
  plotYaxis = TRUE,
  chain = c("IGH", "IGK", "IGL", "TRB"),
  dir
)
```

Arguments

hap_table	haplotype summary table. See details.
html_output	if TRUE, a html5 interactive graph is outputed. Default is FALSE.
genes_order	A vector of the genes by the desired order. Default is by GENE.loc
text_size	the size of graph labels. Default is 14 (pts).
removeIGH	if TRUE, 'IGH'\'IGK'\'IGL'\'TRB' prefix is removed from gene names.
plotYaxis	if TRUE, Y axis labels (gene names) are plotted on the middle and right plots. Default is TRUE.
chain	the Ig/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
dir	The output folder for saving the haplotype map for multiple individuals.

Details

A data. frame in a haplotype format created by createFullHaplotype function.

Value

A haplotype map visualization. If more than one subject is visualized, a pdf is created. If html_output is TRUE, a folder named html_output is created with individual graphs.

20 rabhit

Examples

```
# Selecting a single individual from the haplotype samples data
haplo_db = samplesHaplotype[samplesHaplotype$subject=='I5', ]
# plot haplotype
plotHaplotype(haplo_db)
```

rabhit

The RAbHIT package

Description

The rabhit package provides a robust novel method for determining antibody heavy and light chain haplotypes by adapting a Bayesian framework. The key functions in rabhit, broken down by topic, are described below.

Haplotype and deletions inference

rabhit provides tools to infer haplotypes based on given anchor genes, deletion detection based on relative gene usage, pooling v genes, and a single anchor gene.

- createFullHaplotype: Haplotypes inference and single chromosome deletions based on an anchor gene.
- deletionsByVpooled: Single chromosomal deletion detection by pooling V genes.
- deletionsByBinom: Double chromosomal deletion detection by relative gene usage.
- geneUsage: Relative gene usage.
- nonReliableVGenes: Non reliable gene assignment detection.

Haplotype and deletions visualization

Functions for visualization of the inferred haplotypes and deletions

- plotHaplotype: Haplotype inference map.
- deletionHeatmap: Single chromosome deletions heatmap.
- hapHeatmap: Chromosome comparison of multiple samples.
- hapDendo: Hierarchical clustering of multiple haplotypes based on Jaccard distance.
- plotDeletionsByVpooled: V pooled based single chromosome deletions heatmap.
- plotDeletionsByBinom: Double chromosome deletions heatmap.

References

1. Gidoni, M., Snir, O., Peres, A., Polak, P., Lindeman, I., Mikocziova, I., . . . Yaari, G. (2019). Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping. Nature Communications, 10(1). doi:10.1038/s41467-019-08489-3

readHaplotypeDb 21

readHaplotypeDb

Read a Change-O tab-delimited database file

Description

readHaplotypeDb reads a tab-delimited haplotype file created by a createFullHaplotype into a data.frame. Based on readChangeoDb function from alakazam.

Usage

readHaplotypeDb(file)

Arguments

file

tab-delimited database file output by a Change-O tool.

Value

A data frame of the haplotype file. Columns will be imported as is, except for the following columns which will be explicitly converted into character values:

- · alleles
- subject

samplesHaplotype

Example haplotype inference results

Description

A data.frame of example haplotype infrence results from createFullHaplotype after double chromosome deletion inference via deletionsByBinom and non reliable V genes detection via nonReliableVGenes. Source data is a colletion of IGH human naive b-cell repertiore data from five individuals (see references). Overall, the data set includes 6 samples. A single individual has two samples (Individual I5), one is short read sequences from BIOMED-2 protocol primers for framework 2 region (The sample is annotated I5_FR2).

Usage

samplesHaplotype

Format

A data. frame, in which each row is the haplotype inference summary of a gene of an individual, from the column selected to prefrom the haplotype infrence on.

22 samples_db

References

Gidoni, Moriah, *et al.* Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping. *Nature Communications*. 10.1 (2019): 628.

See Also

See createFullHaplotype for detailed column descriptions.

samples_db

Example IGH human naive b-cell repertiore

Description

A data.frame of example IGH human naive b-cell repertiore data from five individuals (see references). Overall, the data set includes 6 samples. A single individual has two samples (Individual I5), one is short read sequences from BIOMED-2 protocol primers for framework 2 region (The sample is annotated I5_FR2).

Usage

samples_db

Format

A data.frame in Change-O format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'SUBJECT': subject names
- 'V_CALL': V allele call(s) (in an IMGT format)
- 'D_CALL': D allele call(s) (in an IMGT format, only for heavy chains)
- 'J_CALL': J allele call(s) (in an IMGT format)

References

Gidoni, Moriah, et al. Mosaic deletion patterns of the human antibody heavy chain gene locus shown by Bayesian haplotyping. *Nature Communications*. 10.1 (2019): 628.

Index

* AIRR	KVGERM, 15
samples_db, 22	
samplesHaplotype, 21	LJGERM, 15
* NGS	LVGERM (KVGERM), 15
samples_db, 22	- 11 11 11 11 11 11 11 11 11 11 11 11 11
samplesHaplotype, 21	nonReliableVGenes, 16, 20, 21
* antibody	nlotDolotionoDyDinom 17 20
samples_db, 22	plotDeletionsByBinom, 17, 20
samplesHaplotype, 21	plotDeletionsByVpooled, 18, 20 plotHaplotype, 19, 20
* data	ртогнартогуре, 19, 20
GENE.loc, 9	rabhit, 20
GERM, 10	readHaplotypeDb, 21
HDGERM, 13	reduitaprocypebb, 21
HJGERM, 13	samples_db, 22
HVGERM, 14	samplesHaplotype, 21
KJGERM, 14	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
KVGERM, 15	
LJGERM, 15	
samples_db, 22	
samplesHaplotype, 21	
* haplotype	
samplesHaplotype, 21	
.onAttach, 2	
createFullHaplotype, 3, 20—22	
deletionHeatmap, 5, 20	
deletionsByBinom, 6, 20, 21	
deletionsByVpooled, $7, 20$	
GENE.loc,9	
geneUsage, 9, 20	
GERM, 10	
ociti, 10	
hapDendo, 10, <i>20</i>	
hapHeatmap, 11, <i>20</i>	
HDGERM, 13	
HJGERM, 13	
HVGERM, 14	
KJGERM. 14	
NJUERII. 14	