.onAttach

Description

.onAttach start message

Usage

.onAttach(libname, pkgname)
createFullHaplotype

Arguments

libname defunct
pkgname defunct

Value

invisible()

createFullHaplotype Anchor gene haplotype inference

Description

The createFullHaplotype functions infers haplotype based on an anchor gene.

Usage

createFullHaplotype(
 clip_db,
 toHap_col = c("v_call", "d_call"),
 hapBy_col = "j_call",
 hapBy = "IGHJ6",
 toHap_GERM = NULL,
 relative_freq_priors = TRUE,
 kThreshDel = 3,
 rmPseudo = TRUE,
 deleted_genes = c(),
 nonReliable_Vgenes = c(),
 min_minor_fraction = 0.3,
 single_gene = TRUE,
 chain = c("IGH", "IGK", "IGL", "TRB")
)

Arguments

clip_db a data.frame in AIRR format. See details.
toHap_col a vector of column names for which a haplotype should be inferred. Default is v_call and d_call
hapBy_col column name of the anchor gene. Default is j_call
hapBy a string of the anchor gene name. Default is IGHJ6.
toHap_GERM a vector of named nucleotide germline sequences matching the allele calls in toHap_col columns in clip_db.
relative_freq_priors if TRUE, the priors for Bayesian inference are estimated from the relative frequencies in clip_db. Else, priors are set to c(0.5, 0.5). Default is TRUE
createFullHaplotype

kThreshDel the minimum lK (log10 of the Bayes factor) to call a deletion. Default is 3.
rmPseudo if TRUE non-functional and pseudo genes are removed. Default is TRUE.
deleted_genes double chromosome deletion summary table. A data.frame created by deletionsByBinom.
nonReliable_Vgenes a list of known non reliable gene assignments. A list created by nonReliableVGenes.
min_minor_fraction the minimum minor allele fraction to be used as an anchor gene. Default is 0.3
single_gene if to only consider genes from single assignment. If true then calls where genes appear with others are discarded. If false then the calls are seperated an counted for all genes that appeared. Default is True.
chain the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.

Details

Function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)

Value

A data.frame, in which each row is the haplotype inference summary of a gene from the column selected in toHap_col.

The output contains the following columns:

- subject: the subject name.
- gene: the gene name.
- Anchor gene allele 1: the haplotype inference for chromosome one. The column name is the anchor gene with the first allele.
- Anchor gene allele 2: the haplotype inference for chromosome two. The column name is the anchor gene with the second allele.
- alleles: allele calls for the gene.
- proirs_row: priors based on relative allele usage of the anchor gene.
- proirs_col: priors based on relative allele usage of the inferred gene.
- counts1: the appereance count on each chromosome of the first allele from alleles, the counts are seperated by a comma.
- k1: the Bayesian factor value for the first allele (from alleles) inference.
- counts2: the appereance count on each chromosome of the second allele from alleles, the counts are seperated by a comma.
- k2: the Bayesian factor value for the second allele (from alleles) inference.
deletionHeatmap

- **counts3**: the appearance count on each chromosome of the third allele from alleles, the counts are separated by a comma.
- **k3**: the Bayesian factor value for the third allele (from alleles) inference.
- **counts4**: the appearance count on each chromosome of the fourth allele from alleles, the counts are separated by a comma.
- **k4**: the Bayesian factor value for the fourth allele (from alleles) inference.

Examples

```r
# Load example data and germlines
data(samples_db, HVGERM, HDGERM)

# Selecting a single individual
clip_db = samples_db[samples_db$subject=='I5', ]

# Inferring haplotype
haplo_db = createFullHaplotype(clip_db, toHap_col=c('v_call', 'd_call'),
                              hapBy_col='j_call', hapBy='IGHJ6', toHap_GERM=c(HVGERM, HDGERM))
```

Description

The deletionHeatmap function generates a graphical output of the single chromosome deletions in multiple samples.

Usage

```r
deletionHeatmap(
  hap_table,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  kThreshDel = 3,
  genes_order = NULL,
  html_output = FALSE
)
```

Arguments

- **hap_table**: haplotype summary table. See details.
- **chain**: the IG chain: IGH, IGK, IGL. Default is IGH.
- **kThreshDel**: the minimum lK (log10 of the Bayes factor) used in createFullHaplotype to call a deletion. Indicates the color for strong deletion. Default is 3.
- **genes_order**: A vector of the genes by the desired order. Default is by GENE.loc
- **html_output**: If TRUE, a html5 interactive graph is outputted instead of the normal plot. Default is FALSE
deletionsByBinom

Details

A data.frame created by `createFullHaplotype`.

Value

A single chromosome deletion visualization.

Examples

```r
# Plotting single chromosome deletion from haplotype inference
deletionHeatmap(samplesHaplotype)
```

deleionsByBinom

Double chromosome deletion by relative gene usage

Description

The `deletionsByBinom` function infers double chromosome deletion events by relative gene usage.

Usage

```r
deletionsByBinom(
  clip_db,
  chain = c("IGH", "IGK", "IGL"),
  nonReliable_Vgenes = c(),
  genes_order = NULL
)
```

Arguments

- `clip_db`: a data.frame in AIRR format. See details.
- `chain`: the IG/TR chain: IGH, IGK, IGL, TRB. Default is IGH.
- `nonReliable_Vgenes`: a list of known non-reliable gene assignments. A list created by `nonReliableVGenes`.
- `genes_order`: A vector of the genes by the desired order. Default is by GENE.loc

Details

The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)
Value

A data.frame, in which each row is the double chromosome deletion inference of a gene.

The output contains the following columns:

- subject: the subject name.
- gene: the gene call
- frac: the relative gene usage of the gene
- cutoff: the the cutoff of the binominal test
- pval: the p-value of the binominal test
- deletion: if a double chromosome deletion event of a gene occurred.

Examples

```r
# Load example data and germlines
data(samples_db)

# Selecting a single individual
clip_db = samples_db[samples_db$subject == 'I5',]

# Inferring haplotype
del_binom_df = deletionsByBinom(clip_db)
head(del_binom_df)
```

deletionsByVpooled
Single chromosomal D or J gene deletions inferred by the V pooled method

Description

The deletionsByVpooled function infers single chromosomal deletion for D and J gene.

Usage

```r
deletionsByVpooled(
  clip_db,
  chain = c("IGH", "IGK", "IGL"),
  deletion_col = c("d_call", "j_call"),
  count_thresh = 50,
  deleted_genes = "",
  min_minor_fraction = 0.3,
  kThreshDel = 3,
  nonReliable_Vgenes = c()
)
```
Arguments

- **clip_db**: a data.frame in AIRR format. See details.
- **chain**: the IG chain: IGH,IGK,IGL. Default is IGH.
- **deletion_col**: a vector of column names for which single chromosome deletions should be inferred. Default is j_call and d_call.
- **count_thresh**: integer, the minimum number of sequences mapped to a specific V gene to be included in the V pooled inference.
- **deleted_genes**: double chromosome deletion summary table. A data.frame created by deletionsByBinom.
- **min_minor_fraction**: the minimum minor allele fraction to be used as an anchor gene. Default is 0.3
- **kThreshDel**: the minimum lK (log10 of the Bayes factor) to call a deletion. Default is 3.
- **nonReliable_Vgenes**: a list of known non reliable gene assignments. A list created by nonReliableVGenes.

Details

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)

Value

A data.frame, in which each row is the single chromosome deletion inference of a gene. The output contains the following columns:

- subject: the subject name
- gene: the gene call
- deletion: chromosome deletions inferred. Encoded 1 for deletion and 0 for no deletion.
- k: the Bayes factor value for the deletion inference.
- counts: the appearance count of the gene on each chromosome, the counts are separated by a comma.

Examples

```r
data(samples_db)

# Infering V pooled deletions
del_db <- deletionsByVpooled(samples_db)
head(del_db)
```
Description

A list of the chains genes order by their location on the chromosomes.

Usage

GENE.loc

Format

A nested list with three entries, each a vector of the IG chains (IGH, IGL, and IGK) genes ordered by location.

geneUsage

Double chromosome deletion by relative gene usage

Description

The geneUsage function calculates the relative gene usage.

Usage

geneUsage(
 clip_db,
 chain = c("IGH", "IGK", "IGL", "TRB"),
 genes_order = NULL,
 rmPseudo = TRUE
)

Arguments

clip_db a data.frame in AIRR format. See details.
chain the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
genesis.order A vector of the genes by the desired order. Default is by GENE.loc
rmPseudo if TRUE non-functional and pseudo genes are removed. Default is TRUE.

Details

The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)
Value

A data.frame, in which each row is the relative gene usage value per individual.

The output contains the following columns:

- **subject**: the subject name.
- **gene**: the gene call
- **frac**: the relative gene usage of the gene

<table>
<thead>
<tr>
<th>GERM</th>
<th>Human germlines</th>
</tr>
</thead>
</table>

Description

A list of the germline genes from the human immunoglobulin loci

Usage

GERM

Format

Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by '.').

<table>
<thead>
<tr>
<th>hapDendo</th>
<th>Hierarchical clustering of haplotypes graphical output</th>
</tr>
</thead>
</table>

Description

The hapDendo function generates a graphical output of an hierarchical clustering based on the Jaccard distance between multiple samples' haplotypes.

Usage

```r
hapDendo(
  hap_table,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  genes_order = NULL,
  removeIGH = TRUE,
  mark_low_lk = TRUE,
  lk_cutoff = 1
)
```
The `hapHeatmap` function generates a graphical output of the alleles per gene in multiple samples.

Usage

```r
hapHeatmap(
  hap_table,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  genes_order = NULL,
  removeIGH = TRUE,
  lk_cutoff = 1,
  mark_low_lk = TRUE,
  size_annot = 1.5,
  color_y = NULL,
  order_subject = NULL,
  file = NULL,
  size_text = NULL,
  ylabel_size = 1
)
```

Arguments

- `chain`: the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
- `genes_order`: A vector of the genes by the desired order. Default is by GENE.loc
- `removeIGH`: if TRUE, 'IGH' \ 'IGK' \ 'IGL' prefix is removed from gene names. Default is TRUE.
- `mark_low_lk`: if TRUE, a texture is add for low lK values. Default is TRUE.
- `lk_cutoff`: the lK cutoff value to be considered low for texture layer. Default is lK<1.

Details

A data.frame created by `createFullHaplotype`.

Value

A multiple samples visualization of the distances between haplotypes.

Examples

```r
# Plotting haplotype hierarchical clustering based on the Jaccard distance
hapDendo(samplesHaplotype)
```
Arguments

- `chain`: the IG chain: IGH,IGK,IGL. Default is IGH.
- `genes_order`: A vector of the genes by the desired order. Default is by GENE.loc
- `removeIGH`: if TRUE, 'IGH\'IGK\'IGL\'TRB' prefix is removed from gene names.
- `lk_cutoff`: the lk cutoff value to be considered low for texture layer. Default is lk<1.
- `mark_low lk`: if TRUE, a texture is add for low lk values. Default is TRUE.
- `size_annot`: size of bottom annotation text. Default is 1.5.
- `color_y`: named list of the colors for y axis labels.
- `order_subject`: order subject by a vector.
- `file`: file path for rendering the plot to pdf. If non is supplied than the plot is returned as object. Default is NULL.
- `size_text`: text size for annotations.
- `ylabel_size`: text size for y axis labels.

Details

A data.frame created by createFullHaplotype.

Value

A list with the following:

- 'p': heat-map visualization of the haplotype inference for multiple samples.
- 'width': Optimal width value for rendering plot.
- 'height': Optimal width value for rendering plot.

When a file is supplied the graph is also rendered to pdf.

Examples

```r
# Plotting haplotype heatmap
p <- hapHeatmap(samplesHaplotype)
p$p
```
HDGERM

Human IGHD germlines

Description

A character vector of all 37 human IGHD germline gene segment alleles in IMGT Gene-db release 2018-12-4.

Usage

HDGERM

Format

Values correspond to IMGT nucleotide sequences.

References

HJGERM

Human IGHJ germlines

Description

A character vector of all 13 human IGHJ germline gene segment alleles in IMGT Gene-db release 2018-12-4.

Usage

HJGERM

Format

Values correspond to IMGT nucleotide sequences.

References

Description

A character vector of all 342 human IGHV germline gene segment alleles in IMGT Gene-db release 2018-12-4.

Usage

HVGERM

Format

Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by '.').

References

Description

Usage

KJGERM

Format

Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by '.').
KVGERM

Human IGKV germlines

Description

Usage

KVGERM

LVGERM

Format

Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by ".").

Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by ".").

LJGERM

Human IGLJ germlines

Description

Usage

LJGERM

Format

Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by ".").
nonReliableVGenes

Detect non reliable gene assignment

Description

nonReliableVGenes takes a data.frame in AIRR format and detect non reliable IGHV genes. A non reliable gene is when the ratio of the multiple assignments with a gene is below the threshold.

Usage

```r
nonReliableVGenes(clip_db, thresh = 0.9, appearance = 0.01)
```

Arguments

- `clip_db` a data.frame in AIRR format. See details.
- `thresh` the threshold to consider non reliable gene. Default is 0.9
- `appearance` the minimum fraction of gene appearance to be considered for reliability check. Default is 0.01.

Details

- 'subject': subject names
- 'v_call': V allele call(s) (in an IMGT format)

Value

a nested list of non reliable genes for all subject.

Examples

```r
# Example IGHV call data frame
clip_db <- data.frame(subject=rep('S1',6),
v_call=c('IGHV1-69*01','IGHV1-69*01','IGHV1-69*01','IGHV1-69*02','IGHV4-59*01','IGHV4-61*01','IGHV4-59*01','IGHV4-61*01','IGHV4-59*01'))
# Detect non reliable genes
nonReliableVGenes(clip_db)
```
plotDeletionsByBinom

Graphical output of double chromosome deletions

Description

The `plotDeletionsByBinom` function generates a graphical output of the double chromosome deletions in multiple samples.

Usage

```r
plotDeletionsByBinom(
  GENE.usage.df,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  genes.low.cer = c("IGHV3-43", "IGHV3-20"),
  genes.dup = c("IGHD4-11", "IGHD5-18"),
  genes_order = NULL
)
```

Arguments

- **GENE.usage.df**: double chromosome deletion summary table. See details.
- **chain**: the IG chain: IGH, IGK, IGL. Default is IGH.
- **genes.low.cer**: a vector of IGH genes known to be with low certainty in the binomial test. Default is IGHV3-43 and IGHV3-20
- **genes.dup**: a vector of IGH genes known to have a duplicated gene. Default is IGHD4-11 that his duplicate is IGHD4-4 and IGHD5-18 that his duplicate is IGHD5-5
- **genes_order**: a vector of the genes by the desired order. Default is by GENE.loc

Details

A `data.frame` created by `binom_test_deletion`.

Value

A double chromosome deletion visualization.

Examples

```r
# Load example data and germlines
data(samples_db)

deletions_db = deletionsByBinom(samples_db);
plotDeletionsByBinom(deletions_db)
```
plotDeletionsByVpooled

Graphical output for single chromosome D or J gene deletions according to V pooled method

Description

The plotDeletionsByVpooled function generates a graphical output for single chromosome D or J gene deletions (for heavy chain only).

Usage

plotDeletionsByVpooled(
 del.df,
 chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
 K_ranges = c(3, 7)
)

Arguments

del.df a data.frame created by deletionsByVpooled
chain the IG chain: IGH,IGK,IGL. Default is IGH..
K_ranges vector of one or two integers for log(K) certainty level thresholds

Details

A data.frame created by deletionsByVpooled.

Value

A single chromosome deletion visualization.

Examples

Load example data and germlines
data(samples_db)
del_db <- deletionsByVpooled(samples_db)
plotDeletionsByVpooled(del_db)
plotHaplotype

Graphical output of an inferred haplotype

Description

The plotHaplotype functions visualizes an inferred haplotype.

Usage

```r
plotHaplotype(
  hap_table,
  html_output = FALSE,
  genes_order = NULL,
  text_size = 14,
  removeIGH = TRUE,
  plotYaxis = TRUE,
  chain = c("IGH", "IGK", "IGL", "TRB"),
  dir
)
```

Arguments

- `html_output`: if TRUE, a html5 interactive graph is outputed. Default is FALSE.
- `genes_order`: A vector of the genes by the desired order. Default is by GENE.loc
- `text_size`: the size of graph labels. Default is 14 (pts).
- `removeIGH`: if TRUE, 'IGH\'IGK\'IGL\'TRB' prefix is removed from gene names.
- `plotYaxis`: if TRUE, Y axis labels (gene names) are plotted on the middle and right plots. Default is TRUE.
- `chain`: the Ig/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
- `dir`: The output folder for saving the haplotype map for multiple individuals.

Details

A data.frame in a haplotype format created by createFullHaplotype function.

Value

A haplotype map visualization. If more than one subject is visualized, a pdf is created. If html_output is TRUE, a folder named html_output is created with individual graphs.
Examples

```r
# Selecting a single individual from the haplotype samples data
haplo_db = samplesHaplotype[samplesHaplotype$subject=='I5', ]

# plot haplotype
plotHaplotype(haplo_db)
```

Description

The `rabhit` package provides a robust novel method for determining antibody heavy and light chain haplotypes by adapting a Bayesian framework. The key functions in `rabhit`, broken down by topic, are described below.

Haplotype and deletions inference

`rabhit` provides tools to infer haplotypes based on given anchor genes, deletion detection based on relative gene usage, pooling V genes, and a single anchor gene.

- **createFullHaplotype**: Haplotypes inference and single chromosome deletions based on an anchor gene.
- **deletionsByVpooled**: Single chromosomal deletion detection by pooling V genes.
- **deletionsByBinom**: Double chromosomal deletion detection by relative gene usage.
- **geneUsage**: Relative gene usage.
- **nonReliableVGenes**: Non reliable gene assignment detection.

Haplotype and deletions visualization

Functions for visualization of the inferred haplotypes and deletions

- **plotHaplotype**: Haplotype inference map.
- **deletionHeatmap**: Single chromosome deletions heatmap.
- **hapHeatmap**: Chromosome comparison of multiple samples.
- **hapDendo**: Hierarchical clustering of multiple haplotypes based on Jaccard distance.
- **plotDeletionsByVpooled**: V pooled based single chromosome deletions heatmap.
- **plotDeletionsByBinom**: Double chromosome deletions heatmap.

References

readHaplotypeDb

Read a Change-O tab-delimited database file

Description

readHaplotypeDb reads a tab-delimited haplotype file created by a createFullHaplotype into a data.frame. Based on readChangeoDb function from alakazam.

Usage

```r
readHaplotypeDb(file)
```

Arguments

- `file` tab-delimited database file output by a Change-O tool.

Value

A data.frame of the haplotype file. Columns will be imported as is, except for the following columns which will be explicitly converted into character values:

- alleles
- subject

samplesHaplotype

Example haplotype inference results

Description

A data.frame of example haplotype inference results from createFullHaplotype after double chromosome deletion inference via deletionsByBinom and non reliable V genes detection via nonReliableVGenes. Source data is a collection of IGH human naive b-cell repertoire data from five individuals (see references). Overall, the data set includes 6 samples. A single individual has two samples (Individual I5), one is short read sequences from BIOMED-2 protocol primers for framework 2 region (The sample is annotated I5_FR2).

Usage

```r
samplesHaplotype
```

Format

A data.frame, in which each row is the haplotype inference summary of a gene of an individual, from the column selected to preform the haplotype inference on.
References

See Also

See `createFullHaplotype` for detailed column descriptions.

<table>
<thead>
<tr>
<th>samples_db</th>
<th>Example IGH human naive b-cell repertoire</th>
</tr>
</thead>
</table>

Description

A `data.frame` of example IGH human naive b-cell repertoire data from five individuals (see references). Overall, the data set includes 6 samples. A single individual has two samples (Individual I5), one is short read sequences from BIOMED-2 protocol primers for framework 2 region (The sample is annotated I5.FR2).

Usage

`samples_db`

Format

- 'SUBJECT': subject names
- 'V_CALL': V allele call(s) (in an IMGT format)
- 'D_CALL': D allele call(s) (in an IMGT format, only for heavy chains)
- 'J_CALL': J allele call(s) (in an IMGT format)

References

Index

* AIRR
 samples_db, 22
 samplesHaplotype, 21

* NGS
 samples_db, 22
 samplesHaplotype, 21

* antibody
 samples_db, 22
 samplesHaplotype, 21

* data
 GENE.loc, 9
 GERM, 10
 HDGERM, 13
 HJGERM, 13
 HVGERM, 14
 KJGERM, 14
 KVGERM, 15
 LJGERM, 15
 samples_db, 22
 samplesHaplotype, 21

* haplotype
 samplesHaplotype, 21
 .onAttach, 2

 createFullHaplotype, 3, 20–22

 deletionHeatmap, 5, 20
 deletionsByBinom, 6, 20, 21
 deletionsByVpooled, 7, 20

 GENE.loc, 9
 geneUsage, 9, 20
 GERM, 10
 hapDendo, 10, 20
 hapHeatmap, 11, 20
 HDGERM, 13
 HJGERM, 13
 HVGERM, 14
 KJGERM, 14
 KVGERM, 15
 LJGERM, 15
 LVGERM (KVGERM), 15
 nonReliableVGenes, 16, 20, 21
 plotDeletionsByBinom, 17, 20
 plotDeletionsByVpooled, 18, 20
 plotHaplotype, 19, 20
 rabhit, 20
 readHaplotypeDb, 21
 samples_db, 22
 samplesHaplotype, 21