Package ‘rabhit’

October 14, 2022

Type Package

Title Inference Tool for Antibody Haplotype

Version 0.2.4

Description
Infers V-D-J haplotypes and gene deletions from AIRR-seq data for Ig and TR chains, based on J, D, or V genes as anchor, by adapting a Bayesian framework. It also calculates a Bayes factor, a number that indicates the certainty level of the inference, for each haplotyped gene.

Citation:

License CC BY-SA 4.0

URL https://yaarilab.bitbucket.io/RAbHIT/

BugReports https://bitbucket.org/yaarilab/rabhit/issues

LazyData true

BuildVignettes true

VignetteBuilder knitr

Encoding UTF-8

Depends R (>= 3.5.0), ggplot2 (>= 3.2.0)

Imports dplyr (>= 1.0.0), reshape2 (>= 1.4.3), plotly (>= 4.7.1), gtools (>= 3.5.0), cowplot (>= 0.9.1), readr (>= 2.1.1), dendextend (>= 1.9.0), data.table (>= 1.12.2), plyr (>= 1.8.5), gg dendro (>= 0.1.20), gridExtra (>= 2.3.0), alakazam (>= 1.0.0), tigger (>= 1.0.0), methods (>= 3.4.4), htmlwidgets (>= 1.3.0), gtable (>= 0.3.0), rlang (>= 0.4.0), RColorBrewer (>= 1.1.2), tidyr (>= 1.0.0), stringi (>= 1.4.3), grid (>= 3.4.4), splitstackshape (>= 1.4.8), fastmatch (>= 1.1.0)

Suggests knitr, rmarkdown, stats, graphics, grDevices

RoxygenNote 7.2.0

NeedsCompilation no

Collate
'Data.R' 'rabbit.R' 'internal_functions.R' 'functions.R'
'graphic_functions.R' 'zzz.R'
Description
.onAttach start message

Usage
.onAttach(libname, pkgname)
createFullHaplotype

Arguments

 libname defunct
 pkgname defunct

Value

 invisible()

createFullHaplotype Anchor gene haplotype inference

Description

The createFullHaplotype function infers haplotype based on an anchor gene.

Usage

createFullHaplotype(
 clip_db,
 toHap_col = c("v_call", "d_call"),
 hapBy_col = "j_call",
 hapBy = "IGHJ6",
 toHap_GERM = NULL,
 relative_freq_priors = TRUE,
 kThreshDel = 3,
 rmPseudo = TRUE,
 deleted_genes = c(),
 nonReliable_Vgenes = c(),
 min_minor_fraction = 0.3,
 single_gene = TRUE,
 chain = c("IGH", "IGK", "IGL", "TRB")
)

Arguments

 clip_db a data.frame in AIRR format. See details.
 toHap_col a vector of column names for which a haplotype should be inferred. Default is v_call and d_call
 hapBy_col column name of the anchor gene. Default is j_call
 hapBy a string of the anchor gene name. Default is IGHJ6.
 toHap_GERM a vector of named nucleotide germline sequences matching the allele calls in toHap_col columns in clip_db.
 relative_freq_priors
 if TRUE, the priors for Bayesian inference are estimated from the relative frequencies in clip_db. Else, priors are set to c(0.5, 0.5). Default is TRUE
createFullHaplotype

kThreshDel the minimum log10 of the Bayes factor to call a deletion. Default is 3.
rmPseudo if TRUE non-functional and pseudo genes are removed. Default is TRUE.
deleted_genes double chromosome deletion summary table. A data.frame created by deletionsByBinom.
nonReliable_Vgenes a list of known non reliable gene assignments. A list created by nonReliableVGenes.
min_minor_fraction the minimum minor allele fraction to be used as an anchor gene. Default is 0.3
single_gene if to only consider genes from single assignment. If true then calls where genes appear with others are discarded. If false then the calls are seperated an counted for all genes that appeared. Default is True.
chain the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.

Details

Function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)

Value

A data.frame, in which each row is the haplotype inference summary of a gene from the column selected in toHap_col.

The output contains the following columns:

- subject: the subject name.
- gene: the gene name.
- Anchor gene allele 1: the haplotype inference for chromosome one. The column name is the anchor gene with the first allele.
- Anchor gene allele 2: the haplotype inference for chromosome two. The column name is the anchor gene with the second allele.
- alleles: allele calls for the gene.
- proirs_row: priors based on relative allele usage of the anchor gene.
- proirs_col: priors based on relative allele usage of the inferred gene.
- counts1: the appearance count on each chromosome of the first allele from alleles, the counts are separated by a comma.
- k1: the Bayesian factor value for the first allele (from alleles) inference.
- counts2: the appearance count on each chromosome of the second allele from alleles, the counts are separated by a comma.
- k2: the Bayesian factor value for the second allele (from alleles) inference.
• `counts3`: the appearance count on each chromosome of the third allele from `alleles`, the counts are separated by a comma.
• `k3`: the Bayesian factor value for the third allele (from `alleles`) inference.
• `counts4`: the appearance count on each chromosome of the fourth allele from `alleles`, the counts are separated by a comma.
• `k4`: the Bayesian factor value for the fourth allele (from `alleles`) inference.

Examples

```r
# Load example data and germlines
data(samples_db, HVGERM, HDGERM)

# Selecting a single individual
clip_db = samples_db[samples_db$subject=='15', ]

# Infering haplotype
haplo_db = createFullHaplotype(clip_db,toHap_col=c('v_call', 'd_call'),
hapBy_col='j_call', hapBy='IGHJ6', toHap_GERM=c(HVGERM, HDGERM))
```

deletionHeatmap

Graphical output of single chromosome deletions

Description

The `deletionHeatmap` function generates a graphical output of the single chromosome deletions in multiple samples.

Usage

```r
deletionHeatmap(
  hap_table,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  kThreshDel = 3,
  genes_order = NULL,
  html_output = FALSE
)
```

Arguments

- `chain`: the IG chain: IGH,IGK,IGL. Default is IGH.
- `kThreshDel`: the minimum lK (log10 of the Bayes factor) used in `createFullHaplotype` to call a deletion. Indicates the color for strong deletion. Default is 3.
- `genes_order`: A vector of the genes by the desired order. Default is by GENE.loc
- `html_output`: If TRUE, a html5 interactive graph is outputted instead of the normal plot. Default is FALSE
deletionsByBinom

Details
A data.frame created by createFullHaplotype.

Value
A single chromosome deletion visualization.

Examples
Plotting single chromosome deletion from haplotype inference
deletionHeatmap(samplesHaplotype)

delecionsByBinom Double chromosome deletion by relative gene usage

Description
The deletionsByBinom function infers double chromosome deletion events by relative gene usage.

Usage
deletionsByBinom(
 clip_db,
 chain = c("IGH", "IGK", "IGL"),
 nonReliable_Vgenes = c(),
 genes_order = NULL
)

Arguments
clip_db a data.frame in AIRR format. See details.
chain the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
nonReliable_Vgenes a list of known non reliable gene assignments. A list created by nonReliableVGenes.
genes_order A vector of the genes by the desired order. Default is by GENE.loc

Details
The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)
Value

A `data.frame`, in which each row is the double chromosome deletion inference of a gene.

The output contains the following columns:

- `subject`: the subject name.
- `gene`: the gene call
- `frac`: the relative gene usage of the gene
- `cutoff`: the the cutoff of for the binomial test
- `pval`: the p-value of the binomial test
- `deletion`: if a double chromosome deletion event of a gene occurred.

Examples

```r
# Load example data and germlines
data(samples_db)

# Selecting a single individual
clip_db = samples_db[samples_db$subject == 'I5',]

# Infering haplotype
del_binom_df = deletionsByBinom(clip_db)
head(del_binom_df)
```

Load example data and germlines
```
deletionsByVpooled Single chromosomal D or J gene deletions inferred by the V pooled method

Description

The `deletionsByVpooled` function inferses single chromosomal deletion for D and J gene.

Usage

```r
deletionsByVpooled(
 clip_db,
 chain = c("IGH", "IGK", "IGL"),
 deletion_col = c("d_call", "j_call"),
 count_thresh = 50,
 deleted_genes = "",
 min_minor_fraction = 0.3,
 kThreshDel = 3,
 nonReliable_Vgenes = c()
)
```
Arguments

clip_db a data.frame in AIRR format. See details.
chain the IG chain: IGH,IGK,IGL. Default is IGH.
deletion_col a vector of column names for which single chromosome deletions should be inferred. Default is j_call and d_call.
count_thresh integer, the minimum number of sequences mapped to a specific V gene to be included in the V pooled inference.
deleted_genes double chromosome deletion summary table. A data.frame created by deletionsByBinom.
min_minor_fraction the minimum minor allele fraction to be used as an anchor gene. Default is 0.3
kThreshDel the minimum IK (log10 of the Bayes factor) to call a deletion. Default is 3.
nonReliable_Vgenes a list of known non reliable gene assignments. A list created by nonReliableVGenes.

Details

The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)

Value

A data.frame, in which each row is the single chromosome deletion inference of a gene.

The output contains the following columns:

- subject: the subject name.
- gene: the gene call
- deletion: chromosome deletions inferred. Encoded 1 for deletion and 0 for no deletion.
- k: the Bayesian factor value for the deletion inference.
- counts: the appearance count of the gene on each chromosome, the counts are separated by a comma.

Examples

data(samples_db)

# Inferring V pooled deletions
del_db <- deletionsByVpooled(samples_db)
head(del_db)
GENE.loc

**Human Gene order on the chromosome**

**Description**

A list of the chains genes order by their location on the chromosomes

**Usage**

GENE.loc

**Format**

A nested list with three entries, each a vector of the IG chains (IGH, IGL, and IGK) genes ordered by location.

geneUsage

**Double chromosome deletion by relative gene usage**

**Description**

The geneUsage function calculates the relative gene usage.

**Usage**

```r
geneUsage(
 clip_db,
 chain = c("IGH", "IGK", "IGL", "TRB"),
 genes_order = NULL,
 rmPseudo = TRUE
)
```

**Arguments**

- `clip_db`: a data.frame in AIRR format. See details.
- `chain`: the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
- `genes_order`: A vector of the genes by the desired order. Default is by GENE.loc
- `rmPseudo`: if TRUE non-functional and pseudo genes are removed. Default is TRUE.

**Details**


- 'subject': The subject name
- 'v_call': V allele call(s) (in an IMGT format)
- 'd_call': D allele call(s) (in an IMGT format, only for heavy chains)
- 'j_call': J allele call(s) (in an IMGT format)
Value
A data frame, in which each row is the relative gene usage value per individual.

The output contains the following columns:

- **subject**: the subject name.
- **gene**: the gene call
- **frac**: the relative gene usage of the gene

<table>
<thead>
<tr>
<th>GERM</th>
<th>Human germlines</th>
</tr>
</thead>
</table>

Description
A list of the germline genes from the human immunoglobulin loci

Usage
GERM

Format
Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by '.').

<table>
<thead>
<tr>
<th>hapDendo</th>
<th>Hierarchical clustering of haplotypes graphical output</th>
</tr>
</thead>
</table>

Description
The hapDendo function generates a graphical output of an hierarchical clustering based on the Jaccard distance between multiple samples' haplotypes.

Usage
```r
hapDendo(
 hap_table,
 chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
 genes_order = NULL,
 removeIGH = TRUE,
 mark_low_1k = TRUE,
 lk_cutoff = 1
)
```
**Arguments**

- **hap_table**: haplotype summary table. See details.
- **chain**: the IG/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
- **genes_order**: A vector of the genes by the desired order. Default is by GENE.loc
- **removeIGH**: if TRUE, 'IGH'\'IGK'\'IGL' prefix is removed from gene names. Default is TRUE.
- **mark_low_lk**: if TRUE, a texture is add for low lk values. Default is TRUE.
- **lk_cutoff**: the lk cutoff value to be considred low for texture layer. Default is lk<1.

**Details**

A data.frame created by createFullHaplotype.

**Value**

A multiple samples visualization of the distances between haplotypes.

**Examples**

```r
Plotting haplotype hierarchical clustering based on the Jaccard distance
hapDendo(samplesHaplotype)
```

**Description**

The hapHeatmap function generates a graphical output of the alleles per gene in multiple samples.

**Usage**

```r
hapHeatmap(
 hap_table,
 chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
 genes_order = NULL,
 removeIGH = TRUE,
 lk_cutoff = 1,
 mark_low_lk = TRUE,
 size_annot = 1.5,
 color_y = NULL,
 order_subject = NULL,
 file = NULL,
 size_text = NULL,
 ylabel_size = 1
)
```
Arguments

- **hap_table**: haplotype summary table. See details.
- **chain**: the IG chain: IGH,IGK,IGL. Default is IGH.
- **genes_order**: A vector of the genes by the desired order. Default is by GENE.loc
- **removeIGH**: if TRUE, 'IGH\'IGK\'IGL\'TRB' prefix is removed from gene names.
- **lk_cutoff**: the lK cutoff value to be considered low for texture layer. Default is lK<1.
- **mark_low_lk**: if TRUE, a texture is add for low lK values. Default is TRUE.
- **size_annot**: size of bottom annotation text. Default is 1.5.
- **color_y**: named list of the colors for y axis labels.
- **order_subject**: order subject by a vector.
- **file**: file path for rendering the plot to pdf. If non is supplied than the plot is returned as object. Default is NULL.
- **size_text**: text size for annotations.
- **ylabel_size**: text size for y axis labels.

Details

A data.frame created by createFullHaplotype.

Value

A list with the following:

- 'p': heat-map visualization of the haplotype inference for multiple samples.
- 'width': Optimal width value for rendering plot.
- 'height': Optimal width value for rendering plot.

When a file is supplied the graph is also rendered to pdf.

Examples

```
Plotting haplotype heatmap
p <- hapHeatmap(samplesHaplotype)
p$p
```
**HDGERM**  
*Human IGHD germlines*

**Description**
A character vector of all 37 human IGHD germline gene segment alleles in IMGT Gene-db release 2018-12-4.

**Usage**
HDGERM

**Format**
Values correspond to IMGT nucleotide sequences.

**References**

---

**HJGERM**  
*Human IGHJ germlines*

**Description**
A character vector of all 13 human IGHJ germline gene segment alleles in IMGT Gene-db release 2018-12-4.

**Usage**
HJGERM

**Format**
Values correspond to IMGT nucleotide sequences.

**References**
**HVGERM**  
*Human IGHV germlines*

**Description**
A character vector of all 342 human IGHV germline gene segment alleles in IMGT Gene-db release 2018-12-4.

**Usage**
HVGERM

**Format**
Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by '.').

**References**

---

**KJGERM**  
*Human IGKJ germlines*

**Description**

**Usage**
KJGERM

**Format**
Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by '.').
**KVGERM**

*Human IGKV germlines*

**Description**


**Usage**

KVGERM

LVGERM

**Format**

Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by '.').

**LJGERM**

*Human IGLJ germlines*

**Description**


**Usage**

LJGERM

**Format**

Values correspond to IMGT-gaped nucleotide sequences (with nucleotides capitalized and gaps represented by '.').
nonReliableVGenes  

Detect non reliable gene assignment

Description

nonReliableVGenes takes a data.frame in AIRR format and detect non reliable IGHV genes. A non reliable gene is when the ratio of the multiple assignments with a gene is below the threshold.

Usage

nonReliableVGenes(clip_db, thresh = 0.9, appearance = 0.01)

Arguments

clip_db  
a data.frame in AIRR format. See details.

thresh  
the threshold to consider non reliable gene. Default is 0.9

appearance  
the minimum fraction of gene appearance to be considered for reliability check. Default is 0.01.

Details

The function accepts a data.frame in AIRR format (https://changeo.readthedocs.io/en/stable/standard.html) containing the following columns:

- 'subject': subject names
- 'v_call': V allele call(s) (in an IMGT format)

Value

a nested list of non reliable genes for all subject.

Examples

# Example IGHV call data frame
clip_db <- data.frame(subject=rep('S1',6),
v_call=c('IGHV1-69*01','IGHV1-69*01','IGHV1-69*01','IGHV1-69*02','IGHV4-59*01',IGHV4-61*01','IGHV4-59*01','IGHV4-59*01','IGHV4-59*01','IGHV4-59*01'))

# Detect non reliable genes
nonReliableVGenes(clip_db)
plotDeletionsByBinom  

Graphical output of double chromosome deletions

Description

The plotDeletionsByBinom function generates a graphical output of the double chromosome deletions in multiple samples.

Usage

plotDeletionsByBinom(
  GENE.usage.df,
  chain = c("IGH", "IGK", "IGL", "TRB", "TRA"),
  genes.low.cer = c("IGHV3-43", "IGHV3-20"),
  genes.dup = c("IGHD4-11", "IGHD5-18"),
  genes_order = NULL
)

Arguments

GENE.usage.df  double chromosome deletion summary table. See details.
chain          the IG chain: IGH,IGK,IGL. Default is IGH.
genes.low.cer  a vector of IGH genes known to be with low certainty in the binomial test. Default is IGHV3-43 and IGHV3-20
genes.dup      a vector of IGH genes known to have a duplicated gene. Default is IGHD4-11 that his duplicate is IGHD4-4 and IGHD5-18 that his duplicate is IGHD5-5
genes_order    A vector of the genes by the desired order. Default is by GENE.loc

Details

A data.frame created by binom_test_deletion.

Value

A double chromosome deletion visualization.

Examples

# Load example data and germlines
data(samples_db)

# Inferring haplotype
deletions_db = deletionsByBinom(samples_db);
plotDeletionsByBinom(deletions_db)
The `plotDeletionsByVpooled` function generates a graphical output for single chromosome D or J gene deletions (for heavy chain only).

**Usage**

```r
plotDeletionsByVpooled(
 del.df, # a data.frame created by deletionsByVpooled
 chain = c("IGH", "IGK", "IGL", "TRB", "TRA"), # the IG chain: IGH,IGK,IGL. Default is IGH.
 K_ranges = c(3, 7) # vector of one or two integers for log(K) certainty level thresholds
)
```

**Arguments**

- `del.df`: a data.frame created by deletionsByVpooled
- `chain`: the IG chain: IGH,IGK,IGL. Default is IGH.
- `K_ranges`: vector of one or two integers for log(K) certainty level thresholds

**Details**

A data.frame created by deletionsByVpooled.

**Value**

A single chromosome deletion visualization.

**Examples**

```r
Load example data and germlines
data(samples_db)
del_db <- deletionsByVpooled(samples_db)
plotDeletionsByVpooled(del_db)
```
plotHaplotype

Graphical output of an inferred haplotype

Description

The plotHaplotype functions visualizes an inferred haplotype.

Usage

plotHaplotype(
  hap_table,
  html_output = FALSE,
  genes_order = NULL,
  text_size = 14,
  removeIGH = TRUE,
  plotYaxis = TRUE,
  chain = c("IGH", "IGK", "IGL", "TRB"),
  dir
)

Arguments

hap_table haplotype summary table. See details.
html_output if TRUE, a html5 interactive graph is outputed. Default is FALSE.
genesis_order A vector of the genes by the desired order. Default is by GENE.loc
text_size the size of graph labels. Default is 14 (pts).
removeIGH if TRUE, 'IGH'\'IGK\'\'IGL\'\'TRB' prefix is removed from gene names.
plotYaxis if TRUE. Y axis labels (gene names) are plotted on the middle and right plots. Default is TRUE.
chain the Ig/TR chain: IGH,IGK,IGL,TRB. Default is IGH.
dir The output folder for saving the haplotype map for multiple individuals.

Details

A data.frame in a haplotype format created by createFullHaplotype function.

Value

A haplotype map visualization. If more than one subject is visualized, a pdf is created. If html_output is TRUE, a folder named html_output is created with individual graphs.
Examples

```r
Selecting a single individual from the haplotype samples data
haplo_db = samplesHaplotype[samplesHaplotype$subject=='I5',]

plot haplotype
plotHaplotype(haplo_db)
```

The `rabhit` package

Description

The `rabhit` package provides a robust novel method for determining antibody heavy and light chain haplotypes by adapting a Bayesian framework. The key functions in `rabhit`, broken down by topic, are described below.

**Haplotype and deletions inference**

`rabhit` provides tools to infer haplotypes based on given anchor genes, deletion detection based on relative gene usage, pooling V genes, and a single anchor gene.

- `createFullHaplotype`: Haplotypes inference and single chromosome deletions based on an anchor gene.
- `deletionsByVpooled`: Single chromosomal deletion detection by pooling V genes.
- `deletionsByBinom`: Double chromosomal deletion detection by relative gene usage.
- `geneUsage`: Relative gene usage.
- `nonReliableVGenes`: Non reliable gene assignment detection.

**Haplotype and deletions visualization**

Functions for visualization of the inferred haplotypes and deletions

- `plotHaplotype`: Haplotype inference map.
- `deletionHeatmap`: Single chromosome deletions heatmap.
- `hapHeatmap`: Chromosome comparison of multiple samples.
- `hapDendo`: Hierarchical clustering of multiple haplotypes based on Jaccard distance.
- `plotDeletionsByVpooled`: V pooled based single chromosome deletions heatmap.
- `plotDeletionsByBinom`: Double chromosome deletions heatmap.

References

**readHaplotypeDb**

*Read a Change-O tab-delimited database file*

**Description**

`readHaplotypeDb` reads a tab-delimited haplotype file created by a `createFullHaplotype` into a data.frame. Based on `readChangeoDb` function from alakazam.

**Usage**

```r
readHaplotypeDb(file)
```

**Arguments**

- `file` tab-delimited database file output by a Change-O tool.

**Value**

A data.frame of the haplotype file. Columns will be imported as is, except for the following columns which will be explicitly converted into character values:

- alleles
- subject

---

**samplesHaplotype**

*Example haplotype inference results*

**Description**

A data.frame of example haplotype inference results from `createFullHaplotype` after double chromosome deletion inference via `deletionsByBinom` and non reliable V genes detection via `nonReliableVGenes`. Source data is a collection of IGH human naive b-cell repertoire data from five individuals (see references). Overall, the data set includes 6 samples. A single individual has two samples (Individual I5), one is short read sequences from BIOMED-2 protocol primers for framework 2 region (The sample is annotated I5_FR2).

**Usage**

```r
samplesHaplotype
```

**Format**

A data.frame, in which each row is the haplotype inference summary of a gene of an individual, from the column selected to perform the haplotype inference on.
References


See Also

See `createFullHaplotype` for detailed column descriptions.

---

**samples_db**

*Example IGH human naive b-cell repertoire*

**Description**

A data.frame of example IGH human naive b-cell repertoire data from five individuals (see references). Overall, the data set includes 6 samples. A single individual has two samples (Individual I5), one is short read sequences from BIOMED-2 protocol primers for framework 2 region (The sample is annotated I5_FR2).

**Usage**

`samples_db`

**Format**

A data.frame in Change-O format (`https://changeo.readthedocs.io/en/stable/standard.html`) containing the following columns:

- `SUBJECT`: subject names
- `V_CALL`: V allele call(s) (in an IMGT format)
- `D_CALL`: D allele call(s) (in an IMGT format, only for heavy chains)
- `J_CALL`: J allele call(s) (in an IMGT format)

**References**

Index

* **AIRR**
  - samples_db, 22
  - samplesHaplotype, 21

* **NGS**
  - samples_db, 22
  - samplesHaplotype, 21

* **antibody**
  - samples_db, 22
  - samplesHaplotype, 21

* **data**
  - GENE.loc, 9
  - GERM, 10
  - HDGERM, 13
  - HJGERM, 13
  - HVGERM, 14
  - KJGERM, 14
  - KVGERM, 15
  - LJGERM, 15
  - samples_db, 22
  - samplesHaplotype, 21

* **haplotype**
  - samplesHaplotype, 21
  - .onAttach, 2
  - createFullHaplotype, 3, 20–22
  - deletionHeatmap, 5, 20
  - deletionsByBinom, 6, 20, 21
  - deletionsByVpooled, 7, 20

  - GENE.loc, 9
  - geneUsage, 9, 20
  - GERM, 10
  - hapDendo, 10, 20
  - hapHeatmap, 11, 20
  - HDGERM, 13
  - HJGERM, 13
  - HVGERM, 14
  - KJGERM, 14

  - KVGERM, 15
  - LJGERM, 15
  - LVGERM (KVGERM), 15
  - nonReliableVGenes, 16, 20, 21
  - plotDeletionsByBinom, 17, 20
  - plotDeletionsByVpooled, 18, 20
  - plotHaplotype, 19, 20
  - rabhit, 20
  - readHaplotypeDb, 21
  - samples_db, 22
  - samplesHaplotype, 21