Package ‘radar’

October 14, 2022

Type Package
Title Fundamental Formulas for Radar
Version 1.0.0
Encoding UTF-8
Description Fundamental formulas for Radar, for attenuation, range, velocity, effectiveness, power, scatter, doppler, geometry, radar equations, etc.
Based on Nick Guy’s Python package PyRadarMet
License GPL (>= 3)
Depends R (>= 2.7.0)
Author Jose' Gama [aut, cre],
Nick Guy [aut]
Maintainer Jose' Gama <rxprtgamma@gmail.com>
NeedsCompilation no
Repository CRAN
Date/Publication 2014-12-02 17:04:26

R topics documented:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ApertureWeightingFunctions</td>
<td>2</td>
</tr>
<tr>
<td>AttenuationAbsCoeff</td>
<td>3</td>
</tr>
<tr>
<td>AttenuationExtCoeff</td>
<td>4</td>
</tr>
<tr>
<td>AttenuationScatCoeff</td>
<td>5</td>
</tr>
<tr>
<td>ConversiondBZ2Z</td>
<td>6</td>
</tr>
<tr>
<td>ConversionZ2dBZ</td>
<td>6</td>
</tr>
<tr>
<td>DopplerDilemma</td>
<td>7</td>
</tr>
<tr>
<td>DopplerFmax</td>
<td>8</td>
</tr>
<tr>
<td>DopplerFreq</td>
<td>9</td>
</tr>
<tr>
<td>DopplerPulseDuration</td>
<td>9</td>
</tr>
<tr>
<td>DopplerPulseLength</td>
<td>10</td>
</tr>
<tr>
<td>DopplerRmax</td>
<td>11</td>
</tr>
<tr>
<td>DopplerVmax</td>
<td>12</td>
</tr>
<tr>
<td>DopplerVmaxDual</td>
<td>13</td>
</tr>
</tbody>
</table>
ApertureWeightingFunctionsAntenna

Description

ApertureWeightingFunctionsAntenna has Antenna Characteristics for Aperture Weighting Functions

Usage

ApertureWeightingFunctionsAntenna

Author(s)

Jose Gama
AttenuationAbsCoeff

Source

References

Examples
```python
data(ApertureWeightingFunctionsAntenna)
str(ApertureWeightingFunctionsAntenna)
```

AttenuationAbsCoeff Absorption coefficient of a spherical particle

Description
AttenuationAbsCoeff Absorption coefficient of a spherical particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.6

Usage
AttenuationAbsCoeff(D, lam, m)

Arguments
- **D** Particle diameter (m)
- **lam** Radar wavelength (m)
- **m** Complex refractive index (unitless)

Value
- **Qa** Absorption coefficient [unitless]

Author(s)
Jose Gama

Source
Doviak, R.J. and Zrnic, D.S., 1993 Doppler radar and weather observations, Academic Press

References

Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press

AttenuationExtCoeff

Extinction coefficient of a spherical particle

Description

AttenuationExtCoeff Extinction coefficient of a spherical particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.5

Usage

AttenuationExtCoeff(D, lam, m)

Arguments

D Particle diameter (m)
lam Radar wavelength (m)
m Complex refractive index (unitless)

Value

Qe Extinction coefficient [unitless]

Author(s)

Jose Gama

Source

Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press

References

Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press
AttenuationScatCoeff Scattering coefficient of a spherical particle

Description

AttenuationScatCoeff Scattering coefficient of a spherical particle. From Doviak and Zrnic (1993), Eqn 3.14a or Battan (1973), Eqn 6.5

Usage

AttenuationScatCoeff(D, lam, m)

Arguments

D Particle diameter (m)

lam Radar wavelength (m)

m Complex refractive index (unitless)

Value

Qs Scattering coefficient [unitless]

Author(s)

Jose Gama

Source

Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press

References

Doviak, R.J. and Zrnić, D.S., 1993 Doppler radar and weather observations, Academic Press

Conversion from dBZ (log) units to linear Z units

Description

ConversiondBZ2Z Converting from dBZ (log) units to linear Z units

Usage

ConversiondBZ2Z(dBZ)

Arguments

- dBZ logarithmic reflectivity value

Value

- Z linear reflectivity units

Author(s)

Jose Gama

Source

References

Conversion from linear Z units to dBZ (log) units

Description

ConversionZ2dBZ Converting from linear Z units to dBZ (log) units

Usage

ConversionZ2dBZ(Zlin)

Arguments

- Zlin linear reflectivity units
DopplerDilemma

Value
 dBZ logarithmic reflectivity value

Author(s)
 Jose Gama

Source

References

DopplerDilemma returns the Doppler dilemma From Rinehart (1997), Eqn 6.12

Usage
 DopplerDilemma(inFloat, lam, speedOfLight)

Arguments
 inFloat Nyquist Velocity [m/s] or Maximum unambiguous range [m]
 lam Radar wavelength [m]
 speedOfLight speed of light

Value
 Rmax Maximum unambiguous range [m]

Author(s)
 Jose Gama

Source
DopplerFmax

References

DopplerFmax

Maximum frequency given PRF

Description

DopplerFmax returns the PRF for a maximum frequency From Rinehart (1997), Eqn 6.8

Usage

DopplerFmax(PRF)

Arguments

| PRF | Pulse repetition frequency [Hz] |

Value

| f | Maximum frequency [Hz] |

Author(s)

Jose Gama

Source

References

DopplerFreq
Frequency given wavelength

Description

DopplerFreq Converts from wavelength to frequency

Usage

DopplerFreq(lam, speedOfLight)

Arguments

- `lam`
 Wavelength [m]
- `speedOfLight`
 speed of light

Value

- `f`
 Frequency [Hz]

Author(s)

Jose Gama

Source

References

DopplerPulseDuration
Pulse duration from pulse length

Description

DopplerPulseDuration Converts from pulse length to pulse duration

Usage

DopplerPulseDuration(tau, speedOfLight)
DopplerPulseLength

Arguments

- tau: Pulse length [m]
- speedOfLight: speed of light

Value

- pDur: Pulse duration [s]

Author(s)

Jose Gama

Source

References

DopplerPulseLength
Pulse length from pulse duration

Description

DopplerPulseLength Converts from pulse duration to pulse length

Usage

DopplerPulseLength(pDur, speedOfLight)

Arguments

- pDur: Pulse duration [s]
- speedOfLight: speed of light

Value

- tau: Pulse length [m]

Author(s)

Jose Gama
DopplerRmax

Source

References

Description

DopplerRmax returns the maximum unambiguous range From Rinehart (1997), Eqn 6.11

Usage

DopplerRmax(PRF, speedOfLight)

Arguments

- **PRF**
 - Pulse repetition frequency [Hz]
- **speedOfLight**
 - speed of light

Value

- **Rmax**
 - Maximum unambiguous range [m]

Author(s)

Jose Gama

Source

References

DopplerVmax

Nyquist velocity, or maximum unambiguous Doppler velocity (+ or -)

Description

DopplerVmax returns the Nyquist velocity, or maximum unambiguous Doppler velocity (+ or -).

From Rinehart (1997), Eqn 6.8

Usage

DopplerVmax(PRF, lam)

Arguments

PRF Pulse repetition frequency [Hz]

lamb Radar wavelength [m]

Value

Vmax Nyquist velocity [m/s], +/-

Author(s)

Jose Gama

Source

References

DopplerVmaxDual

Doppler velocity from dual PRF scheme radar (+ or -)

Description

DopplerVmaxDual returns Doppler velocity [m/s] from a mobile platform. From Jorgensen (1983), Eqn 2

Usage

DopplerVmaxDual(lam, PRF1, PRF2)

Arguments

- **lam**: Radar wavelength [m]
- **PRF1**: First Pulse repetition frequency [Hz]
- **PRF2**: Second Pulse repetition frequency [Hz]

Value

- **Vmax**: Doppler velocity [m/s]

Author(s)

Jose Gama

Source

References

DopplerVshift

Description

DopplerVshift returns Adjusted Doppler velocity from a mobile platform. From Jorgensen (1983), Eqn 2

Usage

DopplerVshift(GS, psi)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS</td>
<td>Gound speed [m/s]</td>
</tr>
<tr>
<td>psi</td>
<td>Angle between actual azimuth and fore/aft angle [deg]</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vshift</td>
<td>Shift in Doppler velocity from mobile aspect [m/s]</td>
</tr>
</tbody>
</table>

Author(s)

Jose Gama

Source

References

DopplerWavelength

Wavelength given frequency

Description

DopplerWavelength Converts from frequency to wavelength

Usage

DopplerWavelength(freq, speedOfLight)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>freq</td>
<td>Frequency [Hz]</td>
</tr>
<tr>
<td>speedOfLight</td>
<td>speed of light</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lam</td>
<td>Wavelength [m]</td>
</tr>
</tbody>
</table>

Author(s)

Jose Gama

Source

References

Electronic Warfare Frequency Bands

Electronic Warfare Frequency Bands

Description

ElectronicWarfareFrequencyBands has Electronic Warfare Frequency Bands

Usage

ElectronicWarfareFrequencyBands

Author(s)

Jose Gama

Source

References

Examples

```matlab
data(ElectronicWarfareFrequencyBands)
str(ElectronicWarfareFrequencyBands)
```

GeometryBeamBlockFrac
Partial beam blockage fraction

Description

GeometryBeamBlockFrac returns the partial beam blockage fraction From Bech et al. (2003), Eqn 2 and Appendix

Usage

```matlab
GeometryBeamBlockFrac(Th, Bh, a)
```

Arguments

- `Th`
 Terrain height [m]
- `Bh`
 Beam height [m]
- `a`
 Half power beam radius [m]

Value

- `PBB`
 Partial beam blockage fraction [unitless]

Author(s)

Jose Gama
Geometry\texttt{HalfPowerRadius}

Source

References

\begin{verbatim}
Geometry\texttt{HalfPowerRadius}

 \textit{Half-power radius}

\end{verbatim}

Description
Geometry\texttt{HalfPowerRadius} returns the half-power radius Battan (1973)

Usage
Geometry\texttt{HalfPowerRadius}(r, bwhalf)

Arguments
\begin{itemize}
 \item \texttt{r} \hspace{1cm} Range [m]
 \item \texttt{bwhalf} \hspace{1cm} Half-power beam width [degrees]
\end{itemize}

Value
\begin{itemize}
 \item \texttt{Rhalf} \hspace{1cm} Half-power radius [m]
\end{itemize}

Author(s)
Jose Gama

Source
GeometryRangeCorrect

References

GeometryRangeCorrect *Half-power radius*

Description
GeometryRangeCorrect returns the half-power radius From CSU Radar Meteorology AT 741 Notes

Usage
GeometryRangeCorrect(r, h, E)

Arguments

- **r**
 Distance to sample volume from radar [m]
- **h**
 Height of the center of radar volume [m]
- **E**
 Elevation angle [deg]

Value

- **r_{new}**
 Adjusted range to sample volume [m]

Author(s)
Jose Gama

Source
CSU Radar Meteorology AT 741 Notes

References
CSU Radar Meteorology AT 741 Notes
GeometryRayHeight

Description

Usage

GeometryRayHeight(r, elev, H0, R1=kConstantR43)

Arguments

r Range from radar to point of interest [m]
elev Elevation angle of radar beam [deg]
H0 Height of radar antenna [m]
R1 Effective radius [m]

Value

h Radar beam height [m]

Author(s)

Jose Gama

Source

References

GeometryReffective

Effective radius calculation

Description

GeometryReffective returns the effective radius From Rinehart (1997), Eqn 3.9, solved for R’

Usage

GeometryReffective(dNdH=-39e-6, earthRadius)

Arguments

dNdH Refraction [N x10^-6/km]
earthRadius earth radius [m]

Value

R Effective radius [m]

Author(s)

Jose Gama

Source

References

GeometrySampleVolGauss

Sample volume assuming transmitted energy in Gaussian beam shape

Description

GeometrySampleVolGauss returns the sample volume assuming transmitted energy in Gaussian beam shape. From Rinehart (1997), Eqn 5.4

Usage

GeometrySampleVolGauss(r, bwH, bwV, pLength)

Arguments

- r: Range from radar to point of interest [m]
- bwH: Horizontal beamwidth [deg]
- bwV: Vertical beamwidth [deg]
- $pLength$: Pulse length [m]

Value

- $sVol$: Sample Volume [m^3]

Author(s)

Jose Gama

Source

References

GeometrySampleVolIdeal

Sample volume (idealized) assuming all power in half-power
beamwidths

Description

GeometrySampleVolIdeal returns the sample volume (idealized) From Rinehart (1997), Eqn 5.2

Usage

GeometrySampleVolIdeal(r, bwH, bwV, pLength)

Arguments

r Range from radar to point of interest [m]
bwH Horizontal beamwidth [deg]
bwV Vertical beamwidth [deg]
pLength Pulse length [m]

Value

sVol Sample Volume [m^3]

Author(s)

Jose Gama

Source

References

Constant Speed of Light

Description

- kConstantSpeedOfLight is "c" the constant speed of light [m/s].
- kConstantSLP Sea-level Pressure [hPa].
- kConstantP0 Reference pressure [hPa].
- kConstantRe Earth's radius [m].
- kConstantR43 4/3 Approximation effective radius for standard atmosphere [m].
- kConstantBoltz Boltzmann's constant [m^2 kg s^-2 K^-1].

Usage

```python
print(kConstantSpeedOfLight)
```

Author(s)

Jose Gama

Examples

```python
print(kConstantSpeedOfLight)
```

System Antenna Effective Area

Description

SystemAntEffArea returns the antenna effective area From Rinehart (1997), Eqn 4.5

Usage

```python
SystemAntEffArea(G, lam)
```

Arguments

- **G** Antenna Gain [dB]
- **lam** Radar wavelength [m]

Value

- **Ae** Antenna effective area [unitless]
SystemFreq

Description

SystemFreq converts from wavelength to frequency.

Usage

`SystemFreq(lam, speedOfLight)`

Arguments

- `lam`: Wavelength [m]
- `speedOfLight`: Speed of light

Value

- `f`: Frequency [Hz]

Author(s)

Jose Gama

Source

References

SystemGainPratio

Antenna gain via power ratio

Description

SystemGainPratio returns the antenna gain via power ratio From Rinehart (1997), Eqn 2.1

Usage

SystemGainPratio(P1, P2)

Arguments

- **P1**
 Power on the beam axis [W]
- **P2**
 Power from an isotropic antenna [W]

Value

- **G**
 Gain [dB]

Author(s)

Jose Gama

Source

References

SystemNormXsecBscatterSphere

Normalized Backscatter cross-sectional area of a sphere using the Rayleigh approximation

Description

SystemNormXsecBscatterSphere returns the normalized Backscatter cross-sectional area of a sphere using the Rayleigh approximation From Rinehart (1997), Eqn 4.9 and 5.7 and Battan Ch. 4.5

Usage

SystemNormXsecBscatterSphere(D, lam, K=0.93)

Arguments

- **D** Diameter of target [m]
- **lam** Radar wavelength [m]
- **K** Dielectric factor [unitless]

Value

- **sigNorm** Normalized backscatter cross-section [unitless]

Author(s)

Jose Gama

Source

L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press

References

L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press
SystemPowerReturnTarget

Power returned by target located at the center of the antenna beam pattern

Description

SystemPowerReturnTarget returns Power returned by target located at the center of the antenna beam pattern From Rinehart (1997), Eqn 4.7

Usage

SystemPowerReturnTarget(Pt, G, lam, sig, r)

Arguments

- **Pt**: Transmitted power [W]
- **G**: Antenna gain [dB]
- **lam**: Radar wavelength [m]
- **sig**: Backscattering cross-sectional area of target [m^2]
- **r**: Distance to sample volume from radar [m]

Value

- **Pr**: Power returned by target [m]

Author(s)

Jose Gama

Source

References

SystemPowerTarget

Power intercepted by target

Description

SystemPowerTarget returns the power intercepted by target From Rinehart (1997), Eqn 4.3

Usage

\[\text{SystemPowerTarget}(Pt, G, Asig, r) \]

Arguments

- **Pt**: Transmitted power [W]
- **G**: Antenna gain [dB]
- **Asig**: Area of target [m^2]
- **r**: Distance to sample volume from radar [m]

Value

- **Psig**: Power intercepted by target [m]

Author(s)

Jose Gama

Source

References

SystemRadarConst

Radar constant

Description

SystemRadarConst returns radar constant From CSU Radar Meteorology notes, AT 741

Usage

SystemRadarConst(Pt, G, Tau, lam, bwH, bwV, Lm, Lr)

Arguments

- **Pt**: Transmitted power [W]
- **G**: Antenna gain [dB]
- **Tau**: Pulse Width [s]
- **lam**: Radar wavelength [m]
- **bwH**: Horizontal antenna beamwidth [degrees]
- **bwV**: Vertical antenna beamwidth [degrees]
- **Lm**: Antenna/waveguide/coupler loss [dB]
- **Lr**: Receiver loss [dB]

Value

- **C**: Radar constant [unitless]

Author(s)

Jose Gama

Source

CSU Radar Meteorology notes, AT 741

References

CSU Radar Meteorology notes, AT 741
SystemSizeParam Size parameter calculation

Description

SystemSizeParam returns the size parameter calculation From Rinehart (1997), Eqn 4.9 and 5.7 and Battan Ch. 4.5

Usage

SystemSizeParam(D, lam)

Arguments

- **D** Diameter of target [m]
- **lam** Radar wavelength [m]

Value

- **alpha** Size parameter [unitless]

Author(s)

Jose Gama

Source

L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press

References

L. J. Battan, 1973 Radar observation of the atmosphere The University of Chicago Press
SystemThermalNoise

| **Thermal noise power** |

Description

SystemThermalNoise returns the thermal noise power. From CSU Radar Meteorology notes, AT741

Usage

SystemThermalNoise(Bn, Units, Ts=290, k=kConstantBoltz)

Arguments

- **Bn**: Receiver bandwidth [Hz]
- **Units**: String of units desired, can be ’W’ or ’dBm’
- **Ts**: Receiver noise temperature [K]
- **k**: Boltzmann’s constant

Value

- **nt**: Thermal noise power [W or ’dBm’]

Author(s)

Jose Gama

Source

CSU Radar Meteorology notes, AT741

References

CSU Radar Meteorology notes, AT741
Systemwavelength
Wavelength given frequency

Description
Systemwavelength Converts from frequency to wavelength

Usage
Systemwavelength(freq, speedOfLight)

Arguments
- freq
 Frequency [Hz]
- speedOfLight
 speed of light

Value
- lam
 Wavelength [m]

Author(s)
Jose Gama

Source

References

SystemXsecBscatterSphere
Backscatter cross-sectional area of a sphere using the Rayleigh approximation

Description
SystemXsecBscatterSphere returns Backscatter cross-sectional area of a sphere using the Rayleigh approximation From Rinehart (1997), Eqn 4.9 and 5.7
Usage

SystemXsecBscatterSphere(D, lam, K=0.93)

Arguments

D Diameter of target [m]
lam Radar wavelength [m]
K Dielectric factor [unitless]

Value

sig Backscattering cross-section [m^2]

Author(s)

Jose Gama

Source

References

VariablesCDR Circular depolarization ratio

Description

VariablesCDR returns the circular depolarization ratio From Rinehart (1997), Eqn 10.2

Usage

VariablesCDR(Zpar, Zorth)

Arguments

Zpar Reflectivity in the parallel channel [mm^6/m^3]
Zorth Reflectivity in the orthogonal channel [mm^6/m^3]
Value

CDR Circular depolarization ratio [dB]

Author(s)
Jose Gama

Source

References

VariablesHDR

Differential reflectivity hail signature

Description
VariablesHDR returns the differential reflectivity hail signature From Aydin et al. (1986), Eqns 4-5

Usage
VariablesHDR(dBZh, ZDR)

Arguments

dBZh Horizontal reflectivity [dBZ]
ZDR Differential reflectivity [dBZ]

Value
ZDP Reflectivity difference [dB]

Author(s)
Jose Gama

Source
Aydin et al., 1986
VariablesLDR

Description

VariablesLDR returns the linear depolarization ratio From Rinehart (1997), Eqn 10.3

Usage

VariablesLDR(Zh, Zv)

Arguments

Zh Horizontal reflectivity [mm^6/m^3]
Zv Vertical reflectivity [mm^6/m^3]

Value

LDR linear depolarization ratio

Author(s)

Jose Gama

Source

References

Description

VariablesRadVel returns the radial velocity From Rinehart (1993), Eqn 6.6

Usage

VariablesRadVel(f, lam)

Arguments

- **f**
 - Frequency shift [Hz]
- **lam**
 - Radar wavelength [m]

Value

- **Vr**
 - Radial velocity [m/s]

Author(s)

Jose Gama

Source

References

Description

VariablesReflectivity returns the radar reflectivity From Rinehart (1993), Eqn 5.17 (See Eqn 5.14-5.16 also)

Usage

VariablesReflectivity(Pt, G, Tau, lam, bwH, bwV, Lm, Lr, Pr, r, K=0.93)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt</td>
<td>Transmitted power [W]</td>
</tr>
<tr>
<td>G</td>
<td>Antenna gain [dB]</td>
</tr>
<tr>
<td>Tau</td>
<td>Pulse Width [s]</td>
</tr>
<tr>
<td>lam</td>
<td>Radar wavelength [m]</td>
</tr>
<tr>
<td>bwH</td>
<td>Horizontal antenna beamwidth [degrees]</td>
</tr>
<tr>
<td>bwV</td>
<td>Vertical antenna beamwidth [degrees]</td>
</tr>
<tr>
<td>Lm</td>
<td>Antenna/waveguide/coupler loss [dB]</td>
</tr>
<tr>
<td>Lr</td>
<td>Receiver loss [dB]</td>
</tr>
<tr>
<td>Pr</td>
<td>Returned power [W]</td>
</tr>
<tr>
<td>r</td>
<td>Range to target [m]</td>
</tr>
<tr>
<td>K</td>
<td>Dielectric factor [unitless]</td>
</tr>
</tbody>
</table>

Value

Ze Radar reflectivity [unitless]

Author(s)

Jose Gama

Source

References

VariablesZDP

Description

VariablesZDP returns the reflectivity difference From Rinehart (1997), Eqn 10.2

Usage

VariablesZDP(Zh, Zv)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zh</td>
<td>Horizontal reflectivity [mm^6/m^3]</td>
</tr>
<tr>
<td>Zv</td>
<td>Vertical reflectivity [mm^6/m^3]</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZDP</td>
<td>Reflectivity difference [dB]</td>
</tr>
</tbody>
</table>

Author(s)

Jose Gama

Source

References

VariablesZDR

Differential reflectivity

Description

VariablesZDR returns the differential reflectivity From Rinehart (1997), Eqn 10.3 and Seliga and Bringi (1976)

Usage

VariablesZDR(Zh, Zv)

Arguments

<table>
<thead>
<tr>
<th>Zh</th>
<th>Horizontal reflectivity [mm^6/m^3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zv</td>
<td>Vertical reflectivity [mm^6/m^3]</td>
</tr>
</tbody>
</table>

Value

| ZDR | Differential reflectivity [dB] |

Author(s)

Jose Gama

Source

References

Index

* datasets
 - ApertureWeightingFunctionsAntenna, 2
 - ElectronicWarfareFrequencyBands, 15
 - kConstantSpeedOfLight, 23

* programming
 - AttenuationAbsCoeff, 3
 - AttenuationExtCoeff, 4
 - AttenuationScatCoeff, 5
 - ConversiondBZtoZ, 6
 - ConversionZtodBZ, 6
 - DopplerDilemma, 7
 - DopplerFmax, 8
 - DopplerFreq, 9
 - DopplerPulseDuration, 9
 - DopplerPulseLength, 10
 - DopplerRmax, 11
 - DopplerVmax, 12
 - DopplerVmaxDual, 13
 - DopplerVshift, 14
 - DopplerWavelength, 15
 - GeometryBeamBlockFrac, 16
 - GeometryHalfPowerRadius, 17
 - GeometryRangeCorrect, 18
 - GeometryRayHeight, 19
 - GeometryReffective, 20
 - GeometrySampleVolGauss, 21
 - GeometrySampleVolIdeal, 22
 - SystemAntEffArea, 23
 - SystemFreq, 24
 - SystemGainPratio, 25
 - SystemNormXsecBscatterSphere, 26
 - SystemPowerReturnTarget, 27
 - SystemPowerTarget, 28
 - SystemRadarConst, 29
 - SystemSizeParam, 30
 - SystemThermalNoise, 31
 - Systemwavelength, 32

SystemXsecBscatterSphere, 32
VariablesCDR, 33
VariablesHDR, 34
VariablesLDR, 35
VariablesRadVel, 36
VariablesReflectivity, 37
VariablesZDP, 38
VariablesZDR, 39

ApertureWeightingFunctionsAntenna, 2
AttenuationAbsCoeff, 3
AttenuationExtCoeff, 4
AttenuationScatCoeff, 5

ConversiondBZtoZ, 6
ConversionZtodBZ, 6

DopplerDilemma, 7
DopplerFmax, 8
DopplerFreq, 9
DopplerPulseDuration, 9
DopplerPulseLength, 10
DopplerRmax, 11
DopplerVmax, 12
DopplerVmaxDual, 13
DopplerVshift, 14
DopplerWavelength, 15

ElectronicWarfareFrequencyBands, 15

GeometryBeamBlockFrac, 16
GeometryHalfPowerRadius, 17
GeometryRangeCorrect, 18
GeometryRayHeight, 19
GeometryReffective, 20
GeometrySampleVolGauss, 21
GeometrySampleVolIdeal, 22

kConstantBoltz (kConstantSpeedOfLight), 23
kConstantP0 (kConstantSpeedOfLight), 23
kConstantR43 (kConstantSpeedOfLight), 23
kConstantRe (kConstantSpeedOfLight), 23
kConstantSLP (kConstantSpeedOfLight), 23
kConstantSpeedOfLight, 23

SystemAntEffArea, 23
SystemFreq, 24
SystemGainPratio, 25
SystemNormXsecBscatterSphere, 26
SystemPowerReturnTarget, 27
SystemPowerTarget, 28
SystemRadarConst, 29
SystemSizeParam, 30
SystemThermalNoise, 31
SystemWavelength, 32
SystemXsecBscatterSphere, 32

VariablesCDR, 33
VariablesHDR, 34
VariablesLDR, 35
VariablesRadVel, 36
VariablesReflectivity, 37
VariablesZDP, 38
VariablesZDR, 39