Package ‘radiant.basics’

June 3, 2021

Type Package

Title Basics Menu for Radiant: Business Analytics using R and Shiny

Version 1.4.0

Date 2021-6-2

Description The Radiant Basics menu includes interfaces for probability calculation, central limit theorem simulation, comparing means and proportions, goodness-of-fit testing, cross-tabs, and correlation. The application extends the functionality in ‘radiant.data’.

Depends R (>= 3.4.0), radiant.data (>= 1.2.0)

Imports ggplot2 (>= 2.2.1), scales (>= 0.4.0), dplyr (>= 0.8.3), tidyr (>= 0.8.2), magrittr (>= 1.5), shiny (>= 1.4.0), psych (>= 1.8.3.3), import (>= 1.1.0), lubridate (>= 1.7.4), polycor (>= 0.7.10), patchwork (>= 1.0.0)

Suggests testthat (>= 2.0.0), pkgdown (>= 1.1.0), markdown

BugReports https://github.com/radiant-rstats/radiant.basics/issues/

License AGPL-3 | file LICENSE

LazyData true

Encoding UTF-8

Language en-US

RoxygenNote 7.1.1

NeedsCompilation no

Author Vincent Nijs [aut, cre]

Maintainer Vincent Nijs <radiant@rady.ucsd.edu>

Repository CRAN

Date/Publication 2021-06-03 06:20:02 UTC

R topics documented:

clt ... 3
compare_means ... 4
compare_props ... 6
consider .. 7
cor2df ... 7
correlation .. 8
cross_tabs .. 9
demand_uk .. 10
goodness .. 10
newspaper ... 11
plot.clt ... 12
plot.compare_means .. 12
plot.compare_props ... 13
plot.correlation .. 14
plot.cross_tabs .. 15
plot.goodness ... 16
plot.prob_binom ... 17
plot.prob_chisq .. 18
plot.prob_disc ... 18
plot.prob_expo .. 19
plot.prob_fdist ... 20
plot.prob_lnorm .. 21
plot.prob_norm .. 21
plot.prob_pois .. 22
plot.prob_tdist ... 23
plot.prob_unif ... 24
plot.single_mean .. 24
plot.single_prop .. 25
print.rcorr .. 26
prob_binom ... 27
prob_chisq .. 28
prob_disc .. 29
prob_expo .. 30
prob_fdist .. 31
prob_lnorm ... 32
prob_norm .. 33
prob_pois .. 34
prob_tdist ... 35
prob_unif .. 36
radiant.basics ... 37
radiant.basics_viewer 37
radiant.basics_window 38
salary .. 38
single_mean ... 39
single_prop ... 40
summary.compare_means 41
clt

Central Limit Theorem simulation

Description

Central Limit Theorem simulation

Usage

clt(
 dist,
 n = 100,
 m = 100,
 norm_mean = 0,
 norm_sd = 1,
 binom_size = 10,
 binom_prob = 0.2,
 unif_min = 0,
 unif_max = 1,
 expo_rate = 1
)

Arguments

 dist Distribution to simulate
 n Sample size
 m Number of samples
 norm_mean Mean for the normal distribution
norm_sd
Standard deviation for the normal distribution

binom_size
Size for the binomial distribution

binom_prob
Probability for the binomial distribution

unif_min
Minimum for the uniform distribution

unif_max
Maximum for the uniform distribution

expo_rate
Rate for the exponential distribution

Details

See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Value

A list with the name of the Distribution and a matrix of simulated data

Examples

```r
clt("Uniform", 10, 10, unif_min = 10, unif_max = 20)
```

compare_means
Compare sample means

Description

Compare sample means

Usage

```r
compare_means(
  dataset,
  var1,
  var2,
  samples = "independent",
  alternative = "two.sided",
  conf_lev = 0.95,
  comb = "",
  adjust = "none",
  test = "t",
  data_filter = "",
  envir = parent.frame()
)
```
compare_means

Arguments

- **dataset**
 - Dataset

- **var1**
 - A numeric variable or factor selected for comparison

- **var2**
 - One or more numeric variables for comparison. If var1 is a factor only one variable can be selected and the mean of this variable is compared across (factor) levels of var1

- **samples**
 - Are samples independent ("independent") or not ("paired")

- **alternative**
 - The alternative hypothesis ("two.sided", "greater" or "less")

- **conf_lev**
 - Span of the confidence interval

- **comb**
 - Combinations to evaluate

- **adjust**
 - Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)

- **test**
 - t-test ("t") or Wilcox ("wilcox")

- **data_filter**
 - Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

- **envir**
 - Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class compare_means

See Also

- **summary.compare_means** to summarize results
- **plot.compare_means** to plot results

Examples

```r
compare_means(diamonds, "cut", "price") %>% str()
```
compare_props

Compare sample proportions across groups

Description

Compare sample proportions across groups

Usage

```r
compare_props(
  dataset,
  var1,
  var2,
  levs = "",
  alternative = "two.sided",
  conf_lev = 0.95,
  comb = "",
  adjust = "none",
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

- `dataset` Dataset
- `var1` A grouping variable to split the data for comparisons
- `var2` The variable to calculate proportions for
- `levs` The factor level selected for the proportion comparison
- `alternative` The alternative hypothesis ("two.sided", "greater" or "less")
- `conf_lev` Span of the confidence interval
- `comb` Combinations to evaluate
- `adjust` Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
- `data_filter` Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- `envir` Environment to extract data from

Details

See `https://radiant-rstats.github.io/docs/basics(compare_props.html)` for an example in Radiant

Value

A list of all variables defined in the function as an object of class `compare_props`
consider

See Also

summary.compare.props to summarize results
plot.compare.props to plot results

Examples

```
compare_props(titanic, "pclass", "survived") %>% str()
```

consider
Car brand consideration

Description

Car brand consideration

Usage

```
data(consider)
```

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(consider,"description")

cor2df
Store a correlation matrix as a (long) data.frame

Description

Store a correlation matrix as a (long) data.frame

Usage

```
cor2df(object, labels = c("label1", "label2"), 
```

Arguments

- **object**: Return value from correlation
- **labels**: Column names for the correlation pairs
- **...**: further arguments passed to or from other methods
correlation

Details

Return the correlation matrix as a (long) data.frame. See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

Description

Calculate correlations for two or more variables

Usage

correlation(
 dataset,
 vars = "",
 method = "pearson",
 hcor = FALSE,
 hcor_se = FALSE,
 data_filter = "",
 envir = parent.frame()
)

Arguments

dataset Dataset
vars Variables to include in the analysis. Default is all but character and factor variables with more than two unique values are removed
method Type of correlations to calculate. Options are "pearson", "spearman", and "kendall". "pearson" is the default
hcor Use polycor::hetcor to calculate the correlation matrix
hcor_se Calculate standard errors when using polycor::hetcor
data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class compare_means
cross_tabs

See Also

summary.correlation to summarize results
plot.correlation to plot results

Examples

correlation(diamonds, c(“price”, “carat”)) %>% str()
correlation(diamonds, “x:z”) %>% str()

cross_tabs

Evaluate associations between categorical variables

Description

Evaluate associations between categorical variables

Usage

cross_tabs(
 dataset,
 var1,
 var2,
 tab = NULL,
 data_filter = ””,
 envir = parent.frame()
)

Arguments

dataset Dataset (i.e., a data.frame or table)
var1 A categorical variable
var2 A categorical variable
tab Table with frequencies as alternative to dataset
data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., “price > 10000”) envir Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

Value

A list of all variables used in cross_tabs as an object of class cross_tabs
See Also

- `summary.cross_tabs` to summarize results
- `plot.cross_tabs` to plot results

Examples

cross_tabs(newspaper, "Income", "Newspaper") %>% str()
table(select(newspaper, Income, Newspaper)) %>% cross_tabs(tab = .)

demand_uk

Demand in the UK

Description

Demand in the UK

Usage

data(demand_uk)

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(demand_uk,"description")

goodness

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Description

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Usage

goodness(
 dataset,
 var,
 p = NULL,
 tab = NULL,
 data_filter = "",
 envir = parent.frame()
)
Arguments

- **dataset**: Dataset
- **var**: A categorical variable
- **p**: Hypothesized distribution as a number, fraction, or numeric vector. If unspecified, defaults to an even distribution
- **tab**: Table with frequencies as alternative to dataset
- **data_filter**: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- **envir**: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/goodness.html for an example in Radiant

Value

A list of all variables used in goodness as an object of class goodness

See Also

- `summary.goodness` to summarize results
- `plot.goodness` to plot results

Examples

```r
goodness(newspaper, "Income") %>% str()
goodness(newspaper, "Income", p = c(3/4, 1/4)) %>% str()
table(select(newspaper, Income)) %>% goodness(tab = .)
```

```
<table>
<thead>
<tr>
<th>newspaper</th>
<th>Newspaper readership</th>
</tr>
</thead>
</table>
```

Description

Newspaper readership

Usage

data(newspaper)

Format

A data frame with 580 rows and 2 variables
plot.compare_means

Details
Newspaper readership data for 580 consumers. Description provided in attr(newspaper,"description")

plot.clt

Plot method for the Central Limit Theorem simulation

Description
Plot method for the Central Limit Theorem simulation

Usage
S3 method for class 'clt'
plot(x, stat = "sum", bins = 15, ...)

Arguments
x Return value from clt
stat Statistic to use (sum or mean)
bins Number of bins to use
... further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Examples
clt("Uniform", 100, 100, unif_min = 10, unif_max = 20) %>% plot()

plot.compare_means

Plot method for the compare_means function

Description
Plot method for the compare_means function

Usage
S3 method for class 'compare_means'
plot(x, plots = "scatter", shiny = FALSE, custom = FALSE, ...)
plot.compare_props

Arguments

x
plots
shiny
custom

Return value from \texttt{compare_means}
One or more plots ("bar", "density", "box", or "scatter")
Did the function call originate inside a shiny app
Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and \url{https://ggplot2.tidyverse.org/} for options.

Details

See \url{https://radiant-rstats.github.io/docs/basics/compare_means.html} for an example in Radiant

See Also

\texttt{compare_means} to calculate results
\texttt{summary.compare_means} to summarize results

Examples

result <- \texttt{compare_means(diamonds, "cut", "price")}
plot(result, plots = c("bar", "density"))

plot.compare_props \hspace{1cm} \textit{Plot method for the compare_props function}

Description

Plot method for the \texttt{compare_props} function

Usage

\#
\texttt{S3 method for class 'compare_props'
plot(x, plots = "bar", shiny = FALSE, custom = FALSE, ...)}

Arguments

x
plots
shiny

Return value from \texttt{compare_props}
One or more plots of proportions ("bar" or "dodge")
Did the function call originate inside a shiny app
plot.correlation

Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

correlation to calculate results

Examples

result <- compare_props(titanic, "pclass", "survived")
plot(result, plots = c("bar", "dodge"))
plot.cross_tabs

See Also

correlation to calculate results
summary.correlation to summarize results

Examples

```r
result <- correlation(diamonds, c("price", "carat", "table"))
plot(result)
```

plot.cross_tabs
Plot method for the cross_tabs function

Description

Plot method for the cross_tabs function

Usage

```r
## S3 method for class 'cross_tabs'
plot(x, check = "", shiny = FALSE, custom = FALSE, ...)
```

Arguments

- **x**
 Return value from `cross_tabs`

- **check**
 Show plots for variables var1 and var2. "observed" for the observed frequencies
 table, "expected" for the expected frequencies table (i.e., frequencies that would
 be expected if the null hypothesis holds), "chi_sq" for the contribution to the
 overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the
 standardized differences between the observed and expected frequencies (i.e., (o
 - e) / sqrt(e)), and "row_perc", "col_perc", and "perc" for row, column, and table
 percentages respectively

- **shiny**
 Did the function call originate inside a shiny app

- **custom**
 Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects)
 should be returned. This option can be used to customize plots (e.g., add a title,
 change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

- **...**
 further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant
plot.goodness

See Also
cross_tabs to calculate results
summary.cross_tabs to summarize results

Examples

result <- cross_tabs(newspaper, "Income", "Newspaper")
plot(result, check = c("observed","expected","chi_sq"))

Description

Plot method for the goodness function

Usage

S3 method for class 'goodness'
plot(x, check = "", fillcol = "blue", shiny = FALSE, custom = FALSE, ...)

Arguments

x
check
fillcol
shiny
custom
...

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant
See Also

- `goodness` to calculate results
- `summary.goodness` to summarize results

Examples

```r
result <- goodness(newspaper, "Income")
plot(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income") %>% plot(c("observed","expected"))
```

plot.prob_binom
Plot method for the probability calculator (binomial)

Description

Plot method for the probability calculator (binomial)

Usage

```r
## S3 method for class 'prob_binom'
plot(x, type = "values", ...)
```

Arguments

- `x`
 Return value from `prob_binom`
- `type`
 Probabilities ("probs") or values ("values")
- `...`
 Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_binom` to calculate results
- `summary.prob_binom` to summarize results

Examples

```r
result <- prob_binom(n = 10, p = 0.3, ub = 3)
plot(result, type = "values")
```
plot.prob_chisq

Plot method for the probability calculator (Chi-squared distribution)

Description
Plot method for the probability calculator (Chi-squared distribution)

Usage

```r
## S3 method for class 'prob_chisq'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_chisq`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also
- `prob_chisq` to calculate results
- `summary.prob_chisq` to summarize results

Examples

```r
result <- prob_chisq(df = 1, ub = 3.841)
plot(result, type = "values")
```

plot.prob_disc

Plot method for the probability calculator (discrete)

Description
Plot method for the probability calculator (discrete)

Usage

```r
## S3 method for class 'prob_disc'
plot(x, type = "values", ...)
```
Arguments

x Return value from prob_disc

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_disc to calculate results
summary.prob_disc to summarize results

Examples

result <- prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
plot(result, type = "probs")

Description

Plot method for the probability calculator (Exponential distribution)

Usage

S3 method for class 'prob_expo'
plot(x, type = "values", ...)

Arguments

x Return value from prob_expo

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
plot.prob_fdist

See Also

prob_expo to calculate results
summary.prob_expo to summarize results

Examples

```r
result <- prob_expo(rate = 1, ub = 2.996)
plot(result, type = "values")
```

plot.prob_fdist
Plot method for the probability calculator (F-distribution)

Description

Plot method for the probability calculator (F-distribution)

Usage

```r
## S3 method for class 'prob_fdist'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_fdist`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_fdist to calculate results
summary.prob_fdist to summarize results

Examples

```r
result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
plot(result, type = "values")
```
Description

Plot method for the probability calculator (log normal)

Usage

S3 method for class 'prob_lnorm'
plot(x, type = "values", ...)

Arguments

x
Return value from prob_lnorm

type
Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_lnorm to calculate results
plot.prob_lnorm to plot results

Examples

result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
plot(result, type = "values")

Description

Plot method for the probability calculator (normal)

Usage

S3 method for class 'prob_norm'
plot(x, type = "values", ...)

...
Arguments

- `x`: Return value from `prob_norm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_norm` to calculate results
- `summary.prob_norm` to summarize results

Examples

```r
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
plot(result)
```

Description

Plot method for the probability calculator (poisson)

Usage

```r
## S3 method for class 'prob_pois'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_pois`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
plot.prob_tdist

See Also

- prob_pois to calculate results
- summary.prob_pois to summarize results

Examples

```r
result <- prob_pois(lambda = 1, ub = 3)
plot(result, type = "values")
```

plot.prob_tdist
Plot method for the probability calculator (t-distribution)

Description

Plot method for the probability calculator (t-distribution)

Usage

```r
## S3 method for class 'prob_tdist'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_tdist`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- prob_tdist to calculate results
- summary.prob_tdist to summarize results

Examples

```r
result <- prob_tdist(df = 10, ub = 2.228)
plot(result, type = "values")
```
plot.prob_unif

Plot method for the probability calculator (uniform)

Description
Plot method for the probability calculator (uniform)

Usage
```r
## S3 method for class /quotesingle.Var
plot.prob_unif /quotesingle.Var

plot(x, type = "values", ...)  
```

Arguments
- `x`: Return value from `prob_unif`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also
- `prob_unif` to calculate results
- `summary.prob_unif` to summarize results

Examples
```r
result <- prob_unif(min = 0, max = 1, ub = 0.3)
plot(result, type = "values")
```

plot.single_mean

Plot method for the single_mean function

Description
Plot method for the single_mean function

Usage
```r
## S3 method for class 'single_mean'
plot.single_mean

plot(x, plots = "hist", shiny = FALSE, custom = FALSE, ...)  
```
plot.single_prop

Arguments

x
Return value from `single_mean`

plots
Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample mean and the confidence interval. "simulate" shows the location of the sample mean and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis

shiny
Did the function call originate inside a shiny app

custom
Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

...
Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

See Also

`single_mean` to generate the result

`summary.single_mean` to summarize results

Examples

```r
result <- single_mean(diamonds, "price", comp_value = 3500)
plot(result, plots = c("hist", "simulate"))
```

Description

Plot method for the single_prop function

Usage

```r
## S3 method for class 'single_prop'
plot(x, plots = "bar", shiny = FALSE, custom = FALSE, ...)
```
Arguments

x
Return value from `single_prop`

plots
Plots to generate. "bar" shows a bar chart of the data. The "simulate" chart shows the location of the sample proportion and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis

shiny
Did the function call originate inside a shiny app

custom
Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant

See Also

- `single_prop` to generate the result
- `summary.single_prop` to summarize the results

Examples

```r
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
plot(result, plots = c("bar", "simulate"))
```

print.rcorr

Print method for the correlation function

Description

Print method for the correlation function

Usage

```r
## S3 method for class 'rcorr'
print(x, ...)
```

Arguments

x
Return value from `correlation`

... further arguments passed to or from other methods
prob_binom

Probability calculator for the binomial distribution

Description

Probability calculator for the binomial distribution

Usage

prob_binom(n, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- **n**: Number of trials
- **p**: Probability
- **lb**: Lower bound on the number of successes
- **ub**: Upper bound on the number of successes
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_binom` to summarize results
- `plot.prob_binom` to plot results

Examples

```r
prob_binom(n = 10, p = 0.3, ub = 3)
```
Description

Probability calculator for the chi-squared distribution

Usage

prob_chisq(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

df Degrees of freedom
lb Lower bound (default is 0)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_chisq to summarize results
plot.prob_chisq to plot results

Examples

prob_chisq(df = 1, ub = 3.841)
prob_disc

Probability calculator for a discrete distribution

Description

Probability calculator for a discrete distribution

Usage

```r
prob_disc(v, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- `v`: Values
- `p`: Probabilities
- `lb`: Lower bound on the number of successes
- `ub`: Upper bound on the number of successes
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_disc` to summarize results
- `plot.prob_disc` to plot results

Examples

```r
prob_disc(v = 1:6, p = 1/6, pub = 0.95)
prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
```
Description

Probability calculator for the exponential distribution

Usage

```r
prob_expo(rate, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- `rate`: Rate
- `lb`: Lower bound (default is 0)
- `ub`: Upper bound (default is Inf)
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_expo` to summarize results
- `plot.prob_expo` to plot results

Examples

```r
prob_expo(rate = 1, ub = 2.996)
```
Probability calculator for the F-distribution

Description

Probability calculator for the F-distribution

Usage

prob_fdist(df1, df2, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

df1 Degrees of freedom
df2 Degrees of freedom
lb Lower bound (default is 0)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_fdist to summarize results
plot.prob_fdist to plot results

Examples

prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
Description

Probability calculator for the log normal distribution

Usage

prob_lnorm(meanlog, sdlog, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

meanlog Mean of the distribution on the log scale
sdlog Standard deviation of the distribution on the log scale
lb Lower bound (default is -Inf)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_lnorm to summarize results
plot.prob_lnorm to plot results

Examples

prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
prob_norm

Probability calculator for the normal distribution

Description

Probability calculator for the normal distribution

Usage

```r
prob_norm(mean, stdev, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- `mean`: Mean
- `stdev`: Standard deviation
- `lb`: Lower bound (default is -Inf)
- `ub`: Upper bound (default is Inf)
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_norm` to summarize results
- `plot.prob_norm` to plot results

Examples

```r
prob_norm(mean = 0, stdev = 1, ub = 0)
```
Description

Probability calculator for the poisson distribution

Usage

```r
prob_pois(lambda, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```n
Arguments

- `lambda` Rate
- `lb` Lower bound (default is 0)
- `ub` Upper bound (default is Inf)
- `plb` Lower probability bound
- `pub` Upper probability bound
- `dec` Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_pois` to summarize results
- `plot.prob_pois` to plot results

Examples

```r
prob_pois(lambda = 1, ub = 3)
```
Probability calculator for the t-distribution

Usage

\[
\text{prob_tdist}(\text{df}, \text{lb} = \text{NA}, \text{ub} = \text{NA}, \text{plb} = \text{NA}, \text{pub} = \text{NA}, \text{dec} = 3)
\]

Arguments

- **df**: Degrees of freedom
- **lb**: Lower bound (default is -Inf)
- **ub**: Upper bound (default is Inf)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_tdist` to summarize results
- `plot.prob_tdist` to plot results

Examples

\[
\text{prob_tdist}(\text{df} = 10, \text{ub} = 2.228)
\]
Description

Probability calculator for the uniform distribution

Usage

`prob_unif(min, max, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)`

Arguments

- `min`: Minimum value
- `max`: Maximum value
- `lb`: Lower bound (default = 0)
- `ub`: Upper bound (default = 1)
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

`summary.prob_unif` to summarize results

`plot.prob_unif` to plot results

Examples

`prob_unif(min = 0, max = 1, ub = 0.3)`
radiant.basics

Description
Launch radiant.basics in the default web browser

Usage
radiant.basics(state, ...)

Arguments
state Path to state file to load
... additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details
See https://radiant-rstats.github.io/docs/ for documentation and tutorials

Examples
Not run:
radiant.basics()
End(Not run)

radiant.basics_viewer
Launch radiant.basics in the Rstudio viewer

Description
Launch radiant.basics in the Rstudio viewer

Usage
radiant.basics_viewer(state, ...)

Arguments
state Path to state file to load
... additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details
See https://radiant-rstats.github.io/docs/ for documentation and tutorials
Examples

```r
## Not run:
radiant.basics_viewer()
## End(Not run)
```

```r
radiant.basics_window(state, ...)
```

Arguments

- `state` Path to state file to load
- `...` additional arguments to pass to shiny::runApp (e.g., port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

Examples

```r
## Not run:
radiant.basics_window()
## End(Not run)
```

```r
salary Salaries for Professors
```

Description

Salaries for Professors

Usage

```r
data(salary)
```

Format

A data frame with 397 rows and 6 variables
Details

2008-2009 nine-month salary for professors in a college in the US. Description provided in attr(salary,description)

single_mean

Compare a sample mean to a population mean

Description

Compare a sample mean to a population mean

Usage

single_mean(
 dataset,
 var,
 comp_value = 0,
 alternative = "two.sided",
 conf_lev = 0.95,
 data_filter = "",
 envir = parent.frame()
)

Arguments

dataset Dataset
var The variable selected for the mean comparison
comp_value Population value to compare to the sample mean
alternative The alternative hypothesis ("two.sided", "greater", or "less")
conf_lev Span for the confidence interval
data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

Value

A list of variables defined in single_mean as an object of class single_mean

See Also

summary.single_mean to summarize results
plot.single_mean to plot results
Examples

```r
single_mean(diamonds, "price") %>% str()
```

single_prop

Compare a sample proportion to a population proportion

Description

Compare a sample proportion to a population proportion

Usage

```r
single_prop(
  dataset,
  var,
  lev = "",
  comp_value = 0.5,
  alternative = "two.sided",
  conf_lev = 0.95,
  test = "binom",
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

- `dataset`
 Dataset
- `var`
 The variable selected for the proportion comparison
- `lev`
 The factor level selected for the proportion comparison
- `comp_value`
 Population value to compare to the sample proportion
- `alternative`
 The alternative hypothesis ("two.sided", "greater", or "less")
- `conf_lev`
 Span of the confidence interval
- `test`
 Binomial exact test ("binom") or Z-test ("z")
- `data_filter`
 Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- `envir`
 Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant

Value

A list of variables used in single_prop as an object of class single_prop
Description

Summary method for the `compare_means` function

Usage

```r
## S3 method for class 'compare_means'
summary(object, show = FALSE, dec = 3, ...)
```

Arguments

- `object`: Return value from `compare_means`
- `show`: Show additional output (i.e., t.value, df, and confidence interval)
- `dec`: Number of decimals to show
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

See Also

- `compare_means` to calculate results
- `plot.compare_means` to plot results

Examples

```r
result <- compare_means(diamonds, "cut", "price")
summary(result)
```
summary.compare_props Summary method for the compare_props function

Description

Summary method for the compare_props function

Usage

S3 method for class 'compare_props'
summary(object, show = FALSE, dec = 3, ...)

Arguments

object Return value from compare_props
show Show additional output (i.e., chisq.value, df, and confidence interval)
dec Number of decimals to show
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

compare_props to calculate results
plot.compare_props to plot results

Examples

result <- compare_props(titanic, "pclass", "survived")
summary(result)

summary.correlation Summary method for the correlation function

Description

Summary method for the correlation function

Usage

S3 method for class 'correlation'
summary(object, cutoff = 0, covar = FALSE, dec = 2, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Return value from <code>correlation</code></td>
</tr>
<tr>
<td>cutoff</td>
<td>Show only correlations larger than the cutoff in absolute value. Default is a cutoff of 0</td>
</tr>
<tr>
<td>covar</td>
<td>Show the covariance matrix (default is FALSE)</td>
</tr>
<tr>
<td>dec</td>
<td>Number of decimals to show</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods.</td>
</tr>
</tbody>
</table>

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

See Also

- `correlation` to calculate results
- `plot.correlation` to plot results

Examples

```r
result <- correlation(diamonds, c("price", "carat", "table"))
summary(result, cutoff = .3)
```

summary.cross_tabs
Summary method for the cross_tabs function

Description

Summary method for the cross_tabs function

Usage

```r
## S3 method for class 'cross_tabs'
summary(object, check = "", dec = 2, ...)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Return value from <code>cross_tabs</code></td>
</tr>
<tr>
<td>check</td>
<td>Show table(s) for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., (o - e) / e)</td>
</tr>
<tr>
<td>dec</td>
<td>Number of decimals to show</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods.</td>
</tr>
</tbody>
</table>
summary.goodness

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

See Also

cross_tabs to calculate results

plot.cross_tabs to plot results

Examples

```r
result <- cross_tabs(newspaper, "Income", "Newspaper")
summary(result, check = c("observed", "expected", "chi_sq"))
```

summary.goodness

Summary method for the goodness function

Description

Summary method for the goodness function

Usage

```r
## S3 method for class 'goodness'
summary(object, check = "", dec = 2, ...)
```

Arguments

- `object` Return value from `goodness`
- `check` Show table(s) for the selected variable (var). "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., (o - e) / e)
- `dec` Number of decimals to show
- `...` further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant
summary.prob_binom

See Also

goodness to calculate results
plot.goodness to plot results

Examples

result <- goodness(newspaper, "Income", c(.3, .7))
summary(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income", c(1/3, 2/3)) %>% summary("observed")

summary.prob_binom Summary method for the probability calculator (binomial)

Description

Summary method for the probability calculator (binomial)

Usage

S3 method for class 'prob_binom'
summary(object, type = "values", ...)

Arguments

object Return value from prob_binom
type Probabilities ("probs") or values ("values")
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_binom to calculate results
plot.prob_binom to plot results

Examples

result <- prob_binom(n = 10, p = 0.3, ub = 3)
summary(result, type = "values")
summary.prob_disc

Summary method for the probability calculator (discrete)

Description

Summary method for the probability calculator (discrete)

Usage

```r
## S3 method for class 'prob_disc'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_disc`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_disc` to calculate results
- `plot.prob_disc` to plot results

Examples

```r
result <- prob_disc(df = 1, ub = 3.841)
summary(result, type = "values")
```

summary.prob_chisq

Summary method for the probability calculator (Chi-squared distribution)

Description

Summary method for the probability calculator (Chi-squared distribution)

Usage

```r
## S3 method for class 'prob_chisq'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_chisq`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_chisq` to calculate results
- `plot.prob_chisq` to plot results

Examples

```r
result <- prob_chisq(df = 1, ub = 3.841)
summary(result, type = "values")
```
Arguments

object
 Return value from `prob_disc`

type
 Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_disc` to calculate results
- `plot.prob_disc` to plot results

Examples

```r
result <- prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
summary(result, type = "probs")
```

Summary method for the probability calculator (exponential)

Usage

```r
## S3 method for class 'prob_expo'
summary(object, type = "values", ...)
```

Arguments

object
 Return value from `prob_expo`

type
 Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
See Also

`prob_expo` to calculate results

`plot.prob_expo` to plot results

Examples

```r
result <- prob_expo(rate = 1, ub = 2.996)
summary(result, type = "values")
```

summary.prob_fdist

Summary method for the probability calculator (F-distribution)

Description

Summary method for the probability calculator (F-distribution)

Usage

```r
## S3 method for class 'prob_fdist'
summary(object, type = "values", ...)
```

Arguments

- **object**: Return value from `prob_fdist`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

`prob_fdist` to calculate results

`plot.prob_fdist` to plot results

Examples

```r
result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
summary(result, type = "values")
```
Summary method for the probability calculator (log normal)

Description

Summary method for the probability calculator (log normal)

Usage

```r
## S3 method for class 'prob_lnorm'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_norm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_lnorm` to calculate results
- `plot.prob_lnorm` to summarize results

Examples

```r
result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
summary(result, type = "values")
```

Summary method for the probability calculator (normal)

Description

Summary method for the probability calculator (normal)

Usage

```r
## S3 method for class 'prob_norm'
summary(object, type = "values", ...)
```
Arguments

object Return value from `prob_norm`

Arguments

object Return value from `prob_pois`

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_norm` to calculate results
- `plot.prob_norm` to plot results

Examples

```r
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
summary(result)
```

Description

Summary method for the probability calculator (poisson)

Usage

```r
## S3 method for class 'prob_pois'
summary(object, type = "values", ...)
```

Arguments

object Return value from `prob_pois`

type Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
See Also

prob_pois to calculate results
plot.prob_pois to plot results

Examples

result <- prob_pois(lambda = 1, ub = 3)
summary(result, type = "values")
summary.prob_unif

Summary method for the probability calculator (uniform)

Description

Summary method for the probability calculator (uniform)

Usage

```r
## S3 method for class /quotesingle.Var
prob_unif /quotesingle.Var

summary(object, type = "values", ...)
```

Arguments

- **object**: Return value from `prob_unif`
- **type**: Probabilities ("probs") or values ("values")
- **...**: Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_unif` to calculate results
- `plot.prob_unif` to plot results

Examples

```r
result <- prob_unif(min = 0, max = 1, ub = 0.3)
summary(result, type = "values")
```

summary.single_mean

Summary method for the single_mean function

Description

Summary method for the single_mean function

Usage

```r
## S3 method for class 'single_mean'
single_mean

summary(object, dec = 3, ...)
```
Arguments

object Return value from `single_mean`
dec Number of decimals to show
...
 further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

See Also

`single_mean` to generate the results

`plot.single_mean` to plot results

Examples

```r
result <- single_mean(diamonds, "price")
summary(result)
diamonds %>% single_mean("price") %>% summary()
```

```
summary.single_prop  Summary method for the single_prop function

Description

Summary method for the single_prop function

Usage

```r
S3 method for class 'single_prop'
summary(object, dec = 3, ...)
```

Arguments

object  Return value from `single_prop`
dec  Number of decimals to show
...
     further arguments passed to or from other methods

Details

See [https://radiant-rstats.github.io/docs/basics/single_prop.html](https://radiant-rstats.github.io/docs/basics/single_prop.html) for an example in Radiant
See Also

- `single_prop` to generate the results
- `plot.single_prop` to plot the results

Examples

```r
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
summary(result)
```
Index

* datasets
  consider, 7
demand_uk, 10
newspaper, 11
salary, 38
clt, 3, 12
cor2df, 7
correlation, 7, 8, 14, 15, 26, 43
cross_tabs, 9, 15, 16, 43, 44
demand_uk, 10
goodness, 10, 16, 17, 44, 45
newspaper, 11
plot.clt, 12
plot.compare_means, 4, 13, 41
plot.compare_props, 6, 13, 14, 42
consider, 7
plot.goodness, 11, 16, 45
plot.prob_binom, 17, 27, 45
plot.prob_disc, 19, 29, 47
prob_binom, 17, 27, 45
prob_chisq, 18, 28, 46
plot.prob_expo, 19, 30, 48
plot.prob_fdist, 20, 31, 48
plot.prob_lnorm, 21, 23, 32, 49
plot.prob_norm, 21, 33, 50
plot.prob_pois, 22, 34, 51
plot.prob_tdist, 23, 35, 51
plot.prob_unif, 24, 36, 52
plot.single_mean, 24, 39, 53
plot.single_prop, 25, 41, 54
print.rcorr, 26
prob_binom, 17, 27, 45
prob_chisq, 18, 28, 46
prob_disc, 19, 29, 47
prob_expo, 19, 20, 30, 47, 48
prob_fdist, 20, 31, 48
prob_lnorm, 21, 32, 49
prob_norm, 21, 22, 33, 49, 50
prob_pois, 22, 23, 34, 50, 51
prob_tdist, 23, 35, 51
prob_unif, 24, 36, 52
radiant.basics, 37
radiant.basics_viewer, 37
radiant.basics_window, 38
salary, 38
single_mean, 25, 39, 53
single_prop, 26, 40, 53, 54
summary.compare_means, 5, 13, 41
summary.compare_props, 7, 14, 42
summary.correlation, 9, 15, 42
summary.cross_tabs, 10, 16, 43
summary.goodness, 11, 17, 44
summary.prob_binom, 17, 27, 45
summary.prob_chisq, 18, 28, 46
summary.prob_disc, 19, 29, 46
summary.prob_expo, 20, 30, 47
summary.prob_fdist, 20, 31, 48
summary.prob_lnorm, 32, 49
summary.prob_norm, 22, 33, 49
summary.prob_pois, 23, 34, 50
summary.prob_tdist, 23, 35, 51
summary.prob_unif, 24, 36, 52
summary.single_mean, 25, 39, 52
summary.single_prop, 26, 41, 53

55