Package ‘radiant.basics’

March 24, 2020

Type Package

Title Basics Menu for Radiant: Business Analytics using R and Shiny

Version 1.3.4

Date 2020-3-23

Description The Radiant Basics menu includes interfaces for probability calculation, central limit theorem simulation, comparing means and proportions, goodness-of-fit testing, cross-tabs, and correlation. The application extends the functionality in radiant.data.

Depends R (>= 3.4.0), radiant.data (>= 1.2.0)

Imports ggplot2 (>= 2.2.1), scales (>= 0.4.0), dplyr (>= 0.8.3), tidyr (>= 0.8.2), magrittr (>= 1.5), shiny (>= 1.4.0), psych (>= 1.8.3.3), import (>= 1.1.0), lubridate (>= 1.7.4), polycor (>= 0.7.10), patchwork (>= 1.0.0)

Suggests testthat (>= 2.0.0), pkgdown (>= 1.1.0)

URL https://github.com/radiant-rstats/radiant.basics,
 https://radiant-rstats.github.io/radiant.basics,
 https://radiant-rstats.github.io/docs

BugReports https://github.com/radiant-rstats/radiant.basics/issues

License AGPL-3 | file LICENSE

LazyData true

Encoding UTF-8

Language en-US

RoxygenNote 7.1.0

NeedsCompilation no

Author Vincent Nijs [aut, cre]

Maintainer Vincent Nijs <radiant@rady.ucsd.edu>

Repository CRAN

Date/Publication 2020-03-24 07:30:02 UTC
R topics documented:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clt</td>
<td>3</td>
</tr>
<tr>
<td>compare_means</td>
<td>4</td>
</tr>
<tr>
<td>compare_props</td>
<td>6</td>
</tr>
<tr>
<td>consider</td>
<td>7</td>
</tr>
<tr>
<td>cor2df</td>
<td>7</td>
</tr>
<tr>
<td>correlation</td>
<td>8</td>
</tr>
<tr>
<td>cross_tabs</td>
<td>9</td>
</tr>
<tr>
<td>demand_uk</td>
<td>10</td>
</tr>
<tr>
<td>goodness</td>
<td>10</td>
</tr>
<tr>
<td>newspaper</td>
<td>11</td>
</tr>
<tr>
<td>plot.clt</td>
<td>12</td>
</tr>
<tr>
<td>plot.compare_means</td>
<td>12</td>
</tr>
<tr>
<td>plot.compare_props</td>
<td>13</td>
</tr>
<tr>
<td>plot.correlation</td>
<td>14</td>
</tr>
<tr>
<td>plot.cross_tabs</td>
<td>15</td>
</tr>
<tr>
<td>plot.goodness</td>
<td>16</td>
</tr>
<tr>
<td>plot.prob_binom</td>
<td>17</td>
</tr>
<tr>
<td>plot.prob_chisq</td>
<td>18</td>
</tr>
<tr>
<td>plot.prob_disc</td>
<td>18</td>
</tr>
<tr>
<td>plot.prob_exp</td>
<td>19</td>
</tr>
<tr>
<td>plot.prob_fdist</td>
<td>20</td>
</tr>
<tr>
<td>plot.prob_lnorm</td>
<td>21</td>
</tr>
<tr>
<td>plot.prob_norm</td>
<td>21</td>
</tr>
<tr>
<td>plot.prob_pois</td>
<td>22</td>
</tr>
<tr>
<td>plot.prob_tdist</td>
<td>23</td>
</tr>
<tr>
<td>plot.prob_unif</td>
<td>24</td>
</tr>
<tr>
<td>plot.single_mean</td>
<td>24</td>
</tr>
<tr>
<td>plot.single_prop</td>
<td>25</td>
</tr>
<tr>
<td>print.rcorr</td>
<td>26</td>
</tr>
<tr>
<td>prob_binom</td>
<td>27</td>
</tr>
<tr>
<td>prob_chisq</td>
<td>28</td>
</tr>
<tr>
<td>prob_disc</td>
<td>29</td>
</tr>
<tr>
<td>prob_exp</td>
<td>30</td>
</tr>
<tr>
<td>prob_fdist</td>
<td>31</td>
</tr>
<tr>
<td>prob_lnorm</td>
<td>32</td>
</tr>
<tr>
<td>prob_norm</td>
<td>33</td>
</tr>
<tr>
<td>prob_pois</td>
<td>34</td>
</tr>
<tr>
<td>prob_tdist</td>
<td>35</td>
</tr>
<tr>
<td>prob_unif</td>
<td>36</td>
</tr>
<tr>
<td>radiant.basics</td>
<td>37</td>
</tr>
<tr>
<td>radiant.basics_viewer</td>
<td>37</td>
</tr>
<tr>
<td>radiant.basics_window</td>
<td>38</td>
</tr>
<tr>
<td>salary</td>
<td>38</td>
</tr>
<tr>
<td>single_mean</td>
<td>39</td>
</tr>
<tr>
<td>single_prop</td>
<td>40</td>
</tr>
<tr>
<td>summary.compare_means</td>
<td>41</td>
</tr>
</tbody>
</table>
Central Limit Theorem simulation

Usage

```r
clt(
  dist,
  n = 100,
  m = 100,
  norm_mean = 0,
  norm_sd = 1,
  binom_size = 10,
  binom_prob = 0.2,
  unif_min = 0,
  unif_max = 1,
  expo_rate = 1
)
```

Arguments

- `dist` Distribution to simulate
- `n` Sample size
- `m` Number of samples
- `norm_mean` Mean for the normal distribution
compare_means

Description

Compare sample means

Usage

```r
compare_means(
  dataset,
  var1,
  var2,
  samples = "independent",
  alternative = "two.sided",
  conf_lev = 0.95,
  comb = "",
  adjust = "none",
  test = "t",
  data_filter = "",
  envir = parent.frame()
)
```
compare_means

Arguments

- **dataset**
 - Dataset

- **var1**
 - A numeric variable or factor selected for comparison

- **var2**
 - One or more numeric variables for comparison. If var1 is a factor only one variable can be selected and the mean of this variable is compared across (factor) levels of var1

- **samples**
 - Are samples independent ("independent") or not ("paired")

- **alternative**
 - The alternative hypothesis ("two.sided", "greater" or "less")

- **conf_lev**
 - Span of the confidence interval

- **comb**
 - Combinations to evaluate

- **adjust**
 - Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)

- **test**
 - t-test ("t") or Wilcox ("wilcox")

- **data_filter**
 - Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

- **envir**
 - Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class compare_means

See Also

- `summary.compare_means` to summarize results
- `plot.compare_means` to plot results

Examples

```
compare_means(diamonds, "cut", "price") %>% str()
```
compare_props

Compare sample proportions across groups

Description

Compare sample proportions across groups

Usage

```r
compare_props(
  dataset,
  var1,
  var2,
  levs = "",
  alternative = "two.sided",
  conf_lev = 0.95,
  comb = "",
  adjust = "none",
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

- `dataset` Dataset
- `var1` A grouping variable to split the data for comparisons
- `var2` The variable to calculate proportions for
- `levs` The factor level selected for the proportion comparison
- `alternative` The alternative hypothesis ("two.sided", "greater" or "less")
- `conf_lev` Span of the confidence interval
- `comb` Combinations to evaluate
- `adjust` Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
- `data_filter` Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- `envir` Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class compare_props
consider

See Also

- `summary.compare_props` to summarize results
- `plot.compare_props` to plot results

Examples

```r
compare_props(titanic, "pclass", "survived") %>% str()
```

consider

Car brand consideration

Description

Car brand consideration

Usage

```r
data(consider)
```

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in `attr(consider,"description")`

cor2df

Store a correlation matrix as a (long) data.frame

Description

Store a correlation matrix as a (long) data.frame

Usage

```r
cor2df(object, labels = c("label1", "label2"), ...)
```

Arguments

- `object`: Return value from `correlation`
- `labels`: Column names for the correlation pairs
- `...`: further arguments passed to or from other methods
correlation

Details

Return the correlation matrix as a (long) data.frame. See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

correlation

Calculate correlations for two or more variables

Description

Calculate correlations for two or more variables

Usage

```r
correlation(
  dataset,
  vars = "",
  method = "pearson",
  hcor = FALSE,
  hcor_se = FALSE,
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

- `dataset`: Dataset
- `vars`: Variables to include in the analysis. Default is all but character and factor variables with more than two unique values are removed
- `method`: Type of correlations to calculate. Options are "pearson", "spearman", and "kendall". "pearson" is the default
- `hcor`: Use polycor::hetcor to calculate the correlation matrix
- `hcor_se`: Calculate standard errors when using polycor::hetcor
- `data_filter`: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- `envir`: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class compare_means
cross_tabs

See Also

summary.correlation to summarize results
plot.correlation to plot results

Examples

correlation(diamonds, c("price", "carat")) %>% str()
correlation(diamonds, "x:z") %>% str()

cross_tabs

Evaluate associations between categorical variables

Description

Evaluate associations between categorical variables

Usage

cross_tabs(
 dataset,
 var1,
 var2,
 tab = NULL,
 data_filter = "",
 envir = parent.frame()
)

Arguments

dataset: Dataset (i.e., a data.frame or table)
var1: A categorical variable
var2: A categorical variable
tab: Table with frequencies as alternative to dataset
data_filter: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

Value

A list of all variables used in cross_tabs as an object of class cross_tabs
See Also

- `summary.cross_tabs` to summarize results
- `plot.cross_tabs` to plot results

Examples

```r
cross_tabs(newspaper, "Income", "Newspaper") %>% str()
table(select(newspaper, Income, Newspaper)) %>% cross_tabs(tab = .)
```

demand_uk

<table>
<thead>
<tr>
<th>Demand in the UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand in the UK</td>
</tr>
</tbody>
</table>

Description

Demand in the UK

Usage

data(demand_uk)

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in `attr(demand_uk,"description")`

goodness

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Description

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Usage

```r
goodness(
  dataset,  # dataset object
  var,      # name of the variable in the dataset
  p = NULL, # hypothesized probability distribution
  tab = NULL, # table object
  data_filter = "", # filter for data selection
  envir = parent.frame()  # environment
)
```
newspaper

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dataset</td>
<td>Dataset</td>
</tr>
<tr>
<td>var</td>
<td>A categorical variable</td>
</tr>
<tr>
<td>p</td>
<td>Hypothesized distribution as a number, fraction, or numeric vector. If unspecified, defaults to an even distribution</td>
</tr>
<tr>
<td>tab</td>
<td>Table with frequencies as alternative to dataset</td>
</tr>
<tr>
<td>data_filter</td>
<td>Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")</td>
</tr>
<tr>
<td>envir</td>
<td>Environment to extract data from</td>
</tr>
</tbody>
</table>

Details

See https://radiant-rstats.github.io/docs/basics/goodness.html for an example in Radiant

Value

A list of all variables used in goodness as an object of class goodness

See Also

summary.goodness to summarize results
plot.goodness to plot results

Examples

goodness(newspaper, "Income") %>% str()
goodness(newspaper, "Income", p = c(3/4, 1/4)) %>% str()
table(select(newspaper, Income)) %>% goodness(tab = .)

description

Newspaper readership

Usage

data(newspaper)

Format

A data frame with 580 rows and 2 variables
Details

Newspaper readership data for 580 consumers. Description provided in attr(newspaper,"description")

plot.clt

Plot method for the Central Limit Theorem simulation

Description

Plot method for the Central Limit Theorem simulation

Usage

```r
## S3 method for class 'clt'
plot(x, stat = "sum", bins = 15, ...)
```

Arguments

- `x`: Return value from `clt`
- `stat`: Statistic to use (sum or mean)
- `bins`: Number of bins to use
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Examples

```r
clt("Uniform", 100, 100, unif_min = 10, unif_max = 20) %>% plot()
```

plot.compare_means

Plot method for the compare_means function

Description

Plot method for the compare_means function

Usage

```r
## S3 method for class 'compare_means'
plot(x, plots = "scatter", shiny = FALSE, custom = FALSE, ...)
```
Arguments

\textit{x} \quad \text{Return value from \texttt{compare_means}}

\textit{plots} \quad \text{One or more plots ("bar", "density", "box", or "scatter")}

\textit{shiny} \quad \text{Did the function call originate inside a shiny app}

\textit{custom} \quad \text{Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org for options.}

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

See Also

\texttt{compare_means} to calculate results

\texttt{summary.compare_means} to summarize results

Examples

result <- compare_means(diamonds, "cut", "price")
plot(result, plots = c("bar", "density"))
custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

correlation to calculate results
summary.compare_props to summarize results

details

Examples

result <- compare_props(titanic, "pclass", "survived")
plot(result, plots = c("bar", "dodge"))

plot.correlation Plot method for the correlation function

Description

Plot method for the correlation function

Usage

S3 method for class 'correlation'
plot(x, nrobs = -1, jit = c(0, 0), dec = 2, ...)

Arguments

x Return value from correlation
nrobs Number of data points to show in scatter plots (-1 for all)
jit A numeric vector that determines the amount of jittering to apply to the x and y variables in a scatter plot. Default is 0. Use, e.g., 0.3 to add some jittering
dec Number of decimals to show
... further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant
See Also

- **correlation** to calculate results
- **summary.correlation** to summarize results

Examples

```r
result <- correlation(diamonds, c("price", "carat", "table"))
plot(result)
```

plot.cross_tabs
Plot method for the cross_tabs function

Description

Plot method for the cross_tabs function

Usage

```r
## S3 method for class 'cross_tabs'
plot(x, check = "", shiny = FALSE, custom = FALSE, ...)
```

Arguments

- **x**
 Return value from `cross_tabs`

- **check**
 Show plots for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., \((o - e)^2 / e\)), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., \((o - e) / sqrt(e)\)), and "row_perc", "col_perc", and "perc" for row, column, and table percentages respectively

- **shiny**
 Did the function call originate inside a shiny app

- **custom**
 Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org for options.

- **...**
 further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant
See Also

cross_tabs to calculate results

summary.cross_tabs to summarize results

Examples

result <- cross_tabs(newspaper, "Income", "Newspaper")
plot(result, check = c("observed", "expected", "chi_sq"))

plot.goodness

Plot method for the goodness function

Description

Plot method for the goodness function

Usage

S3 method for class 'goodness'
plot(x, check = ",", fillcol = "blue", shiny = FALSE, custom = FALSE, ...)

Arguments

x
check
fillcol
shiny
custom

Return value from goodness
Show plots for variable var. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., \((o - e)^2 / e\)), and "dev_std" for the standardized differences between the observed and expected frequencies (i.e., \((o - e) / \sqrt{e})\)
Color used for bar plots
Did the function call originate inside a shiny app
Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant
See Also

goodness to calculate results
summary.goodness to summarize results

Examples

result <- goodness(newspaper, "Income")
plot(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income") %>% plot(c("observed", "expected"))

plot.prob_binom

Plot method for the probability calculator (binomial)

Description

Plot method for the probability calculator (binomial)

Usage

S3 method for class 'prob_binom'
plot(x, type = "values", ...)

Arguments

x
Return value from prob_binom

type
Probabilities ("probs") or values ("values")

...
further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_binom to calculate results
summary.prob_binom to summarize results

Examples

result <- prob_binom(n = 10, p = 0.3, ub = 3)
plot(result, type = "values")
plot.prob_chisq

Plot method for the probability calculator (Chi-squared distribution)

Description
Plot method for the probability calculator (Chi-squared distribution)

Usage

S3 method for class 'prob_chisq'
plot(x, type = "values", ...)

Arguments

x
Return value from prob_chisq
type
Probabilities ("probs") or values ("values")
...
further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also
prob.chisq to calculate results
summary.prob_chisq to summarize results

Examples

result <- prob_chisq(df = 1, ub = 3.841)
plot(result, type = "values")

plot.prob_disc

Plot method for the probability calculator (discrete)

Description
Plot method for the probability calculator (discrete)

Usage

S3 method for class 'prob_disc'
plot(x, type = "values", ...)
plot.prob_expo

Arguments

x Return value from prob_disc
type Probabilities ("probs") or values ("values")
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_disc to calculate results
summary.prob_disc to summarize results

Examples

result <- prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
plot(result, type = "probs")
plot.prob_fdist

See Also

prob_expo to calculate results
summary.prob_expo to summarize results

Examples

result <- prob_expo(rate = 1, ub = 2.996)
plot(result, type = "values")

plot.prob_fdist

Plot method for the probability calculator (F-distribution)

Description

Plot method for the probability calculator (F-distribution)

Usage

S3 method for class 'prob_fdist'
plot(x, type = "values", ...)

Arguments

x
Return value from prob_fdist

type
Probabilities ("probs") or values ("values")

...
further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_fdist to calculate results
summary.prob_fdist to summarize results

Examples

result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
plot(result, type = "values")
Description

Plot method for the probability calculator (log normal)

Usage

S3 method for class 'prob_lnorm'
plot(x, type = "values", ...)

Arguments

x Return value from prob_lnorm

- type Probabilities ("probs") or values ("values")
- ... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- prob_lnorm to calculate results
- plot.prob_lnorm to plot results

Examples

result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
plot(result, type = "values")

Description

Plot method for the probability calculator (normal)

Usage

S3 method for class 'prob_norm'
plot(x, type = "values", ...)
Arguments

x
Return value from `prob_norm`

`type`

Probabilities ("probs") or values ("values")

`...

`further arguments passed to or from other methods`

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

`prob_norm` to calculate results

`summary.prob_norm` to summarize results

Examples

```r
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
plot(result)
```

plot.prob_pois
Plot method for the probability calculator (poisson)

Description

Plot method for the probability calculator (poisson)

Usage

```r
## S3 method for class 'prob_pois'
plot(x, type = "values", ...)
```

Arguments

- `x`
Return value from `prob_pois`

- `type`

Probabilities ("probs") or values ("values")

- `...

`further arguments passed to or from other methods`

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
Description

Plot method for the probability calculator (t-distribution)

Usage

```r
## S3 method for class 'prob_tdist'
plot(x, type = "values", ...)
```

Arguments

- **x**: Return value from `prob_tdist`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_tdist` to calculate results
- `summary.prob_tdist` to summarize results

Examples

```r
result <- prob_tdist(df = 10, ub = 2.228)
plot(result, type = "values")
```
plot.prob_unif

Plot method for the probability calculator (uniform)

Description

Plot method for the probability calculator (uniform)

Usage

```r
## S3 method for class 'prob_unif'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_unif`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_unif` to calculate results
- `summary.prob_unif` to summarize results

Examples

```r
result <- prob_unif(min = 0, max = 1, ub = 0.3)
plot(result, type = "values")
```

plot.single_mean

Plot method for the single_mean function

Description

Plot method for the single_mean function

Usage

```r
## S3 method for class 'single_mean'
plot(x, plots = "hist", shiny = FALSE, custom = FALSE, ...)
```
plot.single_prop

Arguments

x

Return value from \texttt{single_mean}

plots

Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample mean and the confidence interval. "simulate" shows the location of the sample mean and the comparison value (\texttt{comp_value}). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis

shiny

Did the function call originate inside a shiny app

custom

Logical (TRUE, FALSE) to indicate if \texttt{ggplot} object (or list of \texttt{ggplot} objects) should be returned. This option can be used to customize plots (e.g., add a title, change \texttt{x} and \texttt{y} labels, etc.). See examples and \url{http://docs.ggplot2.org} for options.

...

further arguments passed to or from other methods

Details

See \url{https://radiant-rstats.github.io/docs/basics/single_mean.html} for an example in Radiant

See Also

\texttt{single_mean} to generate the result

\texttt{summary.single_mean} to summarize results

Examples

result <- \texttt{single_mean}(diamonds, "price", \texttt{comp_value} = 3500)
plot(result, plots = \texttt{c("hist", "simulate")})

plot.single_prop \hspace{1cm} \textit{Plot method for the single_prop function}

Description

Plot method for the single_prop function

Usage

\texttt{## S3 method for class 'single_prop'}
\texttt{plot(x, plots = "bar", shiny = FALSE, custom = FALSE, \ldots)}
Arguments

x

Return value from `single_prop`

plots

Plots to generate. "bar" shows a bar chart of the data. The "simulate" chart shows the location of the sample proportion and the comparison value (`comp_value`). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis.

shiny

Did the function call originate inside a shiny app

custom

Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and http://docs.ggplot2.org for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant

See Also

`single_prop` to generate the result

`summary.single_prop` to summarize the results

Examples

```r
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
plot(result, plots = c("bar", "simulate"))
```

print.rcorr

Print method for the correlation function

Description

Print method for the correlation function

Usage

```r
## S3 method for class 'rcorr'
print(x, 
```

Arguments

x

Return value from `correlation`

... further arguments passed to or from other methods
Description

Probability calculator for the binomial distribution

Usage

prob_binom(n, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- **n**: Number of trials
- **p**: Probability
- **lb**: Lower bound on the number of successes
- **ub**: Upper bound on the number of successes
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_binom` to summarize results
- `plot.prob_binom` to plot results

Examples

- `prob_binom(n = 10, p = 0.3, ub = 3)`
Description

Probability calculator for the chi-squared distribution

Usage

```r
prob_chisq(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- `df`: Degrees of freedom
- `lb`: Lower bound (default is 0)
- `ub`: Upper bound (default is Inf)
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_chisq` to summarize results
- `plot.prob_chisq` to plot results

Examples

```r
prob_chisq(df = 1, ub = 3.841)
```
prob_disc

Probability calculator for a discrete distribution

Description

Probability calculator for a discrete distribution

Usage

```r
prob_disc(v, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- **v**: Values
- **p**: Probabilities
- **lb**: Lower bound on the number of successes
- **ub**: Upper bound on the number of successes
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_disc` to summarize results
- `plot.prob_disc` to plot results

Examples

```r
prob_disc(v = 1:6, p = 1/6, pub = 0.95)
prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
```
prob_expo

Probability calculator for the exponential distribution

Description

Probability calculator for the exponential distribution

Usage

```r
prob_expo(rate, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- **rate**: Rate
- **lb**: Lower bound (default is 0)
- **ub**: Upper bound (default is Inf)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_expo` to summarize results
- `plot.prob_expo` to plot results

Examples

```r
prob_expo(rate = 1, ub = 2.996)
```
Description

Probability calculator for the F-distribution

Usage

`prob_fdist(df1, df2, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)`

Arguments

- `df1`: Degrees of freedom
- `df2`: Degrees of freedom
- `lb`: Lower bound (default is 0)
- `ub`: Upper bound (default is Inf)
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_fdist` to summarize results
- `plot.prob_fdist` to plot results

Examples

`prob_fdist(df1 = 10, df2 = 10, ub = 2.978)`
prob_lnorm
Probability calculator for the log normal distribution

Description

Probability calculator for the log normal distribution

Usage

```r
prob_lnorm(meanlog, sdlog, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- `meanlog`: Mean of the distribution on the log scale
- `sdlog`: Standard deviation of the distribution on the log scale
- `lb`: Lower bound (default is -Inf)
- `ub`: Upper bound (default is Inf)
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_lnorm` to summarize results
- `plot.prob_lnorm` to plot results

Examples

```r
prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
```
prob_norm

Description

Probability calculator for the normal distribution

Usage

prob_norm(mean, stdev, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- **mean**: Mean
- **stdev**: Standard deviation
- **lb**: Lower bound (default is -Inf)
- **ub**: Upper bound (default is Inf)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_norm` to summarize results
- `plot.prob_norm` to plot results

Examples

prob_norm(mean = 0, stdev = 1, ub = 0)
prob_pois

Probability calculator for the poisson distribution

Description

Probability calculator for the poisson distribution

Usage

prob_pois(lambda, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- **lambda**: Rate
- **lb**: Lower bound (default is 0)
- **ub**: Upper bound (default is Inf)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_pois` to summarize results
- `plot.prob_pois` to plot results

Examples

prob_pois(lambda = 1, ub = 3)
Description

Probability calculator for the t-distribution

Usage

```r
prob_tdist(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- **df**: Degrees of freedom
- **lb**: Lower bound (default is -Inf)
- **ub**: Upper bound (default is Inf)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_tdist` to summarize results
- `plot.prob_tdist` to plot results

Examples

```r
prob_tdist(df = 10, ub = 2.228)
```
Description

Probability calculator for the uniform distribution

Usage

prob_unif(min, max, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- min: Minimum value
- max: Maximum value
- lb: Lower bound (default = 0)
- ub: Upper bound (default = 1)
- plb: Lower probability bound
- pub: Upper probability bound
- dec: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_unif` to summarize results
- `plot.prob_unif` to plot results

Examples

prob_unif(min = 0, max = 1, ub = 0.3)
radiant.basics

Description
Launch radiant.basics in the default web browser

Usage
radiant.basics(state, ...)

Arguments
state Path to state file to load
... additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details
See https://radiant-rstats.github.io/docs for documentation and tutorials

Examples
Not run:
radiant.basics()
End(Not run)

radiant.basics_viewer

Description
Launch radiant.basics in the Rstudio viewer

Usage
radiant.basics_viewer(state, ...)

Arguments
state Path to state file to load
... additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details
See https://radiant-rstats.github.io/docs for documentation and tutorials
Examples

Not run:
radiant.basics_viewer()

End(Not run)

radiant.basics_window Launch radiant.basics in an Rstudio window

Description

Launch radiant.basics in an Rstudio window

Usage

radiant.basics_window(state, ...)

Arguments

state Path to state file to load
...
additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details

See https://radiant-rstats.github.io/docs for documentation and tutorials

Examples

Not run:
radiant.basics_window()

End(Not run)

salary Salaries for Professors

Description

Salaries for Professors

Usage

data(salary)

Format

A data frame with 397 rows and 6 variables
single_mean

Details

2008-2009 nine-month salary for professors in a college in the US. Description provided in attr(salary,description)

single_mean

Compare a sample mean to a population mean

Description

Compare a sample mean to a population mean

Usage

single_mean(
 dataset,
 var,
 comp_value = 0,
 alternative = "two.sided",
 conf_lev = 0.95,
 data_filter = "",
 envir = parent.frame()
)

Arguments

dataset: Dataset
var: The variable selected for the mean comparison
comp_value: Population value to compare to the sample mean
alternative: The alternative hypothesis ("two.sided", "greater", or "less")
conf_lev: Span for the confidence interval
data_filter: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
envir: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

Value

A list of variables defined in single_mean as an object of class single_mean

See Also

summary.single_mean to summarize results
plot.single_mean to plot results
Examples

```r
close(mean(diamonds, "price") %>% str()
```

single_prop

Compare a sample proportion to a population proportion

Description

Compare a sample proportion to a population proportion

Usage

```r
single_prop(
  dataset,
  var,
  lev = "",
  comp_value = 0.5,
  alternative = "two.sided",
  conf_lev = 0.95,
  test = "binom",
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

- `dataset`: Dataset
- `var`: The variable selected for the proportion comparison
- `lev`: The factor level selected for the proportion comparison
- `comp_value`: Population value to compare to the sample proportion
- `alternative`: The alternative hypothesis ("two.sided", "greater", or "less")
- `conf_lev`: Span of the confidence interval
- `test`: Binomial exact test ("binom") or Z-test ("z")
- `data_filter`: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- `envir`: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant

Value

A list of variables used in single_prop as an object of class single_prop
Summary method for the compare_means function

Arguments

object Return value from compare_means
show Show additional output (i.e., t.value, df, and confidence interval)
dec Number of decimals to show
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

See Also

calculate_means to calculate results
plot.compare_means to plot results

Examples

result <- compare_means(diamonds, "cut", "price")
summary(result)
Summary

Summary method for the `compare_props` function

Usage

```r
## S3 method for class 'compare_props'
summary(object, show = FALSE, dec = 3, ...)
```

Arguments

- `object`: Return value from `compare_props`
- `show`: Show additional output (i.e., chisq.value, df, and confidence interval)
- `dec`: Number of decimals to show
- `...`: Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

- `compare_props` to calculate results
- `plot.compare_props` to plot results

Examples

```r
result <- compare_props(titanic, "pclass", "survived")
summary(result)
```

Summary

Summary method for the `correlation` function

Usage

```r
## S3 method for class 'correlation'
summary(object, cutoff = 0, covar = FALSE, dec = 2, ...)
```
Arguments

object Return value from `correlation`
cutoff Show only correlations larger than the cutoff in absolute value. Default is a
cutoff of 0
covar Show the covariance matrix (default is FALSE)
dec Number of decimals to show
... further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

See Also

correlation to calculate results
plot.correlation to plot results

Examples

```r
result <- correlation(diamonds, c("price", "carat", "table"))
summary(result, cutoff = .3)
```

```r
summary.cross_tabs  Summary method for the cross_tabs function

Description

Summary method for the cross_tabs function

Usage

```r
S3 method for class 'cross_tabs'
summary(object, check = "", dec = 2, ...)
```

Arguments

object  Return value from `cross_tabs`
check  Show table(s) for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., (o - e) / e)
dec  Number of decimals to show
...  further arguments passed to or from other methods.
summary.goodness

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant.

See Also

cross_tabs to calculate results
plot.cross_tabs to plot results

Examples

result <- cross_tabs(newspaper, "Income", "Newspaper")
summary(result, check = c("observed", "expected", "chi_sq"))

summary.goodness

Summary method for the goodness function

Description

Summary method for the goodness function

Usage

## S3 method for class 'goodness'
summary(object, check = "", dec = 2, ...)

Arguments

object
check
dec
...      Return value from goodness
Show table(s) for the selected variable (var). "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., (o - e) / e)
Number of decimals to show
further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant
**summary.prob_binom**

**See Also**

- `goodness` to calculate results
- `plot.goodness` to plot results

**Examples**

```r
result <- goodness(newspaper, "Income", c(.3, .7))
summary(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income", c(1/3, 2/3)) %>% summary("observed")
```

**summary.prob_binom**  
*Summary method for the probability calculator (binomial)*

**Description**

Summary method for the probability calculator (binomial)

**Usage**

```r
S3 method for class 'prob_binom'
summary(object, type = "values", ...)
```

**Arguments**

- `object`: Return value from `prob_binom`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

**Details**

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

**See Also**

- `prob_binom` to calculate results
- `plot.prob_binom` to plot results

**Examples**

```r
result <- prob_binom(n = 10, p = 0.3, ub = 3)
summary(result, type = "values")
```
summary.prob_chisq

Summary method for the probability calculator (Chi-squared distribution)

Description

Summary method for the probability calculator (Chi-squared distribution)

Usage

## S3 method for class 'prob_chisq'
summary(object, type = "values", ...)

Arguments

object
Return value from prob_chisq

type
Probabilities ("probs") or values ("values")

... 
进一步的 arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_chisq to calculate results

plot.prob_chisq to plot results

Examples

result <- prob_chisq(df = 1, ub = 3.841)
summary(result, type = "values")

summary.prob_disc

Summary method for the probability calculator (discrete)

Description

Summary method for the probability calculator (discrete)

Usage

## S3 method for class 'prob_disc'
summary(object, type = "values", ...)

Examples

result <- prob_disc(df = 1, ub = 3.841)
summary(result, type = "values"
Arguments

object Return value from `prob_disc`

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Return value from <code>prob_disc</code></td>
</tr>
<tr>
<td>type</td>
<td>Probabilities (&quot;probs&quot;) or values (&quot;values&quot;)</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods</td>
</tr>
</tbody>
</table>

Details

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

See Also

- `prob_disc` to calculate results
- `plot.prob_disc` to plot results

Examples

```r
result <- prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
summary(result, type = "probs")
```

Description

Summary method for the probability calculator (exponential)

Usage

```r
S3 method for class 'prob_expo'
summary(object, type = "values", ...)
```

Arguments

<table>
<thead>
<tr>
<th>Arguments</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Return value from <code>prob_expo</code></td>
</tr>
<tr>
<td>type</td>
<td>Probabilities (&quot;probs&quot;) or values (&quot;values&quot;)</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods</td>
</tr>
</tbody>
</table>

Details

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant
See Also

prob_expo to calculate results
plot.prob_expo to plot results

Examples

result <- prob_expo(rate = 1, ub = 2.996)
summary(result, type = "values")

summary.prob_fdist
Summary method for the probability calculator (F-distribution)

Description

Summary method for the probability calculator (F-distribution)

Usage

## S3 method for class 'prob_fdist'
summary(object, type = "values", ...)

Arguments

object Return value from prob_fdist
type Probabilities ("probs") or values ("values")
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_fdist to calculate results
plot.prob_fdist to plot results

Examples

result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
summary(result, type = "values")
**summary.prob_lnorm**  
*Summary method for the probability calculator (log normal)*

**Description**

Summary method for the probability calculator (log normal)

**Usage**

```r
S3 method for class 'prob_lnorm'
summary(object, type = "values",
```

**Arguments**

- `object`: Return value from `prob_lnorm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

**Details**

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

**See Also**

- `prob_lnorm` to calculate results
- `plot.prob_lnorm` to summarize results

**Examples**

```r
result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
summary(result, type = "values")
```

---

**summary.prob_norm**  
*Summary method for the probability calculator (normal)*

**Description**

Summary method for the probability calculator (normal)

**Usage**

```r
S3 method for class 'prob_norm'
summary(object, type = "values",
```

**Arguments**

- `object`: Return value from `prob_norm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

**Examples**

```r
result <- prob_norm(mean = 0, sd = 1, lb = 0, ub = 1)
summary(result, type = "values")
```
Arguments

object

Return value from `prob_norm`

type

Probabilities ("probs") or values ("values")

...

further arguments passed to or from other methods

Details

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

See Also

`prob_norm` to calculate results

`plot.prob_norm` to plot results

Examples

```r
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
summary(result)
```

---

**summary.prob_pois**  
*Summary method for the probability calculator (poisson)*

Description

Summary method for the probability calculator (poisson)

Usage

```r
S3 method for class 'prob_pois'
summary(object, type = "values", ...)
```

Arguments

object

Return value from `prob_pois`

type

Probabilities ("probs") or values ("values")

...

further arguments passed to or from other methods

Details

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant
See Also

prob_pois to calculate results
plot.prob_pois to plot results

Examples

result <- prob_pois(lambda = 1, ub = 3)
summary(result, type = "values")

## S3 method for class 'prob_tdist'
summary(object, type = "values", ...)

Arguments

object Return value from prob_tdist
type Probabilities ("probs") or values ("values")
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_tdist to calculate results
plot.prob_tdist to plot results

Examples

result <- prob_tdist(df = 10, ub = 2.228)
summary(result, type = "values")
### summary.prob_unif

**Summary method for the probability calculator (uniform)**

**Description**

Summary method for the probability calculator (uniform)

**Usage**

```r
S3 method for class 'prob_unif'
summary(object, type = "values", ...)
```

**Arguments**

- `object`: Return value from `prob_unif`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

**Details**

See [https://radiant-rstats.github.io/docs/basics/prob_calc.html](https://radiant-rstats.github.io/docs/basics/prob_calc.html) for an example in Radiant

**See Also**

- `prob_unif` to calculate results
- `plot.prob_unif` to plot results

**Examples**

```r
result <- prob_unif(min = 0, max = 1, ub = 0.3)
summary(result, type = "values")
```

---

### summary.single_mean

**Summary method for the single_mean function**

**Description**

Summary method for the single_mean function

**Usage**

```r
S3 method for class 'single_mean'
summary(object, dec = 3, ...)
```
Arguments

object Return value from `single_mean`
dec Number of decimals to show
...

Details

See [https://radiant-rstats.github.io/docs/basics/single_mean.html](https://radiant-rstats.github.io/docs/basics/single_mean.html) for an example in Radiant

See Also

- `single_mean` to generate the results
- `plot.single_mean` to plot results

Examples

```r
result <- single_mean(diamonds, "price")
summary(result)
diamonds %>% single_mean("price") %>% summary()
```

Description

Summary method for the single_prop function

Usage

```r
S3 method for class 'single_prop'
summary(object, dec = 3, ...)
```

Arguments

object Return value from `single_prop`
dec Number of decimals to show
...

Details

See [https://radiant-rstats.github.io/docs/basics/single_prop.html](https://radiant-rstats.github.io/docs/basics/single_prop.html) for an example in Radiant
See Also

- `single_prop` to generate the results
- `plot.single_prop` to plot the results

Examples

```
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
summary(result)
```
Index

*Topic **datasets**
  - consider, 7
  - demand_uk, 10
  - newspaper, 11
  - salary, 38

  - clt, 3, 12
  - compare_means, 4, 13, 41
  - compare_props, 6, 13, 14, 42
  - consider, 7
  - cor2df, 7
  - correlation, 7, 8, 14, 15, 26, 43
  - cross_tabs, 9, 15, 16, 43, 44

  - demand_uk, 10

  - goodness, 10, 16, 17, 44, 45

  - newspaper, 11

  - plot.clt, 12
  - plot.compare_means, 5, 12, 41
  - plot.compare_props, 7, 13, 42
  - plot.correlation, 9, 14, 43
  - plot.cross_tabs, 10, 15, 44
  - plot.goodness, 11, 16, 45
  - plot.prob_binom, 17, 27, 45
  - plot.prob_chisq, 18, 28, 46
  - plot.prob_disc, 18, 29, 47
  - plot.prob_expo, 19, 30, 48
  - plot.prob_fdist, 20, 31, 48
  - plot.prob_lnorm, 21, 22, 32, 49
  - plot.prob_norm, 22, 23, 33, 50
  - plot.prob_pois, 22, 34, 51
  - plot.prob_tdist, 23, 35, 51
  - plot.prob_unif, 24, 36, 52
  - plot.single_mean, 25, 41, 53
  - print.rcorr, 26

  - prob_binom, 17, 27, 45
  - prob_chisq, 18, 28, 46

  - prob_disc, 19, 29, 47
  - prob_expo, 19, 20, 30, 47, 48
  - prob_fdist, 20, 31, 48
  - prob_lnorm, 21, 32, 49
  - prob_norm, 21, 22, 33, 49, 50
  - prob_pois, 22, 23, 34, 50, 51
  - prob_tdist, 23, 35, 51
  - prob_unif, 24, 36, 52

  - radiant.basics, 37
  - radiant.basics_viewer, 37
  - radiant.basics_window, 38

  - salary, 38
  - single_mean, 25, 39, 53
  - single_prop, 26, 40, 53, 54
  - summary.compare_means, 5, 13, 41
  - summary.compare_props, 7, 14, 42
  - summary.correlation, 9, 15, 42
  - summary.cross_tabs, 10, 16, 43
  - summary.goodness, 11, 17, 44
  - summary.prob_binom, 17, 27, 45
  - summary.prob_chisq, 18, 28, 46
  - summary.prob_disc, 19, 29, 46
  - summary.prob_expo, 20, 30, 47
  - summary.prob_fdist, 20, 31, 48
  - summary.prob_lnorm, 32, 49
  - summary.prob_norm, 22, 33, 49
  - summary.prob_pois, 23, 34, 50
  - summary.prob_tdist, 23, 35, 51
  - summary.prob_unif, 24, 36, 52
  - summary.single_mean, 25, 39, 52
  - summary.single_prop, 26, 41, 53

Page 55