Package ‘radiant.basics’

May 15, 2024

Type Package

Title Basics Menu for Radiant: Business Analytics using R and Shiny

Version 1.6.6

Date 2024-5-14

Description The Radiant Basics menu includes interfaces for probability calculation, central limit theorem simulation, comparing means and proportions, goodness-of-fit testing, cross-tabs, and correlation. The application extends the functionality in ‘radiant.data’.

Depends R (> = 4.3.0), radiant.data (> = 1.6.6)

Imports ggplot2 (> = 2.2.1), scales (> = 0.4.0), dplyr (> = 1.0.7), tidyr (> = 0.8.2), magrittr (> = 1.5), shiny (> = 1.8.1), psych (> = 1.8.3.3), import (> = 1.1.0), lubridate (> = 1.7.4), polycor (> = 0.7.10), patchwork (> = 1.0.0), rlang (> = 1.0.6)

Suggests testthat (> = 2.0.0), pkgdown (> = 1.1.0), markdown (> = 1.3)

BugReports https://github.com/radiant-rstats/radiant.basics/issues/

License AGPL-3 | file LICENSE

LazyData true

Encoding UTF-8

Language en-US

RoxygenNote 7.3.1

NeedsCompilation no

Author Vincent Nijs [aut, cre]

Maintainer Vincent Nijs <radiant@rady.ucsd.edu>

Repository CRAN

Date/Publication 2024-05-15 04:30:07 UTC
R topics documented:

clt ... 3
compare_means ... 4
compare Props ... 6
consider ... 7
cor2df .. 7
correlation .. 8
cross_tabs ... 9
demand_uk ...10
goodness ...10
newspaper ...11
plot.clt ..12
plot.compare_means ..12
plot.compare_props ...13
plot.correlation ...14
plot.cross_tabs ...15
plot.goodness ..16
plot.prob_binom ...17
plot.prob_chisq ...18
plot.prob_disc ...18
plot.prob_exp ...19
plot.prob_fdist ...20
plot.prob_lnorm ...21
plot.prob_norm ...21
plot.prob_pois ...22
plot.prob_tdist ...23
plot.prob_unif ...24
plot.single_mean ...24
plot.single_prop ...25
print.rcorr ...26
prob_binom ..27
prob_chisq ..28
prob_disc ..29
prob_exp ...30
prob_fdist ..31
prob_lnorm ..32
prob_norm ..33
prob_pois ..34
prob_tdist ..35
prob_unif ..36
radiant.basics ...37
radiant.basics_viewer37
radiant.basics_window38
salary ...38
single_mean ..39
single_prop ..40
summary.compare_means41
clt

Central Limit Theorem simulation

Description

Central Limit Theorem simulation

Usage

clt(
 dist,
 n = 100,
 m = 100,
 norm_mean = 0,
 norm_sd = 1,
 binom_size = 10,
 binom_prob = 0.2,
 unif_min = 0,
 unif_max = 1,
 expo_rate = 1
)

Arguments

dist Distribution to simulate
n Sample size
m Number of samples
norm_mean Mean for the normal distribution
compare_means

- norm_sd: Standard deviation for the normal distribution
- binom_size: Size for the binomial distribution
- binom_prob: Probability for the binomial distribution
- unif_min: Minimum for the uniform distribution
- unif_max: Maximum for the uniform distribution
- expo_rate: Rate for the exponential distribution

Details

See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Value

A list with the name of the Distribution and a matrix of simulated data

Examples

```r
clt("Uniform", 10, 10, unif_min = 10, unif_max = 20)
```

compare_means
Compare sample means

Description

Compare sample means

Usage

```r
compare_means(  
  dataset,  
  var1,  
  var2,  
  samples = "independent",  
  alternative = "two.sided",  
  conf_lev = 0.95,  
  comb = "",  
  adjust = "none",  
  test = "t",  
  data_filter = "",  
  envir = parent.frame()
)
```
Arguments

- **dataset**
 - Dataset

- **var1**
 - A numeric variable or factor selected for comparison

- **var2**
 - One or more numeric variables for comparison. If var1 is a factor only one variable can be selected and the mean of this variable is compared across (factor) levels of var1

- **samples**
 - Are samples independent ("independent") or not ("paired")

- **alternative**
 - The alternative hypothesis ("two.sided", "greater" or "less")

- **conf_lev**
 - Span of the confidence interval

- **comb**
 - Combinations to evaluate

- **adjust**
 - Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)

- **test**
 - t-test ("t") or Wilcox ("wilcox")

- **data_filter**
 - Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

- **envir**
 - Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class `compare_means`

See Also

- `summary.compare_means` to summarize results
- `plot.compare_means` to plot results

Examples

```r
compare_means(diamonds, "cut", "price") %>% str()
```
compare_props

Compare sample proportions across groups

Description

Compare sample proportions across groups

Usage

```r
compare_props(
  dataset,
  var1,
  var2,
  levs = "",
  alternative = "two.sided",
  conf_lev = 0.95,
  comb = "",
  adjust = "none",
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

- `dataset`
 Dataset
- `var1`
 A grouping variable to split the data for comparisons
- `var2`
 The variable to calculate proportions for
- `levs`
 The factor level selected for the proportion comparison
- `alternative`
 The alternative hypothesis ("two.sided", "greater" or "less")
- `conf_lev`
 Span of the confidence interval
- `comb`
 Combinations to evaluate
- `adjust`
 Adjustment for multiple comparisons ("none" or "bonf" for Bonferroni)
- `data_filter`
 Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- `envir`
 Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

Value

A list of all variables defined in the function as an object of class `compare_props`
See Also

- `summary.compare_props` to summarize results
- `plot.compare_props` to plot results

Examples

```r
compare_props(titanic, "pclass", "survived") %>% str()
```

consider

Car brand consideration

Description

Car brand consideration

Usage

```r
data(consider)
```

Format

A data frame with 1000 rows and 2 variables

Details

Survey data of consumer purchase intentions. Description provided in attr(consider,"description")

cor2df

Store a correlation matrix as a (long) data.frame

Description

Store a correlation matrix as a (long) data.frame

Usage

```r
cor2df(object, labels = c("label1", "label2"), ...)
```

Arguments

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Return value from <code>correlation</code></td>
</tr>
<tr>
<td>labels</td>
<td>Column names for the correlation pairs</td>
</tr>
<tr>
<td>...</td>
<td>further arguments passed to or from other methods</td>
</tr>
</tbody>
</table>
correlation

Details

Return the correlation matrix as a (long) data.frame. See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

```
correlation
```

Description

Calculate correlations for two or more variables

Usage

```
correlation(
  dataset,
  vars = "",
  method = "pearson",
  hcor = FALSE,
  hcor_se = FALSE,
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

- **dataset**
 - Dataset
- **vars**
 - Variables to include in the analysis. Default is all but character and factor variables with more than two unique values are removed
- **method**
 - Type of correlations to calculate. Options are "pearson", "spearman", and "kendall". "pearson" is the default
- **hcor**
 - Use polycor::hetcor to calculate the correlation matrix
- **hcor_se**
 - Calculate standard errors when using polycor::hetcor
- **data_filter**
 - Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- **envir**
 - Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

Value

A list with all variables defined in the function as an object of class compare_means
cross_tabs

See Also

summary.correlation to summarize results
plot.correlation to plot results

Examples

correlation(diamonds, c("price", "carat")) %>% str()
correlation(diamonds, "x:z") %>% str()

cross_tabs

Evaluate associations between categorical variables

Description

Evaluate associations between categorical variables

Usage

cross_tabs(
 dataset,
 var1,
 var2,
 tab = NULL,
 data_filter = "",
 envir = parent.frame()
)

Arguments

dataset Dataset (i.e., a data.frame or table)
var1 A categorical variable
var2 A categorical variable
tab Table with frequencies as alternative to dataset
data_filter Expression entered in, e.g., Data > View to filter the dataset in Radiant. The
 expression should be a string (e.g., "price > 10000")
envir Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

Value

A list of all variables used in cross_tabs as an object of class cross_tabs
See Also

summary.cross_tabs to summarize results
plot.cross_tabs to plot results

Examples

cross_tabs(newspaper, "Income", "Newspaper") %>% str()
table(select(newspaper, Income, Newspaper)) %>% cross_tabs(tab = .)

demand_uk

Demand in the UK

Description
Demand in the UK

Usage
data(demand_uk)

Format
A data frame with 1000 rows and 2 variables

Details
Survey data of consumer purchase intentions. Description provided in attr(demand_uk,"description")

goodness

Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Description
Evaluate if sample data for a categorical variable is consistent with a hypothesized distribution

Usage
goodness(
 dataset,
 var,
 p = NULL,
 tab = NULL,
 data_filter = "",
 envir = parent.frame()
)
Arguments

- **dataset**: Dataset
- **var**: A categorical variable
- **p**: Hypothesized distribution as a number, fraction, or numeric vector. If unspecified, defaults to an even distribution
- **tab**: Table with frequencies as alternative to dataset
- **data_filter**: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- **envir**: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/goodness.html for an example in Radiant

Value

A list of all variables used in goodness as an object of class goodness

See Also

- `summary.goodness` to summarize results
- `plot.goodness` to plot results

Examples

```r
goodness(newspaper, "Income") %>% str()
goodness(newspaper, "Income", p = c(3/4, 1/4)) %>% str()
table(select(newspaper, Income)) %>% goodness(tab = .)
```

newspaper

<table>
<thead>
<tr>
<th>Newspaper readership</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Description

Newspaper readership

Usage

data(newspaper)

Format

A data frame with 580 rows and 2 variables
plot.compare_means

Description

Plot method for the compare_means function

Usage

```r
## S3 method for class 'compare_means'
plot(x, plots = "scatter", shiny = FALSE, custom = FALSE, ...)
```

Examples

```r
clot("Uniform", 100, 100, unif_min = 10, unif_max = 20) %>% plot()
```

plot.clt

Plot method for the Central Limit Theorem simulation

Description

Plot method for the Central Limit Theorem simulation

Usage

```r
## S3 method for class 'clt'
plot(x, stat = "sum", bins = 15, ...)
```

Arguments

- `x`: Return value from `clt`
- `stat`: Statistic to use (sum or mean)
- `bins`: Number of bins to use
- `...`: Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/clt.html for an example in Radiant

Examples

```r
clot("Uniform", 100, 100, unif_min = 10, unif_max = 20) %>% plot()
```
plot.compare_props

Arguments

x Return value from `compare_means`
plots One or more plots ("bar", "density", "box", or "scatter")
shiny Did the function call originate inside a shiny app
custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

See Also

- `compare_means` to calculate results
- `summary.compare_means` to summarize results

Examples

```r
result <- compare_means(diamonds, "cut", "price")
plot(result, plots = c("bar", "density"))
```

plot.compare_props *Plot method for the compare_props function*

Description

Plot method for the compare_props function

Usage

```r
## S3 method for class 'compare_props'
plot(x, plots = "bar", shiny = FALSE, custom = FALSE, ...)
```

Arguments

x Return value from `compare_props`
plots One or more plots of proportions ("bar" or "dodge")
shiny Did the function call originate inside a shiny app
`plot.correlation`

`plot.correlation`

`plot.correlation`

Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

`compare_props` to calculate results

`summary.compare_props` to summarize results

Examples

```r
result <- compare_props(titanic, "pclass", "survived")
plot(result, plots = c("bar", "dodge"))
```

plot.correlation

Plot method for the correlation function

Description

Plot method for the correlation function

Usage

```r
## S3 method for class 'correlation'
plot(x, nrobs = -1, jit = c(0, 0), dec = 2, ...)
```

Arguments

- `x` Return value from `correlation`
- `nrobs` Number of data points to show in scatter plots (-1 for all)
- `jit` A numeric vector that determines the amount of jittering to apply to the x and y variables in a scatter plot. Default is 0. Use, e.g., 0.3 to add some jittering
- `dec` Number of decimals to show
- ... further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant
See Also

correlation to calculate results
summary.correlation to summarize results

Examples

result <- correlation(diamonds, c("price", "carat", "table"))
plot(result)

Description

Plot method for the cross_tabs function

Usage

S3 method for class 'cross_tabs'
plot(x, check = "", shiny = FALSE, custom = FALSE, ...)

Arguments

x
check
shiny
custom
...

Return value from cross_tabs
Show plots for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "row_perc", "col_perc", and "perc" for row, column, and table percentages respectively
Did the function call originate inside a shiny app
Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant
plot.goodness

See Also
cross_tabs to calculate results
summary.cross_tabs to summarize results

Examples

```r
result <- cross_tabs(newspaper, "Income", "Newspaper")
plot(result, check = c("observed", "expected", "chi_sq"))
```

plot.goodness

Plot method for the goodness function

Description

Plot method for the goodness function

Usage

```r
## S3 method for class 'goodness'
plot(x, check = "", fillcol = "blue", shiny = FALSE, custom = FALSE, ...)
```

Arguments

- `x`
 Return value from `goodness`
- `check`
 Show plots for variable var. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., \((o - e)^2 / e\)), and "dev_std" for the standardized differences between the observed and expected frequencies (i.e., \((o - e) / \sqrt{e}\))
- `fillcol`
 Color used for bar plots
- `shiny`
 Did the function call originate inside a shiny app
- `custom`
 Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.
- `...`
 further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant
plot.prob_binom

See Also

goodness to calculate results
summary.goodness to summarize results

Examples

result <- goodness(newspaper, "Income")
plot(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income") %>% plot(c("observed", "expected"))

plot.prob_binom Plot method for the probability calculator (binomial)

Description

Plot method for the probability calculator (binomial)

Usage

S3 method for class 'prob_binom'
plot(x, type = "values", ...)

Arguments

x Return value from prob_binom
type Probabilities ("probs") or values ("values")
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_binom to calculate results
summary.prob_binom to summarize results

Examples

result <- prob_binom(n = 10, p = 0.3, ub = 3)
plot(result, type = "values")
plot.prob_disc
Plot method for the probability calculator (discrete)

Description
Plot method for the probability calculator (discrete)

Usage
```
## S3 method for class 'prob_disc'
plot(x, type = "values", ...)
```

Arguments
- `x`: Return value from `prob_disc`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details
See `https://radiant-rstats.github.io/docs/basics/prob_calc.html` for an example in Radiant

See Also
- `prob_disc` to calculate results
- `summary.prob_disc` to summarize results

Examples
```r
result <- prob_disc(df = 1, ub = 3.841)
plot(result, type = "values")
```

plot.prob_chisq
Plot method for the probability calculator (Chi-squared distribution)

Description
Plot method for the probability calculator (Chi-squared distribution)

Usage
```
## S3 method for class 'prob_chisq'
plot(x, type = "values", ...)
```

Arguments
- `x`: Return value from `prob_chisq`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details
See `https://radiant-rstats.github.io/docs/basics/prob_calc.html` for an example in Radiant

See Also
- `prob_chisq` to calculate results
- `summary.prob_chisq` to summarize results

Examples
```r
result <- prob_chisq(df = 1, ub = 3.841)
plot(result, type = "values")
```
plot.prob_expo

Arguments

x
Return value from prob_disc

type
Probabilities ("probs") or values ("values")

...
further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_disc to calculate results

summary.prob_disc to summarize results

Examples

result <- prob_disc(v = 1:6, p = c(2 / 6, 2 / 6, 1 / 12, 1 / 12, 1 / 12, 1 / 12), pub = 0.95)
plot(result, type = "probs")

plot.prob_expo
Plot method for the probability calculator (Exponential distribution)

Description

Plot method for the probability calculator (Exponential distribution)

Usage

S3 method for class 'prob_expo'
plot(x, type = "values", ...)

Arguments

x
Return value from prob_expo

type
Probabilities ("probs") or values ("values")

...
further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
See Also

`prob_expo` to calculate results

`summary.prob_expo` to summarize results

Examples

```r
result <- prob_expo(rate = 1, ub = 2.996)
plot(result, type = "values")
```

plot.prob_fdist

Plot method for the probability calculator (F-distribution)

Description

Plot method for the probability calculator (F-distribution)

Usage

```r
## S3 method for class 'prob_fdist'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_fdist`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

`prob_fdist` to calculate results

`summary.prob_fdist` to summarize results

Examples

```r
result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
plot(result, type = "values")
```
S3 method for class 'prob_lnorm'

plot(x, type = "values", ...)

Arguments

- **x**: Return value from `prob_lnorm`
- **type**: Probabilities ("probs") or values ("values")
- **...**: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_lnorm` to calculate results
- `plot.prob_lnorm` to plot results

Examples

result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
plot(result, type = "values")

S3 method for class 'prob_norm'

plot(x, type = "values", ...)

Description

Plot method for the probability calculator (normal)
Arguments

- `x`: Return value from `prob_norm`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_norm` to calculate results
- `summary.prob_norm` to summarize results

Examples

```r
result <- prob_norm(mean = 0, stdev = 1, ub = 0)
plot(result)
```

plot.prob_pois

Plot method for the probability calculator (poisson)

Description

Plot method for the probability calculator (poisson)

Usage

```r
## S3 method for class 'prob_pois'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_pois`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant
See Also

prob_pois to calculate results
summary.prob_pois to summarize results

Examples

result <- prob_pois(lambda = 1, ub = 3)
plot(result, type = "values")

plot.prob_tdist

Plot method for the probability calculator (t-distribution)

Description

Plot method for the probability calculator (t-distribution)

Usage

S3 method for class 'prob_tdist'
plot(x, type = "values", ...)

Arguments

x
 Return value from prob_tdist

type
 Probabilities ("probs") or values ("values")

... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

prob_tdist to calculate results
summary.prob_tdist to summarize results

Examples

result <- prob_tdist(df = 10, ub = 2.228)
plot(result, type = "values")
plot.prob_unif

Plot method for the probability calculator (uniform)

Description

Plot method for the probability calculator (uniform)

Usage

```r
## S3 method for class 'prob_unif'
plot(x, type = "values", ...)
```

Arguments

- `x`: Return value from `prob_unif`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_unif` to calculate results
- `summary.prob_unif` to summarize results

Examples

```r
result <- prob_unif(min = 0, max = 1, ub = 0.3)
plot(result, type = "values")
```

plot.single_mean

Plot method for the single_mean function

Description

Plot method for the single_mean function

Usage

```r
## S3 method for class 'single_mean'
plot(x, plots = "hist", shiny = FALSE, custom = FALSE, ...)
```
Arguments

x
Return value from single_mean

plots
Plots to generate. "hist" shows a histogram of the data along with vertical lines that indicate the sample mean and the confidence interval. "simulate" shows the location of the sample mean and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis

shiny
Did the function call originate inside a shiny app

custom
Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and https://ggplot2.tidyverse.org/ for options.

...
further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

See Also

single_mean to generate the result

summary.single_mean to summarize results

Examples

result <- single_mean(diamonds, "price", comp_value = 3500)
plot(result, plots = c("hist", "simulate"))

plot.single_prop
Plot method for the single_prop function

Description

Plot method for the single_prop function

Usage

S3 method for class 'single_prop'
plot(x, plots = "bar", shiny = FALSE, custom = FALSE, ...)

plot.single_prop

Plot method for the single_prop function

Description

Plot method for the single_prop function

Usage

```r
## S3 method for class 'single_prop'
plot(x, plots = "bar", shiny = FALSE, custom = FALSE, ...)
```
Arguments

x Return value from `single_prop`
plots Plots to generate. "bar" shows a bar chart of the data. The "simulate" chart shows the location of the sample proportion and the comparison value (comp_value). Simulation is used to demonstrate the sampling variability in the data under the null-hypothesis
shiny Did the function call originate inside a shiny app
custom Logical (TRUE, FALSE) to indicate if ggplot object (or list of ggplot objects) should be returned. This option can be used to customize plots (e.g., add a title, change x and y labels, etc.). See examples and `https://ggplot2.tidyverse.org/` for options.
... further arguments passed to or from other methods

Details

See `https://radiant-rstats.github.io/docs/basics/single_prop.html` for an example in Radiant

See Also

`single_prop` to generate the result
`summary.single_prop` to summarize the results

Examples

```r
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
plot(result, plots = c("bar", "simulate"))
```

print.rcorr
Print method for the correlation function

Description

Print method for the correlation function

Usage

```r
## S3 method for class 'rcorr'
print(x, ...)
```

Arguments

x Return value from `correlation`
... further arguments passed to or from other methods
Description

Probability calculator for the binomial distribution

Usage

prob_binom(n, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

n Number of trials
p Probability
lb Lower bound on the number of successes
ub Upper bound on the number of successes
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_binom to summarize results
plot.prob_binom to plot results

Examples

prob_binom(n = 10, p = 0.3, ub = 3)
prob_chisq

Probability calculator for the chi-squared distribution

Description

Probability calculator for the chi-squared distribution

Usage

prob_chisq(df, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

df Degrees of freedom
lb Lower bound (default is 0)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_chisq to summarize results
plot.prob_chisq to plot results

Examples

prob_chisq(df = 1, ub = 3.841)
Description

Probability calculator for a discrete distribution

Usage

```r
prob_disc(v, p, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- **v**: Values
- **p**: Probabilities
- **lb**: Lower bound on the number of successes
- **ub**: Upper bound on the number of successes
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_disc` to summarize results
- `plot.prob_disc` to plot results

Examples

```r
prob_disc(v = 1:6, p = 1 / 6, pub = 0.95)
prob_disc(v = 1:6, p = c(2 / 6, 2 / 6, 1 / 12, 1 / 12, 1 / 12, 1 / 12), pub = 0.95)
```
Description

Probability calculator for the exponential distribution

Usage

prob_expo(rate, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

rate Rate
lb Lower bound (default is 0)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_expo to summarize results
plot.prob_expo to plot results

Examples

prob_expo(rate = 1, ub = 2.996)
prob_fdist Probability calculator for the F-distribution

Description

Probability calculator for the F-distribution

Usage

prob_fdist(df1, df2, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- df1: Degrees of freedom
- df2: Degrees of freedom
- lb: Lower bound (default is 0)
- ub: Upper bound (default is Inf)
- plb: Lower probability bound
- pub: Upper probability bound
- dec: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_fdist to summarize results
plot.prob_fdist to plot results

Examples

prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
Description

Probability calculator for the log normal distribution

Usage

prob_lnorm(meanlog, sdlog, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

meanlog. Mean of the distribution on the log scale
sdlog. Standard deviation of the distribution on the log scale
lb. Lower bound (default is -Inf)
ub. Upper bound (default is Inf)
plb. Lower probability bound
pub. Upper probability bound
dec. Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_lnorm to summarize results
plot.prob_lnorm to plot results

Examples

prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
prob_norm

Probability calculator for the normal distribution

Description

Probability calculator for the normal distribution

Usage

prob_norm(mean, stdev, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

mean Mean
stdev Standard deviation
lb Lower bound (default is -Inf)
ub Upper bound (default is Inf)
plb Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_norm to summarize results
plot.prob_norm to plot results

Examples

prob_norm(mean = 0, stdev = 1, ub = 0)
Description

Probability calculator for the poisson distribution

Usage

```r
prob_pois(lambda, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)
```

Arguments

- `lambda`: Rate
- `lb`: Lower bound (default is 0)
- `ub`: Upper bound (default is Inf)
- `plb`: Lower probability bound
- `pub`: Upper probability bound
- `dec`: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_pois` to summarize results
- `plot.prob_pois` to plot results

Examples

```r
prob_pois(lambda = 1, ub = 3)
```
Description

Probability calculator for the t-distribution

Usage

prob_tdist(df, lb = NA, ub = NA, p1b = NA, pub = NA, dec = 3)

Arguments

df Degrees of freedom
lb Lower bound (default is -Inf)
ub Upper bound (default is Inf)
p1b Lower probability bound
pub Upper probability bound
dec Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

summary.prob_tdist to summarize results
plot.prob_tdist to plot results

Examples

prob_tdist(df = 10, ub = 2.228)
prob_unif

Probability calculator for the uniform distribution

Description

Probability calculator for the uniform distribution

Usage

prob_unif(min, max, lb = NA, ub = NA, plb = NA, pub = NA, dec = 3)

Arguments

- **min**: Minimum value
- **max**: Maximum value
- **lb**: Lower bound (default = 0)
- **ub**: Upper bound (default = 1)
- **plb**: Lower probability bound
- **pub**: Upper probability bound
- **dec**: Number of decimals to show

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `summary.prob_unif` to summarize results
- `plot.prob_unif` to plot results

Examples

prob_unif(min = 0, max = 1, ub = 0.3)
radian basics

radian basics radian basics

Description

Launch radian basics in the default web browser

Usage

radian basics(state, ...)

Arguments

state Path to state file to load
... additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

Examples

Not run:
```
radian basics()
```

End(Not run)

radian basics_viewer Launch radian basics in the Rstudio viewer

Description

Launch radian basics in the Rstudio viewer

Usage

radian basics_viewer(state, ...)

Arguments

state Path to state file to load
... additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials
Examples

```r
## Not run:
radiant.basics_viewer()

## End(Not run)
```

radiant.basics_window *Launch radiant.basics in an Rstudio window*

Description

Launch radiant.basics in an Rstudio window

Usage

```r
radiant.basics_window(state, ...)
```

Arguments

- `state`
 Path to state file to load
- `...`
 Additional arguments to pass to shiny::runApp (e.g. port = 8080)

Details

See https://radiant-rstats.github.io/docs/ for documentation and tutorials

salary *Salaries for Professors*

Description

Salaries for Professors

Usage

```r
data(salary)
```

Format

A data frame with 397 rows and 6 variables
Details

2008-2009 nine-month salary for professors in a college in the US. Description provided in attr(salary, description)

single_mean

Description

Compare a sample mean to a population mean

Usage

```r
single_mean(
  dataset,
  var,
  comp_value = 0,
  alternative = "two.sided",
  conf_lev = 0.95,
  data_filter = "",
  envir = parent.frame()
)
```

Arguments

dataset: Dataset

dataset: Dataset

var: The variable selected for the mean comparison

comp_value: Population value to compare to the sample mean

alternative: The alternative hypothesis ("two.sided", "greater", or "less")

conf_lev: Span for the confidence interval

data_filter: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")

envir: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

Value

A list of variables defined in single_mean as an object of class single_mean

See Also

`summary.single_mean` to summarize results

`plot.single_mean` to plot results
Examples

```
single_mean(diamonds, "price") %>% str()
```

single_prop

Compare a sample proportion to a population proportion

Description

Compare a sample proportion to a population proportion

Usage

```
single_prop(  
  dataset,  
  var,  
  lev = "",  
  comp_value = 0.5,  
  alternative = "two.sided",  
  conf_lev = 0.95,  
  test = "binom",  
  data_filter = "",  
  envir = parent.frame()  
)
```

Arguments

- **dataset**: Dataset
- **var**: The variable selected for the proportion comparison
- **lev**: The factor level selected for the proportion comparison
- **comp_value**: Population value to compare to the sample proportion
- **alternative**: The alternative hypothesis ("two.sided", "greater", or "less")
- **conf_lev**: Span of the confidence interval
- **test**: Binomial exact test ("binom") or Z-test ("z")
- **data_filter**: Expression entered in, e.g., Data > View to filter the dataset in Radiant. The expression should be a string (e.g., "price > 10000")
- **envir**: Environment to extract data from

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant

Value

A list of variables used in single_prop as an object of class single_prop
summary.compare_means

See Also

summary.single_prop to summarize the results
plot.single_prop to plot the results

Examples

single_prop(titanic, "survived") %>% str()
single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less") %>% str()

summary.compare_means Summary method for the compare_means function

Description

Summary method for the compare_means function

Usage

S3 method for class 'compare_means'
summary(object, show = FALSE, dec = 3, ...)

Arguments

object Return value from compare_means
show Show additional output (i.e., t.value, df, and confidence interval)
dec Number of decimals to show
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_means.html for an example in Radiant

See Also

compare_means to calculate results
plot.compare_means to plot results

Examples

result <- compare_means(diamonds, "cut", "price")
summary(result)
summary.compare_props
Summary method for the compare_props function

Description

Summary method for the compare_props function

Usage

```r
## S3 method for class 'compare_props'
summary(object, show = FALSE, dec = 3, ...)
```

Arguments

- `object`: Return value from `compare_props`
- `show`: Show additional output (i.e., chisq.value, df, and confidence interval)
- `dec`: Number of decimals to show
- `...`: Further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/compare_props.html for an example in Radiant

See Also

- `compare_props` to calculate results
- `plot.compare_props` to plot results

Examples

```r
result <- compare_props(titanic, "pclass", "survived")
summary(result)
```

summary.correlation
Summary method for the correlation function

Description

Summary method for the correlation function

Usage

```r
## S3 method for class 'correlation'
summary(object, cutoff = 0, covar = FALSE, dec = 2, ...)
```

Arguments

- `object`:
- `cutoff`:
- `covar`:
- `dec`:
- `...`: Further arguments passed to or from other methods

Examples

```r
result <- compare_props(titanic, "pclass", "survived")
summary(result)
```
Arguments

- **object**: Return value from `correlation`
- **cutoff**: Show only correlations larger than the cutoff in absolute value. Default is a cutoff of 0
- **covar**: Show the covariance matrix (default is FALSE)
- **dec**: Number of decimals to show
- **...**: further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/correlation.html for an example in Radiant

See Also

- `correlation` to calculate results
- `plot.correlation` to plot results

Examples

```r
result <- correlation(diamonds, c("price", "carat", "table"))
summary(result, cutoff = .3)
```

summary.cross_tabs
Summary method for the cross_tabs function

Description

Summary method for the cross_tabs function

Usage

```r
## S3 method for class 'cross_tabs'
summary(object, check = "", dec = 2, ...)
```

Arguments

- **object**: Return value from `cross_tabs`
- **check**: Show table(s) for variables var1 and var2. "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., (o - e)^2 / e), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., (o - e) / sqrt(e)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., (o - e) / e)
- **dec**: Number of decimals to show
- **...**: further arguments passed to or from other methods.
Details

See https://radiant-rstats.github.io/docs/basics/cross_tabs.html for an example in Radiant

See Also
cross_tabs to calculate results
plot.cross_tabs to plot results

Examples

```r
result <- cross_tabs(newspaper, "Income", "Newspaper")
summary(result, check = c("observed", "expected", "chi_sq"))
```

summary.goodness

Summary method for the goodness function

Description

Summary method for the goodness function

Usage

```r
## S3 method for class 'goodness'
summary(object, check = "", dec = 2, ...)
```

Arguments

- `object`: Return value from `goodness`
- `check`: Show table(s) for the selected variable (var), "observed" for the observed frequencies table, "expected" for the expected frequencies table (i.e., frequencies that would be expected if the null hypothesis holds), "chi_sq" for the contribution to the overall chi-squared statistic for each cell (i.e., \((o - e)^2 / e\)), "dev_std" for the standardized differences between the observed and expected frequencies (i.e., \((o - e) / \sqrt{e}\)), and "dev_perc" for the percentage difference between the observed and expected frequencies (i.e., \((o - e) / e\))
- `dec`: Number of decimals to show
- `...`: further arguments passed to or from other methods.

Details

See https://radiant-rstats.github.io/docs/basics/goodness for an example in Radiant
See Also

goodness to calculate results
plot.goodness to plot results

Examples

result <- goodness(newspaper, "Income", c(.3, .7))
summary(result, check = c("observed", "expected", "chi_sq"))
goodness(newspaper, "Income", c(1 / 3, 2 / 3)) %>% summary("observed")
Summary method for the probability calculator (Chi-squared distribution)

Description
Summary method for the probability calculator (Chi-squared distribution)

Usage
S3 method for class 'prob_chisq'
summary(object, type = "values", ...)

Arguments
object
Return value from prob_chisq
type
Probabilities ("probs") or values ("values")
...
further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also
prob_chisq to calculate results
plot.prob_chisq to plot results

Examples
result <- prob_chisq(df = 1, ub = 3.841)
summary(result, type = "values")

Summary method for the probability calculator (discrete)

Description
Summary method for the probability calculator (discrete)

Usage
S3 method for class 'prob_disc'
summary(object, type = "values", ...)
Arguments

object Return value from `prob_disc`

Details

See `https://radiant-rstats.github.io/docs/basics/prob_calc.html` for an example in Radiant

See Also

`prob_disc` to calculate results

`plot.prob_disc` to plot results

Examples

```r
result <- prob_disc(v = 1:6, p = c(2/6, 2/6, 1/12, 1/12, 1/12, 1/12), pub = 0.95)
summary(result, type = "probs")
```
See Also

prob_expo to calculate results
plot.prob_expo to plot results

Examples

result <- prob_expo(rate = 1, ub = 2.996)
summary(result, type = "values")

summary.prob_fdist

Summary method for the probability calculator (F-distribution)

Description

Summary method for the probability calculator (F-distribution)

Usage

```r
## S3 method for class 'prob_fdist'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_fdist`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_fdist` to calculate results
- `plot.prob_fdist` to plot results

Examples

```r
result <- prob_fdist(df1 = 10, df2 = 10, ub = 2.978)
summary(result, type = "values")
```
Description
Summary method for the probability calculator (log normal)

Usage
S3 method for class 'prob_lnorm'
summary(object, type = "values", ...)

Arguments
object Return value from prob_norm
type Probabilities ("probs") or values ("values")
... further arguments passed to or from other methods

Details
See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also
prob_lnorm to calculate results
plot.prob_lnorm to summarize results

Examples
result <- prob_lnorm(meanlog = 0, sdlog = 1, lb = 0, ub = 1)
summary(result, type = "values")

Description
Summary method for the probability calculator (normal)

Usage
S3 method for class 'prob_norm'
summary(object, type = "values",...)
Summary method for the probability calculator (poisson)

Usage

```r
## S3 method for class 'prob_pois'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_pois`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

Examples

```r
result <- prob_pois(mean = 0, stdev = 1, ub = 0)
summary(result)
```
summary.prob_tdist

See Also

- `prob_pois` to calculate results
- `plot.prob_pois` to plot results

Examples

```r
result <- prob_pois(lambda = 1, ub = 3)
summary(result, type = "values")
```

summary.prob_tdist

Summary method for the probability calculator (t-distribution)

Description

Summary method for the probability calculator (t-distribution)

Usage

```r
## S3 method for class 'prob_tdist'
summary(object, type = "values", ...)
```

Arguments

- `object`: Return value from `prob_tdist`
- `type`: Probabilities ("probs") or values ("values")
- `...`: further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

- `prob_tdist` to calculate results
- `plot.prob_tdist` to plot results

Examples

```r
result <- prob_tdist(df = 10, ub = 2.228)
summary(result, type = "values")
```
summary.prob_unif Summary method for the probability calculator (uniform)

Description

Summary method for the probability calculator (uniform)

Usage

S3 method for class 'prob_unif'
summary(object, type = "values", ...)

Arguments

 object Return value from prob_unif
 type Probabilities ("probs") or values ("values")
 ... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/prob_calc.html for an example in Radiant

See Also

 prob_unif to calculate results
 plot.prob_unif to plot results

Examples

result <- prob_unif(min = 0, max = 1, ub = 0.3)
summary(result, type = "values")

summary.single_mean Summary method for the single_mean function

Description

Summary method for the single_mean function

Usage

S3 method for class 'single_mean'
summary(object, dec = 3, ...)

Arguments

object Return value from single_mean
dec Number of decimals to show
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_mean.html for an example in Radiant

See Also

single_mean to generate the results
plot.single_mean to plot results

Examples

result <- single_mean(diamonds, "price")
summary(result)
diamonds %>%
 single_mean("price") %>%
 summary()

summary.single_prop Summary method for the single_prop function

Description

Summary method for the single_prop function

Usage

S3 method for class 'single_prop'
summary(object, dec = 3, ...)

Arguments

object Return value from single_prop
dec Number of decimals to show
... further arguments passed to or from other methods

Details

See https://radiant-rstats.github.io/docs/basics/single_prop.html for an example in Radiant
See Also

- `single_prop` to generate the results
- `plot.single_prop` to plot the results

Examples

```r
result <- single_prop(titanic, "survived", lev = "Yes", comp_value = 0.5, alternative = "less")
summary(result)
```
Index

* datasets
 consider, 7
 demand_uk, 10
 newspaper, 11
 salary, 38

clt, 3, 12
compare_means, 4, 13, 41
compare_props, 6, 13, 14, 42
consider, 7
cor2df, 7
correlation, 7, 8, 14, 15, 26, 43
cross_tabs, 9, 15, 16, 43, 44
demand_uk, 10
goodness, 10, 16, 17, 44, 45
newspaper, 11

plot.clt, 12
plot.compare_means, 5, 12, 41
plot.compare_props, 7, 13, 42
plot.correlation, 9, 14, 43
plot.cross_tabs, 10, 15, 44
plot.goodness, 11, 16, 45
plot.prob_binom, 17, 27, 45
plot.prob_disc, 19, 29, 47
plot.prob_exp, 19, 29, 47
plot.prob_fdist, 20, 31, 48
plot.prob_lnorm, 21, 22, 33, 49
plot.prob_norm, 21, 22, 33, 49, 50
plot.prob_pois, 22, 23, 34, 50, 51
plot.prob_tdist, 23, 35, 51
plot.prob_unif, 24, 36, 52

radiant.basics, 37
radiant.basics_viewer, 37
radiant.basics_window, 38

salary, 38
single_mean, 25, 39, 53
single_prop, 26, 40, 53, 54
summary.compare_means, 5, 13, 41
summary.compare_props, 7, 14, 42
summary.correlation, 9, 15, 42
summary.cross_tabs, 10, 16, 43
summary.goodness, 11, 17, 44
summary.prob_binom, 17, 27, 45
summary.prob_chisq, 18, 28, 46
summary.prob_disc, 19, 29, 47
summary.prob_exp, 19, 29, 47
summary.prob_fdist, 20, 31, 48
summary.prob_lnorm, 21, 32, 49
summary.prob_norm, 22, 33, 49
summary.prob_pois, 23, 34, 50
summary.prob_tdist, 23, 35, 51
summary.prob_unif, 24, 36, 52
summary.single_mean, 25, 39, 52
summary.single_prop, 26, 41, 53

print.rcorr, 26
prob_binom, 17, 27, 45
prob_chisq, 18, 28, 46