Package ‘randomForestSRC’

November 18, 2019

Version 2.9.2
Date 2019-11-18
Title Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)
Author Hemant Ishwaran <hemant.ishwaran@gmail.com>, Udaya B. Kogalur <ubk@kogalur.com>
Maintainer Udaya B. Kogalur <ubk@kogalur.com>
BugReports https://github.com/kogalur/randomForestSRC/issues/new
Depends R (>= 3.5.0),
Imports parallel
Suggests survival, pectools, mlbench, akima, caret, imbalance
Description Fast OpenMP parallel computing of Breiman's random forests for survival, competing risks, regression and classification based on Ishwaran and Kogalur's popular random survival forests (RSF) package. Handles missing data and now includes multivariate, unsupervised forests, quantile regression and solutions for class imbalanced data. New fast interface using subsampling and confidence regions for variable importance.
License GPL (>= 3)
URL http://web.ccs.miami.edu/~hishwaran http://www.kogalur.com
https://github.com/kogalur/randomForestSRC
NeedsCompilation yes
Repository CRAN
Date/Publication 2019-11-18 18:20:02 UTC

R topics documented:

randomForestSRC-package .. 2
breast ... 5
find.interaction.rfspec .. 6
folic ... 9
hd ... 9
holdout.vimp.rfspec .. 10
randomForestSRC-package

Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)

Description

Fast OpenMP parallel computing for unified Breiman random forests (Breiman 2001) for regression, classification, survival analysis, competing risks, multivariate, unsupervised, quantile regression, and class imbalanced q-classification. Missing data imputation includes missForest and multivariate missForest. New fast subsampling random forests. Confidence intervals for variable importance. New holdout vimp.

```
housing ......................................................... 13
imbalance.rfsrc ............................................... 14
impute.rfsrc .................................................. 19
max.subtree.rfsrc ............................................. 22
nutrigenomic .................................................. 25
partial.rfsrc .................................................. 26
pbc .............................................................. 29
plot.competing.risk.rfsrc ..................................... 30
plot.quantreg.rfsrc ........................................... 31
plot.rfsrc ...................................................... 32
plot.subsample.rfsrc .......................................... 33
plot.survival.rfsrc ........................................... 35
plot.variable.rfsrc ........................................... 37
predict.rfsrc .................................................. 40
print.rfsrc ..................................................... 48
quantreg.rfsrc ................................................ 49
rfsrc ........................................................... 54
rfsrc.fast ....................................................... 71
rfsrc.news ...................................................... 73
stat.split.rfsrc ................................................. 74
subsample.rfsrc ................................................ 76
synthetic ......................................................... 79
tune.rfsrc ....................................................... 83
var.select.rfsrc ................................................ 86
vdv ............................................................... 91
veteran .......................................................... 92
vimp.rfsrc ....................................................... 92
wihs .............................................................. 95
wine .............................................................. 96

Index 97
```
Package Overview

This package contains many useful functions and users should read the help file in its entirety for details. However, we briefly mention several key functions that may make it easier to navigate and understand the layout of the package.

1. rfsrc
 This is the main entry point to the package. It grows a random forest using user supplied training data. We refer to the resulting object as a RF-SRC grow object. Formally, the resulting object has class (rfsrc,grow).

2. rfsrc.fast
 A fast implementation of rfsrc using subsampling.

3. quantreg.rfsrc, quantreg
 Univariate and multivariate quantile regression forest for training and testing. Different methods available including the Greenwald-Khanna (2001) algorithm, which is especially suitable for big data due to its high memory efficiency.

4. predict.rfsrc, predict
 Used for prediction. Predicted values are obtained by dropping the user supplied test data down the grow forest. The resulting object has class (rfsrc,predict).

5. vimp.rfsrc, subsample.rfsrc, holdout.vimp.rfsrc
 Used for variable selection:
 (a) vimp calculates variable importance (VIMP) from a RF-SRC grow/predict object by noising up the variable (for example by permutation). Note that grow/predict calls can always directly request VIMP.
 (b) subsample calculates VIMP confidence intervals via subsampling.
 (c) holdout.vimp measures the importance of a variable when it is removed from the model.

6. impute.rfsrc
 Fast imputation mode for RF-SRC. Both rfsrc and predict.rfsrc are capable of imputing missing data. However, for users whose only interest is imputing data, this function provides an efficient and fast interface for doing so.

7. partial.rfsrc
 Used to extract the partial effects of a variable or variables on the ensembles.

Source Code, Beta Builds and Bug Reporting

1. Regular stable releases of this package are available on CRAN at https://cran.r-project.org/package=randomForestSRC
2. Interim unstable development builds with bug fixes and sometimes additional functionality are available at https://github.com/kogalur/randomForestSRC
3. Bugs may be reported via https://github.com/kogalur/randomForestSRC/issues/new. Please provide the accompanying information with any reports:
 (a) sessionInfo()
 (b) A minimal reproducible example consisting of the following items:
 • a minimal dataset, necessary to reproduce the error
• the minimal runnable code necessary to reproduce the error, which can be run on the
given dataset
• the necessary information on the used packages, R version and system it is run on
• in the case of random processes, a seed (set by `set.seed()`) for reproducibility

OpenMP Parallel Processing – Installation

This package implements OpenMP shared-memory parallel programming if the target architecture
and operating system support it. This is the default mode of execution.

Additional instructions for configuring OpenMP parallel processing are available at https://kogalur.
github.io/randomForestSRC/building.html.

An understanding of resource utilization (CPU and RAM) is necessary when running the package
using OpenMP and Open MPI parallel execution. Memory usage is greater when running with
OpenMP enabled. Diligence should be used not to overtax the hardware available.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

Ishwaran H., Kogalur U.B., Chen X. and Minn A.J. (2011). Random survival forests for high-
observational data using random forest methods. *J. Comp. Graph. Statist.*, 27(1), 209-219
Ishwaran H. and Lu M. (2019). Standard errors and confidence intervals for variable importance
in random forest regression, classification, and survival. *Statistics in Medicine*, 38, 558-582.
Data Mining*, 10, 363-377.
breast

Wisconsin Prognostic Breast Cancer Data

Description

Recurrence of breast cancer from 198 breast cancer patients, all of which exhibited no evidence of distant metastases at the time of diagnosis. The first 30 features of the data describe characteristics of the cell nuclei present in the digitized image of a fine needle aspirate (FNA) of the breast mass.

Source

The data were obtained from the UCI machine learning repository, see http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Prognostic).

Examples

```r
# Standard analysis

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
o <- rfsrc(status ~ ., data = breast, nsplit = 10)
print(o)
```

```r
# The data is imbalanced so we use balanced random forests
# with undersampling of the majority class
#
# Specifically let n0, n1 be sample sizes for majority, minority
# cases. We sample 2 x n1 cases with majority, minority cases chosen
```
find.interaction.rfsrc

Find Interactions Between Pairs of Variables

Description

Find pairwise interactions between variables.

Usage

```r
# S3 method for class 'rfsrc'
find.interaction(object, xvar.names, cause, m.target,
importance = c("permute", "random", "anti",
    "permute.ensemble", "random.ensemble", "anti.ensemble"),
method = c("maxsubtree", "vimp"), sorted = TRUE, nvar, nrep = 1, subset,
na.action = c("na.omit", "na.impute"),
seed = NULL, do.trace = FALSE, verbose = TRUE, ...)
```

Arguments

- **object**: An object of class `(rfsrc,grow)` or `(rfsrc,forest)`.
- **xvar.names**: Character vector of names of target x-variables. Default is to use all variables.
- **cause**: For competing risk families, integer value between 1 and J indicating the event of interest, where J is the number of event types. The default is to use the first event type.
- **m.target**: Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
- **importance**: Type of variable importance (VIMP). See `rfsrc` for details.
- **method**: Method of analysis: maximal subtree or VIMP. See details below.
- **sorted**: Should variables be sorted by VIMP? Does not apply for competing risks.
- **nvar**: Number of variables to be used.
- **nrep**: Number of Monte Carlo replicates when `method="vimp"`.
- **subset**: Vector indicating which rows of the x-variable matrix from the object are to be used. Uses all rows if not specified.
- **na.action**: Action to be taken if the data contains NA values. Applies only when `method="vimp"`.

```r
y <- breast$status
o <- rfsrc(status ~ ., data = breast, nsplit = 10,
    case.wt = randomForestSRC:::make.wt(y),
    sampsize = randomForestSRC:::make.size(y))
print(o)
```
find.interaction.rfsr

seed

Seed for random number generator. Must be a negative integer.

do.trace

Number of seconds between updates to the user on approximate time to completion.

verbose

Set to TRUE for verbose output.

...

Further arguments passed to or from other methods.

Details

Using a previously grown forest, identify pairwise interactions for all pairs of variables from a specified list. There are two distinct approaches specified by the option 'method'.

1. 'method="maxsubtree"

 This invokes a maximal subtree analysis. In this case, a matrix is returned where entries [i][i] are the normalized minimal depth of variable [i] relative to the root node (normalized wrt the size of the tree) and entries [i][j] indicate the normalized minimal depth of a variable [j] wrt the maximal subtree for variable [i] (normalized wrt the size of [i]'s maximal subtree). Smaller [i][i] entries indicate predictive variables. Small [i][j] entries having small [i][i] entries are a sign of an interaction between variable i and j (note: the user should scan rows, not columns, for small entries). See Ishwaran et al. (2010, 2011) for more details.

2. 'method="vimp"

 This invokes a joint-VIMP approach. Two variables are paired and their paired VIMP calculated (referred to as 'Paired' importance). The VIMP for each separate variable is also calculated. The sum of these two values is referred to as 'Additive' importance. A large positive or negative difference between 'Paired' and 'Additive' indicates an association worth pursuing if the univariate VIMP for each of the paired-variables is reasonably large. See Ishwaran (2007) for more details.

Computations might be slow depending upon the size of the data and the forest. In such cases, consider setting 'nvar' to a smaller number. If 'method="maxsubtree"', consider using a smaller number of trees in the original grow call.

If 'nrep' is greater than 1, the analysis is repeated nrep times and results averaged over the replications (applies only when 'method="vimp"').

Value

Invisibly, the interaction table (a list for competing risk data) or the maximal subtree matrix.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

find.interaction.rfsrc

See Also

holdout.vimp.rfsrc, max.subtree.rfsrc, var.select.rfsrc, vimp.rfsrc

Examples

```r
## -------------------------------------------------------------
## find interactions, survival setting
## -------------------------------------------------------------

data(pbc, package = "randomForestSRC")
pbc.obj <- rfsr(Surv(days, status) ~ ., pbc, importance = TRUE)
find.interaction(pbc.obj, method = "vimp", nvar = 8)

## -------------------------------------------------------------
## find interactions, competing risks
## -------------------------------------------------------------

data(wihs, package = "randomForestSRC")
wihs.obj <- rfsr(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100,
importance = TRUE)
find.interaction(wihs.obj)
find.interaction(wihs.obj, method = "vimp")

## -------------------------------------------------------------
## find interactions, regression setting
## -------------------------------------------------------------

airq.obj <- rfsr(Ozone ~ ., data = airquality, importance = TRUE)
find.interaction(airq.obj, method = "vimp", nrep = 3)
find.interaction(airq.obj)

## -------------------------------------------------------------
## find interactions, classification setting
## -------------------------------------------------------------

iris.obj <- rfsr(Species ~ ., data = iris, importance = TRUE)
find.interaction(iris.obj, method = "vimp", nrep = 3)
find.interaction(iris.obj)

## -------------------------------------------------------------
## interactions for multivariate mixed forests
## -------------------------------------------------------------

mtcars2 <- mtcars
mtcars2$cyl <- factor(mtcars2$cyl)
mtcars2$carb <- factor(mtcars2$carb, ordered = TRUE)
mv.obj <- rfsr(cbind(carb, mpg, cyl) ~ ., data = mtcars2, importance = TRUE)
find.interaction(mv.obj, method = "vimp", outcome.target = "carb")
find.interaction(mv.obj, method = "vimp", outcome.target = "mpg")
find.interaction(mv.obj, method = "vimp", outcome.target = "cyl")
```
Follicular Cell Lymphoma

Description

Competing risk data set involving follicular cell lymphoma.

Format

A data frame containing:

- `age`: age
- `hgb`: hemoglobin (g/l)
- `clinstg`: clinical stage: 1=stage I, 2=stage II
- `ch`: chemotherapy
- `rt`: radiotherapy
- `time`: first failure time
- `status`: censoring status: 0=censored, 1=relapse, 2=death

Source

Table 1.4b, *Competing Risks: A Practical Perspective*.

References

Examples

```r
data(follic, package = "randomForestSRC")
folic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
```

Hodgkin’s Disease

Description

Competing risk data set involving Hodgkin’s disease.
Format

A data frame containing:

- **age**
- **sex**
- **trtgiven** (treatment: RT=radition, CMT=Chemotherapy and radiation)
- **medwidsi** (mediastinum involvement: N=no, S=small, L=Large)
- **extranod** (extranodal disease: Y=extranodal disease, N=nodal disease)
- **clinstg** (clinical stage: 1=stage I, 2=stage II)
- **time** (first failure time)
- **status** (censoring status: 0=censored, 1=relapse, 2=death)

Source

Table 1.6b, *Competing Risks: A Practical Perspective*.

References

Examples

```
data(hd, package = "randomForestSRC")
```

holdout.vimp.rfsrc

Hold out variable importance (VIMP)

Description

Hold out VIMP is calculated from the error rate for trees grown with and without a variable. Applies to all families.

Usage

```
## S3 method for class 'rfsrc'
holdout.vimp(formula, data, 
  ntree = function(p, vtry){1000 * p / vtry}, 
  ntree.max = 2000, 
  ntree.allvars = NULL, 
  nsplit = 10, 
  ntime = 50, 
  mtry = NULL, 
  vtry = 1, 
  fast = FALSE, 
  verbose = TRUE, 
  ...)
```
Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>A symbolic description of the model to be fit.</td>
</tr>
<tr>
<td>data</td>
<td>Data frame containing the y-outcome and x-variables.</td>
</tr>
<tr>
<td>ntree</td>
<td>Function specifying requested number of trees used for growing the forest. Inputs are dimension and number of holdout variables. The requested number of trees can also be a number.</td>
</tr>
<tr>
<td>ntree.max</td>
<td>Maximum number of trees used when calculating prediction error for determining hold out VIMP.</td>
</tr>
<tr>
<td>ntree.allvars</td>
<td>Grow this many additional trees and use them for calculating the baseline error rate. Ignored if NULL.</td>
</tr>
<tr>
<td>nsplit</td>
<td>Non-negative integer value specifying number of random split points used to split a node (deterministic splitting corresponds to the value zero and is much slower).</td>
</tr>
<tr>
<td>ntime</td>
<td>Integer value used for survival to constrain ensemble calculations to a grid of ntime time points.</td>
</tr>
<tr>
<td>mtry</td>
<td>Number of variables randomly selected as candidates for splitting a node.</td>
</tr>
<tr>
<td>vtry</td>
<td>Number of variables randomly selected to be held out when growing a tree.</td>
</tr>
<tr>
<td>fast</td>
<td>Use fast random forests, rfsr fast, in place of rfsr? Improves speed but is less accurate.</td>
</tr>
<tr>
<td>verbose</td>
<td>Provide verbose output?</td>
</tr>
<tr>
<td>...</td>
<td>Further arguments to be passed to rfsr.</td>
</tr>
</tbody>
</table>

Details

Prior to growing a tree, a random set of vtry features are held out. Tree growing proceeds as usual with the remaining features. Once the forest is grown, hold out VIMP for a given variable v is calculated as follows. Gather all trees where v was held out and calculate OOB prediction error. Next gather all trees were v was not held out and calculate OOB prediction error. Hold out VIMP for v is the difference between these two values. Thus hold out VIMP measures the importance of a variable when that variable is truly removed from tree growing.

If ntree.allvars is set to an integer value, then a total of this many trees are grown using all variables. The above procedure is then implemented with the following change. Determine the error rate for these additional trees. Hold out VIMP for v is the difference between this value and the error rate for trees where v was held out. Unlike the above procedure, this makes sure that the baseline used for calculating holdout VIMP is the same for all v. This feature is probably most useful in low-dimensional settings.

Note that accuracy of hold out VIMP depends heavily on the size of the forest. If the number of trees is too small, then number of times a variable is held out will be small and OOB error may suffer from high variance. Thus, ntree should be set fairly high - we recommend using 1000 times the number of features. Increasing vtry is another way to increase number of hold out trees. In particular, number of trees needed should decrease linearly with vtry. For this reason the default ntree equals 1000 trees for each feature divided by vtry. Keep in mind that intepretation of holdout VIMP is altered when vtry is different than 1.
Value

Hold out VIMP for each variable. For multivariate forests, hold out VIMP is calculated for each of the target outcomes.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References

See Also

vimp.rfsr

Examples

```r
## ------------------------------------------------------------
## boston housing example
## ------------------------------------------------------------
if (library("mlbench", logical.return = TRUE)) {
  data(BostonHousing)
  hv <- holdout.vimp(medv ~ ., BostonHousing)
  print(hv)
}

## ------------------------------------------------------------
## iris example illustrating vtry
## ------------------------------------------------------------
print(100 * holdout.vimp(Species ~ ., iris))
print(100 * holdout.vimp(Species ~ ., iris, vtry=2))

## ------------------------------------------------------------
## example involving class imbalanced data
## illustrates the new RFQ classifier
## see the function "imbalanced" for more information about RFQ
## ------------------------------------------------------------

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)
hv <- holdout.vimp(f, breast, rfq=TRUE, perf.type="g.mean")
print(10 * hv)
```
housing

Ames Iowa Housing Data

Description

Data from the Ames Assessor’s Office used in assessing values of individual residential properties sold in Ames, Iowa from 2006 to 2010. This is a regression problem and the goal is to predict "SalePrice" which records the price of a home in thousands of dollars.

References

Examples

```r
## load the data
data(housing, package = "randomForestSRC")

## the original data contains lots of missing data
## here's a fast but reasonably accurate way to impute the data
housing2 <- impute(data = housing, mf.q = 10, fast = TRUE)
```

imbalanced.rfsrc

Imbalanced Two Class Problems

Description

Implements various solutions to the two-class imbalanced problem, including the newly proposed quantile-classifier approach of O’Brien and Ishwaran (2017). Also includes Breiman’s balanced random forests undersampling of the majority class. Performance is assessed using the G-mean, but misclassification error can be requested.

Usage

```r
## S3 method for class 'rfsrc'
imbalanced(formula, data, ntree = 3000,
method = c("rfq", "brf", "standard"),
block.size = NULL, perf.type = NULL, fast = FALSE,
ratio = NULL, optimize = FALSE, ngrid = 1e4,
...)```

**Arguments**

- **formula** A symbolic description of the model to be fit.
- **data** Data frame containing the two-class y-outcome and x-variables.
- **ntree** Number of trees.
- **method** Method used for fitting the classifier. The default is `rfq` which is the random forests quantile-classifier (RFQ) approach of O’Brien and Ishwaran (2017). The method `brf` implements the balanced random forest (BRF) method of Chen et al. (2004) which undersamples the majority class so that its cardinality matches that of the minority class. The method `standard` implements a standard random forest analysis.
- **perf.type** Measure used for assessing performance (and all downstream calculations based on it such as variable importance). The default for `rfq` and `brf` is to use the G-mean (Kubat et al., 1997). For standard random forests, the default is misclassification error. Users can over-ride the default performance measure by manually selecting either `g.mean` for the G-mean, `misclass` for misclassification error, or `brier` for the normalized Brier score. See the examples below.
imbalanced.rfsrc

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>block.size</td>
<td>Should the cumulative error rate be calculated on every tree? When NULL, it will only be calculated on the last tree. If importance is requested, VIMP is calculated in “blocks” of size equal to block.size.</td>
</tr>
<tr>
<td>fast</td>
<td>Use fast random forests, rfsrc.fast, in place of rfsrc? Improves speed but is less accurate. Only applies to RFQ.</td>
</tr>
<tr>
<td>ratio</td>
<td>This is an optional parameter for expert users and included only for experimental purposes. Used to specify the ratio (between 0 and 1) for undersampling the majority class. Sampling is without replacement. Option is ignored for BRF.</td>
</tr>
<tr>
<td>optimize</td>
<td>Calculate the G-mean under various threshold values? Returns out-of-bag G-mean values for each tested threshold value. See examples below for illustration.</td>
</tr>
<tr>
<td>ngrid</td>
<td>Number of threshold values attempted when optimize is requested</td>
</tr>
<tr>
<td>...</td>
<td>Further arguments to be passed to the rfsrc function to specify random forest parameters.</td>
</tr>
</tbody>
</table>

Details

Imbalanced data, or the so-called imbalanced minority class problem, refers to classification settings involving two-classes where the ratio of the majority class to the minority class is much larger than one. Two solutions to the two-class imbalanced problem are provided here, including the newly proposed random forests quantile-classifier (RFQ) of O’Brien and Ishwaran (2017), and the balanced random forests (BRF) undersampling approach of Chen et al. (2004). The default performance metric is the G-mean (Kubat et al., 1997).

Currently, missing values cannot be handled for BRF or when the ratio option is used; in these cases, missing data is removed prior to the analysis.

We recommend setting ntree to a relatively large value when dealing with imbalanced data to ensure convergence of the performance value – this is especially true for the G-mean. Consider using 5 times the usual number of trees.

Value

A two-class random forest fit under the requested method and performance value.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References


See Also

rfsrc, rfsrc.fast
Examples

```r
use the breast data for illustration

data(breast, package = "randomForestSRC")
breast <- na.omit(breast)
f <- as.formula(status ~ .)

default RFQ call

o.rfq <- imbalanced(f, breast)
print(o.rfq)

equivalent to:
rfsrc(f, breast, rfq = TRUE, perf.type = "g.mean")

RFQ with AUC splitting

print(imbalanced(f, breast, splitrule = "auc"))

RFQ call with fast rfsrc

o.rfq <- imbalanced(f, breast, fast = TRUE)
print(o.rfq)

equivalent to:
rfsrc.fast(f, breast, rfq = TRUE, perf.type = "g.mean")

standard RF (uses misclassification)

o.std <- imbalanced(f, breast, method = "stand")

standard RF using G-mean performance

o.std <- imbalanced(f, breast, method = "stand", perf.type = "g.mean")

equivalent to:
rfsrc(f, breast, perf.type = "g.mean")
```
## default BRF call

```r
o.brf <- imbalanced(f, breast, method = "brf")
```

## equivalent to:

```r
imbalanced(f, breast, method = "brf", perf.type = "g.mean")
```

## BRF call with misclassification performance

```r
o.brf <- imbalanced(f, breast, method = "brf", perf.type = "misclass")
```

## RFQ with optimized threshold

```r
o.rfq.opt <- imbalanced(f, breast, optimize = TRUE)
plot(o.rfq.opt$gmean, type = "l")
```

## train/test example

```r
trn <- sample(1:nrow(breast), size = nrow(breast) / 2)
o.trn <- imbalanced(f, breast[trn,], importance = TRUE)
o.tst <- predict(o.trn, breast[-trn,], importance = TRUE)
print(o.trn)
print(o.tst)
print(100 * cbind(o.trn$impo[, 1], o.tst$impo[, 1]))
```

## simulation example using the caret R-package

```r
if (library("caret", logical.return = TRUE) &
 library("imbalance", logical.return = TRUE)) {
 ## experimental settings
 n <- 5000
 q <- 20
 ir <- 6
 f <- as.formula(Class ~ .)

 ## simulate the data, create minority class data
 d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
```
idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]
d <- d[sample(1:nrow(d)), ]

## define train/test split
trn <- sample(1:nrow(d), size = nrow(d) / 2, replace = FALSE)

## now make SMOTE training data
newd.50 <- mmote(d[trn, ], numInstances = 50, classAttr = "Class")
newd.500 <- mmote(d[trn, ], numInstances = 500, classAttr = "Class")

## fit RFQ with and without SMOTE
o.with.50 <- imbalanced(f, rbind(d[trn, ], newd.50))
o.with.500 <- imbalanced(f, rbind(d[trn, ], newd.500))
o.without <- imbalanced(f, d[trn, ])

## compare performance on test data
print(predict(o.with.50, d[-trn, ]))
print(predict(o.with.500, d[-trn, ]))
print(predict(o.without, d[-trn, ]))

### simulation example using the caret R-package simar to above
## illustrates effectiveness of blocked VIMP
##

if (library("caret", logical.return = TRUE)) {

## experimental settings
n <- 1000
q <- 20
ir <- 6
f <- as.formula(Class ~ .)

## simulate the data, create minority class data
d <- twoClassSim(n, linearVars = 15, noiseVars = q)
d$Class <- factor(as.numeric(d$Class) - 1)
idx.0 <- which(d$Class == 0)
idx.1 <- sample(which(d$Class == 1), sum(d$Class == 1) / ir , replace = FALSE)
d <- d[c(idx.0,idx.1),, drop = FALSE]

## VIMP for BRF with and without blocking
## blocked VIMP is a hybrid of Breiman-Cutler/Ishwaran-Kogalur VIMP
brf <- imbalanced(f, d, method = "brf", importance = TRUE, block.size = 1)
brfB <- imbalanced(f, d, method = "brf", importance = TRUE, block.size = 10)

## VIMP for RFQ with and without blocking
rfq <- imbalanced(f, d, importance = TRUE, block.size = 1)
rfqB <- imbalanced(f, d, importance = TRUE, block.size = 10)

## compare VIMP values
imp <- 100 * cbind(brf$importance[, 1], brfB$importance[, 1],
                 rfq$importance[, 1], rfqB$importance[, 1])

legn <- c("BRF", "BRF-block", "RFQ", "RFQ-block")
colr <- rep(4, 20+q)
colr[1:20] <- 2
ylim <- range(c(imp))
nms <- 1:(20+q)
par(mfrow=c(2,2))
barplot(imp[,1],col=colr,las=2,main=legn[1],ylim=ylim,names.arg=nms)
barplot(imp[,2],col=colr,las=2,main=legn[2],ylim=ylim,names.arg=nms)
barplot(imp[,3],col=colr,las=2,main=legn[3],ylim=ylim,names.arg=nms)
barplot(imp[,4],col=colr,las=2,main=legn[4],ylim=ylim,names.arg=nms)

---

**impute.rfsrc**

**Impute Only Mode**

**Description**

Fast imputation mode. A random forest is grown and used to impute missing data. No ensemble estimates or error rates are calculated.

**Usage**

```r
S3 method for class 'rfsrc'
impute(formula, data,
 ntree = 500, nodesize = 1, nsplit = 10,
 nimpute = 2, fast = FALSE, blocks,
 mf.q, max.iter = 10, eps = 0.01,
 ytry = NULL, always.use = NULL, verbose = TRUE,
 ...)
```

**Arguments**

- `formula`: A symbolic description of the model to be fit. Can be left unspecified if there are no outcomes or we don’t care to distinguish between y-outcomes and x-variables in the imputation. Ignored when using multivariate missForest imputation.
- `data`: Data frame containing the data to be imputed.
- `ntree`: Number of trees to grow.
- `nodesize`: Forest average terminal node size.
- `nsplit`: Non-negative integer value used to specify random splitting.
nimpute  Number of iterations of the missing data algorithm. Ignored for multivariate missForest; in which case the algorithm iterates until a convergence criteria is achieved (users can however enforce a maximum number of iterations with the option max.iter).

fast  Use fast random forests, rfsrFast, in place of rfsr? Improves speed but is less accurate.

blocks  Integer value specifying the number of blocks the data should be broken up into (by rows). This can improve computational efficiency when the sample size is large but imputation efficiency decreases. By default, no action is taken if left unspecified.

mf.q  Use this to turn on missForest (which is off by default). Specifies fraction of variables (between 0 and 1) used as responses in multivariate missForest imputation. Can also be an integer, in which case this equals the number of multivariate responses.

max.iter  Maximum number of iterations used when implementing multivariate missForest imputation.

eps  Tolerance value used to determine convergence of multivariate missForest imputation.

ytry  Number of variables used as pseudo-responses in unsupervised forests. See details below.

always.use  Character vector of variable names to always be included as a response in multivariate missForest imputation. Does not apply for other imputation methods.

verbose  Send verbose output to terminal (only applies to multivariate missForest imputation).

...  Further arguments passed to or from other methods.

Details

1. Grow a forest and use this to impute data. All external calculations such as ensemble calculations, error rates, etc. are turned off. Use this function if your only interest is imputing the data.

2. Split statistics are calculated using non-missing data only. If a node splits on a variable with missing data, the variable’s missing data is imputed by randomly drawing values from non-missing in-bag data. The purpose of this is to make it possible to assign cases to daughter nodes based on the split.

3. If no formula is specified, unsupervised splitting is implemented using a ytry value of $\sqrt{p}$ where $p$ equals the number of variables. More precisely, mtry variables are selected at random, and for each of these a random subset of ytry variables are selected and defined as the multivariate pseudo-responses. A multivariate composite splitting rule of dimension ytry is then applied to each of the mtry multivariate regression problems and the node split on the variable leading to the best split (Tang and Ishwaran, 2017).

4. If mf.q is specified, a multivariate version of missForest imputation (Stekhoven and Buhlmann, 2012) is applied. A fraction mf.q of variables are used as multivariate responses and split by the remaining variables using multivariate composite splitting (Tang and Ishwaran, 2017). Missing data for responses are imputed by prediction. The process is repeated using a new
set of variables for responses (mutually exclusive to the previous fit), until all variables have been imputed. This is one iteration. The entire process is repeated, and the algorithm iterated until a convergence criteria is met (specified using options `max.iter` and `eps`). Integer values for `mf.q` are allowed and interpreted as a request that `mf.q` variables be selected for the multivariate response. This is generally the most accurate of all the imputation procedures, but also the most computationally demanding. However see examples below for strategies to increase speed.

5. Prior to imputation, the data is processed and records with all values missing are removed, as are variables having all missing values.

6. If there is no missing data, either before or after processing of the data, the algorithm returns the processed data and no imputation is performed.

7. The default choice `nimpute=2` is chosen for coherence with the default missing data algorithm implemented in grow mode. Thus, if the user imputes data with `nimpute=2` and runs a grow forest using this imputed data, then performance values such as VIMP and error rates will coincide with those obtained by running a grow forest on the original non-imputed data using `na.action = "na.impute"`. Ignored for multivariate `missForest`.

8. All options are the same as `rfsrc` and the user should consult the `rfsrc` help file for details.

Value

Invisibly, the data frame containing the orginal data with imputed data overlayed.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References


See Also

`rfsrc`, `rfsrc.fast`

Examples

```r
example of survival imputation

default everything - unsupervised splitting
data(pbc, package = "randomForestSRC")
```
pbc1.d <- impute(data = pbc)

## imputation using outcome splitting
f <- as.formula(Surv(days, status) ~ .)
pbc2.d <- impute(f, data = pbc, nsplit = 3)

## random splitting can be reasonably good
pbc3.d <- impute(f, data = pbc, splitrule = "random", nimpute = 5)

## example of regression imputation
## -------------------------------------------------------------
air1.d <- impute(data = airquality, nimpute = 5)
air2.d <- impute(Ozone ~ ., data = airquality, nimpute = 5)
air3.d <- impute(Ozone ~ ., data = airquality, fast = TRUE)

## multivariate missForest imputation
## -------------------------------------------------------------
data(pbc, package = "randomForestSRC")

## missForest algorithm - uses 1 variable at a time for the response
pbc.d <- impute(data = pbc, mf.q = 1)

## multivariate missForest - use 10 percent of variables as responses
## i.e. multivariate missForest
pbc.d <- impute(data = pbc, mf.q = .01)

## missForest but faster by using random splitting
pbc.d <- impute(data = pbc, mf.q = 1, splitrule = "random")

## missForest but faster by increasing nodesize
pbc.d <- impute(data = pbc, mf.q = 1, nodesize = 20, splitrule = "random")

## missForest but faster by using rfsrcFast
pbc.d <- impute(data = pbc, mf.q = 1, fast = TRUE)

---

**max.subtree.rfsrc**

**Acquire Maximal Subtree Information**

**Description**

Extract maximal subtree information from a RF-SRC object. Used for variable selection and identifying interactions between variables.
max.subtree.rfsrc

Usage

```r
S3 method for class 'rfsrc'
max.subtree(object,
 max.order = 2, sub.order = FALSE, conservative = FALSE, ...)
```

Arguments

- `object`  An object of class `rfsrc,grow` or `rfsrc,forest`.
- `max.order`  Non-negative integer specifying the target number of order depths. Default is to return the first and second order depths. Used to identify predictive variables. Setting `max.order=0` returns the first order depth for each variable by tree. A side effect is that `conservative` is automatically set to `FALSE`.
- `sub.order`  Set this value to `TRUE` to return the minimal depth of each variable relative to another variable. Used to identify interrelationship between variables. See details below.
- `conservative`  If `TRUE`, the threshold value for selecting variables is calculated using a conservative marginal approximation to the minimal depth distribution (the method used in Ishwaran et al. 2010). Otherwise, the minimal depth distribution is the tree-averaged distribution. The latter method tends to give larger threshold values and discovers more variables, especially in high-dimensions.

... Further arguments passed to or from other methods.

Details

The maximal subtree for a variable `x` is the largest subtree whose root node splits on `x`. Thus, all parent nodes of `x`'s maximal subtree have nodes that split on variables other than `x`. The largest maximal subtree possible is the root node. In general, however, there can be more than one maximal subtree for a variable. A maximal subtree may also not exist if there are no splits on the variable. See Ishwaran et al. (2010, 2011) for details.

The minimal depth of a maximal subtree (the first order depth) measures predictiveness of a variable `x`. It equals the shortest distance (the depth) from the root node to the parent node of the maximal subtree (zero is the smallest value possible). The smaller the minimal depth, the more impact `x` has on prediction. The mean of the minimal depth distribution is used as the threshold value for deciding whether a variable’s minimal depth value is small enough for the variable to be classified as strong.

The second order depth is the distance from the root node to the second closest maximal subtree of `x`. To specify the target order depth, use the `max.order` option (e.g., setting `max.order=2` returns the first and second order depths). Setting `max.order=0` returns the first order depth for each variable for each tree.

Set `sub.order=TRUE` to obtain the minimal depth of a variable relative to another variable. This returns a pxp matrix, where `p` is the number of variables, and entries `[i][j]` are the normalized relative minimal depth of a variable `[j]` within the maximal subtree for variable `[i]`, where normalization adjusts for the size of `[i]`’s maximal subtree. Entry `[i][i]` is the normalized minimal depth of `i` relative to the root node. The matrix should be read by looking across rows (not down columns) and identifies interrelationship between variables. Small `[i][j]` entries indicate interactions. See `find.interaction` for related details.
For competing risk data, maximal subtree analyses are unconditional (i.e., they are non-event specific).

**Value**

Invisibly, a list with the following components:

- `order`: Order depths for a given variable up to `max.order` averaged over a tree and the forest. Matrix of dimension $p \times \text{max.order}$. If `max.order=0`, a matrix of $p \times n\text{mtree}$ is returned containing the first order depth for each variable by tree.

- `count`: Averaged number of maximal subtrees, normalized by the size of a tree, for each variable.

- `nodes.at.depth`: Number of non-terminal nodes by depth for each tree.

- `sub.order`: Average minimal depth of a variable relative to another variable. Can be NULL.

- `threshold`: Threshold value (the mean minimal depth) used to select variables.

- `threshold.1se`: Mean minimal depth plus one standard error.

- `topvars`: Character vector of names of the final selected variables.

- `topvars.1se`: Character vector of names of the final selected variables using the 1se threshold rule.

- `percentile`: Minimal depth percentile for each variable.

- `density`: Estimated minimal depth density.

- `second.order.threshold`: Threshold for second order depth.

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**See Also**

`holdout.vimp.rfsrc, var.select.rfsrc, vimp.rfsrc`

**Examples**

```r
survival analysis
first and second order depths for all variables
```
data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time, status) ~ ., data = veteran)
v.max <- max.subtree(v.obj)

# first and second order depths
print(round(v.max$order, 3))

# the minimal depth is the first order depth
print(round(v.max$order[, 1], 3))

# strong variables have minimal depth less than or equal
# to the following threshold
print(v.max$threshold)

# this corresponds to the set of variables
print(v.max$topvars)

## -------------------------------------------------------------
## regression analysis
## try different levels of conservativeness
## -------------------------------------------------------------

mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
max.subtree(mtcars.obj)$topvars
max.subtree(mtcars.obj, conservative = TRUE)$topvars

nutrigenomic

Nutrigenomic Study

Description

Study the effects of five diet treatments on 21 liver lipids and 120 hepatic gene expression in wild-type and PPAR-alpha deficient mice. We use a multivariate mixed random forest analysis by regressing gene expression, diet and genotype (the x-variables) on lipid expressions (the multivariate y-responses).

References


Examples

## -------------------------------------------------------------
## multivariate mixed forests
## lipids used as the multivariate y-responses
## -------------------------------------------------------------
## load the data
data(nutrigenomic, package = "randomForestSRC")

## multivariate mixed forest call
mv.obj <- rfsrc(get.mv.formula(colnames(nutrigenomic$lipids)),
                   data.frame(do.call(cbind, nutrigenomic)),
                   importance=TRUE, nsplit = 10)

## plot the standardized performance and VIMP values
## -----------------------------------------------

## acquire the error rate for each of the 21-coordinates
## standardize to allow for comparison across coordinates
serr <- get.mv.error(mv.obj, standardize = TRUE)

## acquire standardized VIMP
svimp <- get.mv.vimp(mv.obj, standardize = TRUE)

par(mfrow = c(1,2))
plot(serr, xlab = "Lipids", ylab = "Standardized Performance")
matplot(svimp, xlab = "Genes/Diet/Genotype", ylab = "Standardized VIMP")

---

### partial.rfsrc

**Acquire Partial Effect of a Variable**

**Description**

Acquire the partial effect of a variable on the ensembles.

**Usage**

```r
partial.rfsrc(object, oob = TRUE, m.target = NULL,
 partial.type = NULL, partial.xvar = NULL, partial.values = NULL,
 partial.xvar2 = NULL, partial.values2 = NULL,
 partial.time = NULL, get.tree = NULL, seed = NULL, do.trace = FALSE, ...)
```

**Arguments**

- `object` An object of class `rfsrc,grow`.
- `oob` By default out-of-bag values are returned, but inbag values can be requested by setting this option to `FALSE`.
- `m.target` Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
- `partial.type` Character value of the type of predicted value. See details below.
- `partial.xvar` Character value specifying the single primary partial x-variable to be used.
partial.values Vector of values that the primary partial x-variable will assume.

partial.xvar2 Vector of character values specifying the second order x-variables to be used.

partial.values2 Vector of values that the second order x-variables will assume. Each second order x-variable can only assume a single value. This the length of partial.xvar2 and partial.values2 will be the same. In addition, the user must do the appropriate conversion for factors, and represent a value as a numeric element.

partial.time For survival families, the time at which the predicted survival value is evaluated at (depends on partial.type).

get.tree Vector of integer(s) identifying trees over which the partial values are calculated over. By default, uses all trees in the forest.

seed Negative integer specifying seed for the random number generator.

do.trace Number of seconds between updates to the user on approximate time to completion.

... Further arguments passed to or from other methods.

Details

Out-of-bag (OOB) values are returned by default.

For factors, the partial value should be encoded as a positive integer reflecting the level number of the factor. The actual label of the factor should not be used.

A list of length equal to the number of outcomes (length is one for univariate families) with entries depending on the underlying family:

1. For regression, the predicted response is returned of dim [n] x [length(partial.values)].

2. For classification, the predicted probabilities are returned of dim [n] x [1 + yvar.nlevels[.]] x [length(partial.values)].

3. For survival, the choices are:
   - Relative frequency of mortality (rel.freq) or mortality (mort) is of dim [n] x [length(partial.values)].
   - The cumulative hazard function (chf) is of dim [n] x [length(partial.time)] x [length(partial.values)].
   - The survival function (surv) is of dim [n] x [length(partial.time)] x [length(partial.values)].

4. For competing risks, the choices are:
   - The expected number of life years lost (years.lost) is of dim [n] x [length(event.info$event.type)] x [length(partial.values)].
   - The cumulative incidence function (cif) is of dim [n] x [length(partial.time)] x [length(event.info$event.type)] x [length(partial.values)].
   - The cumulative hazard function (chf) is of dim [n] x [length(partial.time)] x [length(event.info$event.type)] x [length(partial.values)].

Author(s)

Hemant Ishwaran and Udaya B. Kogalur
References


See Also

`plot.variable.rfsr`c

Examples

```r
survival/competing risk

survival
v.obj <- rfsrc(Surv(time,status)~., veteran, nsplit = 10, ntree = 100)
partial.obj <- partial(v.obj,
 partial.type = "rel.freq",
 partial.xvar = "age",
 partial.values = v.obj$xvar[, "age"],
 partial.time = v.obj$time.interest)

competing risk
data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
partial.obj <- partial(follic.obj,
 partial.type = "cif",
 partial.xvar = "age",
 partial.values = follic.obj$xvar[, "age"],
 partial.time = follic.obj$time.interest)

regression
airq.obj <- rfsrc(Ozone ~ ., data = airquality)
partial.obj <- partial(airq.obj,
 partial.xvar = "Wind",
 partial.values = airq.obj$xvar[, "Wind"],
 oob = FALSE)

classification
iris.obj <- rfsrc(Species ~ ., data = iris)
partial.obj <- partial(iris.obj,
 partial.xvar = "Sepal.Length",
 partial.values = iris.obj$xvar[, "Sepal.Length"])

multivariate mixed outcomes
mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb)
mtcars2$cyl <- factor(mtcars2$cyl)
```
mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)
partial.obj <- partial(mtcars.mix,
  partial.xvar = "disp",
  partial.values = mtcars.mix$xvar[, "disp"])

## second order variable specification
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
partial.obj <- partial(mtcars.obj,
  partial.xvar = "cyl",
  partial.values = c(4, 8),
  partial.xvar2 = c("gear", "disp", "carb"),
  partial.values2 = c(4, 200, 3))

---

pbc

**Primary Biliary Cirrhosis (PBC) Data**

**Description**

Data from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984. A total of 424 PBC patients, referred to Mayo Clinic during that ten-year interval, met eligibility criteria for the randomized placebo controlled trial of the drug D-penicillamine. The first 312 cases in the data set participated in the randomized trial and contain largely complete data.

**Source**


**References**


**Examples**

data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nsplit = 3)
plot.competing.risk.rfsrc

Plots for Competing Risks

Description

Plot useful summary curves from a random survival forest competing risk analysis.

Usage

## S3 method for class 'rfsrc'
plot.competing.risk(x, plots.one.page = FALSE, ...)

Arguments

x An object of class (rfsrc,grow) or (rfsrc,predict).
plots.one.page Should plots be placed on one page?
... Further arguments passed to or from other methods.

Details

Given a random survival forest object from a competing risk analysis (Ishwaran et al. 2014), plots from top to bottom, left to right: (1) cause-specific cumulative hazard function (CSCHF) for each event, (2) cumulative incidence function (CIF) for each event, and (3) continuous probability curves (CPC) for each event (Pepe and Mori, 1993).

Does not apply to right-censored data. Whenever possible, out-of-bag (OOB) values are displayed.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References


See Also

follic, hd, rfsrc, wihs
Examples

```r

follicular cell lymphoma

data(follic, package = "randomForestSRC")
follic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
plot.competing.risk(follic.obj)

competing risk analysis of pbc data from the survival package
events are transplant (1) and death (2)

if (library("survival", logical.return = TRUE)) {
 data(pbc, package = "survival")
pbc$id <- NULL
plot.competing.risk(rfsr(Surv(time, status) ~ ., pbc))
}
```

---

**Plot Quantiles from Quantile Regression Forests**

**Description**

Plots quantiles obtained from a quantile regression forest. Additionally insets the continuous rank probability score (crps), a useful diagnostic of accuracy.

**Usage**

```r
S3 method for class 'rfsrc'
plot.quantreg(x, prbL = .25, prbU = .75,
 m.target = NULL, crps = TRUE, subset = NULL, ...)
```

**Arguments**

- `x`: A quantile regression object obtained from calling `quantreg`.
- `prbL`: Lower quantile (preferably < .5).
- `prbU`: Upper quantile (preferably > .5).
- `m.target`: Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
- `crps`: Calculate crps and inset it?
- `subset`: Restricts plotted values to a subset of the data. Default is to use the entire data.
- `...`: Further arguments passed to or from other methods.
Author(s)
Hemant Ishwaran and Udaya B. Kogalur

See Also
quantreg.rfsrcc

plot.rfsrcc  Plot Error Rate and Variable Importance from a RF-SRC analysis

Description
Plot out-of-bag (OOB) error rates and variable importance (VIMP) from a RF-SRC analysis. This is the default plot method for the package.

Usage
## S3 method for class 'rfsrcc'
plot(x, m.target = NULL,
     plots.one.page = TRUE, sorted = TRUE, verbose = TRUE, ...)

Arguments
x An object of class (rfsrcc,grow), (rfsrcc,synthetic), or (rfsrcc,predict).
m.target Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
plots.one.page Should plots be placed on one page?
sorted Should variables be sorted by importance values?
verbose Should VIMP be printed?
... Further arguments passed to or from other methods.

Details
Plot cumulative OOB error rates as a function of number of trees and variable importance (VIMP) if available. Note that the default settings are now such that the error rate is no longer calculated on every tree and VIMP is only calculated if requested. To get OOB error rates for ever tree, use the option block.size = 1 when growing or restoring the forest. Likewise, to view VIMP, use the option importance when growing or restoring the forest.

Author(s)
Hemant Ishwaran and Udaya B. Kogalur

References
Examples

```r
classification example
iris.obj <- rfsrc(Species ~ ., data = iris,
 block.size = 1, importance = TRUE)
plot(iris.obj)

competing risk example
use the pbc data from the survival package
events are transplant (1) and death (2)
if (library("survival", logical.return = TRUE)) {
 data(pbc, package = "survival")
 pbc$id <- NULL
 plot(rfsrc(Surv(time, status) ~ ., pbc, block.size = 1))
}

multivariate mixed forests
mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
mv.obj <- rfsrc(cbind(carb, mpg, cyl) ~ ., data = mtcars.new, block.size = 1)
plot(mv.obj, m.target = "carb")
plot(mv.obj, m.target = "mpg")
plot(mv.obj, m.target = "cyl")
```

---

**plot.subsample.rfsrc**

Plots VIMP (variable importance) confidence regions obtained from subsampling a forest.

**Usage**

```
S3 method for class 'rfsrc'
plot.subsample(x, alpha = .01,
 standardize = TRUE, normal = TRUE, jknife = TRUE,
 target, m.target = NULL, pmax = 75, main = "", ...)
```
**Arguments**

- **x**: An object obtained from calling `subsample`.
- **alpha**: Desired level of significance.
- **standardize**: Standardize VIMP? For regression families, VIMP is standardized by dividing by the variance and then multiplied by 100. For all other families, VIMP is scaled by 100.
- **normal**: Use parametric normal confidence regions or nonparametric regions? Generally, parametric regions perform better.
- **jknife**: Use the delete-d jackknife variance estimator?
- **target**: For classification families, an integer or character value specifying the class VIMP will be conditioned on (default is to use unconditional VIMP). For competing risk families, an integer value between 1 and J indicating the event VIMP is requested, where J is the number of event types. The default is to use the first event.
- **m.target**: Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
- **pmax**: Trims the data to this number of variables (sorted by VIMP).
- **main**: Title used for plot.
- **...**: Further arguments that can be passed to `bxp`.

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**See Also**

`subsample.rfsrcc`

**Examples**

```r
o <- rfsr(Ozone ~ ., airquality)
oo <- subsample(o)
plot.subsample(o)
plot.subsample(o, jknife = FALSE)
plot.subsample(o, alpha = .01)
plot(o)
```
plot.survival.rfsrc  

Plot of Survival Estimates

Description

Plot various survival estimates.

Usage

```r
S3 method for class 'rfsrc'
plot.survival(x, plots.one.page = TRUE,
 show.plots = TRUE, subset, collapse = FALSE,
 cens.model = c("km", "rfsrc"), ...)
```

Arguments

- `x`: An object of class (rfsrc, grow) or (rfsrc, predict).
- `plots.one.page`: Should plots be placed on one page?
- `show.plots`: Should plots be displayed?
- `subset`: Vector indicating which individuals we want estimates for. All individuals are used if not specified.
- `collapse`: Collapse the survival and cumulative hazard function across the individuals specified by `subset`? Only applies when `subset` is specified.
- `cens.model`: Method for estimating the censoring distribution used in the inverse probability of censoring weights (IPCW) for the Brier score:
  - `km`: Uses the Kaplan-Meier estimator.
  - `rfsrc`: Uses a censoring random survival forest estimator.
  - `...`: Further arguments passed to or from other methods.

Details

If ‘subset’ is not specified, generates the following plots (going from top to bottom, left to right):

1. Forest estimated survival function for each individual (thick red line is overall ensemble survival, thick green line is Nelson-Aalen estimator).
2. Brier score (0=perfect, 1=poor, and 0.25=guessing) stratified by ensemble mortality. Based on the IPCW method described in Gerds et al. (2006). Stratification is into 4 groups corresponding to the 0-25, 25-50, 50-75 and 75-100 percentile values of mortality. Red line is the overall (non-stratified) Brier score.
3. Continuous rank probability score (CRPS) equal to the integrated Brier score divided by time.
4. Plot of mortality of each individual versus observed time. Points in blue correspond to events, black points are censored observations.

When ‘subset’ is specified, then for each individual in ‘subset’, the following three plots are generated:
1. Forest estimated survival function.
2. Forest estimated cumulative hazard function (CHF) (displayed using black lines). Blue lines are the CHF from the estimated hazard function.

Note that when the object *x* is of class *(rfsrc, predict)* not all plots will be produced. In particular, Brier scores are not calculated.

Only applies to survival families. In particular, fails for competing risk analyses. Use `plot.competing.risk` in such cases.

Whenever possible, out-of-bag (OOB) values are used.

**Value**

Invisibly, the conditional and unconditional Brier scores, and the integrated Brier score (if they are available).

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**See Also**

`plot.competing.risk.rfsrc, predict.rfsrc, rfsrc`

**Examples**

```r
veteran data
data(veteran, package = "randomForestSRC")
plot.survival(rfsrc(Surv(time, status)~ ., veteran), cens.model = "rfsrc")

pbc data
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)

use subset to focus on specific individuals
plot.survival(pbc.obj, subset = 3)
plot.survival(pbc.obj, subset = c(3, 10))
```
Plot the marginal effect of an x-variable on the class probability (classification), response (regression), mortality (survival), or the expected years lost (competing risk). Users can select between marginal (unadjusted, but fast) and partial plots (adjusted, but slower).

Usage

```r
S3 method for class 'rfsrc'
plot.variable(x, xvar.names, target,
 m.target = NULL, time, surv.type = c("mort", "rel.freq",
 "surv", "years.lost", "cif", "chf"), class.type =
 c("prob", "bayes"), partial = FALSE, oob = TRUE,
 show.plots = TRUE, plots.per.page = 4, granule = 5, sorted = TRUE,
 nvar, npts = 25, smooth.lines = FALSE, subset, ...)
```

Arguments

- `x` An object of class `rfsrc`, `rfsrc(synthetic)`, or `rfsrc(plot.variable)`. See the examples below for illustration of the latter.
- `xvar.names` Names of the x-variables to be used.
- `target` For classification, an integer or character value specifying the class to focus on (defaults to the first class). For competing risks, an integer value between 1 and \(J\) indicating the event of interest, where \(J\) is the number of event types. The default is to use the first event type.
- `m.target` Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
- `time` For survival, the time at which the predicted survival value is evaluated at (depends on `surv.type`).
- `surv.type` For survival, specifies the predicted value. See details below.
- `class.type` For classification, specifies the predicted value. See details below.
- `partial` Should partial plots be used?
- `oob` OOB (TRUE) or in-bag (FALSE) predicted values.
- `show.plots` Should plots be displayed?
- `plots.per.page` Integer value controlling page layout.
- `granule` Integer value controlling whether a plot for a specific variable should be treated as a factor and therefore given as a boxplot. Larger values coerce boxplots.
- `sorted` Should variables be sorted by importance values.
- `nvar` Number of variables to be plotted. Default is all.
npts
Maximum number of points used when generating partial plots for continuous variables.

smooth.lines
Use lowess to smooth partial plots.

subset
Vector indicating which rows of the x-variable matrix $x$xvar to use. All rows are used if not specified. Do not define subset based on the original data (which could have been processed due to missing values or for other reasons in the previous forest call) but define subset based on the rows of $x$xvar.

... Further arguments passed to or from other methods.

Details
The vertical axis displays the ensemble predicted value, while x-variables are plotted on the horizontal axis.

1. For regression, the predicted response is used.
2. For classification, it is the predicted class probability specified by ‘target’, or the class of maximum probability depending on ‘class.type’.
3. For multivariate families, it is the predicted value of the outcome specified by ‘m.target’ and if that is a classification outcome, by ‘target’.
4. For survival, the choices are:
   • Mortality (mort).
   • Relative frequency of mortality (rel.freq).
   • Predicted survival (surv), where the predicted survival is for the time point specified using time (the default is the median follow up time).
5. For competing risks, the choices are:
   • The expected number of life years lost (years.lost).
   • The cumulative incidence function (cif).
   • The cumulative hazard function (chf).
In all three cases, the predicted value is for the event type specified by ‘target’. For cif and chf the quantity is evaluated at the time point specified by time.

For partial plots use ‘partial=TRUE’. Their interpretation are different than marginal plots. The y-value for a variable $X$, evaluated at $X = x$, is

$$\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} \hat{f}(x, x_{i,o}),$$

where $x_{i,o}$ represents the value for all other variables other than $X$ for individual $i$ and $\hat{f}$ is the predicted value. Generating partial plots can be very slow. Choosing a small value for npts can speed up computational times as this restricts the number of distinct $x$ values used in computing $\hat{f}$.

For continuous variables, red points are used to indicate partial values and dashed red lines indicate a smoothed error bar of +/- two standard errors. Black dashed line are the partial values. Set ‘smooth.lines=TRUE’ for lowess smoothed lines. For discrete variables, partial values are indicated using boxplots with whiskers extending out approximately two standard errors from the mean. Standard errors are meant only to be a guide and should be interpreted with caution.
Partial plots can be slow. Setting ‘npts’ to a smaller number can help.

For greater customization and flexibility in partial plot calls, consider using the function `partial.rfsrc` which provides a direct interface for calculating partial plot data.

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**See Also**

`rfsrc`, `synthetic.rfsrc`, `partial.rfsrc`, `predict.rfsrc`

**Examples**

```r
survival/competing risk
data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time, status) ~ ., veteran, ntree = 100)
plot.variable(v.obj, plots.per.page = 3)
plot.variable(v.obj, plots.per.page = 2, xvar.names = c("trt", "karno", "age"))
plot.variable(v.obj, surv.type = "surv", nvar = 1, time = 200)
plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE)
plot.variable(v.obj, surv.type = "rel.freq", partial = TRUE, nvar = 2)

example of plot.variable calling a pre-processed plot.variable object
p.v <- plot.variable(v.obj, surv.type = "surv", partial = TRUE, smooth.lines = TRUE)
plot.variable(p.v)
p.v$plots.per.page <- 1
p.v$smooth.lines <- FALSE
plot.variable(p.v)

competing risks
data(follic, package = "randomForestSRC")
folic.obj <- rfsrc(Surv(time, status) ~ ., follic, nsplit = 3, ntree = 100)
plot.variable(folic.obj, target = 2)
```
# regression
# ------------------------------------------

## airquality
airq.obj <- rfsrc(Ozone ~ ., data = airquality)
plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE)
plot.variable(airq.obj, partial = TRUE, subset = airq.obj$xvar$Solar.R < 200)

## motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)
plot.variable(mtcars.obj, partial = TRUE, smooth.lines = TRUE)

# classification
# ------------------------------------------

## iris
iris.obj <- rfsrc(Species ~ ., data = iris)
plot.variable(iris.obj, partial = TRUE)

## motor trend cars: predict number of carburetors
mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb,
  labels = paste("carb", sort(unique(mtcars$carb))))
mtcars2.obj <- rfsrc(carb ~ ., data = mtcars2)
plot.variable(mtcars2.obj, partial = TRUE)

# multivariate regression
# ------------------------------------------

## multivariate mixed outcomes
# ------------------------------------------

mtcars2 <- mtcars
mtcars2$carb <- factor(mtcars2$carb)
mtcars2$cyl <- factor(mtcars2$cyl)
mtcars.mix <- rfsrc(Multivar(carb, mpg, cyl) ~ ., data = mtcars2)
plot.variable(mtcars.mix, m.target = "cyl", target = 4, partial = TRUE, nvar = 1)
plot.variable(mtcars.mix, m.target = "cyl", target = 2, partial = TRUE, nvar = 1)

# predict.rfsrc
Prediction for Random Forests for Survival, Regression, and Classification
predict.rfsrc

Description

Obtain predicted values using a forest. Also returns performance values if the test data contains y-outcomes.

Usage

## S3 method for class 'rfsrc'
predict(object,
    newdata,
    m.target = NULL,
    importance = c(FALSE, TRUE, "none", "permute", "random", "anti"),
    get.tree = NULL,
    block.size = if (any(is.element(as.character(importance),
                    c("none", "FALSE")))) NULL else 10,
    ensemble = NULL,
    na.action = c("na.omit", "na.impute"),
    outcome = c("train", "test"),
    proximity = FALSE,
    forest.wt = FALSE,
    ptn.count = 0,
    distance = FALSE,
    var.used = c(FALSE, "all.trees", "by.tree"),
    split.depth = c(FALSE, "all.trees", "by.tree"), seed = NULL,
    do.trace = FALSE, membership = FALSE, statistics = FALSE,
    ...
)

Arguments

object An object of class (rfsrc,grow) or (rfsrc,forest).
newdata Test data. If missing, the original grow (training) data is used.
m.target Character vector for multivariate families specifying the target outcomes to be used. The default is to use all coordinates.
importance Method for computing variable importance (VIMP) when test data contains y-outcomes values. Also see vimp for more flexibility, including joint vimp calculations. Another way to calculate VIMP is holdoutvimp.
get.tree Vector of integer(s) identifying trees over which the ensembles are calculated over. By default, uses all trees in the forest. As an example, the user can extract the ensemble, the variable importance, or proximity from a single tree (or several trees). Note that block.size will be over-ridden so that it is no larger than the requested number of trees.
block.size Should the error rate be calculated on every tree? When NULL, it will only be calculated on the last tree. To view the error rate on every nth tree, set the value to an integer between 1 and ntree. If importance is requested, VIMP is calculated in "blocks" of size equal to block.size, thus resulting in a useful compromise between ensemble and permutation VIMP.
ensemble
Optional parameter for specifying the type of ensemble. Can be oob, inbag or all, although not all choices will be applicable depending on the setting (e.g. when predicting on newdata there is no notion of out-of-bag).

na.action
Missing value action. The default na.omit removes the entire record if even one of its entries is NA. Selecting 'na.impute' imputes the test data. Also see the function impute for fast direct imputation.

outcome
Determines whether the y-outcomes from the training data or the test data are used to calculate the predicted value. The default and natural choice is train which uses the original training data. Option is ignored when newdata is missing as the training data is used for the test data in such settings. The option is also ignored whenever the test data is devoid of y-outcomes. See the details and examples below for more information.

proximity
Should proximity between test observations be calculated? Possible choices are "inbag", "oob", "all", TRUE, or FALSE — but some options may not be valid and will depend on the context of the predict call. The safest choice is TRUE if proximity is desired.

distance
Should distance between test observations be calculated? Possible choices are "inbag", "oob", "all", TRUE, or FALSE — but some options may not be valid and will depend on the context of the predict call. The safest choice is TRUE if distance is desired.

forest.wt
Should the forest weight matrix for test observations be calculated? Choices are the same as proximity.

ptn.count
The number of terminal nodes that each tree in the grow forest should be pruned back to. The terminal node membership for the pruned forest is returned but no other action is taken. The default is ptn.count=0 which does no pruning.

var.used
Record the number of times a variable is split?

split.depth
Return minimal depth for each variable for each case?

seed
Negative integer specifying seed for the random number generator.

do.trace
Number of seconds between updates to the user on approximate time to completion.

membership
Should terminal node membership and inbag information be returned?

statistics
Should split statistics be returned? Values can be parsed using stat.split.

Details

Predicted values are obtained by "dropping" test data down the training forest (the forest grown using the training data). Performance values are returned if test data contains y-outcome values. Single as well as joint VIMP are also returned if requested.

Setting na.action="na.impute" imputes missing test data (x-variables and/or y-outcomes). Test imputation uses only the grow-forest and training data to avoid biasing error rates and VIMP (Ishwaran et al. 2008). Also see the function impute for an alternate way to do fast and accurate imputation.
If no test data is provided, the original training data is used, and the code reverts to restore mode allowing the user to restore the original grow forest. This is useful, because it gives the user the ability to extract outputs from the forest that were not asked for in the original grow call.

If ‘outcome="test"’, the predictor is calculated by using y-outcomes from the test data (outcome information must be present). Terminal nodes from the grow-forest are recalculated using y-outcomes from the test set. This yields a modified predictor in which the topology of the forest is based solely on the training data, but where predicted values are obtained from test data. Error rates and VIMP are calculated by bootstrapping the test data and using out-of-bagging to ensure unbiased estimates. See the examples below for illustration.

**Value**

An object of class \( \text{rfsrc,predict} \), which is a list with the following components:

- **call**: The original grow call to \text{rfsrc}.
- **family**: The family used in the analysis.
- **n**: Sample size of test data (depends upon NA values).
- **ntree**: Number of trees in the grow forest.
- **yvar**: Test set y-outcomes or original grow y-outcomes if none.
- **yvar.names**: A character vector of the y-outcome names.
- **xvar**: Data frame of test set x-variables.
- **xvar.names**: A character vector of the x-variable names.
- **leaf.count**: Number of terminal nodes for each tree in the grow forest. Vector of length \( \text{ntree} \).
- **proximity**: Symmetric proximity matrix of the test data.
- **forest**: The grow forest.
- **membership**: Matrix recording terminal node membership for the test data where each column contains the node number that a case falls in for that tree.
- **inbag**: Matrix recording inbag membership for the test data where each column contains the number of times that a case appears in the bootstrap sample for that tree.
- **var.used**: Count of the number of times a variable was used in growing the forest.
- **imputed.indv**: Vector of indices of records in test data with missing values.
- **imputed.data**: Data frame comprising imputed test data. The first columns are the y-outcomes followed by the x-variables.
- **split.depth**: Matrix \([i][j]\) or array \([i][j][k]\) recording the minimal depth for variable \([j]\) for case \([i]\), either averaged over the forest, or by tree \([k]\).
- **node.stats**: Split statistics returned when \text{statistics=}TRUE which can be parsed using \text{stat.split}.
- **err.rate**: Cumulative OOB error rate for the test data if y-outcomes are present.
- **importance**: Test set variable importance (VIMP). Can be NULL.
- **predicted**: Test set predicted value.
predicted.oob  OOB predicted value (NULL unless `outcome="test"`).
quantile       Quantile value at probabilities requested.
quantile.oob   OOB quantile value at probabilities requested (NULL unless `outcome="test"`).

++++++       for classification settings, additionally +++++++
class         In-bag predicted class labels.
class.oob     OOB predicted class labels (NULL unless `outcome="test"`).

++++++       for multivariate settings, additionally +++++++
regrOutput    List containing performance values for test multivariate regression responses
              (applies only in multivariate settings).
clasOutput    List containing performance values for test multivariate categorical (factor) re-
              sponses (applies only in multivariate settings).

++++++       for survival settings, additionally +++++++
chf           Cumulative hazard function (CHF).
chf.oob       OOB CHF (NULL unless `outcome="test"`).
survival      Survival function.
survival.oob  OOB survival function (NULL unless `outcome="test"`).
time.interest Ordered unique death times.
ndead         Number of deaths.

++++++       for competing risks, additionally +++++++
chf           Cause-specific cumulative hazard function (CSCHF) for each event.
chf.oob       OOB CSCHF for each event (NULL unless `outcome="test"`).
cif           Cumulative incidence function (CIF) for each event.
cif.oob       OOB CIF for each event (NULL unless `outcome="test"`).
time.interest Ordered unique event times.
ndead         Number of events.

**Note**

The dimensions and values of returned objects depend heavily on the underlying family and whether
y-outcomes are present in the test data. In particular, items related to performance will be NULL
when y-outcomes are not present. For multivariate families, predicted values, VIMP, error rate,
and performance values are stored in the lists regrOutput and clasOutput which can be extracted
using functions `get.mv.error`, `get.mv.predicted` and `get.mv.vimp`. 
**predict.rfsrc**

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**See Also**

holdout.vimp.rfsrc, plot.competing.risk.rfsrc, plot.rfsrc, plot.survival.rfsrc, plot.variable.rfsrc, rfsrce, rfsrce.fast, stat.split.rfsrc, synthetic.rfsrc, vimp.rfsrc

**Examples**

```r
--
typical train/testing scenario
--

data(veteran, package = "randomForestSRC")
train <- sample(1:nrow(veteran), round(nrow(veteran) * 0.80))
veteran.grow <- rfsrc(Surv(time, status) ~ ., veteran[train,], ntree = 100)
veteran.pred <- predict(veteran.grow, veteran[-train ,])
print(veteran.grow)
print(veteran.pred)

--
predicted probability and predicted class labels are returned
in the predict object for classification analyses
--

data(breast, package = "randomForestSRC")
breast.obj <- rfsrc(status ~ ., data = breast[(1:100),])
breast.pred <- predict(breast.obj, breast[-(1:100),])
print(head(breast.pred$predicted))
print(breast.pred$class)

--
example illustrating restore mode
if predict is called without specifying the test data
the original training data is used and the forest is restored
--

first we make the grow call
airq.obj <- rfsrc(Ozone ~ ., data = airquality)

now we restore it and compare it to the original call
they are identical
```
predict(airq.obj)
print(airq.obj)

## we can retrieve various outputs that were not asked for in
## in the original call

## here we extract the proximity matrix
prox <- predict(airq.obj, proximity = TRUE)$proximity
print(prox[1:10,1:10])

## here we extract the number of times a variable was used to grow
## the grow forest
var.used <- predict(airq.obj, var.used = "by.tree")$var.used
print(head(var.used))

## ------------------------------------------------------------
## unique feature of randomForestSRC
## cross-validation can be used when factor labels differ over
## training and test data
## ------------------------------------------------------------

## first we convert all x-variables to factors
data(veteran, package = "randomForestSRC")
veteran.factor <- data.frame(lapply(veteran, factor))
veteran.factor$time <- veteran$time
veteran.factor$status <- veteran$status

## split the data into unbalanced train/test data (5/95)
## the train/test data have the same levels, but different labels
train <- sample(1:nrow(veteran), round(nrow(veteran) * .05))
summary(veteran.factor[train,])
summary(veteran.factor[-train,])

## grow the forest on the training data and predict on the test data
veteran.f.grow <- rfsrc(Surv(time, status) ~ ., veteran.factor[train,])
veteran.f.pred <- predict(veteran.f.grow, veteran.factor[-train ,])
print(veteran.f.grow)
print(veteran.f.pred)

## ------------------------------------------------------------
## example illustrating the flexibility of outcome = "test"
## illustrates restoration of forest via outcome = "test"
## ------------------------------------------------------------

## first we make the grow call
data(pbc, package = "randomForestSRC")
pbc.grow <- rfsrc(Surv(days, status) ~ ., pbc)

## now use predict with outcome = TEST
pbc.pred <- predict(pbc.grow, pbc, outcome = "test")

## notice that error rates are the same!!
print(pbc.grow)
predict.rfsrc

print(pbc.pred)

## note this is equivalent to restoring the forest
pbc.pred2 <- predict(pbc.grow)
print(pbc.grow)
print(pbc.pred)
print(pbc.pred2)

## similar example, but with na.action = "na.impute"
airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")
print(airq.obj)
print(predict(airq.obj))
## ... also equivalent to outcome="test" but na.action = "na.impute" required
print(predict(airq.obj, airquality, outcome = "test", na.action = "na.impute"))

## classification example
iris.obj <- rfsrc(Species ~ ., data = iris)
print(iris.obj)
print(predict.rfsrc(iris.obj, iris, outcome = "test"))

## another example illustrating outcome = "test"
## unique way to check reproducibility of the forest
## ---------------------------------------------------------------------------------------------------------------------------------

## primary call
set.seed(542899)
data(pbc, package = "randomForestSRC")
train <- sample(1:nrow(pbc), round(nrow(pbc) * 0.50))
pbc.out <- rfsrc(Surv(days, status) ~ ., data=pbc[train, ])

## standard predict call
pbc.train <- predict(pbc.out, pbc[~train, ], outcome = "train")
##non-standard predict call: overlays the test data on the grow forest
pbc.test <- predict(pbc.out, pbc[~train, ], outcome = "test")

## check forest reproducibility by comparing "test" predicted survival
## curves to "train" predicted survival curves for the first 3 individuals
Time <- pbc.out$time.interest
matplot(Time, t(pbc.train$survival[1:3,]), ylab = "Survival", col = 1, type = "l")
matlines(Time, t(pbc.test$survival[1:3,]), col = 2)

## survival analysis using mixed multivariate outcome analysis
## compare the predicted value to RSF
## ---------------------------------------------------------------------------------------------------------------------------------

## fit the pbc data using RSF
data(pbc, package = "randomForestSRC")
rsf.obj <- rfsrc(Surv(days, status) ~ ., pbc)
yvar <- rsf.obj$yvar
# fit a mixed outcome forest using days and status as y-variables
pbc.mod <- pbc
pbc.mod$status <- factor(pbc.mod$status)
mix.obj <- rfsrc(Multivar(days, status) ~ ., pbc.mod)

## compare oob predicted values
rsf.pred <- rsf.obj$predicted.oob
mix.pred <- mix.obj$regrOutput$days$predicted.oob
plot(rsf.pred, mix.pred)

## compare C-index error rate
rsf.err <- get.cindex(yvar$days, yvar$status, rsf.pred)
mix.err <- 1 - get.cindex(yvar$days, yvar$status, mix.pred)
cat("RSF : ", rsf.err, "\n")
cat("multivariate forest: ", mix.err, "\n")

---

**print.rfsrc**

*Print Summary Output of a RF-SRC Analysis*

**Description**

Print summary output from a RF-SRC analysis. This is the default print method for the package.

**Usage**

```r
S3 method for class 'rfsrc'
print(x, outcome.target = NULL, ...)
```

**Arguments**

- `x` An object of class (rfsrc, grow), (rfsrc, synthetic), or (rfsrc, predict).
- `outcome.target` Character value for multivariate families specifying the target outcome to be used. The default is to use the first coordinate.
- `...` Further arguments passed to or from other methods.

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**Examples**

```r
iris.obj <- rfsrc(Species ~ ., data = iris, ntree=100)
print(iris.obj)
```
**Description**

Grows a univariate or multivariate quantile regression forest and returns its conditional quantile and density values. Can be used for both training and testing purposes.

**Usage**

```r
S3 method for class 'rfsrc'
quantreg(formula, data, object, newdata,
 method = "local", splitrule = NULL, prob = NULL, prob.epsilon = NULL,
 oob = TRUE, fast = FALSE, maxn = 1e3, ...)
```

**Arguments**

- `formula` A symbolic description of the model to be fit. Must be specified unless `object` is given.
- `data` Data frame containing the y-outcome and x-variables in the model. Must be specified unless `object` is given.
- `object` (Optional) A previously grown quantile regression forest.
- `method` Method used to calculate quantiles. Three methods are provided. Forest weighted averaging (`method = "forest"`) is the standard method provided in most random forest packages. A second method is the Greenwald-Khanna algorithm which is suited for big data and is specified by any one of the following: "gk", "GK", "G-K", "g-k". The third method (`method = "local"`) is the default method used and uses the local adjusted cdf approach of Zhang et al. (2019). This does not use forest weights and is therefore reasonably fast and can be used for large data - however it relies on the assumption of a homogeneous (equal variance) error distribution which can be a strong assumption and undesirable consequences can result if the assumption is violated. See below for further discussion.
- `splitrule` The default action is local adaptive quantile regression splitting, but this can be over-ridden by the user.
- `prob` Target quantile probabilities when training. If left unspecified, uses percentiles (1 through 99) for `method = "forest"`, and for Greenwald-Khanna selects equally spaced percentiles optimized for accuracy (see below).
- `prob.epsilon` Greenwald-Khanna allowable error for quantile probabilities when training.
- `newdata` Test data (optional) over which conditional quantiles are evaluated over.
- `oob` Return OOB (out-of-bag) quantiles? If false, in-bag values are returned.
- `fast` Use fast random forests, `rfsrcFast`, in place of `rfsrc`? Improves speed but may be less accurate.
**Details**

The most common method for calculating RF quantiles uses forest weights (Meinshausen, 2006). However we note that the forest weighted method used here (specified using `method="forest"`) differs from Meinshausen (2006) in two important ways: (1) local adaptive quantile regression splitting is used instead of CART regression mean squared splitting, and (2) quantiles are estimated using a weighted local cumulative distribution function estimator. For this reason, results may differ from Meinshausen (2006).

A second method uses the Greenwald-Khanna (2001) algorithm (invoked by `method="gk", "GK", "G-K" or "g-k"`). While this will not be as accurate as forest weights, the high memory efficiency of Greenwald-Khanna makes it feasible to implement in big data settings unlike forest weights.

The Greenwald-Khanna algorithm is implemented roughly as follows. To form a distribution of values for each case, from which we sample to determine quantiles, we create a chain of values for the case as we grow the forest. Every time a case lands in a terminal node, we insert all of its co-inhabitants to its chain of values.

The best case scenario is when tree node size is 1 because each case gets only one insert into its chain for that tree. The worst case scenario is when node size is so large that trees stump. This is because each case receives insertions for the entire in-bag population.

What the user needs to know is that Greenwald-Khanna can become slow in counter-intuitive settings such as when node size is large. The easy fix is to change the epsilon quantile approximation that is requested. You will see a significant speed-up just by doubling `prob.epsilon`. This is because the chains stay a lot smaller as epsilon increases, which is exactly what you want when node sizes are large. Both time and space requirements for the algorithm are affected by epsilon.

The best results for Greenwald-Khanna come from setting the number of quantiles equal to 2 times the sample size and epsilon to 1 over 2 times the sample size which is the default values used if left unspecified. This will be slow, especially for big data, and less stringent choices should be used if computational speed is of concern.

Finally the default method, `method="local"`, implements the locally adjusted cdf estimator of Zhang et al. (2019). This is the default procedure used here as it does not rely on forest weights and is therefore fast and can be used for large data. However be aware this relies on the assumption of homogeneity of the error distribution, i.e. that errors are iid and therefore have equal variance. Now while reasonably robust to departures of homogeneity, there are instances where this may perform poorly; see Zhang et al. (2019) for details. If heterogeneity is suspected we recommend `method="forest"` instead.

**Value**

Returns the object `quantreg` containing quantiles for each of the requested probabilities (which can be conveniently extracted using `get.quantile`). Also contains the conditional density (and conditional cdf) for each case in the training data (or test data if provided) evaluated at each of the unique grow y-values. The conditional density can be used to calculate conditional moments, such as the conditional mean and variance.
as the mean and standard deviation. Use `get.quantile.stat` as a way to conveniently obtain these quantities.

For multivariate forests, returned values will be a list of length equal to the number of target outcomes.

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**See Also**

`rfsrc`

**Examples**

```r
regression example

standard call
o <- quantreg(mpg ~ ., mtcars)

extract conditional quantiles
print(get.quantile(o))
print(get.quantile(o, c(.25, .50, .75)))

extract conditional mean and standard deviation
print(get.quantile.stat(o))

continuous rank probability score (crps) performance
plot(get.quantile.crps(o), type = "l")

train/test regression example

train (grow) call followed by test call
o <- quantreg(mpg ~ ., mtcars[1:20,])
o.tst <- quantreg(object = o, newdata = mtcars[-(1:20),])
```
## extract test set quantiles and conditional statistics
print(get.quantile(o.tst))
print(get.quantile.stat(o.tst))

# quantile regression for Boston Housing using forest method
# -------------------------------------------------------------
if (library("mlbench", logical.return = TRUE)) {
  # quantile regression with mse splitting
  data(BostonHousing)
o <- quantreg(medv ~ ., BostonHousing, method = "forest", nodesize = 1)
  # continuous rank probability score (crps)
  plot(get.quantile.crps(o), type = "l")
  # quantile regression plot
  plot.quantreg(o, .05, .95)
  plot.quantreg(o, .25, .75)
  # (A) extract 25,50,75 quantiles
  quant.dat <- get.quantile(o, c(.25, .50, .75))
  # (B) values expected under normality
  quant.stat <- get.quantile.stat(o)
c.mean <- quant.stat$mean
c.std <- quant.stat$std
q.25.est <- c.mean + qnorm(.25) * c.std
q.75.est <- c.mean + qnorm(.75) * c.std
  # compare (A) and (B)
  print(head(data.frame(quant.dat[, -2], q.25.est, q.75.est)))
}

# multivariate mixed outcomes example
# -------------------------------------------------------------
dta <- mtcars
dta$cyl <- factor(dta$cyl)
dta$carb <- factor(dta$carb, ordered = TRUE)
o <- quantreg(cbind(carb, mpg, cyl, disp) ~ ., data = dta)
  plot.quantreg(o, m.target = "mpg")
  plot.quantreg(o, m.target = "disp")

# example of quantile regression for ordinal data
```r
use the wine data for illustration
data(wine, package = "randomForestSRC")

run quantile regression
o <- quantreg(quality ~ ., wine, ntree = 100)

extract "probabilities" = density values
qo.dens <- o$quantreg$density
yunq <- o$quantreg$yunq
colnames(qo.dens) <- yunq

convert y to a factor
yvar <- factor(cut(o$yvar, c(-1, yunq), labels = yunq))

confusion matrix
qo.confusion <- get.confusion(yvar, qo.dens)
print(qo.confusion)

normalized Brier score
cat("Brier: ", 100 * get.brier.error(yvar, qo.dens), "\n")
```

```r
example of large data using Greenwald-Khanna algorithm
load the data and do quick and dirty imputation
data(housing, package = "randomForestSRC")
housing <- impute(SalePrice ~ ., housing,
 ntree = 50, nimpute = 1, splitrule = "random")

Greenwald-Khanna algorithm
request a small number of quantiles
o <- quantreg(SalePrice ~ ., housing, method = "gk",
 prob = (1:20) / 20, prob.epsilon = 1 / 20, ntree = 250)
plot.quantreg(o)
```

```r
using mse splitting with local cdf method for large data
load the data and do quick and dirty imputation
data(housing, package = "randomForestSRC")
housing <- impute(SalePrice ~ ., housing,
 ntree = 50, nimpute = 1, splitrule = "random")

use mse splitting and reduce number of trees
o <- quantreg(SalePrice ~ ., housing, splitrule = "mse", ntree = 250)
plot.quantreg(o)
```
Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC)

Description

Fast OpenMP parallel computing of Breiman’s random forests (Breiman 2001) for a variety of data settings including regression and classification and right-censored survival and competing risks (Ishwaran et al. 2008, 2012). Other key applications include multivariate regression/classification, unsupervised forests, quantile regression (see quantreg), and new solutions for class imbalanced data (see imbalanced). Different splitting rules invoked under deterministic or random splitting are available for all families. Variable importance (VIMP), see vimp and holdout.vimp, as well as confidence regions (see subsample), can be calculated for single and grouped variables. Missing data can be imputed on both training and test data (however see impute).

This is the main entry point to the randomForestSRC package. See rfsrc.fast for a fast implementation of rfsrc.

For more information about this package and OpenMP parallel processing, use the command package?randomForestSRC.

Usage

rfsrc(formula, data, ntree = 1000,
      mtry = NULL, ytry = NULL,
      nodesize = NULL, nodedepth = NULL,
      splitrule = NULL, nsplit = 10,
      importance = c(FALSE, TRUE, "none", "permute", "random", "anti"),
      block.size = if (any(is.element(as.character(importance),
                                      c("none", "FALSE")))) NULL else 10,
      ensemble = c("all", "oob", "inbag"),
      bootstrap = c("by.root", "by.node", "none", "by.user"),
      samptype = c("swor", "swr"), samp = NULL, membership = FALSE,
      sampsize = if (samptype == "swor") function(x){x * .632} else function(x){x},
      na.action = c("na.omit", "na.impute"), nimpute = 1,
      ntime, cause,
      proximity = FALSE, distance = FALSE, forest.wt = FALSE,
      xvar.wt = NULL, yvar.wt = NULL, split.wt = NULL, case.wt = NULL,
      forest = TRUE,
      var.used = c(FALSE, "all.trees", "by.tree"),
      split.depth = c(FALSE, "all.trees", "by.tree"),
      seed = NULL,
      do.trace = FALSE,
      statistics = FALSE,
      ...
)

## convenient interface for growing a CART tree
rfsrc.cart(formula, data, ntree = 1, mtry = ncol(data), bootstrap = "none", ...)
Arguments

- **formula**
  A symbolic description of the model to be fit. If missing, unsupervised splitting is implemented.

- **data**
  Data frame containing the y-outcome and x-variables.

- **ntree**
  Number of trees.

- **mtry**
  Number of variables randomly selected as candidates for splitting a node. The default is $p/3$ for regression, where $p$ equals the number of variables. For all other families (including unsupervised settings), the default is $\sqrt{p}$. Values are always rounded up.

- **ytry**
  For unsupervised forests, sets the number of randomly selected pseudo-responses (see below for more details). The default is $ytry=1$, which selects one pseudo-response.

- **nodesize**
  Forest average number of unique cases (data points) in a terminal node. The defaults are: survival (15), competing risk (15), regression (5), classification (1), mixed outcomes (3), unsupervised (3). It is recommended to experiment with different nodesize values.

- **nodedepth**
  Maximum depth to which a tree should be grown. The default behaviour is that this parameter is ignored.

- **splitrule**
  Splitting rule (see below).

- **nsplit**
  Non-negative integer value for number of random splits to consider for each candidate splitting variable. This significantly increases speed. When zero or NULL, uses much slower deterministic splitting where all possible splits considered.

- **importance**
  Method for computing variable importance (VIMP); see below. Default action is codeimportance="none" but VIMP can always be recovered later using vimp or predict.

- **block.size**
  Should the cumulative error rate be calculated on every tree? When NULL, it will only be calculated on the last tree and the plot of the cumulative error rate will result in a flat line. To view the cumulative error rate on every nth tree, set the value to an integer between 1 and ntree. As an intended side effect, if importance is requested, VIMP is calculated in "blocks" of size equal to block.size, thus resulting in a useful compromise between ensemble and permutation VIMP. The default action is to use 10 trees.

- **ensemble**
  Specifies the type of ensemble. By default both out-of-bag (OOB) and inbag ensembles are returned. Always use OOB values for interference on the training data.

- **bootstrap**
  Bootstrap protocol. The default is by.root which bootstraps the data by sampling with or without replacement (by default sampling is without replacement; see the option samp.type below). If by.node is chosen, the data is bootstrapped with replacement at each node while growing the tree. If none is chosen, the data is not bootstrapped at all. If by.user is chosen, the bootstrap specified by samp is used. It is not possible to return OOB ensembles or prediction error if by.node or none are in effect.
samptype  Type of bootstrap when by.root is in effect. Choices are swor (sampling without replacement) and swr (sampling with replacement). Unlike Breiman’s random forests, the default action here is sampling without replacement. Thus out-of-bag (OOB) technically means out-of-sample, but for legacy reasons we retain the term OOB.

samp  Bootstrap specification when by.user is in effect. Array of dim n x ntree specifying how many times each record appears inbag in the bootstrap for each tree.

membership  Should terminal node membership and inbag information be returned?

sampsize  Function specifying size of bootstrap data when by.root is in effect. For sampling without replacement, it is the requested size of the sample, which by default is .632 times the sample size. For sampling with replacement, it is the sample size. Can also be specified by using a number.

na.action  Action taken if the data contains NA’s. Possible values are na.omit or na.impute. The default na.omit removes the entire record if even one of its entries is NA (for x-variables this applies only to those specifically listed in ‘formula’). Selecting na.impute imputes the data. Also see the function impute for fast direct imputation.

nimpute  Number of iterations of the missing data algorithm. Performance measures such as out-of-bag (OOB) error rates tend to become optimistic if nimpute is greater than 1.

ntime  Integer value used for survival to constrain ensemble calculations to a grid of ntime time points. Alternatively if a vector of values of length greater than one is supplied, it is assumed these are the time points to be used to constrain the calculations (note that the constrained time points used will be the observed event times closest to the user supplied time points). If no value is specified, the default action is to use all observed event times.

cause  Integer value between 1 and J indicating the event of interest for splitting a node for competing risks, where J is the number of event types. If not specified, the default is to use a composite splitting rule that averages over all event types. Can also be a vector of non-negative weights of length J specifying weights for each event (for example, passing a vector of ones reverts to the default composite split statistic). Finally, regardless of how cause is specified, the returned forest object always provides estimates for all event types.

proximity  Proximity of cases as measured by the frequency of sharing the same terminal node. This is an nxn matrix, which can be large. Choices are inbag, oob, all, TRUE, or FALSE. Setting proximity = TRUE is equivalent to proximity = "inbag".

distance  Distance between cases as measured by the ratio of the sum of the count of edges from each case to their immediate common ancestor node to the sum of the count of edges from each case to the root node. If the cases are co-terminal for a tree, this measure is zero and reduces to 1 - the proximity measure for these cases in a tree. This is an nxn matrix, which can be large. Choices are inbag, oob, all, TRUE, or FALSE. Setting distance = TRUE is equivalent to distance = "inbag".

forest.wt  Should the forest weight matrix be calculated? Creates an nxn matrix which can be used for prediction and constructing customized estimators. Choices are
similar to proximity: inbag, oob, all, TRUE, or FALSE. The default is TRUE which is equivalent to inbag.

xvar.wt Vector of non-negative weights (does not have to sum to 1) representing the probability of selecting a variable for splitting. Default is to use uniform weights.

yvar.wt NOT YET IMPLEMENTED: Vector of non-negative weights (does not have to sum to 1) representing the probability of selecting a response as a candidate for the split statistic in unsupervised settings. Default is to use uniform weights.

split.wt Vector of non-negative weights used for multiplying the split statistic for a variable. A large value encourages the node to split on a specific variable. Default is to use uniform weights.

case.wt Vector of non-negative weights (does not have to sum to 1) for sampling cases. Observations with larger weights will be selected with higher probability in the bootstrap (or subsampled) samples. It is generally better to use real weights rather than integers. See the example below for the breast data set for an illustration of its use for class imbalanced data.

forest Should the forest object be returned? Used for prediction on new data and required by many of the package functions.

var.used Return variables used for splitting? Default is FALSE. Possible values are all.trees which returns a vector of the number of times a split occurred on a variable, and by.tree which returns a matrix recording the number of times a split occurred on a variable in a specific tree.

split.depth Records the minimal depth for each variable. Default is FALSE. Possible values are all.trees which returns a matrix of the average minimal depth for a variable (columns) for a specific case (rows), and by.tree which returns a three-dimensional array recording minimal depth for a specific case (first dimension) for a variable (second dimension) for a specific tree (third dimension).

seed Negative integer specifying seed for the random number generator.

do.trace Number of seconds between updates to the user on approximate time to completion.

statistics Should split statistics be returned? Values can be parsed using stat.split.

... Further arguments passed to or from other methods.

Details

1. Types of forests

There is no need to set the type of forest as the package automagically determines the underlying random forest requested from the type of response and the formula supplied. There are several possible scenarios:

(a) Regression forests for continuous responses.
(b) Classification forests for factor responses.
(c) Multivariate forests for continuous and/or factor responses and for mixed (both type) of responses.
(d) Unsupervised forests when there is no response.
(e) Survival forests for right-censored survival.
(f) Competing risk survival forests for competing risk.

2. **Splitting rules**

Splitting rules are specified by option `splitrule`.

- **Regression analysis:**
  
  (a) `mse`: default split rule implements weighted mean-squared error splitting (Breiman et al. 1984, Chapter 8.4).
  
  (b) `quantile.regr`: quantile regression splitting via the "check-loss" function. Requires specifying the target quantiles. See `quantreg.rfsrc` for further details.
  
  (c) `la.quantile.regr`: local adaptive quantile regression splitting. See `quantreg.rfsrc`.

- **Classification analysis:**
  
  (a) `gini`: default split rule implements Gini index splitting (Breiman et al. 1984, Chapter 4.3).
  
  (b) `auc`: AUC (area under the ROC curve) splitting for both two-class and multiclass settings. AUC splitting is appropriate for imbalanced data. See `imbalanced` for more information.
  
  (c) `entropy`: entropy splitting (Breiman et al. 1984, Chapter 2.5, 4.3).

- **Survival analysis:**
  
  (a) `logrank`: default split rule implements log-rank splitting (Segal, 1988; Leblanc and Crowley, 1993).
  
  (b) `bs.gradient`: gradient-based (global non-quantile) brier score splitting. The time horizon used for the Brier score is set to the 90th percentile of the observed event times. This can be over-ridden by the option `prob`, which must be a value between 0 and 1 (set to .90 by default).
  
  (c) `logrankscore`: log-rank score splitting (Hothorn and Lausen, 2003).

- **Competing risk analysis:**
  
  (a) `logrankCR`: default split rule implements a modified weighted log-rank splitting rule modeled after Gray’s test (Gray, 1988).
  
  (b) `logrank`: weighted log-rank splitting where each event type is treated as the event of interest and all other events are treated as censored. The split rule is the weighted value of each of log-rank statistics, standardized by the variance. For more details see Ishwaran et al. (2014).

- **Multivariate analysis:** When one or both regression and classification responses are detected, a multivariate normalized composite split rule of mean-squared error and Gini index splitting is invoked. See Tang and Ishwaran (2017) for details.

- **Unsupervised analysis:** In settings where there is no outcome, unsupervised splitting is invoked. In this case, the mixed outcome splitting rule (above) is applied. See Mantero and Ishwaran (2017) for details.

- **Custom splitting:** All families except unsupervised are available for user-defined custom splitting. Some basic C-programming skills are required. The harness for defining these rules is in `splitCustom.c`. In this file we give examples of how to code rules for regression, classification, survival, and competing risk. Each family can support up to sixteen custom split rules. Specifying `splitrule="custom"` or `splitrule="custom1"` will trigger the first split rule for the family defined by the training data set. Multivariate families will need a custom split rule for both regression and classification. In the examples, we demonstrate how the user is presented with the node-specific membership. The task is
then to define a split statistic based on that membership. Take note of the instructions in splitCustom.c on how to register the custom split rules. It is suggested that the existing custom split rules be kept in place for reference and that the user proceed to develop splitrule="custom2" and so on. The package must be recompiled and installed for the custom split rules to become available.

- Random splitting: For all families, pure random splitting can be invoked by setting splitrule="random". See below for more details regarding randomized splitting rules.

3. **Improving computational speed**

See the function rfsrc.fast for a fast implementation of rfsrc. In general, the key methods for increasing speed are as follows:

- **Randomized splitting rules**
  
  Computational speed can be significantly improved with randomized splitting invoked by the option nsplit. When nsplit is set to a non-zero positive integer, a maximum of nsplit split points are chosen randomly for each of the candidate splitting variables when splitting a tree node, thus significantly reducing the cost from having to consider all possible split-values. To revert to traditional deterministic splitting (all split values considered) use nsplit=0.

  Randomized splitting for trees has a long history. See for example, Loh and Shih (1997), Dietterich (2000), and Lin and Jeon (2006). Guerts et al. (2006) recently introduced extremely randomized trees using what they call the extra-trees algorithm. We can see that this algorithm essentially corresponds to randomized splitting with nsplit=1. In our experience however this is not always the optimal value for nsplit and may often be too low.

  Finally, for completely randomized (pure random) splitting use splitrule="random". In pure splitting, nodes are split by randomly selecting a variable and randomly selecting its split point (Cutler and Zhao, 2001).

- **Subsampling**

  Subsampling can be used to reduce the size of the in-sample data used to grow a tree and therefore can greatly reduce computational load. Subsampling is implemented using options sampsize and samptype. See rfsrc.fast for a fast forest implementation using subsampling.

- **Unique time points**

  For large survival problems, users should consider setting ntime to a reasonably small value (such as 100 or 250). This constrains ensemble calculations such as survival functions to a restricted grid of time points.

- **Large number of variables**

  The default setting importance="none" turns off variable importance (VIMP) calculations and considerably reduces computational times. Variable importance can always be recovered later using functions vimp or predict. Also consider using max.subtree which calculates minimal depth, a measure of the depth that a variable splits, and yields fast variable selection (Ishwaran, 2010).

4. **Prediction Error**

Prediction error is calculated using OOB data. Performance is measured in terms of mean-squared-error for regression, and misclassification error for classification. A normalized Brier score (relative to a coin-toss) and the AUC (area under the ROC curve) is also provided upon printing a classification forest.
For survival, prediction error is measured by $1-C$, where $C$ is Harrell’s (Harrell et al., 1982) concordance index. Prediction error is between 0 and 1, and measures how well the predictor correctly ranks (classifies) two random individuals in terms of survival. A value of 0.5 is no better than random guessing. A value of 0 is perfect.

When bootstrapping is by .node or none, a coherent OOB subset is not available to assess prediction error. Thus, all outputs dependent on this are suppressed. In such cases, prediction error is only available via classical cross-validation (the user will need to use the predict.rfsrc function).

5. **Variable Importance (VIMP)**

To obtain VIMP use the option `importance`. Setting this to “permute” or “TRUE” returns permutation VIMP from permuting OOB cases. Choosing "random" replaces permutation with random assignment. Thus when an OOB case is dropped down a tree, the case goes left or right randomly whenever a split is encountered for the target variable. If "anti" is specified, the case is assigned to the opposite split. By default `importance="FALSE"` and VIMP is not requested.

VIMP depends upon `block.size`, an integer value between 1 and `ntree`, specifying the number of trees in a block used to determine VIMP. When `block.size`=1, VIMP is calculated by tree. The difference between prediction error under the perturbed predictor and the original predictor is calculated for each tree and averaged over the forest. This yields Breiman-Cutler VIMP (Breiman 2001).

When `block.size="ntree"`, VIMP is calculated across the forest by comparing the perturbed OOB forest ensemble (using all trees) to the unperturbed OOB forest ensemble (using all trees). Unlike Breiman-Cutler VIMP, ensemble VIMP does not measure the tree average effect of $x$, but rather its overall forest effect. This is called Ishwaran-Kogalur VIMP (Ishwaran et al. 2008).

A useful compromise between Breiman-Cutler (BC) and Ishwaran-Kogalur (IK) VIMP can be obtained by setting `block.size` to a value between 1 and `ntree`. Smaller values are closer to BC and larger values closer to IK. Smaller generally gives better accuracy, however computational times will be higher because VIMP is calculated over more blocks. Also see imbalanced for imbalanced classification data where a larger `block.size` works better (O’Brien and Ishwaran, 2019).

See vimp for a user interface for extracting VIMP and subsampling for calculating confidence intervals for VIMP. Also see holdout.vimp for holdout VIMP, which calculates importance by truly holding out variables.

6. **Multivariate Forests**

Multivariate forests can be specified in two ways:

```r
rfsrc(Multivar(y1, y2, ..., yd) ~ . , my.data, ...)
rfsrc(cbind(y1, y2, ..., yd) ~ . , my.data, ...)
```

A multivariate normalized composite splitting rule is used to split nodes. The nature of the outcomes will inform the code as to the type of multivariate forest to be grown; i.e. whether it is real-valued, categorical, or a combination of both (mixed). Note that performance measures (when requested) are returned for all outcomes.

7. **Unsupervised Forests**

In the case where no $y$-outcomes are present, unsupervised forests can be invoked by one of two means:

```r
rfsrc(data = my.data)
```
rfsrc(Unsupervised() ~ ., data = my.data)

In unsupervised mode, features take turns acting as target y-outcomes and x-variables for splitting. Specifically, \( mtry \) x-variables are randomly selected for splitting the node. Then for each \( mtry \) feature, \( ytry \) variables are selected from the remaining features to act as the target pseudo-responses. Splitting uses the multivariate normalized composite splitting rule.

The default value of \( ytry \) is 1 but can be increased. As illustration, the following equivalent unsupervised calls set \( mtry=10 \) and \( ytry=5 \):

- \texttt{rfsrc(data = my.data, ytry = 5, mtry = 10)}
- \texttt{rfsrc(Unsupervised(5) ~ ., my.data, mtry = 10)}

Note that all performance values (error rates, VIMP, prediction) are turned off in unsupervised mode.

8. Survival, Competing Risks

(a) Survival settings require a time and censoring variable which should be identified in the formula as the response using the standard \texttt{Surv} formula specification. A typical formula call looks like:

\[
\text{Surv(my.time, my.status) ~ .}
\]

where \texttt{my.time} and \texttt{my.status} are the variables names for the event time and status variable in the users data set.

(b) For survival forests (Ishwaran et al. 2008), the censoring variable must be coded as a non-negative integer with 0 reserved for censoring and (usually) 1=death (event).

(c) For competing risk forests (Ishwaran et al., 2013), the implementation is similar to survival, but with the following caveats:

- Censoring must be coded as a non-negative integer, where 0 indicates right-censoring, and non-zero values indicate different event types. While 0,1,2,...,J is standard, and recommended, events can be coded non-sequentially, although 0 must always be used for censoring.
- Setting the splitting rule to \texttt{logrankscore} will result in a survival analysis in which all events are treated as if they are the same type (indeed, they will coerced as such).
- Generally, competing risks requires a larger \texttt{nodesize} than survival settings.

9. Missing data imputation

Set \texttt{na.action="na.impute"} to impute missing data (both x and y-variables) using the missing data algorithm of Ishwaran et al. (2008). However, see the function \texttt{impute} for an alternate way to do fast and accurate imputation.

The missing data algorithm can be iterated by setting \texttt{nImpute} to a positive integer greater than 1. When iterated, at the completion of each iteration, missing data is imputed using OOB non-missing terminal node data which is then used as input to grow a new forest. A side side effect of iteration is that missing values in the returned objects \texttt{xvar}, \texttt{yvar} are replaced by imputed values. Also, performance measures such as error rates and VIMP become optimistically biased.

Records in which all outcome and x-variable information are missing are removed from the forest analysis. Variables having all missing values are also removed.

10. Allowable data types and factors

Data types must be real valued, integer, factor or logical – however all except factors are coerced and treated as if real valued. For ordered x-variable factors, splits are similar to real valued variables. For unordered factors, a split will move a subset of the levels in the parent
node to the left daughter, and the complementary subset to the right daughter. All possible complementary pairs are considered and apply to factors with an unlimited number of levels. However, there is an optimization check to ensure number of splits attempted is not greater than number of cases in a node or the value of nsplit.

For coherence, an immutable map is applied to each factor that ensures factor levels in the training data are consistent with the factor levels in any subsequent test data. This map is applied to each factor before and after the native C library is executed. Because of this, if all x-variables are factors, then computational time will be long in high dimensional problems. Consider converting factors to real if this is the case.

**Value**

An object of class \((\text{rfsrc}, \text{grow})\) with the following components:

- **call**
  The original call to \text{rfsrc}.

- **family**
  The family used in the analysis.

- **n**
  Sample size of the data (depends upon NA's, see \text{na.action}).

- **ntree**
  Number of trees grown.

- **mtry**
  Number of variables randomly selected for splitting at each node.

- **nodesize**
  Minimum size of terminal nodes.

- **nodedepth**
  Maximum depth allowed for a tree.

- **splitrule**
  Splitting rule used.

- **nsplit**
  Number of randomly selected split points.

- **yvar**
  y-outcome values.

- **yvar.names**
  A character vector of the y-outcome names.

- **xvar**
  Data frame of x-variables.

- **xvar.names**
  A character vector of the x-variable names.

- **xvar.wt**
  Vector of non-negative weights specifying the probability used to select a variable for splitting a node.

- **split.wt**
  Vector of non-negative weights specifying multiplier by which the split statistic for a covariate is adjusted.

- **cause.wt**
  Vector of weights used for the composite competing risk splitting rule.

- **leaf.count**
  Number of terminal nodes for each tree in the forest. Vector of length \text{ntree}. A value of zero indicates a rejected tree (can occur when imputing missing data). Values of one indicate tree stumps.

- **proximity**
  Proximity matrix recording the frequency of pairs of data points occur within the same terminal node.

- **forest**
  If \text{forest=}\text{TRUE}, the forest object is returned. This object is used for prediction with new test data sets and is required for other R-wrappers.

- **forest.wt**
  Forest weight matrix.

- **membership**
  Matrix recording terminal node membership where each column records node membership for a case for a tree (rows).
splitrule  Splitting rule used.
inbag  Matrix recording inbag membership where each column contains the number of times that a case appears in the bootstrap sample for a tree (rows).
var.used  Count of the number of times a variable is used in growing the forest.
imputed.indv  Vector of indices for cases with missing values.
imputed.data  Data frame of the imputed data. The first column(s) are reserved for the y-responses, after which the x-variables are listed.
split.depth  Matrix \([i][j]\) or array \([i][j][k]\) recording the minimal depth for variable \([j]\) for case \([i]\), either averaged over the forest, or by tree \([k]\).
node.stats  Split statistics returned when \texttt{statistics=TRUE} which can be parsed using \texttt{stat.split}.
err.rate  Tree cumulative OOB error rate.
importance  Variable importance (VIMP) for each x-variable.
predicted  In-bag predicted value.
predicted.oob  OOB predicted value.

+++++++  for classification settings, additionally ++++++++  
class  In-bag predicted class labels.
class.oob  OOB predicted class labels.

+++++++  for multivariate settings, additionally ++++++++  
regrOutput  List containing performance values for multivariate regression responses (applies only in multivariate settings).
clasOutput  List containing performance values for multivariate categorical (factor) responses (applies only in multivariate settings).

+++++++  for survival settings, additionally ++++++++  
survival  In-bag survival function.
survival.oob  OOB survival function.
chf  In-bag cumulative hazard function (CHF).
chf.oob  OOB CHF.
time.interest  Ordered unique death times.
ndead  Number of deaths.

+++++++  for competing risks, additionally ++++++++  
chf  In-bag cause-specific cumulative hazard function (CSCHF) for each event.
Note

Values returned depend heavily on the family. In particular, predicted values from the forest (predicted and predicted.oob) are as follows:

1. For regression, a vector of predicted y-responses.
2. For classification, a matrix with columns containing the estimated class probability for each class. Performance values and VIMP for classification are reported as a matrix with J+1 columns where J is the number of classes. The first column “all” is the unconditional value for performance or VIMP, while the remaining columns are performance and VIMP conditioned on cases corresponding to that class label.
3. For survival, a vector of mortality values (Ishwaran et al., 2008) representing estimated risk for each individual calibrated to the scale of the number of events (as a specific example, if i has a mortality value of 100, then if all individuals had the same x-values as i, we would expect an average of 100 events). Also returned are matrices containing the CHF and survival function. Each row corresponds to an individual’s ensemble CHF or survival function evaluated at each time point in time.interest.
4. For competing risks, a matrix with one column for each event recording the expected number of life years lost due to the event specific cause up to the maximum follow up (Ishwaran et al., 2013). Also returned are the cause-specific cumulative hazard function (CSCHF) and the cumulative incidence function (CIF) for each event type. These are encoded as a three-dimensional array, with the third dimension used for the event type, each time point in time.interest making up the second dimension (columns), and the case (individual) being the first dimension (rows).
5. For multivariate families, predicted values (and other performance values such as VIMP and error rates) are stored in the lists regrOutput and clasOutput which can be extracted using functions get.mv.error, get.mv.predicted and get.mv.vimp.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

References


See Also

find.interaction.rfsrc,
holdout.vimp.rfsrc,
imbalanced.rfsrc, impute.rfsrc,
max.subtree.rfsrc,
partial.rfsrc, plot.competing.risk.rfsrc, plot.rfsrc, plot.survival.rfsrc, plot.variable.rfsrc, predict.rfsrc, print.rfsrc,
quantreg.rfsrc,
rfsrc.fast,
stat.split.rfsrc, subsample.rfsrc, synthetic.rfsrc,
tune.rfsrc,
var.select.rfsrc, vimp.rfsrc

Examples

#-----------------------------
# survival analysis
#-----------------------------

# veteran data
# randomized trial of two treatment regimens for lung cancer
data(veteran, package = "randomForestSRC")
v.obj <- rfsrc(Surv(time, status) ~ ., data = veteran,
ntree = 100, block.size = 1)

# print and plot the grow object
print(v.obj)
plot(v.obj)

# plot survival curves for first 10 individuals -- direct way
matplot(v.obj$time.interest, 100 * t(v.obj$survival.oob[1:10, ]),
xlab = "Time", ylab = "Survival", type = "l", lty = 1)

# plot survival curves for first 10 individuals
# using function "plot.survival"
plot.survival(v.obj, subset = 1:10)

# fast nodesize optimization for veteran data
# optimal nodesize in survival is larger than other families
# see the function "tune" for more examples
tune.nodesize(Surv(time,status) ~ ., veteran)

# Primary biliary cirrhosis (PBC) of the liver
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc)
print(pbc.obj)
Example of imputation in survival analysis

```r
data(pbc, package = "randomForestSRC")
pbc.obj2 <- rfsrc(Surv(days, status) ~ ., pbc, nsplit = 10, na.action = "na.impute")

same as above but we iterate the missing data algorithm
pbc.obj3 <- rfsrc(Surv(days, status) ~ ., pbc, na.action = "na.impute", nimpute = 3)

fast way to impute the data (no inference is done)
see impute for more details
pbc.imp <- impute(Surv(days, status) ~ ., pbc, splitrule = "random")
```

Compare RF-SRC to Cox regression

```r
if (library("survival", logical.return = TRUE) & library("pec", logical.return = TRUE) & library("prodlim", logical.return = TRUE)) {
 ## prediction function required for pec
 predictSurvProb.rfsrc <- function(object, newdata, times, ...){
 ptemp <- predict(object, newdata = newdata, ...)$survival
 pos <- sindex(jump.times = object$time.interest, eval.times = times)
 p <- cbind(1, ptemp[, pos + 1]
 if (NROW(p) != NROW(newdata) || NCOL(p) != length(times))
 stop("Prediction failed")
 p
 }

 ## data, formula specifications
 data(pbc, package = "randomForestSRC")
pbc.na <- na.omit(pbc) # remove NA's
 surv.f <- as.formula(Surv(days, status) ~ .)
 pec.f <- as.formula(Hist(days, status) ~ 1)

 ## run cox/rfsrc models
 cox.obj <- coxph(surv.f, data = pbc.na, x = TRUE)
 rfsrc.obj <- rfsrc(surv.f, pbc.na, ntree = 150)

 ## compute bootstrap cross-validation estimate of expected Brier score
```
## see Mogensen, Ishwaran and Gerds (2012) Journal of Statistical Software

set.seed(17743)

prederror.pbc <- pec(list(cox.obj, rfsrc.obj), data = pbc.na, formula = pec.f,
splitMethod = "bootcv", B = 50)

print(prederror.pbc)
plot(prederror.pbc)

## compute out-of-bag C-index for cox regression and compare to rfsrc

rfsrc.obj <- rfsrc(surv.f, pbc.na)
cat("out-of-bag Cox Analysis ...", "\n")
cox.err <- sapply(1:100, function(b) {
  if (b%%10 == 0) cat("cox bootstrap: ", b, "\n")
  train <- sample(1:nrow(pbc.na), nrow(pbc.na), replace = TRUE)
  cox.obj <- tryCatch({coxph(surv.f, pbc.na[train, ])}, error=function(ex){NULL})
  if (!is.null(cox.obj)) {
    get.cindex(pbc.na$days[-train], pbc.na$status[-train], predict(cox.obj, pbc.na[-train, ]))
  } else NA
})
cat("\ntOOB error rates\n")
cat("tRSF : ", rfsrc.obj$err.rate[rfsrc.obj$ntree], "\n")
cat("tCox regression : ", mean(cox.err, na.rm = TRUE), "\n")

## WIHS analysis
## cumulative incidence function (CIF) for HAART and AIDS stratified by IDU

data(wihs, package = "randomForestSRC")

wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)
plot.competing.risk(wihs.obj)
cif <- wihs.obj$cif.oob
Time <- wihs.obj$time.interest
idu <- wihs$idu
cif.haart <- cbind(apply(cif[,1][idu == 0,], 2, mean),
apply(cif[,1][idu == 1,], 2, mean))
cif.aids <- cbind(apply(cif[,2][idu == 0,], 2, mean),
apply(cif[,2][idu == 1,], 2, mean))
matplot(Time, cbind(cif.haart, cif.aids), type = "l",
lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3,
ylab = "Cumulative Incidence")
legend("topleft",
legend = c("HAART (Non-IDU)", "HAART (IDU)", "AIDS (Non-IDU)", "AIDS (IDU)"),
lty = c(1,2,1,2), col = c(4, 4, 2, 2), lwd = 3, cex = 1.5)

## illustrates the various splitting rules
## illustrates event specific and non-event specific variable selection
if (library("survival", logical.return = TRUE)) {

## use the pbc data from the survival package
## events are transplant (1) and death (2)
data(pbc, package = "survival")
pbc$id <- NULL

## modified Gray's weighted log-rank splitting
pbc.cr <- rfsrc(Surv(time, status) ~ ., pbc)

## log-rank event-one specific splitting
pbc.log1 <- rfsrc(Surv(time, status) ~ ., pbc,
                 splitrule = "logrank", cause = c(1,0), importance = TRUE)

## log-rank event-two specific splitting
pbc.log2 <- rfsrc(Surv(time, status) ~ ., pbc,
                 splitrule = "logrank", cause = c(0,1), importance = TRUE)

## extract VIMP from the log-rank forests: event-specific
## extract minimal depth from the Gray log-rank forest: non-event specific
var.perf <- data.frame(md = max.subtree(pbc.cr)$order[, 1],
                       vimp1 = 100 * pbc.log1$importance[, 1],
                       vimp2 = 100 * pbc.log2$importance[, 2])
print(var.perf[order(var.perf$md), ])

## regression analysis

## new York air quality measurements
airq.obj <- rfsrc(Ozone ~ ., data = airquality, na.action = "na.impute")

# partial plot of variables (see plot.variable for more details)
plot.variable(airq.obj, partial = TRUE, smooth.lines = TRUE)

## motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars)

## regression with custom bootstrap

ntree <- 25
n <- nrow(mtcars)
s.size <- n / 2
swr <- TRUE
samp <- randomForestSRC:::make.sample(ntree, n, s.size, swr)
o <- rfsrc(mpg ~ ., mtcars, bootstrap = "by.user", samp = samp)

## classification analysis

## iris data
iris.obj <- rfsrc(Species ~ ., data = iris)

## wisconsin prognostic breast cancer data
data(breast, package = "randomForestSRC")
breast.obj <- rfsrc(status ~ ., data = breast, block.size = 1)
plot(breast.obj)

## unsupervised analysis

# two equivalent ways to implement unsupervised forests
mtcars.unspv <- rfsrc(Unsupervised() ~ ., data = mtcars)
mtcars2.unspv <- rfsrc(data = mtcars)

## multivariate regression analysis

mtcars.mreg <- rfsrc(Multivar(mpg, cyl) ~ ., data = mtcars,
                     block.size = 1, importance = TRUE)

## extract error rates, vimp, and OOB predicted values for all targets
err <- get.mv.error(mtcars.mreg)
vmp <- get.mv.vimp(mtcars.mreg)
pred <- get.mv.predicted(mtcars.mreg)

## standardized error and vimp
err.std <- get.mv.error(mtcars.mreg, standardize = TRUE)
vmp.std <- get.mv.vimp(mtcars.mreg, standardize = TRUE)

## mixed outcomes analysis

mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
mtcars.mix <- rfsrc(cbind(carb, mpg, cyl) ~ ., data = mtcars.new, block.size = 1)
print(mtcars.mix, outcome.target = "mpg")
print(mtcars.mix, outcome.target = "cyl")
plot(mtcars.mix, outcome.target = "mpg")
plot(mtcars.mix, outcome.target = "cyl")

## custom splitting using the pre-coded examples

## motor trend cars
mtcars.obj <- rfsrc(mpg ~ ., data = mtcars, splitrule = "custom")
## iris analysis
iris.obj <- rfsrc(Species ~ ., data = iris, splitrule = "custom1")

## WIHS analysis
wihs.obj <- rfsrc(Surv(time, status) ~ ., wihs, nsplit = 3,
                  ntree = 100, splitrule = "custom1")

---

### rfsrc.fast

**Fast Random Forests**

**Description**

Fast approximate random forests using subsampling with forest options set to encourage computational speed. Applies to all families.

**Usage**

rfsrc.fast(formula, data, 
            ntree = 500,
            nsplit = 10,
            bootstrap = "by.root",
            ensemble = "oob",
            sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))},
            samptype = "swor",
            samp = NULL,
            ntime = 50,
            forest = FALSE,
            terminal.qualts = FALSE,
            ...)

**Arguments**

- **formula**: A symbolic description of the model to be fit. If missing, unsupervised splitting is implemented.
- **data**: Data frame containing the y-outcome and x-variables.
- **ntree**: Number of trees.
- **nsplit**: Non-negative integer value specifying number of random split points used to split a node (deterministic splitting corresponds to the value zero and is much slower).
- **bootstrap**: Bootstrap protocol used in growing a tree.
- **ensemble**: Specifies the type of ensemble. We request only out-of-sample which corresponds to "oob".
- **sampsize**: Function specifying size of subsampled data. Can also be a number.
- **samptype**: Type of bootstrap used.
samp Bootstrap specification when "by.user" is used.
ntime Integer value used for survival to constrain ensemble calculations to a grid of
time time points.
forest Should the forest object be returned? Turn this on if you want prediction on test
data but for big data this can be large.
terminal.qualts Should terminal node membership information be returned? Ensure this is off
in the presence of big data as memory warnings can occur otherwise. In either
case, this parameter does not effect the ability to restore the model. When this
is FALSE, the training data must be sent down the tree when restoring the model.
When this is TRUE, terminal node membership is assigned based on the contents
of this output during model restoration, resulting in a faster CPU times.

Further arguments to be passed to rfsrc.

Details
Calls rfsrc under various options (including subsampling) to encourage computational speeds.
This will provide a good approximation but will not be as good as default settings of rfsrc.

Value
An object of class (rfsrc,grow).

Author(s)
Hemant Ishwaran and Udaya B. Kogalur

See Also
rfsrc

Examples

```r

Iowa housing regression example

load the Iowa housing data
data(housing, package = "randomForestSRC")

do quick and *dirty* imputation
housing <- impute(SalePrice ~ ., housing,
nmtree = 50, nimpute = 1, splitrule = "random")

grow a fast forest
o1 <- rfsrc.fast(SalePrice ~ ., housing)
o2 <- rfsrc.fast(SalePrice ~ ., housing, nodesize = 1)
print(o1)
print(o2)
```
## grow a fast bivariate forest
o3 <- rfsrc.fast(cbind(SalePrice, Overall.Qual) ~ ., housing)
print(o3)

## White wine classification example
## -------------------------------------------------------------
data(wine, package = "randomForestSRC")
wine$quality <- factor(wine$quality)
o <- rfsrc.fast(quality ~ ., wine)
print(o)

## pbc survival example
## -------------------------------------------------------------
data(pbc, package = "randomForestSRC")
o <- rfsrc.fast(Surv(days, status) ~ ., pbc)
print(o)

## WIHS competing risk example
## -------------------------------------------------------------
data(wihs, package = "randomForestSRC")
o <- rfsrc.fast(Surv(time, status) ~ ., wihs)
print(o)

---

**Description**
Show the NEWS file of the randomForestSRC package.

**Usage**
rfsrc.news(...)

**Arguments**
...

Further arguments passed to or from other methods.

**Value**
None.
Description

Extract split statistic information from the forest. The function returns a list of length ntree, in which each element corresponds to a tree. The element [[b]] is itself a vector of length xvar.names identified by its x-variable name. Each element [[b]]$xvar contains the complete list of splits on xvar with associated identifying information. The information is as follows:

1. treeID Tree identifier.
2. nodeID Node identifier.
3. parmID Variable identifier.
4. contPT Value node was split in the case of a continuous variable.
5. mwcpSZ Size of the multi-word complementary pair in the case of a factor split.
6. dpthID Zero (0) based depth of split.
7. splitTY Split type for parent node:

<table>
<thead>
<tr>
<th>bit 1</th>
<th>bit 0</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 = both daughters have valid splits</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1 = only the right daughter is terminal</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2 = only the left daughter is terminal</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3 = both daughters are terminal</td>
</tr>
</tbody>
</table>

8. splitEC End cut statistic for real valued variables between [0,0.5] that is small when the split is towards the edge and large when the split is towards the middle. Subtracting this value from 0.5 yields the end cut statistic studied in Ishwaran (2014) and is a way to identify ECP behavior (end cut preference behavior).

9. splitST Split statistic:

   (a) For objects of class (rfsrc, grow), this is the split statistic that resulted in the variable being choosen for the split.

   (b) For an object of class (rfsrc, pred) this is the variance of the response within the node for the test data. This value is relevant only for real valued responses. In classification and survival, it is not relevant.

Usage

## S3 method for class 'rfsrc'
stat.split(object, ...)

Author(s)

Hemant Ishwaran and Udaya B. Kogalur
**Arguments**

- `object` An object of class `(rfsrc,grow), (rfsrc,synthetic)` or `(rfsrc,predict)`
  - ... Further arguments passed to or from other methods.

**Value**

Invisibly, a list with the following components:

- ... ...

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**Examples**

```r
run a forest, then make a call to stat.split
grow.obj <- rfsrc(mpg ~ ., data = mtcars, membership=TRUE, statistics=TRUE)
stat.obj <- stat.split(grow.obj)

nice wrapper to extract split-statistic for desired variable
for continuous variables plots ECP data
get.split <- function(splitObj, xvar, inches = 0.1, ...) {
 which.var <- which(names(splitObj[[1]]) == xvar)
 ntree <- length(splitObj)
 stat <- data.frame(do.call(rbind, sapply(1:ntree, function(b) {
 splitObj[[b]][which.var]}
)))
 dpth <- stat$dpthID
 ecp <- 1/2 - stat$spltEC
 sp <- stat$contPT
 if (!all(is.na(sp))) {
 fgC <- function(x) {
 as.numeric(as.character(cut(x, breaks = c(-1, 0.2, 0.35, 0.5),
 labels = c(1, 4, 2))))
 }
 symbols(jitter(sp), jitter(dpth), ecp, inches = inches, bg = fgC(ecp),
 xlab = xvar, ylab = "node depth", ...)
 legend("topleft", legend = c("low ecp", "med ecp", "high ecp"),
 fill = c(1, 4, 2))
 }
 invisible(stat)
}

use get.split to investigate ECP behavior of variables
get.split(stat.obj, "disp")
```
**subsample.rfsrc**  
*Subsample Forests for VIMP Confidence Intervals*

**Description**

Use subsampling to calculate confidence intervals and standard errors for VIMP (variable importance). Applies to all families.

**Usage**

```r
S3 method for class 'rfsrc'
subsample(obj,
 B = 100,
 block.size = 1,
 subratio = NULL,
 stratify = TRUE,
 joint = FALSE,
 bootstrap = FALSE,
 verbose = TRUE)
```

**Arguments**

- `obj` A forest grow object.
- `B` Number of subsamples (or number of bootstraps).
- `block.size` Specifies number of trees in a block when calculating VIMP. This is over-ridden if VIMP is present in the original grow call in which case the grow value is used.
- `subratio` Ratio of subsample size to original sample size. The default is the inverse square root of the sample size.
- `stratify` Use stratified subsampling? See details below.
- `joint` Include the VIMP for all variables jointly perturbed? This is useful reference problems where one might be suspicious that many (or all) variables are noise.
- `bootstrap` Use double bootstrap approach in place of subsampling? Much slower, but potentially more accurate.
- `verbose` Provide verbose output?

**Details**

Given a forest object, subsamples the forest to obtain standard errors and confidence intervals for VIMP (Ishwaran and Lu, 2019). If bootstrapping is requested, then the double bootstrap is applied in place of subsampling.

If VIMP is not present in the original forest object, the algorithm will first need to calculate VIMP. Therefore, if the user plans to make repeated calls to `subsample`, it is advisable to include VIMP in the original grow call. Subsampled forests are calculated using the same tuning parameters as the original forest. While a sophisticated algorithm is utilized to acquire as many of these parameters as
possible, keep in mind there are some conditions where this will fail: for example there are certain settings where the user has specified non-standard sampling in the grow forest.

Delete-d jackknife estimators (Shao and Wu, 1989) are returned along with subsampling estimators (Politis and Romano, 1994). While these two methods are closely related, standard errors for delete-d estimators are generally larger than the subsampled estimates, which is a form of bias correction, which occurs primarily for variables with true signal. Confidence interval coverage is generally better under delete-d estimators. Note that undercoverage for strong variables and overcoverage for noise variables exhibited by both estimators may be beneficial if the goal is variable selection (Ishwaran and Lu, 2019).

By default, stratified subsampling is used for classification, survival, and competing risk families. For classification, stratification is on the class label, while for survival and competing risk, stratification is on the event type and censoring. Users are discouraged from over-riding this option, especially in small sample settings, as this could lead to error due to subsampled data not having full representation of class labels in classification settings, and in survival settings, subsampled data may be devoid of deaths and/or have reduced number of competing risks. Note also that stratified sampling is not available for multivariate families – users should especially exercise caution when selecting subsampling rates here.

The function `extract.subsample` conveniently extracts summary information from the subsampled object. It parses objects `rf`, `vmp` and `vmpS` returned by the function (see below for what these are).

When printing and or plotting results, the default setting is to standardize VIMP, where for regression families, VIMP is standardized by dividing by the variance and multiplying by 100. For all other families, VIMP is scaled by 100. This can be turned off using the option `standardize` in those wrappers.

**Value**

A list with the following key components:

- `rf` Original forest grow object.
- `vmp` Variable importance values for grow forest.
- `vmpS` Variable importance subsampled values.
- `subratio` Subratio used.

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


See Also

holdout.vimp.rfsrc plot.subsample.rfsrc, rfsrc, vimp.rfsrc

Examples

## -------------------------------------------------------------
## regression example
## -------------------------------------------------------------

## grow the forest - request VIMP
reg.o <- rfsrc(mpg ~ ., mtcars)

## very small sample size so need largish subratio
reg.smp.o <- subsample(reg.o, B = 100, subratio = .5)

## plot confidence regions
plot.subsample(reg.smp.o)

## summary of results
print(reg.smp.o)

## now try the double bootstrap (slow!!)
reg.dbs.o <- subsample(reg.o, B = 100, bootstrap = TRUE)
print(reg.dbs.o)
plot.subsample(reg.dbs.o)

## -------------------------------------------------------------
## classification example
## -------------------------------------------------------------

## 3 non-linear, 15 linear, and 5 noise variables
if (library("caret", logical.return = TRUE)) {
  d <- twoClassSim(1000, linearVars = 15, noiseVars = 5)

  ## VIMP based on (default) misclassification error
  cls.o <- rfsrc(Class ~ ., d)
  cls.smp.o <- subsample(cls.o, B = 100)
  plot.subsample(cls.smp.o, cex = .7)

  ## same as above, but with VIMP defined using normalized Brier score
  cls.o2 <- rfsrc(Class ~ ., d, perf.type = "brier")
  cls.smp.o2 <- subsample(cls.o2, B = 100)
  plot.subsample(cls.smp.o2, cex = .7)
}

## -------------------------------------------------------------
## survival example
## -------------------------------------------------------------

data(pbc, package = "randomForestSRC")
srv.o <- rfsrc(Surv(days, status) ~ ., pbc)
srv.smp.o <- subsample(srv.o, B = 100)
plot.subsample(srv.smp.o)

## competing risk example
## target event is death (event = 2)
## ------------------------------------------------------------

if (library("survival", logical.return = TRUE)) {
  data(pbc, package = "survival")
pbc$id <- NULL
cr.o <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrank", cause = 2)
cr.smp.o <- subsample(cr.o, B = 100)
plot.subsample(cr.smp.o, target = 2)
}

## multivariate family
## ------------------------------------------------------------

if (library("mlbench", logical.return = TRUE)) {
  ## simulate the data
  data(BostonHousing)
bh <- BostonHousing
bh$rm <- factor(round(bh$rm))
o <- rfsrc(cbind(medv, rm) ~ ., bh)
so <- subsample(o)
plot(so)
plot(so, m.target = "rm")
}

## largish data example - use rfsrc.fast for fast forests
## ------------------------------------------------------------

if (library("caret", logical.return = TRUE)) {
  ## largish data set
d <- twoClassSim(1000, linearVars = 15, noiseVars = 5)
  ## use a subsampled forest with Brier score performance
  ## remember to request forests in rfsrc.fast
  o <- rfsrc.fast(Class ~ ., d, ntree = 100,
                  forest = TRUE, perf.type = "brier")
  so <- subsample(o, B = 100)
  plot.subsample(so, cex = .7)
}

---

Synthetic Random Forests

```r
srv.smp.o <- subsample(srv.o, B = 100)
plot.subsample(srv.smp.o)

competing risk example
target event is death (event = 2)
--

if (library("survival", logical.return = TRUE)) {
 data(pbc, package = "survival")
pbc$id <- NULL
cr.o <- rfsrc(Surv(time, status) ~ ., pbc, splitrule = "logrank", cause = 2)
cr.smp.o <- subsample(cr.o, B = 100)
plot.subsample(cr.smp.o, target = 2)
}

multivariate family
--

if (library("mlbench", logical.return = TRUE)) {
 ## simulate the data
 data(BostonHousing)
bh <- BostonHousing
bh$rm <- factor(round(bh$rm))
o <- rfsrc(cbind(medv, rm) ~ ., bh)
so <- subsample(o)
plot(so)
plot(so, m.target = "rm")
}

largish data example - use rfsrc.fast for fast forests
--

if (library("caret", logical.return = TRUE)) {
 ## largish data set
d <- twoClassSim(1000, linearVars = 15, noiseVars = 5)
 ## use a subsampled forest with Brier score performance
 ## remember to request forests in rfsrc.fast
 o <- rfsrc.fast(Class ~ ., d, ntree = 100,
 forest = TRUE, perf.type = "brier")
 so <- subsample(o, B = 100)
 plot.subsample(so, cex = .7)
}
```
**Description**

Grows a synthetic random forest (RF) using RF machines as synthetic features. Applies only to regression and classification settings.

**Usage**

```r
S3 method for class 'rfsrc'
synthetic(formula, data, object, newdata,
 ntree = 1000, mtry = NULL, nodesize = 5, nsplit = 10,
 mtrySeq = NULL, nodesizeSeq = c(1:10, 20, 30, 50, 100),
 min.node = 3,
 fast = TRUE,
 use.org.features = TRUE,
 na.action = c("na.omit", "na.impute"),
 oob = TRUE,
 verbose = TRUE,
 ...)
```

**Arguments**

- `formula`: A symbolic description of the model to be fit. Must be specified unless `object` is given.
- `data`: Data frame containing the y-outcome and x-variables in the model. Must be specified unless `object` is given.
- `object`: An object of class `rfsrc,synthetic`. Not required when `formula` and `data` are supplied.
- `newdata`: Test data used for prediction (optional).
- `ntree`: Number of trees.
- `mtry`: mtry value for over-arching synthetic forest.
- `nodesize`: Nodesize value for over-arching synthetic forest.
- `nsplit`: nsplit-randomized splitting for significantly increased speed.
- `mtrySeq`: Sequence of mtry values used for fitting the collection of RF machines. If `NULL`, set to the default value p/3.
- `nodesizeSeq`: Sequence of nodesize values used for the fitting the collection of RF machines.
- `min.node`: Minimum forest averaged number of nodes a RF machine must exceed in order to be used as a synthetic feature.
- `fast`: Use fast random forests, `rfsrc.fast`, in place of `rfsrc`? Improves speed but may be less accurate.
- `use.org.features`: In addition to synthetic features, should the original features be used when fitting synthetic forests?
- `na.action`: Missing value action. The default `na.omit` removes the entire record if even one of its entries is NA. The action `na.impute` pre-imputes the data using fast imputation via `impute.rfsrc`. 
**Details**

A collection of random forests are fit using different nodesize values. The predicted values from these machines are then used as synthetic features (called RF machines) to fit a synthetic random forest (the original features are also used in constructing the synthetic forest). Currently only implemented for regression and classification settings (univariate and multivariate).

Synthetic features are calculated using out-of-bag (OOB) data to avoid over-using training data. However, to guarantee that performance values such as error rates and VIMP are honest, bootstrap draws are fixed across all trees used in the construction of the synthetic forest and its synthetic features. The option 'oob=TRUE' ensures that this happens. Change this option at your own peril.

If values for `mtrySeq` are given, RF machines are constructed for each combination of nodesize and mtry values specified by `nodesizeSeq` `mtrySeq`.

**Value**

A list with the following components:

- `rfMachines` RF machines used to construct the synthetic features.
- `rfSyn` The (grow) synthetic RF built over training data.
- `rfSynPred` The predict synthetic RF built over test data (if available).
- `synthetic` List containing the synthetic features.
- `opt.machine` Optimal machine: RF machine with smallest OOB error rate.

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**See Also**

- `rfsrc`, `rfsrc.fast`

**Examples**

```r
--
compare synthetic forests to regular forest (classification)
--
```
## rfsrc and synthetic calls
if (library("mlbench", logical.return = TRUE)) {

## simulate the data
ring <- data.frame(mlbench.ringnorm(250, 20))

## classification forests
ringRF <- rfsrc(classes ~ ., ring)

## synthetic forests
## 1 = nodesize varied
## 2 = nodesize/mtry varied
ringSyn1 <- synthetic(classes ~ ., ring)
ringSyn2 <- synthetic(classes ~ ., ring, mtrySeq = c(1, 10, 20))

## test-set performance
ring.test <- data.frame(mlbench.ringnorm(500, 20))
pred.ringRF <- predict(ringRF, newdata = ring.test)
pred.ringSyn1 <- synthetic(object = ringSyn1, newdata = ring.test)$rfSynPred
pred.ringSyn2 <- synthetic(object = ringSyn2, newdata = ring.test)$rfSynPred

print(pred.ringRF)
print(pred.ringSyn1)
print(pred.ringSyn2)
}

## -------------------------------------------------------------
## compare synthetic forest to regular forest (regression)
## -------------------------------------------------------------

## simulate the data
n <- 250
ntest <- 1000
N <- n + ntest
d <- 50
std <- 0.1
x <- matrix(runif(N * d, -1, 1), ncol = d)
y <- 1 * (x[,1] + x[,4]^3 + x[,9] + sin(x[,12]*x[,18]) + rnorm(n, sd = std)>0.3)
dat <- data.frame(x = x, y = y)
test <- (n+1):N

## regression forests
regF <- rfsrc(y ~ ., dat[-test, ],)
pred.regF <- predict(regF, dat[test, ])

## synthetic forests using fast rfsrc
synF1 <- synthetic(y ~ ., dat[-test, ], newdata = dat[test, ])
synF2 <- synthetic(y ~ ., dat[-test, ],
    newdata = dat[test, ], mtrySeq = c(1, 10, 20, 30, 40, 50))

## standardized MSE performance
mse <- c(tail(pred.regF$err.rate, 1),
          tail(synF1$rfSynPred$err.rate, 1),
          tail(synF2$rfSynPred$err.rate, 1)) / var(y[-test])
names(mse) <- c("forest", "synthetic1", "synthetic2")
print(mse)

## ------------------------------------------------------------
## multivariate synthetic forests
## ------------------------------------------------------------

mtcars.new <- mtcars
mtcars.new$cyl <- factor(mtcars.new$cyl)
mtcars.new$carb <- factor(mtcars.new$carb, ordered = TRUE)
trn <- sample(1:nrow(mtcars.new), nrow(mtcars.new)/2)
mvSyn <- synthetic(cbind(carb, mpg, cyl) ~ ., mtcars.new[trn,])
mvSyn.pred <- synthetic(object = mvSyn, newdata = mtcars.new[-trn,])

---

**tune.rfsrc**

*Tune Random Forest for the optimal mtry and nodesize parameters*

**Description**

Finds the optimal mtry and nodesize tuning parameter for a random forest using out-of-bag (OOB) error. Applies to all families.

**Usage**

```r
S3 method for class 'rfsrc'
tune(formula, data,
 mtryStart = ncol(data) / 2,
 nodesizeTry = c(1:9, seq(10, 100, by = 5)), ntreeTry = 50,
 sampsize = function(x){min(x * .632, max(150, x ^ (3/4)))},
 nsplit = 10, stepFactor = 1.25, improve = 1e-3, strikeout = 3, maxIter = 25,
 trace = FALSE, doBest = TRUE, ...)

S3 method for class 'rfsrc'
tune.nodesize(formula, data,
 nodesizeTry = c(1:9, seq(10, 150, by = 5)),
 sampsize = function(x){min(x * .632, max(150, x ^ (4/5)))},
 nsplit = 1, trace = FALSE, ...)
```

**Arguments**

- `formula` A symbolic description of the model to be fit.
- `data` Data frame containing the y-outcome and x-variables.
tune.rfsrc

mtryStart  Starting value of mtry.
nodesizeTry  Values of nodesize optimized over.
ntreeTry  Number of trees used for the tuning step.
sampsize  Function specifying requested size of subsampled data. Can also be passed in as a number.
nsplit  Number of random splits used for splitting.
stepFactor  At each iteration, mtry is inflated (or deflated) by this value.
improve  The (relative) improvement in OOB error must be by this much for the search to continue.
strikeout  The search is discontinued when the relative improvement in OOB error is negative. However strikeout allows for some tolerance in this. If a negative improvement is noted a total of strikeout times, the search is stopped. Increase this value only if you want an exhaustive search.
maxIter  The maximum number of iterations allowed for each mtry bisection search.
trace  Print the progress of the search?
doBest  Return a forest fit with the optimal mtry and nodesize parameters?
...  Further options to be passed to rfsrc.fast.

details

tune returns a matrix whose first and second columns contain the nodesize and mtry values searched and whose third column is the corresponding OOB error. Uses standardized OOB error and in the case of multivariate forests it is the averaged standardized OOB error over the outcomes and for competing risks it is the averaged standardized OOB error over the event types.

If doBest=TRUE, also returns a forest object fit using the optimal mtry and nodesize values.

All calculations (including the final optimized forest) are based on the fast forest interface rfsrc.fast which utilizes subsampling. However, while this yields a fast optimization strategy, such a solution can only be considered approximate. Users may wish to tweak various options to improve accuracy. Increasing the default sampsize will definitely help. Increasing ntreeTry (which is set to 50 for speed) may also help. It is also useful to look at contour plots of the OOB error as a function of mtry and nodesize (see example below) to identify regions of the parameter space where error rate is small.

tune.nodesize returns the optimal nodesize where optimization is over nodesize only.

Author(s)

Hemant Ishwaran and Udaya B. Kogalur

See Also

rfsrc.fast
Examples

```r
load the data
data(wine, package = "randomForestSRC")
wine$quality <- factor(wine$quality)

default tuning call
o <- tune(quality ~ ., wine)

here is the optimized forest
print(o$rf)

visualize the nodesize/mtry OOB surface
if (library("akima", logical.return = TRUE)) {
 ## nice little wrapper for plotting results
 plot.tune <- function(o, linear = TRUE) {
 x <- o$results[,1]
y <- o$results[,2]
z <- o$results[,3]
 so <- interp(x=x, y=y, z=z, linear = linear)
 idx <- which.min(z)
 x0 <- x[idx]
y0 <- y[idx]
filled.contour(x = so$x,
y = so$y,
 z = so$z,
 xlim = range(so$x, finite = TRUE) + c(-2, 2),
ylim = range(so$y, finite = TRUE) + c(-2, 2),
 color.palette =
 colorRampPalette(c("yellow", "red")),
 xlab = "nodesize",
ylab = "mtry",
 main = "OOB error for nodesize and mtry",
 key.title = title(main = "OOB error", cex.main = 1),
 plot.axes = {axis(1);axis(2);points(x0,y0,pch="x",cex=1,font=2);
 points(x,y,pch=16,cex=.25))}

 } # plot the surface
 plot.tune(o)
}

tune nodesize for competing risk - wihs data
```
data(wihs, package = "randomForestSRC")
plot(tune.nodesize(Surv(time, status) ~ ., wihs, trace = TRUE)$err)

---

**Variable Selection**

**Description**

Variable selection using minimal depth.

**Usage**

```r
S3 method for class 'rfsrc'
var.select(formula,
data,
object,
cause,
m.target,
method = c("md", "vh", "vh.vimp"),
conservative = c("medium", "low", "high"),
ntree = (if (method == "md") 1000 else 500),
mvars = (if (method != "md") ceiling(ncol(data)/5) else NULL),
mtry = (if (method == "md") ceiling(ncol(data)/3) else NULL),
nodesize = 2, splitrule = NULL, nsplit = 10, xvar.wt = NULL,
refit = (method != "md"), fast = FALSE,
na.action = c("na.omit", "na.impute"),
always.use = NULL, nrep = 50, K = 5, nstep = 1,
prefit = list(action = (method != "md"), ntree = 100,
mtry = 500, nstepsize = 3, nsplit = 1),
verbose = TRUE, ...)
```

**Arguments**

- `formula`: A symbolic description of the model to be fit. Must be specified unless `object` is given.
- `data`: Data frame containing the y-outcome and x-variables in the model. Must be specified unless `object` is given.
- `object`: An object of class (rfsrc,grow). Not required when `formula` and `data` are supplied.
- `cause`: Integer value between 1 and J indicating the event of interest for competing risks, where J is the number of event types (this option applies only to competing risk families). The default is to use the first event type.
- `m.target`: Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
- `method`: Variable selection method:
md: minimal depth (default).
vh: variable hunting.
vh.vimp: variable hunting with VIMP (variable importance).

**conservative** Level of conservativeness of the thresholding rule used in minimal depth selection:
- high: Use the most conservative threshold.
- medium: Use the default less conservative tree-averaged threshold.
- low: Use the more liberal one standard error rule.

**ntree** Number of trees to grow.

**mvars** Number of randomly selected variables used in the variable hunting algorithm (ignored when `method="md"`).

**mtry** The mtry value used.

**nodesize** Forest average terminal node size.

**splitrule** Splitting rule used.

**nsplit** If non-zero, the specified tree splitting rule is randomized which significantly increases speed.

**xvar.wt** Vector of non-negative weights specifying the probability of selecting a variable for splitting a node. Must be of dimension equal to the number of variables. Default (NULL) invokes uniform weighting or a data-adaptive method depending on `prefit$action`.

**refit** Should a forest be refit using the selected variables?

**fast** Speeds up the cross-validation used for variable hunting for a faster analysis. See miscellanea below.

**na.action** Action to be taken if the data contains NA values.

**always.use** Character vector of variable names to always be included in the model selection procedure and in the final selected model.

**nrep** Number of Monte Carlo iterations of the variable hunting algorithm.

**K** Integer value specifying the K-fold size used in the variable hunting algorithm.

**nstep** Integer value controlling the step size used in the forward selection process of the variable hunting algorithm. Increasing this will encourage more variables to be selected.

**prefit** List containing parameters used in preliminary forest analysis for determining weight selection of variables. Users can set all or some of the following parameters:
- action: Determines how (or if) the preliminary forest is fit. See details below.
- ntree: Number of trees used in the preliminary analysis.
- mtry: mtry used in the preliminary analysis.
- nodesize: nodesize used in the preliminary analysis.
- nsplit: nsplit value used in the preliminary analysis.

**verbose** Set to TRUE for verbose output.

... Further arguments passed to forest grow call.
Details

This function implements random forest variable selection using tree minimal depth methodology (Ishwaran et al., 2010). The option ‘method’ allows for two different approaches:

1. ‘method=“md”’
   - Invokes minimal depth variable selection. Variables are selected using minimal depth variable selection. Uses all data and all variables simultaneously. This is basically a front-end to the `max.subtree` wrapper. Users should consult the `max.subtree` help file for details.
   - Set ‘mtry’ to larger values in high-dimensional problems.

2. ‘method=“vh”’ or ‘method=“vh.vimp”’
   - Invokes variable hunting. Variable hunting is used for problems where the number of variables is substantially larger than the sample size (e.g., p/n is greater than 10). It is always preferred to use ‘method=“md”’, but to find more variables, or when computations are high, variable hunting may be preferred.

   When ‘method=“vh”’: Using training data from a stratified K-fold subsampling (stratification based on the y-outcomes), a forest is fit using `mvars` randomly selected variables (variables are chosen with probability proportional to weights determined using an initial forest fit; see below for more details). The `mvars` variables are ordered by increasing minimal depth and added sequentially (starting from an initial model determined using minimal depth selection) until joint VIMP no longer increases (signifying the final model). A forest is refit to the final model and applied to test data to estimate prediction error. The process is repeated `nrep` times. Final selected variables are the top P ranked variables, where P is the average model size (rounded up to the nearest integer) and variables are ranked by frequency of occurrence.

   The same algorithm is used when ‘method=“vh.vimp”’, but variables are ordered using VIMP. This is faster, but not as accurate.

Miscellanea

1. When variable hunting is used, a preliminary forest is run and its VIMP is used to define the probability of selecting a variable for splitting a node. Thus, instead of randomly selecting `mvars` at random, variables are selected with probability proportional to their VIMP (the probability is zero if VIMP is negative). A preliminary forest is run once prior to the analysis if `prefit$action=TRUE`, otherwise it is run prior to each iteration (this latter scenario can be slow). When ‘method=“md”’, a preliminary forest is fit only if `prefit$action=TRUE`. Then instead of randomly selecting `mtry` variables at random, `mtry` variables are selected with probability proportional to their VIMP. In all cases, the entire option is overridden if `xvar.wt` is non-null.

2. If `object` is supplied and ‘method=“md”’, the grow forest from `object` is parsed for minimal depth information. While this avoids fitting another forest, thus saving computational time, certain options no longer apply. In particular, the value of cause plays no role in the final selected variables as minimal depth is extracted from the grow forest, which has already been grown under a preselected cause specification. Users wishing to specify cause should instead use the formula and data interface. Also, if the user requests a prefitted forest via `prefit$action=TRUE`, then `object` is not used and a refitted forest is used in its place for variable selection. Thus, the effort spent to construct the original grow forest is not used in this case.
3. If ‘fast=TRUE’, and variable hunting is used, the training data is chosen to be of size \( n/K \), where \( n \) = sample size (i.e., the size of the training data is swapped with the test data). This speeds up the algorithm. Increasing \( K \) also helps.

4. Can be used for competing risk data. When ‘method=”vh.vimp”’, variable selection based on VIMP is confined to an event specific cause specified by \( cause \). However, this can be unreliable as not all \( y \)-outcomes can be guaranteed when subsampling (this is true even when stratified subsampling is used as done here).

**Value**

Invisibly, a list with the following components:

- **err.rate** Prediction error for the forest (a vector of length \( n_{\text{rep}} \) if variable hunting is used).
- **modelsize** Number of variables selected.
- **topvars** Character vector of names of the final selected variables.
- **varselect** Useful output summarizing the final selected variables.
- **rfsrc.refit.obj** Refitted forest using the final set of selected variables (requires ‘refit=TRUE’).
- **md.obj** Minimal depth object. NULL unless ‘method=”md”’.

**Author(s)**

Hemant Ishwaran and Udaya B. Kogalur

**References**


**See Also**

- `find.interaction.rfsrc`
- `holdout.vimp.rfsrc`
- `max.subtree.rfsrc`
- `vimp.rfsrc`

**Examples**

```r
--
Minimal depth variable selection
survival analysis
use larger node size which is better for minimal depth
--
data(pbc, package = "randomForestSRC")
pbc.obj <- rfsrc(Surv(days, status) ~ ., pbc, nodesize = 20, importance = TRUE)
default call corresponds to minimal depth selection
```
var.select rfsrc

vs.pbc <- var.select(object = pbc.obj)
topvars <- vs.pbc$topvars

# the above is equivalent to
max.subtree(pbc.obj)$topvars

# different levels of conservativeness
var.select(object = pbc.obj, conservative = "low")
var.select(object = pbc.obj, conservative = "medium")
var.select(object = pbc.obj, conservative = "high")

## ------------------------------------------------------------
## Minimal depth variable selection
## competing risk analysis
## use larger node size which is better for minimal depth
## ------------------------------------------------------------

## competing risk data set involving AIDS in women
data(wihs, package = "randomForestSRC")
vs.wihs <- var.select(Surv(time, status) ~ ., wihs, nsplit = 3,
                      nodesize = 20, ntree = 100, importance = TRUE)

## competing risk analysis of pbc data from survival package
## implement cause-specific variable selection
if (library("survival", logical.return = TRUE)) {
  data(pbc, package = "survival")
pbc$id <- NULL
var.select(Surv(time, status) ~ ., pbc, cause = 1)
var.select(Surv(time, status) ~ ., pbc, cause = 2)
}

## ------------------------------------------------------------
## Minimal depth variable selection
## classification analysis
## ------------------------------------------------------------

vs.iris <- var.select(Species ~ ., iris)

## ------------------------------------------------------------
## Variable hunting high-dimensional example
## van de Vijver microarray breast cancer survival data
## nrep is small for illustration; typical values are nrep = 100
## ------------------------------------------------------------

data(vdv, package = "randomForestSRC")
vh.breast <- var.select(Surv(Time, Censoring) ~ ., vdv,
                        method = "vh", nrep = 10, nstep = 5)

# plot top 10 variables
plot.variable(vh.breast$rfsrc.refit.obj,
xvar.names = vh.breast$topvars[1:10])
plot.variable(vh.breast$rfsrc.refit.obj,
xvar.names = vh.breast$topvars[1:10], partial = TRUE)
## similar analysis, but using weights from univarate cox p-values

```r
if (library("survival", logical.return = TRUE))
{
 cox.weights <- function(rfsrc.f, rfsrc.data) {
 event.names <- all.vars(rfsrc.f)[1:2]
 p <- ncol(rfsrc.data) - 2
 event.pt <- match(event.names, names(rfsrc.data))
 xvar.pt <- setdiff(1:ncol(rfsrc.data), event.pt)
 sapply(1:p, function(j) {
 cox.out <- coxph(rfsrc.f, rfsrc.data[, c(event.pt, xvar.pt[j])])
 pvalue <- summary(cox.out)$coef[5]
 if (is.na(pvalue)) 1.0 else 1/(pvalue + 1e-100)
 })
 }
 data(vdv, package = "randomForestSRC")
 rfsrc.f <- as.formula(Surv(Time, Censoring) ~ .)
 cox.wts <- cox.weights(rfsrc.f, vdv)
 vh.breast.cox <- var.select(rfsrc.f, vdv, method = "vh", nstep = 5,
 nrep = 10, xvar.wt = cox.wts)
}
```

---

vdv

van de Vijver Microarray Breast Cancer

Description

Gene expression profiling for predicting clinical outcome of breast cancer (van’t Veer et al., 2002). Microarray breast cancer data set of 4707 expression values on 78 patients with survival information.

References


Examples

data(vdv, package = "randomForestSRC")
**vimp.rfsrc**

**veteran**

Veteran’s Administration Lung Cancer Trial

**Description**

Randomized trial of two treatment regimens for lung cancer. This is a standard survival analysis data set.

**Source**


**References**


**Examples**

```r
data(veteran, package = "randomForestSRC")
```

---

**vimp.rfsrc**

VIMP for Single or Grouped Variables

**Description**

Calculate variable importance (VIMP) for a single variable or group of variables for training or test data.

**Usage**

```r
S3 method for class 'rfsrc'
vimp(object, xvar.names, m.target = NULL, importance = c("permute", "random", "anti"), block.size = 10, joint = FALSE, subset, seed = NULL, do.trace = FALSE, ...)
```

**Arguments**

- `object` An object of class (rfsrc,grow) or (rfsrc,forest). Requires `forest=TRUE` in the original rfsrc call.
- `xvar.names` Names of the x-variables to be used. If not specified all variables are used.
- `m.target` Character value for multivariate families specifying the target outcome to be used. If left unspecified, the algorithm will choose a default target.
- `importance` Type of VIMP.
- `block.size` Specifies number of trees in a block when calculating VIMP.
joint  Individual or joint VIMP?
subset  Vector indicating which rows of the grow data to restrict VIMP calculations to; i.e. this option yields VIMP which is restricted to a specific subset of the data. Note that the vector should correspond to the rows of object$xvar$ and not the original data passed in the grow call. All rows used if not specified.
seed  Negative integer specifying seed for the random number generator.
do.trace  Number of seconds between updates to the user on approximate time to completion.
...  Further arguments passed to or from other methods.

Details
Using a previously grown forest, calculate the VIMP for variables xvar.names. By default, VIMP is calculated for the original data, but the user can specify a new test data for the VIMP calculation using newdata. See rfsrc for more details about how VIMP is calculated.
Joint VIMP is requested using ‘joint’ and equals importance for a group of variables when the group is perturbed simultaneously.

Value
An object of class (rfsrc,predict) containing importance values.

Author(s)
Hemant Ishwaran and Udaya B. Kogalur

References

See Also
holdout.vimp.rfsrc, rfsrc

Examples

```r
classification example
showcase different vimp

iris.obj <- rfsrc(Species ~ ., data = iris)

Permutation vimp
print(vimp(iris.obj)$importance)

Random daughter vimp
```
print(vimp(iris.obj, importance = "random")$importance)

# Joint permutation vimp
print(vimp(iris.obj, joint = TRUE)$importance)

# Paired vimp
print(vimp(iris.obj, c("Petal.Length", "Petal.Width"), joint = TRUE)$importance)
print(vimp(iris.obj, c("Sepal.Length", "Petal.Width"), joint = TRUE)$importance)

## -------------------------------------------------------------
## regression example
## -------------------------------------------------------------

airq.obj <- rfsrc(Ozone ~ ., airquality)
print(vimp(airq.obj))

## -------------------------------------------------------------
## regression example where vimp is calculated on test data
## -------------------------------------------------------------

set.seed(100080)
train <- sample(1:nrow(airquality), size = 80)
airq.obj <- rfsrc(Ozone ~ ., airquality[train, ])

# training data vimp
print(airq.obj$importance)
print(vimp(airq.obj)$importance)

# test data vimp
print(vimp(airq.obj, newdata = airquality[-train, ])$importance)

## -------------------------------------------------------------
## survival example
## study how vimp depends on tree imputation
## makes use of the subset option
## -------------------------------------------------------------

data(pbc, package = "randomForestSRC")

# determine which records have missing values
which.na <- apply(pbc, 1, function(x){any(is.na(x)))

# impute the data using na.action = "na.impute"
pbc.obj <- rfsrc(Surv(days,status) ~ ., pbc, nsplit = 3,
                     na.action = "na.impute", nimpute = 1)

# compare vimp based on records with no missing values
# to those that have missing values
# note the option na.action="na.impute" in the vimp() call
vimp.not.na <- vimp(pbc.obj, subset = !which.na, na.action = "na.impute")$importance
vimp.na <- vimp(pbc.obj, subset = which.na, na.action = "na.impute")$importance
print(data.frame(vimp.not.na, vimp.na))

---

**wihs**

*Women's Interagency HIV Study (WIHS)*

**Description**

Competing risk data set involving AIDS in women.

**Format**

A data frame containing:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>time to event</td>
</tr>
<tr>
<td>status</td>
<td>censoring status: 0=censoring, 1=HAART initiation, 2=AIDS/Death before HAART</td>
</tr>
<tr>
<td>ageatfda</td>
<td>age in years at time of FDA approval of first protease inhibitor</td>
</tr>
<tr>
<td>idu</td>
<td>history of IDU: 0=no history, 1=history</td>
</tr>
<tr>
<td>black</td>
<td>race: 0=not African-American; 1=African-American</td>
</tr>
<tr>
<td>cd4nadir</td>
<td>CD4 count (per 100 cells/ul)</td>
</tr>
</tbody>
</table>

**Source**

Study included 1164 women enrolled in WIHS, who were alive, infected with HIV, and free of clinical AIDS on December, 1995, when the first protease inhibitor (saquinavir mesylate) was approved by the Federal Drug Administration. Women were followed until the first of the following occurred: treatment initiation, AIDS diagnosis, death, or administrative censoring (September, 2006). Variables included history of injection drug use at WIHS enrollment, whether an individual was African American, age, and CD4 nadir prior to baseline.

**References**


**Examples**

data(wihs, package = "randomForestSRC")
wihs.obj <- rfsr(Surv(time, status) ~ ., wihs, nsplit = 3, ntree = 100)
**Description**

The inputs include objective tests (e.g. PH values) and the output is based on sensory data (median of at least 3 evaluations made by wine experts) of white wine. Each expert graded the wine quality between 0 (very bad) and 10 (very excellent).

**References**


**Examples**

```r
load wine and convert to a multiclass problem
data(wine, package = "randomForestSRC")
wine$quality <- factor(wine$quality)
```
Index

*Topic **confidence interval**
  subsample.rfsrc, 76

*Topic **datasets**
  breast, 5
  follic, 9
  hd, 9
  housing, 13
  nutrigenomic, 25
  pbc, 29
  vdv, 91
  veteran, 92
  wihs, 95
  wine, 96

*Topic **documentation**
  rfsrc.news, 73

*Topic **fast**
  rfsrc.fast, 71

*Topic **forest**
  predict.rfsrc, 41
  rfsrc, 54
  rfsrc.fast, 71
  synthetic, 80
  tune.rfsrc, 83

*Topic **imbalanced two-class data**
  imbalanced.rfsrc, 14

*Topic **missing data**
  impute.rfsrc, 19

*Topic **package**
  randomForestSRC-package, 2

*Topic **partial**
  partial.rfsrc, 26

*Topic **plot**
  plot.competing.risk.rfsrc, 30
  plot.quantreg.rfsrc, 31
  plot.rfsrc, 32
  plot.subsample.rfsrc, 33
  plot.survival.rfsrc, 35
  plot.variable.rfsrc, 37

*Topic **predict**
  predict.rfsrc, 41
  synthetic, 80
  vimp.rfsrc, 92

*Topic **print**
  print.rfsrc, 48

*Topic **quantile regression forests**
  quantreg.rfsrc, 49

*Topic **splitting behavior**
  stat.split.rfsrc, 74

*Topic **subsampling**
  subsample.rfsrc, 76

*Topic **tune**
  tune.rfsrc, 83

*Topic **variable selection**
  find.interaction.rfsrc, 6
  max.subtree.rfsrc, 22
  var.select.rfsrc, 86
  vimp.rfsrc, 92

*Topic **vimp**
  holdout.vimp.rfsrc, 10
  subsample.rfsrc, 76

breast, 5

extract.bootsample(subsample.rfsrc), 76
extract.quantile(quartreg.rfsrc), 49
extract.subsample(subsample.rfsrc), 76

find.interaction
  (find.interaction.rfsrc), 6
find.interaction.rfsrc, 5, 6, 66, 89
follic, 9, 70

get.auc(quartreg.rfsrc), 49
get.bayes.rule(quartreg.rfsrc), 49
get.brier.error(quartreg.rfsrc), 49
get.cindex(rfsrc), 54
get.confusion(quartreg.rfsrc), 49
get.misclass.error(quartreg.rfsrc), 49
get.mv.error(rfsrc), 54
INDEX

get.mv.formula(rfsrc), 54
get.mv.predicted(rfsrc), 54
get.mv.vimp(rfsrc), 54
get.quantile(quantreg.rfsrc), 49

hd, 9, 30
holdout.vimp, 54
holdout.vimp(holdout.vimp.rfsrc), 10
holdout.vimp.rfsrc, 3, 5, 8, 10, 24, 45, 66, 78, 89
housing, 13
imbalanced, 54
imbalanced(imbalanced.rfsrc), 14
imbalanced.rfsrc, 5, 14, 66
impute, 54
impute(impute.rfsrc), 19
impute.rfsrc, 3, 5, 19, 66

max.subtree(max.subtree.rfsrc), 22
max.subtree.rfsrc, 5, 8, 22, 66, 89

nutrigenomic, 25

partial(partial.rfsrc), 26
partial.rfsrc, 3, 5, 26, 39, 66

plot.competing.risk
  (plot.competing.risk.rfsrc), 30
plot.competing.risk.rfsrc, 5, 30, 36, 45, 66
plot.quantreg(plot.quantreg.rfsrc), 31
plot.quantreg.rfsrc, 31
plot.rfsrc, 5, 32, 45, 66
plot.subsample(plot.subsample.rfsrc), 33
plot.subsample.rfsrc, 33, 78
plot.survival(plot.survival.rfsrc), 35
plot.survival.rfsrc, 5, 35, 45, 66
plot.variable(plot.variable.rfsrc), 37
plot.variable.rfsrc, 5, 28, 37, 45, 66
predict.rfsrc, 3, 5, 36, 39, 40, 66
print.rfsrc, 5, 48, 66

quantreg, 3, 54
quantreg(quantreg.rfsrc), 49
quantreg.rfsrc, 3, 5, 32, 49, 66

randomForestSRC(rfsrc), 54
randomForestSRC-package, 2

rfsrc, 3, 5, 11, 15, 21, 30, 36, 39, 45, 51, 54, 72, 78, 81, 93
rfsrc.cart, 5
rfsrc.fast, 3, 5, 15, 21, 45, 54, 59, 66, 71, 81, 84
rfsrc.news, 73
stat.split(stat.split.rfsrc), 74
stat.split.rfsrc, 5, 45, 66, 74
subsample, 54
subsample(subsample.rfsrc), 76
subsample.rfsrc, 3, 5, 34, 66, 76
synthetic, 79
synthetic.rfsrc, 5, 39, 45, 66
tune(tune.rfsrc), 83
tune.rfsrc, 5, 66, 83

var.select(var.select.rfsrc), 86
var.select.rfsrc, 5, 8, 24, 66, 86

vdv, 91

vimp, 54
vimp(vimp.rfsrc), 92
vimp.rfsrc, 3, 5, 8, 12, 24, 45, 66, 78, 89, 92

wihs, 30, 95

wine, 96