Package ‘rarhsmm’

March 20, 2018

Type Package
Title Regularized Autoregressive Hidden Semi Markov Model
Version 1.0.7
Date 2018-03-19
Author Zekun (Jack) Xu, Ye Liu
Maintainer Zekun Xu <zekunxu@gmail.com>
Depends R(>= 3.0.0)
License GPL
LazyData TRUE
Imports Rcpp (>= 0.12.9), glmnet
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 6.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2018-03-20 14:53:27 UTC

R topics documented:

em.hmm ... 2
em.semi ... 4
finance ... 6
hmm.predict ... 7
hmm.sim ... 8
hsmm.predict ... 9
hsmm.sim ... 11
EM algorithm to compute maximum likelihood estimate of Gaussian hidden Markov models with / without autoregressive structures and with / without regularization on the covariance matrices and/or autoregressive structures.

Description

EM algorithm to compute maximum likelihood estimate of Gaussian hidden Markov models with / without autoregressive structures and with / without regularization on the covariance matrices and/or autoregressive structures.

Usage

```r
em.hmm(y, mod, ntimes = NULL, tol = 1e-04, maxit = 100, arp = 0,
        cov.shrink = 0, auto.lambda = 0, auto.alpha = 0, print = TRUE)
```

Arguments

- **y**: observed series
- **mod**: list consisting the at least the following items: mod$m = scalar number of states, mod$delta = vector of initial values for prior probabilities, mod$gamma = matrix of initial values for state transition probabilities, mod$mu = list of initial values for means, mod$sigma = list of initial values for covariance matrices. For autoregressive hidden markov models, we also need the additional items: mod$arp = scalar order of autoregressive structure mod$auto = list of initial values for autoregressive coefficient matrices
- **ntimes**: length of each homogeneous time series. Default to NULL, which means only homogeneous time series.
- **tol**: tolerance for relative change. Default to 1e-4.
- **maxit**: maximum number of iterations. Default to 100.
- **arp**: order of autoregressive. Default to 0.
- **cov.shrink**: shrinkage on the multivariate normal covariance matrix. Default to 0. See references.
auto.lambda elastic net shrinkage on the autoregressive coefficients. Default to 0. See references.

auto.alpha The elasticnet mixing parameter, with 0<=alpha<=1. The penalty is defined as
 \((1-alpha)/2||.||_2^2+alpha||.||_1 \). alpha=1 is the lasso penalty, and alpha=0 the
 ridge penalty. Default to 0. Same as in the glmnet package.

print Default to TRUE.

Value

a list containing the fitted parameters.

References

Rabiner, Lawrence R. "A tutorial on hidden Markov models and selected applications in speech

Zou, Hui, and Trevor Hastie. "Regularization and variable selection via the elastic net." Journal of

Ledoit, Olivier, and Michael Wolf. "A well-conditioned estimator for large-dimensional covariance

Examples

set.seed(332213)
data(finance)
x <- data.matrix(finance)
#log return
y <- x[-1,-51]
for(i in 2:nrow(x)){
y[i-1,] <- log(x[i,-51]) - log(x[i-1,-51])
}
#annualize the log return
y <- y * 252

#first, fit a Gaussian HMM without autoregressive structure
m <- 2
#initialize the list of means
mu <- list(apply(y,2,mean), apply(y,2,mean))
#initialize the list of covariance matrices
sigma <- list(cov(y)*1.2,cov(y)*0.8)
#initialize the prior probability
delta <- c(0.5,0.5)
#initialize the transition probabilities
gamma <- matrix(c(0.9,0.1,0.2,0.8),2,2,byrow=TRUE)
mod1 <- list(m=m,mu=mu,sigma=sigma,delta=delta,gamma=gamma)
#will not run without a shrinkage on the covariance matrices because the
#series is not long enough to reliably estimate the covariance structure
fit1 <- em.hmm(y=y,mod=mod1,cov.shrink=0.0001)
st1 <- viterbi.hmm(y=y,mod=fit1)
spl1 <- smooth.hmm(y=y,mod=fit1)
Not run:
second, fit a Gaussian HMM with 1st order autoregressive structure
auto <- list(matrix(rep(0,2500),50,50,byrow=TRUE),
 matrix(rep(0,2500),50,50,byrow=TRUE))
mod2 <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma, auto=auto)
fit2 <- em.hmm(y=y, mod=mod2, ntimes=NULL, cov.shrink=0.0001, arp=1,
 auto.alpha=1, auto.lambda=0.1)
st2 <- viterbi.hmm(y=y, mod=fit2)
sp2 <- smooth.hmm(y=y, mod=fit2)

third, fit a Gaussian HMM with 2nd order autoregressive structure
auto <- list(matrix(rep(0,5000),50,100,byrow=TRUE),
 matrix(rep(0,5000),50,100,byrow=TRUE))
mod3 <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma, auto=auto)
fit3 <- em.hmm(y=y, mod=mod3, ntimes=NULL, cov.shrink=0.0001, arp=2,
 auto.alpha=1, auto.lambda=0.1)
st3 <- viterbi.hmm(y=y, mod=fit3)
sp3 <- smooth.hmm(y=y, mod=fit3)

End(Not run)

em.semi

Description

EM algorithm to compute maximum likelihood estimate of Gaussian hidden semi-Markov models with / without autoregressive structures and with / without regularization on the covariance matrices and/or autoregressive structures.

Usage

```
em.semi(y, mod, ntimes = NULL, tol = 1e-04, maxit = 100, arp = 0,
         cov.shrink = 0, auto.lambda = 0, auto.alpha = 0, print = TRUE)
```

Arguments

- **y**: observed series
- **mod**: list consisting the at least the following items: mod$m = scalar number of states, mod$delta = vector of initial values for prior probabilities, mod$gamma = matrix of initial values for state transition probabilities, mod$mu = list of initial values for means, mod$sigma = list of initial values for covariance matrices, mod$d = list of state duration probabilities. For autoregressive hidden markov models, we also need the additional items: mod$arp = scalar order of autoregressive structure mod$auto = list of initial values for autoregressive coefficient matrices
em.semi

ntimes length of each homogeneous time series. Default to NULL, which means only homogeneous time series.
tol tolerance for relative change. Default to 1e-4.
maxit maximum number of iterations. Default to 100.
arp order of autoregressive. Default to 0.
cov.shrink shrinkage on the multivariate normal covariance matrix. Default to 0. See references.
auto.lambda elastic net shrinkage on the autoregressive coefficients. Default to 0. See references.
auto.alpha The elasticnet mixing parameter, with 0<=alpha<=1. The penalty is defined as (1-alpha)/2*ll_2^2+alpha*ll_1. alpha=1 is the lasso penalty, and alpha=0 the ridge penalty. Default to 0. Same as in the glmnet package.
print Default to TRUE.

Value

a list containing the fitted parameters.

References

Examples

Not run:
set.seed(332213)
data(finance)
x <- data.matrix(finance)
#log return
y <- x[-1,-51]
for(i in 2:nrow(x)){
 y[i-1,] <- log(x[i,-51]) - log(x[i-1,-51])
}
#annualize the log return
y <- y * 252

#first, fit a Gaussian HMM without autoregressive structure
m <- 2
#initialize the list of means
mu <- list(apply(y,2,mean), apply(y,2,mean))
#initialize the list of covariance matrices
sigma <- list(cov(y)*1.2,cov(y)*0.8)
#initialize the prior probability

#second, fit a Gaussian HMM with autoregressive structure
ntimes <- ncol(y)
tol <- 1e-4
maxit <- 100
arp <- 0
cov.shrink <- 0
auto.lambda <- 0
auto.alpha <- 1
print <- TRUE
a <- fitgHMM(y,mu,sigma,ntimes,arp,tol,auto.lambda,auto.alpha,cov.shrink,print)
print(a)

#predict the hidden states
h <- predict(a)
plot(h)
delta <- c(0.5, 0.5)
Initialize the transition probabilities
gamma <- matrix(c(0.1, 0), 2, 2, byrow=TRUE)
Initialize the state duration probabilities
d <- list(rep(0.1, 10), rep(0.1, 10))
mod1 <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma, d=d)
Will not run without a shrinkage on the covariance matrices because the
Series is not long enough to reliably estimate the covariance structure
fit1 <- em.semi(y=y, mod=mod1, cov.shrink=0.0001)
st1 <- viterbi.semi(y=y, mod=fit1)
sp1 <- smooth.semi(y=y, mod=fit1)

Second, fit a Gaussian HSMM with 1st order autoregressive structure
auto <- list(matrix(rep(0.25, 50), 50, 50, byrow=TRUE),
 matrix(rep(0.25, 50), 50, 50, byrow=TRUE))
mod2 <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma, auto=auto, d=d, arp=1)
Increase auto.lambda to enforce stronger regularization for model to run
fit2 <- em.semi(y=y, mod=mod2, cov.shrink=0.001, arp=1,
 auto.alpha=0.8, auto.lambda=10)
sum(fit2$auto[[1]]==0)
sum(fit2$auto[[2]]==0)
st2 <- viterbi.semi(y=y, mod=fit2)
sp2 <- smooth.semi(y=y, mod=fit2)

Third, fit a Gaussian HSMM with 2nd order autoregressive structure
auto <- list(matrix(rep(0.5, 100), 50, 100, byrow=TRUE),
 matrix(rep(0.5, 100), 50, 100, byrow=TRUE))
mod3 <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma, auto=auto, d=d, arp=2)
Increase auto.lambda to enforce stronger regularization for model to run
fit3 <- em.semi(y=y, mod=mod3, ntimes=NULL, cov.shrink=0.0001, arp=2,
 auto.alpha=0.8, auto.lambda=30)
sum(fit3$auto[[1]]==0)
sum(fit3$auto[[2]]==0)
st3 <- viterbi.semi(y=y, mod=fit3)
sp3 <- smooth.semi(y=y, mod=fit3)

End (Not run)

Description

A dataset containing the daily closing price of 50 NYSE stocks from 2015-01-02 to 2016-12-30. The first 50 columns are the daily closing price for each of the 50 stocks, and the last column is the date.
Usage

finance

Format

A data frame with 504 rows and 51 variables:

Details

The abbreviation for the 50 stocks are as follows: "AMD","BAC","AAPL","FTR","BBRY","GE","RAD","MU","CHK","F","VALE","FCX","PBR","XOM","INTC","MSFT","WWAV","QQQ","ABEV","VZ","HPQ","KKFC","PFE","SWN","T","A","LULU","MT","WFT","CLF","SNA","S","C","HCP","DRYS","FMC","CSCO","KMI","AES","X","SIRI","WLL","COP",""
Examples

```r
set.seed(15562)
m <- 2
mu <- list(c(3,4,5),c(-2,-3,-4))
sigma <- list(diag(1.3,3),
           matrix(c(1,-0.3,0.2,-0.3,1.5,0.3,0.2,0.3,2),3,3,byrow=TRUE))
delta <- c(0.5,0.5)
gamma <- matrix(c(0.8,0.2,0.1,0.9),2,2,byrow=TRUE)
auto <- list(matrix(c(0.3,0.2,0.1,0.4,0.3,0.2,
                    -0.3,-0.2,-0.1,0.3,0.2,0.1,
                    0,0,0,0,0,3.6,byrow=TRUE),
                   matrix(c(0.2,0,0,0.4,0,0,
                            0.2,0,0,0.4,0,
                            0,0,0,0,0,3.6,byrow=TRUE)))
    mod <- list(m=m,mu=mu,sigma=sigma,delta=delta,gamma=gamma,auto=auto,arp=2)
sim <- hmm.sim(2000,mod)
y <- sim$series
state <- sim$state
fit <- em.hmm(y=y,mod=mod,arp=2, tol=1e-5)
forecast <- hmm.predict(y=y,mod=fit)
```

hmm.sim

Simulate a Gaussian hidden Markov series with / without autoregressive structures

Description

Simulate a Gaussian hidden Markov series with / without autoregressive structures

Usage

```r
hmm.sim(ns, mod)
```

Arguments

- `ns`
 length of the simulated series

- `mod`
 list consisting of at least the following items: `mod$m` = number of states, `mod$delta` = vector of prior probabilities, `mod$gamma` = matrix of state transition probabilities. `mod$mu` = list of means, `mod$sigma` = list of covariance matrices. For autoregressive hidden markov models, we also need the additional items: `mod$auto` = list of autocorrelation matrices. `mod$arp` = order of autoregressive.

Value

a list containing simulated series and states
References

Examples

```r
set.seed(135)
# Gaussian HMM 3 hidden states (no autoregressive structure)
m <- 3
mu <- list(c(3), c(-2), c(0))
sigma <- list(as.matrix(1), as.matrix(0.8), as.matrix(0.3))
delta <- c(0.3, 0.3, 0.4)
gamma <- matrix(c(0.8, 0.1, 0.1, 0.8, 0.1, 0.1, 0.8), 3, 3, byrow=TRUE)
mod1 <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma)
sim1 <- hmm.sim(1000, mod1)
y1 <- sim1$samples
fit1 <- em.hmm(y=y1, mod=mod1)

# AR(2) Gaussian HMM with 3 hidden states
m <- 2
mu <- list(c(3, 4.5), c(-2, -3, -4))
sigma <- list(diag(1, 3),
  matrix(c(1, -0.3, 0.2, -0.3, 1.5, 0.3, 0.2, 0.3, 2), 3, 3, byrow=TRUE))
delta <- c(0.5, 0.5)
gamma <- matrix(c(0.8, 0.2, 0.1, 0.9), 2, 2, byrow=TRUE)
auto <- list(matrix(c(0.3, 0.2, 0.1, 0.4, 0.3, 0.2,
  -0.3, -0.2, -0.1, 0.3, 0.2, 0.1,
  0, 0, 0, 0, 0, 3.6, byrow=TRUE),
  matrix(c(0.2, 0, 0.4, 0, 0, 0.2, 0, 0.4, 0,
  0, 0.2, 0, 0.4, 0),
  0, 0.2, 0, 0.4, 3.6, byrow=TRUE))
mod2 <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma, auto=auto, arp=2)
sim2 <- hmm.sim(2000, mod2)
y2 <- sim2$samples
fit2 <- em.hmm(y=y2, mod=mod2, arp=2)
```

hsmm.predict

1-step forward prediction for (autoregressive) Gaussian hidden semi-Markov model

Description

1-step forward prediction for (autoregressive) Gaussian hidden semi-Markov model

Usage

hsmm.predict(y, mod)
Arguments

- **y**: observed series
- **mod**: list consisting of at least the following items: `mod$m = scalar number of states`, `mod$delta = vector of initial values for prior probabilities`, `mod$gamma = matrix of initial values for state transition probabilities`, `mod$mu = list of initial values for means`, `mod$sigma = list of initial values for covariance matrices`, `mod$d = list of state duration probabilities`. For autoregressive hidden Markov models, we also need the additional items: `mod$arp = scalar order of autoregressive structure`, `mod/auto = list of initial values for autoregressive coefficient matrices`.

Value

- 1-step forward state probabilities and forecasts

References

Examples

```r
set.seed(15562)
m <- 2
mu <- list(c(3,4,5),c(-2,-3,-4))
sigma <- list(diag(1:3,3),
        matrix(c(1,-0.3,0.2,-0.3,1.5,0.3,0.2,0.3,2),3,3,byrow=TRUE))
delta <- c(0,5,0.5)
gamma <- list(matrix(c(0,1,1,0),2,2,byrow=TRUE))
d <- list(c(0.4,0.2,0.1,0.01,1,0.1,0.1),c(0.5,0.3,0.2))
auto <- list(matrix(c(0.3,0.2,0.1,0.4,0.3,0.2,0.1,
        -0.3,-0.2,-0.1,0.3,0.2,0.1,
        0,0,0,0,0,3,6,byrow=TRUE),
        matrix(c(0.2,0,0,0.4,0,0,
        0,0.2,0,0.4,0,
        0,0,0.2,0,0.4,3,6,byrow=TRUE))
mod <- list(m=m,mu=mu,sigma=sigma,delta=delta,gamma=gamma,
        auto=auto,arp=2,d=d)
sim <- hsmm.sim(2000,mod)
y <- sim$series
state <- sim$state
fit <- em.semi(y=y, mod=mod, arp=2, tol=1e-5)
forecast <- hsmm.predict(y=y, mod=fit)
```
Simulate a Gaussian hidden semi-Markov series with / without autoregressive structures

Description

Simulate a Gaussian hidden semi-Markov series with / without autoregressive structures

Usage

hsmm.sim(ns, mod)

Arguments

- **ns**: length of the simulated series
- **mod**: list consisting of at least the following items: mod$m = number of states, mod$delta = vector of prior probabilities, mod$gamma = matrix of state transition probabilities. mod$mu = list of means, mod$sigma = list of covariance matrices. mod$d = list of state duration probabilities. For autoregressive hidden markov models, we also need the additional items: mod/auto = list of autocorrelation matrices. mod$arp = order of autoregressive.

Value

a list containing simulated series and states

References

Examples

```r
set.seed(351)
# Gaussian HSSM 3 hidden states (no autoregressive structure)
m <- 3
mu <- list(c(3),c(-2),c(0))
sigma <- list(as.matrix(1), as.matrix(0.8), as.matrix(0.3))
delta <- c(0.3,0.3,0.4)
gamma <- matrix(c(0,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5),3,3,byrow=TRUE)
d <- list(c(0.8,0.5,0.2,0.1), c(0.5,0.25,0.25), c(0.7,0.3))
mod1 <- list(m=m,mu=mu,sigma=sigma,delta=delta,gamma=gamma,d=d)
sim1 <- hsmm.sim(500,mod1)
y1 <- sim1$series
fit1 <- em.semi(y=y1, mod=mod1)

## AR(2) Gaussian HSSM with 3 hidden states
m <- 2
```
Description

multivariate normal density

Usage

```r
mvdnorm(x, mean, sigma, logd)
```

Arguments

- **x**: matrix with each row as an observed vector of multivariate normal RVs
- **mean**: vector of means
- **sigma**: variance-covariance matrix
- **logd**: whether log transformation should be used

Value

a vector of density values for each observed vector
mvrnorm

multivariate normal random number generator

Description

multivariate normal random number generator

Usage

```r
mvrnorm(n, mu, sigma)
```

Arguments

- `n`: number of random vectors to generate
- `mu`: vector of means
- `sigma`: variance-covariance matrix

Value

a matrix with each row as a realization of multivariate normal random vector

package-rarhsmm

Regularized Autoregressive Hidden Semi Markov Models

Description

- Package: rarhsmm
- Type: Package
- Version: 1.0.7
- Date: 2018-03-19
- License: GPL
- LazyLoad: yes
- LazyData: yes

Author(s)

Zekun Xu <zekunxu@gmail.com>

Ye Liu <yliu87@ncsu.edu> Maintainer: Zekun Xu <zekunxu@gmail.com>
rmultinomial

multinomial random variable generator

Description

multinomial random variable generator

Usage

```
rmultinomial(n, k, prob, label)
```

Arguments

- `n`: number of random variables to generate
- `k`: number of categories
- `prob`: vector of probabilities summing up to 1
- `label`: vector of labels for each category

Value

multinomial random variables

smooth.hmm

Calculate the probability of being in a particular state for each observation.

Description

Calculate the probability of being in a particular state for each observation.

Usage

```
smooth.hmm(y, mod)
```

Arguments

- `y`: observed series
- `mod`: list consisting of at least the following items:
 - `mod$m`: scalar number of states
 - `mod$delta`: vector of initial values for prior probabilities
 - `mod$gamma`: matrix of initial values for state transition probabilities
 - `mod$mu`: list of initial values for means
 - `mod$sigma`: list of initial values for covariance matrices
 - For autoregressive hidden Markov models, we also need the additional items:
 - `mod$arp`: scalar order of autoregressive structure
 - `mod$auto`: list of initial values for autoregressive coefficient matrices
 smooth.semi

Value

A matrix containing the state probabilities

References

Examples

```
set.seed(15562)
m <- 2
mu <- list(c(3,4,5),c(-2,-3,-4))
sigma <- list(diag(1,3,3),
            matrix(c(1,-0.3,0.2,-0.3,1.5,0.3,0.2,0.3,2),3,3,byrow=TRUE))
delta <- c(0.5,0.5)
gamma <- matrix(c(0.8,0.2,0.1,0.9),2,2,byrow=TRUE)
auto <- list(matrix(c(0.3,0.2,0.1,0.4,0.3,0.2,
                     -0.3,-0.2,-0.1,0.3,0.2,0.1,
                     0,0,0,0,0,3,6,byrow=TRUE),
                   matrix(c(0.2,0,0,0.4,0,0,
                            0,0.2,0,0.4,0,0,0,0,0,0.4,3,6,byrow=TRUE))
mod <- list(m=m,mu=mu,sigma=sigma,delta=delta,gamma=gamma,auto=auto,arp=2)
sim <- hmm.sim(2000,mod)
y <- sim$series
state <- sim$state
fit <- em.hmm(y=y, mod=mod, arp=2)
stateprob <- smooth.hmm(y=y,mod=fit)
head(cbind(state,stateprob),20)
```

smooth.semi

Calculate the probability of being in a particular state for each observation.

Description

Calculate the probability of being in a particular state for each observation.

Usage

smooth.semi(y, mod)

Arguments

- `y` observed series
mod list consisting the at least the following items: mod$m = scalar number of states, mod$delta = vector of initial values for prior probabilities, mod$gamma = matrix of initial values for state transition probabilities. mod$mu = list of initial values for means, mod$sigma = list of initial values for covariance matrices. mod$d = list of state duration probabilities. For autoregressive hidden markov models, we also need the additional items: mod$arp = scalar order of autoregressive structure mod$auto = list of initial values for autoregressive coefficient matrices

Value

a matrix containing the state probabilities

References

Examples

```r
set.seed(15562)
m <- 2
mu <- list(c(3,4,5),c(-2,-3,-4))
sigma <- list(diag(1:3),
               matrix(c(1,0.3,0.2,-0.3,1.5,0.3,0.2,0.3,2),3,3,byrow=TRUE))
delta <- c(0.5,0.5)
gamma <- matrix(c(0,1,1,0),2,2,byrow=TRUE)
d <- list(c(0.4,0.2,0.1,0.1,0.1,0.1,0.5,0.3,0.2))
auto <- list(matrix(c(0.3,0.2,0.1,0.4,0,3,0,2,0,1,
                     0,0,0,0,0,0,3,6,byrow=TRUE),
                   matrix(c(0,2,0,0,0,0,0,2,0,0,
                             0,0,0,2,0,0,0,4,0,3,6,byrow=TRUE)),
                   d=d)
mod <- list(m=m,mu=mu,sigma=sigma,delta=delta,gamma=gamma,
           auto=auto,arp=2,d=d)
sim <- hsmm.sim(2000,mod)
y <- sim$series
state <- sim$state
fit <- em.semi(y=y, mod=mod, arp=2)
stateprob <- smooth.semi(y=y,mod=fit)
head(cbind(state,stateprob),20)
```

viterbi.hmm
Viterbi algorithm to decode the latent states for Gaussian hidden Markov model with / without autoregressive structures
Description

Viterbi algorithm to decode the latent states for Gaussian hidden Markov model with / without autoregressive structures

Usage

viterbi.hmm(y, mod)

Arguments

y observed series
mod list consisting the at least the following items: mod$m = scalar number of states, mod$delta = vector of initial values for prior probabilities, mod$gamma = matrix of initial values for state transition probabilities. mod$mu = list of initial values for means, mod$sigma = list of initial values for covariance matrices. For autoregressive hidden markov models, we also need the additional items: mod$arp = scalar order of autoregressive structure mod$auto = list of initial values for autoregressive coefficient matrices

Value

a list containing the decoded states

References

Examples

set.seed(135)
m <- 2
mu <- list(c(3,4,5),c(-2,-3,-4))
sigma <- list(diag(1,3,3),
 matrix(c(1,-0.3,0.2,-0.3,1.5,0.3,0.2,0.3,2),3,3,byrow=TRUE))
delta <- c(0.5,0.5)
gamma <- matrix(c(0.8,0.2,0.1,0.9),2,2,byrow=TRUE)
auto <- list(matrix(c(0.3,0.2,0.1,0.4,0.3,0.2,
 -0.3,-0.2,-0.1,0.3,0.2,0.1,
 0,0,0,0,0),3,6,byrow=TRUE),
 matrix(c(0.2,0,0,0.4,0,0,
 0.2,0,0,0.4,0,
 0,0,2,0,0,0.4),3,6,byrow=TRUE))
mod <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma, auto=auto, arp=2)
sim <- hmm.sim(2000,mod)
y <- sim$series
state <- sim$state
fit <- em.hmm(y=y, mod=mod, arp=2)
state_est <- viterbi.hmm(y=y,mod=fit)
sum(state_est!=state)
Viterbi semi

Viterbi algorithm to decode the latent states for Gaussian hidden semi-Markov model with / without autoregressive structures

Description

Viterbi algorithm to decode the latent states for Gaussian hidden semi-Markov model with / without autoregressive structures

Usage

viterbi.semi(y, mod)

Arguments

y observed series
mod list consisting the at least the following items: mod$m = scalar number of states, mod$delta = vector of initial values for prior probabilities, mod$gamma = matrix of initial values for state transition probabilities, mod$mu = list of initial values for means, mod$sigma = list of initial values for covariance matrices, mod$d = list of state duration probabilities. For autoregressive hidden markov models, we also need the additional items: mod$p = scalar order of autoregressive structure mod$auto = list of initial values for autoregressive coefficient matrices

Value

a list containing the decoded states

References

Examples

set.seed(135)
m <- 2
mu <- list(c(3,4,5),c(-2,-3,-4))
sigma <- list(diag(1:3),
matrix(c(1,-0.3,0.2,-0.3,1.5,0.3,0.2,0.3,2),byrow=TRUE))
delta <- c(0.5,0.5)
gamma <- matrix(c(0,1,1,0),2,byrow=TRUE)
auto <- list(matrix(c(0.3,0.2,0.1,0.4,0.3,0.2,
-0.3,-0.2,-0.1,0.3,0.2,0.1,
0,0,0,0,0,0),byrow=TRUE),
matrix(c(0.2,0,0,0.4,0,0,
0,0.2,0,0,0.4,0, })
0,0,0.2,0,0,0.4),3,6,byrow=TRUE))
d <- list(c(0.5,0.3,0.2),c(0.6,0.4))
mod <- list(m=m, mu=mu, sigma=sigma, delta=delta, gamma=gamma,
auto=auto, arp=2, d=d)
sim <- hsmm.sim(2000,mod)
y <- sim$series
state <- sim$state
fit <- em.semi(y=y, mod=mod, arp=2)
state_est <- viterbi.semi(y=y, mod=fit)
sum(state_est!=state)
Index

*Topic Markov
 package-rarhsmm, 13
*Topic autoregressive,
 package-rarhsmm, 13
*Topic datasets
 finance, 6
*Topic hidden
 package-rarhsmm, 13
*Topic models,
 package-rarhsmm, 13
*Topic regularized
 package-rarhsmm, 13
*Topic semi-Markov
 package-rarhsmm, 13

em.hmm, 2
em.semi, 4

finance, 6

hmm.predict, 7
hmm.sim, 8
hsmm.predict, 9
hsmm.sim, 11

mvdnorm, 12
mvrnorm, 13

package-rarhsmm, 13
package-rarhsmm-package
 (package-rarhsmm), 13
rarhsmm-package (package-rarhsmm), 13
rmultinomial, 14

smooth.hmm, 14
smooth.semi, 15

viterbi.hmm, 16
viterbi.semi, 18