Package ‘raster’

November 13, 2017

Type Package

Title Geographic Data Analysis and Modeling

Version 2.6-7

Date 2017-11-12

Depends methods, sp (>= 1.2-0), R (>= 3.0.0)

Suggests rgdal (>= 0.9-1), rgeos (>= 0.3-8), ncdf4, igraph, tcltk, parallel, rasterVis, MASS, sf

LinkingTo Rcpp

Imports Rcpp

SystemRequirements C++11

Description Reading, writing, manipulating, analyzing and modeling of gridded spatial data. The package implements basic and high-level functions. Processing of very large files is supported.

License GPL (>= 3)

URL http://www.rspatial.org/

ByteCompile TRUE

NeedsCompilation yes

Author Robert J. Hijmans [cre, aut], Jacob van Etten [ctb], Joe Cheng [ctb], Matteo Mattiuzzi [ctb], Michael Sumner [ctb], Jonathan A. Greenberg [ctb], Oscar Perpinan Lamigueiro [ctb], Andrew Bevan [ctb], Etienne B. Racine [ctb], Ashton Shortridge [ctb], Aniruddha Ghosh [ctb]

Maintainer Robert J. Hijmans <r.hijmans@gmail.com>

Repository CRAN

Date/Publication 2017-11-13 19:30:51 UTC
R topics documented:

raster-package .. 6
addLayer .. 13
adjacent .. 14
aggregate ... 16
alignExtent .. 18
animate ... 19
approxNA ... 20
area ... 21
Arith-methods ... 23
as.data.frame .. 24
as.list .. 25
as.logical .. 26
as.matrix ... 27
as.raster .. 28
atan2 ... 28
autocorrelation ... 29
bands ... 30
barplot .. 31
bind ... 32
blockSize ... 33
boundaries .. 34
boxplot ... 35
brick ... 36
buffer ... 38
calc ... 39
cellFrom .. 42
cellsFromExtent .. 44
cellStats .. 45
clamp ... 46
clearValues ... 47
click ... 47
clump .. 49
cluster ... 50
colortable .. 52
Compare-methods .. 53
compareCRS ... 54
compareRaster ... 55
contour .. 56
corLocal ... 57
cover ... 58
crop ... 59
crosstab ... 61
cut ... 62
cv ... 63
datasource ... 63
dataType ... 64
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>density</td>
<td>66</td>
</tr>
<tr>
<td>dim</td>
<td>66</td>
</tr>
<tr>
<td>direction</td>
<td>67</td>
</tr>
<tr>
<td>disaggregate</td>
<td>68</td>
</tr>
<tr>
<td>distance</td>
<td>69</td>
</tr>
<tr>
<td>distanceFromPoints</td>
<td>70</td>
</tr>
<tr>
<td>draw</td>
<td>72</td>
</tr>
<tr>
<td>drawExtent</td>
<td>72</td>
</tr>
<tr>
<td>erase</td>
<td>73</td>
</tr>
<tr>
<td>extend</td>
<td>74</td>
</tr>
<tr>
<td>extension</td>
<td>75</td>
</tr>
<tr>
<td>extent</td>
<td>76</td>
</tr>
<tr>
<td>Extent math</td>
<td>77</td>
</tr>
<tr>
<td>Extent-class</td>
<td>78</td>
</tr>
<tr>
<td>extract</td>
<td>79</td>
</tr>
<tr>
<td>Extract by index</td>
<td>82</td>
</tr>
<tr>
<td>Extreme coordinates</td>
<td>84</td>
</tr>
<tr>
<td>extremeValues</td>
<td>85</td>
</tr>
<tr>
<td>factors</td>
<td>86</td>
</tr>
<tr>
<td>filename</td>
<td>88</td>
</tr>
<tr>
<td>filledContour</td>
<td>88</td>
</tr>
<tr>
<td>flip</td>
<td>89</td>
</tr>
<tr>
<td>flowPath</td>
<td>90</td>
</tr>
<tr>
<td>focal</td>
<td>91</td>
</tr>
<tr>
<td>focalWeight</td>
<td>93</td>
</tr>
<tr>
<td>freq</td>
<td>94</td>
</tr>
<tr>
<td>Gain and offset</td>
<td>95</td>
</tr>
<tr>
<td>geom</td>
<td>96</td>
</tr>
<tr>
<td>getData</td>
<td>97</td>
</tr>
<tr>
<td>getValues</td>
<td>98</td>
</tr>
<tr>
<td>getValuesBlock</td>
<td>99</td>
</tr>
<tr>
<td>getValuesFocal</td>
<td>100</td>
</tr>
<tr>
<td>gridDistance</td>
<td>101</td>
</tr>
<tr>
<td>hdr</td>
<td>103</td>
</tr>
<tr>
<td>head</td>
<td>104</td>
</tr>
<tr>
<td>hillShade</td>
<td>104</td>
</tr>
<tr>
<td>hist</td>
<td>106</td>
</tr>
<tr>
<td>image</td>
<td>107</td>
</tr>
<tr>
<td>inifile</td>
<td>108</td>
</tr>
<tr>
<td>initialize</td>
<td>108</td>
</tr>
<tr>
<td>interpolate</td>
<td>109</td>
</tr>
<tr>
<td>intersect</td>
<td>112</td>
</tr>
<tr>
<td>isLonLat</td>
<td>114</td>
</tr>
<tr>
<td>KML</td>
<td>115</td>
</tr>
<tr>
<td>layerize</td>
<td>116</td>
</tr>
<tr>
<td>layerStats</td>
<td>117</td>
</tr>
<tr>
<td>localFun</td>
<td>118</td>
</tr>
<tr>
<td>Logic-methods</td>
<td>120</td>
</tr>
<tr>
<td>R topics documented:</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>mask</td>
<td>121</td>
</tr>
<tr>
<td>match</td>
<td>122</td>
</tr>
<tr>
<td>Math-methods</td>
<td>123</td>
</tr>
<tr>
<td>merge</td>
<td>124</td>
</tr>
<tr>
<td>metadata</td>
<td>125</td>
</tr>
<tr>
<td>modal</td>
<td>126</td>
</tr>
<tr>
<td>mosaic</td>
<td>127</td>
</tr>
<tr>
<td>movingFun</td>
<td>128</td>
</tr>
<tr>
<td>names</td>
<td>129</td>
</tr>
<tr>
<td>NAvalue</td>
<td>130</td>
</tr>
<tr>
<td>ncell</td>
<td>131</td>
</tr>
<tr>
<td>nlayers</td>
<td>132</td>
</tr>
<tr>
<td>Options</td>
<td>133</td>
</tr>
<tr>
<td>origin</td>
<td>135</td>
</tr>
<tr>
<td>overlay</td>
<td>135</td>
</tr>
<tr>
<td>pairs</td>
<td>138</td>
</tr>
<tr>
<td>persp</td>
<td>139</td>
</tr>
<tr>
<td>plot</td>
<td>140</td>
</tr>
<tr>
<td>plotRGB</td>
<td>143</td>
</tr>
<tr>
<td>pointDistance</td>
<td>144</td>
</tr>
<tr>
<td>predict</td>
<td>146</td>
</tr>
<tr>
<td>Programming</td>
<td>149</td>
</tr>
<tr>
<td>projection</td>
<td>151</td>
</tr>
<tr>
<td>projectRaster</td>
<td>152</td>
</tr>
<tr>
<td>properties</td>
<td>154</td>
</tr>
<tr>
<td>quantile</td>
<td>155</td>
</tr>
<tr>
<td>raster</td>
<td>156</td>
</tr>
<tr>
<td>Raster-class</td>
<td>159</td>
</tr>
<tr>
<td>rasterFromCells</td>
<td>161</td>
</tr>
<tr>
<td>rasterFromXYZ</td>
<td>162</td>
</tr>
<tr>
<td>rasterize</td>
<td>163</td>
</tr>
<tr>
<td>rasterTmpFile</td>
<td>167</td>
</tr>
<tr>
<td>rasterToContour</td>
<td>168</td>
</tr>
<tr>
<td>rasterToPoints</td>
<td>169</td>
</tr>
<tr>
<td>rasterToPolygons</td>
<td>170</td>
</tr>
<tr>
<td>readAll</td>
<td>171</td>
</tr>
<tr>
<td>reclassify</td>
<td>171</td>
</tr>
<tr>
<td>rectify</td>
<td>172</td>
</tr>
<tr>
<td>replacement</td>
<td>173</td>
</tr>
<tr>
<td>resample</td>
<td>174</td>
</tr>
<tr>
<td>resolution</td>
<td>175</td>
</tr>
<tr>
<td>RGB</td>
<td>176</td>
</tr>
<tr>
<td>rotate</td>
<td>177</td>
</tr>
<tr>
<td>rotated</td>
<td>178</td>
</tr>
<tr>
<td>round</td>
<td>178</td>
</tr>
<tr>
<td>rowFromCell</td>
<td>179</td>
</tr>
<tr>
<td>rowSums</td>
<td>180</td>
</tr>
<tr>
<td>SampleInt</td>
<td>181</td>
</tr>
</tbody>
</table>
R topics documented:

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>sampleRandom</td>
<td>182</td>
</tr>
<tr>
<td>sampleRegular</td>
<td>183</td>
</tr>
<tr>
<td>sampleStratified</td>
<td>184</td>
</tr>
<tr>
<td>scale</td>
<td>185</td>
</tr>
<tr>
<td>scalebar</td>
<td>186</td>
</tr>
<tr>
<td>select</td>
<td>187</td>
</tr>
<tr>
<td>setExtent</td>
<td>188</td>
</tr>
<tr>
<td>setMinMax</td>
<td>189</td>
</tr>
<tr>
<td>setValues</td>
<td>190</td>
</tr>
<tr>
<td>shapefile</td>
<td>191</td>
</tr>
<tr>
<td>shift</td>
<td>192</td>
</tr>
<tr>
<td>Slope and aspect</td>
<td>193</td>
</tr>
<tr>
<td>sp</td>
<td>194</td>
</tr>
<tr>
<td>spplot</td>
<td>195</td>
</tr>
<tr>
<td>stack</td>
<td>196</td>
</tr>
<tr>
<td>stackApply</td>
<td>197</td>
</tr>
<tr>
<td>stackSave</td>
<td>198</td>
</tr>
<tr>
<td>stackSelect</td>
<td>199</td>
</tr>
<tr>
<td>stretch</td>
<td>200</td>
</tr>
<tr>
<td>subset</td>
<td>201</td>
</tr>
<tr>
<td>substitute</td>
<td>202</td>
</tr>
<tr>
<td>Summary</td>
<td>203</td>
</tr>
<tr>
<td>Summary-methods</td>
<td>204</td>
</tr>
<tr>
<td>symdif</td>
<td>205</td>
</tr>
<tr>
<td>terrain</td>
<td>206</td>
</tr>
<tr>
<td>text</td>
<td>208</td>
</tr>
<tr>
<td>transpose</td>
<td>209</td>
</tr>
<tr>
<td>trim</td>
<td>210</td>
</tr>
<tr>
<td>union</td>
<td>211</td>
</tr>
<tr>
<td>unique</td>
<td>212</td>
</tr>
<tr>
<td>unstack</td>
<td>213</td>
</tr>
<tr>
<td>update</td>
<td>213</td>
</tr>
<tr>
<td>validCell</td>
<td>215</td>
</tr>
<tr>
<td>validNames</td>
<td>215</td>
</tr>
<tr>
<td>weighted.mean</td>
<td>216</td>
</tr>
<tr>
<td>which</td>
<td>217</td>
</tr>
<tr>
<td>which.min</td>
<td>218</td>
</tr>
<tr>
<td>writeFormats</td>
<td>219</td>
</tr>
<tr>
<td>writeRaster</td>
<td>220</td>
</tr>
<tr>
<td>writeValues</td>
<td>222</td>
</tr>
<tr>
<td>xyFromCell</td>
<td>224</td>
</tr>
<tr>
<td>z-values</td>
<td>225</td>
</tr>
<tr>
<td>zApply</td>
<td>226</td>
</tr>
<tr>
<td>zonal</td>
<td>227</td>
</tr>
<tr>
<td>zoom</td>
<td>228</td>
</tr>
</tbody>
</table>

Index 230
Description

The raster package provides classes and functions to manipulate geographic (spatial) data in ‘raster’ format. Raster data divides space into cells (rectangles; pixels) of equal size (in units of the coordinate reference system). Such continuous spatial data are also referred to as ‘grid’ data, and be contrasted with discrete (object based) spatial data (points, lines, polygons).

The package should be particularly useful when using very large datasets that cannot be loaded into the computer’s memory. Functions will work correctly, because they process large files in chunks, i.e., they read, compute, and write blocks of data, without loading all values into memory at once.

Below is a list of some of the most important functions grouped by theme. See the vignette for more information and some examples (you can open it by running this command: vignette(‘Raster’))

Details

The package implements classes for Raster data (see Raster-class) and supports

- Creation of Raster* objects from scratch or from file
- Handling extremely large raster files
- Raster algebra and overlay functions
- Distance, neighborhood (focal) and patch functions
- Polygon, line and point to raster conversion
- Model predictions
- Summarizing raster values
- Easy access to raster cell-values
- Plotting (making maps)
- Manipulation of raster extent, resolution and origin
- Computation of row, col and cell numbers to coordinates and vice versa
- Reading and writing various raster file types

I. Creating Raster* objects

RasterLayer, RasterStack, and RasterBrick objects are, as a group, referred to as Raster* objects. Raster* objects can be created, from scratch, files, or from objects of other classes, with the following functions:

- `raster` To create a RasterLayer
- `stack` To create a RasterStack (multiple layers)
- `brick` To create a RasterBrick (multiple layers)
subset
Select layers of a RasterStack/Brick

addLayer
Add a layer to a Raster* object

dropLayer
Remove a layer from a RasterStack or RasterBrick

unstack
Create a list of RasterLayer objects from a RasterStack

II. Changing the spatial extent and/or resolution of Raster* objects

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge</td>
<td>Combine Raster* objects with different extents (but same origin and resolution)</td>
</tr>
<tr>
<td>mosaic</td>
<td>Combine RasterLayers with different extents and a function for overlap areas</td>
</tr>
<tr>
<td>crop</td>
<td>Select a geographic subset of a Raster* object</td>
</tr>
<tr>
<td>extend</td>
<td>Enlarge a Raster* object</td>
</tr>
<tr>
<td>trim</td>
<td>Trim a Raster* object by removing exterior rows and/or columns that only have NAs</td>
</tr>
<tr>
<td>aggregate</td>
<td>Combine cells of a Raster* object to create larger cells</td>
</tr>
<tr>
<td>disaggregate</td>
<td>Subdivide cells</td>
</tr>
<tr>
<td>resample</td>
<td>Warp values to a Raster* object with a different origin or resolution</td>
</tr>
<tr>
<td>projectRaster</td>
<td>Project values to a raster with a different coordinate reference system</td>
</tr>
<tr>
<td>shift</td>
<td>Move the location of Raster</td>
</tr>
<tr>
<td>flip</td>
<td>Flip values horizontally or vertically</td>
</tr>
<tr>
<td>rotate</td>
<td>Rotate values around the date-line (for lon/lat data)</td>
</tr>
<tr>
<td>t</td>
<td>Transpose a Raster* object</td>
</tr>
</tbody>
</table>

III. Raster algebra

<table>
<thead>
<tr>
<th>Category</th>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arith-methods</td>
<td>Arith functions (+, -, *, ^, **, %, %/, /)</td>
</tr>
<tr>
<td>Math-methods</td>
<td>Math functions like abs, sqrt, trunc, log, log10, exp, sin, round</td>
</tr>
<tr>
<td>Logic-methods</td>
<td>Logic functions (!, &,</td>
</tr>
<tr>
<td>Summary-methods</td>
<td>Summary functions (mean, max, min, range, prod, sum, any, all)</td>
</tr>
<tr>
<td>Compare-methods</td>
<td>Compare functions (==, !=, >, <, <=, >=)</td>
</tr>
</tbody>
</table>

IV. Cell based computation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>calc</td>
<td>Computations on a single Raster* object</td>
</tr>
<tr>
<td>overlay</td>
<td>Computations on multiple RasterLayer objects</td>
</tr>
<tr>
<td>cover</td>
<td>First layer covers second layer except where the first layer is NA</td>
</tr>
<tr>
<td>mask</td>
<td>Use values from first Raster except where cells of the mask Raster are NA</td>
</tr>
<tr>
<td>cut</td>
<td>Reclassify values using ranges</td>
</tr>
<tr>
<td>subs</td>
<td>Reclassify values using an 'is-becomes’ matrix</td>
</tr>
</tbody>
</table>
V. Spatial contextual computation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>Shortest distance to a cell that is not NA</td>
</tr>
<tr>
<td>gridDistance</td>
<td>Distance when traversing grid cells that are not NA</td>
</tr>
<tr>
<td>distanceFromPoints</td>
<td>Shortest distance to any point in a set of points</td>
</tr>
<tr>
<td>direction</td>
<td>Direction (azimuth) to or from cells that are not NA</td>
</tr>
<tr>
<td>focal</td>
<td>Focal (neighborhood; moving window) functions</td>
</tr>
<tr>
<td>localFun</td>
<td>Local association (using neighborhoods) functions</td>
</tr>
<tr>
<td>boundaries</td>
<td>Detection of boundaries (edges)</td>
</tr>
<tr>
<td>clump</td>
<td>Find clumps (patches)</td>
</tr>
<tr>
<td>adjacent</td>
<td>Identify cells that are adjacent to a set of cells on a raster</td>
</tr>
<tr>
<td>area</td>
<td>Compute area of cells (for longitude/latitude data)</td>
</tr>
<tr>
<td>terrain</td>
<td>Compute slope, aspect and other characteristics from elevation data</td>
</tr>
<tr>
<td>Moran</td>
<td>Compute global or local Moran or Geary indices of spatial autocorrelation</td>
</tr>
</tbody>
</table>

VI. Model predictions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>predict</td>
<td>Predict a non-spatial model to a RasterLayer</td>
</tr>
<tr>
<td>interpolate</td>
<td>Predict a spatial model to a RasterLayer</td>
</tr>
</tbody>
</table>

VII. Data type conversion

You can coerce Raster* objects to Spatial* objects using `as`, as in `as(object, 'SpatialGridDataFrame')`

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>raster</td>
<td>RasterLayer from SpatialGrid*, image, or matrix objects</td>
</tr>
<tr>
<td>rasterize</td>
<td>Rasterizing points, lines or polygons</td>
</tr>
<tr>
<td>rasterToPoints</td>
<td>Create points from a RasterLayer</td>
</tr>
<tr>
<td>rasterToPolygons</td>
<td>Create polygons from a RasterLayer</td>
</tr>
<tr>
<td>rasterToContour</td>
<td>Contour lines from a RasterLayer</td>
</tr>
<tr>
<td>rasterFromXYZ</td>
<td>RasterLayer from regularly spaces points</td>
</tr>
</tbody>
</table>
rasterFromCells | RasterLayer from a Raster object and cell numbers

VIII. Summarizing

cellStats | Summarize a Raster cell values with a function
summary | Summary of the values of a Raster* object (quartiles and mean)
freq | Frequency table of Raster cell values
crosstab | Cross-tabulate two Raster* objects
unique | Get the unique values in a Raster* object
zonal | Summarize a Raster* object by zones in a RasterLayer

IX. Accessing values of Raster* object cells

Apart from the function listed below, you can also use indexing with [for cell numbers, and [[for row / column number combinations

getValues | Get all cell values (fails with very large rasters), or a row of values (safer)
getValuesBlock | Get values for a block (a rectangular area)
getValuesFocal | Get focal values for one or more rows
as.matrix | Get cell values as a matrix
as.array | Get cell values as an array
extract | Extract cell values from a Raster* object (e.g., by cell, coordinates, polygon)
sampleRandom | Random sample
sampleRegular | Regular sample
minValue | Get the minimum value of the cells of a Raster* object (not always known)
maxValue | Get the maximum value of the cells of a Raster* object (not always known)
setMinMax | Compute the minimum and maximum value of a Raster* object if these are not known

X. Plotting

See the rasterVis package for additional plotting methods for Raster* objects using methods from 'lattice' and other packages.

Maps

plot | Plot a Raster* object. The main method to create a map
plotRGB | Combine three layers (red, green, blue channels) into a single 'real color' image
spplot | Plot a Raster* with the spplot function (sp package)
image | Plot a Raster* with the image function
persp | Perspective plot of a RasterLayer
contour
filledContour
text

Interacting with a map
zoom
click
select
drawPoly
drawLine
drawExtent

Other plots
plot
hist
barplot
density
pairs
boxplot

XI. Getting and setting Raster* dimensions

Basic parameters of existing Raster* objects can be obtained, and in most cases changed. If there are values associated with a RasterLayer object (either in memory or via a link to a file) these are lost when you change the number of columns or rows or the resolution. This is not the case when the extent is changed (as the number of columns and rows will not be affected). Similarly, with `projection` you can set the projection, but this does not transform the data (see `projectRaster` for that).

ncol The number of columns
nrow The number of rows
ncell The number of cells (can not be set directly, only via ncol or nrow)
res The resolution (x and y)
nlayers How many layers does the object have?
names Get or set the layer names
xres The x resolution (can be set with res)
yres The y resolution (can be set with res)
xmin The minimum x coordinate (or longitude)
xmax The maximum x coordinate (or longitude)
ymin The minimum y coordinate (or latitude)
ymax The maximum y coordinate (or latitude)
extent The extent (minimum and maximum x and y coordinates)
origin The origin of a Raster* object
projection The coordinate reference system (map projection)
isLonLat Test if an object has a longitude/latitude coordinate reference system
filename Filename to which a RasterLayer or RasterBrick is linked
band layer (=band) of a multi-band file that this RasterLayer is linked to
XII. Computing row, column, cell numbers and coordinates

Cell numbers start at 1 in the upper-left corner. They increase within rows, from left to right, and then row by row from top to bottom. Likewise, row numbers start at 1 at the top of the raster, and column numbers start at 1 at the left side of the raster.

- `xFromCol` x-coordinates from column numbers
- `yFromRow` y-coordinates from row numbers
- `xFromCell` x-coordinates from cell numbers
- `yFromCell` y-coordinates from cell numbers
- `xyFromCell` x and y coordinates from cell numbers
- `colFromX` Column numbers from x-coordinates (or longitude)
- `rowFromY` Row numbers from y-coordinates (or latitude)
- `rowColFromCell` Row and column numbers from cell numbers
- `cellFromXY` Cell numbers from x and y coordinates
- `cellFromRowCol` Cell numbers from row and column numbers
- `cellsFromExtent` Cell numbers from extent object
- `coordinates` x and y coordinates for all cells
- `validCell` Is this a valid cell number?
- `validCol` Is this a valid column number?
- `validRow` Is this a valid row number?

XIII. Writing files

Basic
- `setValues` Put new values in a Raster* object
- `writeRaster` Write all values of Raster* object to disk
- `KML` Save raster as KML file

Advanced
- `blockSize` Get suggested block size for reading and writing
- `writeStart` Open a file for writing
- `writeValues` Write some values
- `writeStop` Close the file after writing
- `update` Change the values of an existing file
XIV. Manipulation of SpatialPolygons* and other vector type Spatial* objects

Some of these functions are in the sp package. The name in bold is the equivalent command in ArcGIS. These functions build on the geometry ("spatial features") manipulation functions in package rgeos. These functions are extended here by also providing automated attribute data handling.

bind append combine Spatial* objects of the same (vector) type
erase or "·" erase parts of a SpatialPolygons* object
intersect or "*" intersect SpatialPolygons* objects
union or "+" union SpatialPolygons* objects
cover update and identity a SpatialPolygons object with another one
symdif symmetrical difference of two SpatialPolygons* objects
aggregate dissolve smaller polygons into larger ones
disaggregate explode: turn polygon parts into separate polygons (in the sp package)
crop clip a Spatial* object using a rectangle (Extent object)
select select - interactively select spatial features
click identify attributes by clicking on a map
merge Join table (in the sp package)
over spatial queries between Spatial* objects
extract spatial queries between Spatial* and Raster* objects
as.data.frame coerce coordinates of SpatialLines or SpatialPolygons into a data.frame

XV. Extent objects

extent Create an extent object
intersect Intersect two extent objects
union Combine two extent objects
round round/floor/ceiling of the coordinates of an Extent object
alignExtent Align an extent with a Raster* object
drawExtent Create an Extent object by drawing it on top of a map (see plot)

XVI. Miscellaneous

rasterOptions Show, set, save or get session options
data Download and geographic data
pointDistance Distance between points
readIniFile Read a (windows) 'ini' file
hdr Write header file for a number of raster formats
trim Remove leading and trailing blanks from a character string
extension Get or set the extention of a filename
cv Coefficient of variation
modal Modal value
addLayer

###sampleInt

Random sample of (possibly very large) range of integer values

###showTmpFiles

Show temporary files

###removeTmpFiles

Remove temporary files

###XVII. For programmers

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>canProcessInMemory</td>
<td>Test whether a file can be created in memory</td>
</tr>
<tr>
<td>pbCreate</td>
<td>Initialize a progress bar</td>
</tr>
<tr>
<td>pbStep</td>
<td>Take a progress bar step</td>
</tr>
<tr>
<td>pbClose</td>
<td>Close a progress bar</td>
</tr>
<tr>
<td>readStart</td>
<td>Open file connections for efficient multi-chunk reading</td>
</tr>
<tr>
<td>readStop</td>
<td>Close file connections</td>
</tr>
<tr>
<td>rasterTmpFile</td>
<td>Get a name for a temporary file</td>
</tr>
<tr>
<td>inMemory</td>
<td>Are the cell values in memory?</td>
</tr>
<tr>
<td>fromDisk</td>
<td>Are the cell values read from a file?</td>
</tr>
</tbody>
</table>

###Acknowledgements

Extensive contributions were made by Jacob van Etten, Jonathan Greenberg, Matteo Mattiuzzi, and Michael Sumner. Significant help was also provided by Phil Heilman, Agustin Lobo, Oscar Perpinan Lamigueiro, Stefan Schlaffer, Jon Olav Skoien, Steven Mosher, and Kevin Ummel. Contributions were also made by Jochen Albrecht, Neil Best, Andrew Bevan, Roger Bivand, Isabelle Boulangeat, Lyndon Estes, Josh Gray, Tim Haering, Gerry Herry, Paul Hiemstra, Ned Hornig, Mayeul Kauffmann, Bart Kranstauber, Rainer Krug, Alice Laborte, John Lewis, Lennon Li, Justin McGrath, Babak Naimi, Carsten Neumann, Joshua Perlman, Richard Plant, Edzer Pebesma, Etienne Racine, David Ramsey, Shaun Walbridge, Julian Zeidler and many others.

###Author(s)

Except where indicated otherwise, the functions in this package were written by Robert J. Hijmans

###addLayer

Add or drop a layer

###Description

Add a layer to a Raster* object or drop a layer from a RasterStack or RasterBrick. The object returned is always a RasterStack (unless nothing to add or drop was provided, in which case the original object is returned).
Usage

```
addLayer(x, ...)  
dropLayer(x, i, ...)
```

Arguments

- **x**: Raster* object
- **i**: integer. Indices of the layers to be dropped
- **...**: Additional arguments. The layers to add for addLayer. None for dropLayer

Value

```
RasterStack
```

See Also

```
subset
```

Examples

```
file <- system.file("external/test.grd", package="raster")
s <- stack(file, file, file)
r <- raster(file)
s <- addLayer(s, r/2, r*x2)
s  
s <- dropLayer(s, c(3, 5))

adjacent(s)
```

Description

Identify cells that are adjacent to a set of cells on a raster.

Usage

```
adjacent(x, cells, directions=4, pairs=TRUE, target=NULL, sorted=FALSE,  
include=FALSE, id=FALSE)
```

Arguments

- **x**: Raster* object
- **cells**: vector of cell numbers for which adjacent cells should be found. Cell numbers start with 1 in the upper-left corner and increase from left to right and from top to bottom
directions the number of directions in which cells should be connected: 4 (rook’s case), 8 (queen’s case), 16 (knight and one-cell queen moves), or ’bishop’ to connect cells with one-cell diagonal moves. Or a neighborhood matrix (see Details)
pairs logical. If TRUE, a matrix of pairs of adjacent cells is returned. If FALSE, a vector of cells adjacent to cells is returned
target optional vector of target cell numbers that should be considered. All other adjacent cells are ignored
sorted logical. Should the results be sorted?
include logical. Should the focal cells be included in the result?
id logical. Should the id of the cells be included in the result? (numbered from 1 to length(cells)

Details
A neighborhood matrix identifies the cells around each cell that are considered adjacent. The matrix should have one, and only one, cell with value 0 (the focal cell); at least one cell with value 1 (the adjacent cell(s)); All other cells are not considered adjacent and ignored.

Value
matrix or vector with adjacent cells.

Author(s)
Robert J. Hijmans and Jacob van Etten

Examples
```r
r <- raster(nrows=10, ncol=10)
adjacent(r, cells=c(1, 55), directions=8, pairs=TRUE)

a <- adjacent(r, cell = c(1,55,90), directions=4, sorted=TRUE)
a
r[c(1,55,90)] <- 1
r[a] <- 2
plot(r)

# same result as above
rook <- matrix(c(NA, 1, NA,
                 1, 0, 1,
                 NA, 1, NA), ncol=3, byrow=TRUE)
adjacent(r, cells = c(1,55,90), directions=rook, sorted=TRUE)

# Count the number of times that a cell with a certain value
# occurs next to a cell with a certain value
set.seed(0)
r <- raster(ncol=10, nrow=10)
```
r[] <- round(runif(ncell(r)) * 5)
a <- adjacent(r, 1:ncell(r), 4, pairs=TRUE)
tb <- table(r[ar[1]], r[ar[2]])
tb
make a matrix out of the 'table' object
tb <- unclass(tb)
plot(raster(tb, xmn=-0.5, xmx=5.5, ymn=-0.5, ymx=5.5))

aggregate Aggregate raster cells or SpatialPolygons/Lines

Description

Raster* objects:
Aggregate a Raster* object to create a new RasterLayer or RasterBrick with a lower resolution (larger cells). Aggregation groups rectangular areas to create larger cells. The value for the resulting cells is computed with a user-specified function.

SpatialPolygon*:
Aggregate a SpatialPolygon* object, optionally by combining polygons that have the same attributes for one or more variables. If the polygons touch or overlap, internal boundaries are optionally "dissolved".

Usage

S4 method for signature 'Raster'
aggregate(x, fact=2, fun=mean, expand=TRUE, na.rm=TRUE, filename='', ...)

S4 method for signature 'SpatialPolygons'
aggregate(x, by, sums, dissolve=TRUE, vars=NULL, ...)

Arguments

x Raster* object or SpatialPolygons* object
fact integer. Aggregation factor expressed as number of cells in each direction (horizontally and vertically). Or two integers (horizontal and vertical aggregation factor) or three integers (when also aggregating over layers). See Details
fun function used to aggregate values
expand logical. If TRUE the output Raster* object will be larger than the input Raster* object if a division of the number of columns or rows with factor is not an integer
na.rm logical. If TRUE, NA cells are removed from calculations
filename character. Output filename (optional)
... if x is a Raster* object, additional arguments as for writeRaster
aggregate

by character or integer. The variables (column names or numbers) that should be
used to aggregate (dissolve) the SpatialPolygons by only maintaining unique
combinations of these variables. The default setting is to use no variables and
aggregate all polygons. You can also supply a vector with a length of length(x)
sums list with function(s) and variable(s) to summarize. This should be a list of
lists in which each element of the main lists has two items. The first item
is function (e.g. mean), the second element is a vector of column names (or
indices) that need to summarize with that function. Be careful with charac-
ter and factor variables (you can use, e.g. 'first' function(x)x[1] or 'last'
function(x)x[length(x)] or modal for these variables
vars deprecated. Same as by
dissolve logical. If TRUE borders between touching or overlapping polygons are removed
(requires package rgeos)

Details

Aggregation of a x will result in a Raster* object with fewer cells. The number of cells is the
number of cells of x divided by fact*fact (when fact is a single number) or prod(fact) (when
fact consists of 2 or 3 numbers). If necessary this number is adjusted according to the value of
expand. For example, fact=2 will result in a new Raster* object with 2*2=4 times fewer cells. If
two numbers are supplied, e.g., fact=c(2,3), the first will be used for aggregating in the horizontal
direction, and the second for aggregating in the vertical direction, and the returned object will have
2*3=6 times fewer cells. Likewise, fact=c(2,3,4) aggregates cells in groups of 2 (rows) by 3
(columns) and 4 (layers).

Aggregation starts at the upper-left end of a raster (you can use flip if you want to start elsewhere).
If a division of the number of columns or rows with fact does not return an integer, the extent
of the resulting Raster object will either be somewhat smaller or somewhat larger then the original
RasterLayer. For example, if an input RasterLayer has 100 columns, and fact=12, the output Raster
object will have either 8 columns (expand=FALSE) (using 8 * 12 = 96 of the original columns)
or 9 columns (expand=TRUE). In both cases, the maximum x coordinate of the output RasterLayer
would, of course, also be adjusted.

The function fun should take multiple numbers, and return a single number. For example mean,
modal, min or max. It should also accept a na.rm argument (or ignore it as one of the 'dots' argu-
ments).

Value

RasterLayer or RasterBrick, or a SpatialPolygons* object

Author(s)

Robert J. Hijmans and Jacob van Etten

See Also

disaggregate, resample. For SpatialPolygons* disaggregate
Examples

```r
r <- raster()
# a new aggregated raster, no values
ra <- aggregate(r, fact=10)
r <- setValues(r, runif(ncell(r)))

# a new aggregated raster, max of the values
ra <- aggregate(r, fact=10, fun=max)

# multiple layers
s <- stack(r, r*2)
x <- aggregate(s,2)

#SpatialPolygons
if (require(rgdal) & require(rgdal)) {
p <- shapefile(system.file("external/lux.shp", package="raster"))
p
pa0 <- aggregate(p)
pa0
pal <- aggregate(p, by='NAME_1', sums=list(list(mean, 'ID_2')))
pal
}
```

alignExtent

Align an extent (object of class Extent)

Description

Align an Extent object with the (boundaries of the) cells of a Raster* object

Usage

`alignExtent(extent, object, snap='near')`

Arguments

- **extent**: Extent object
- **object**: Raster* object
- **snap**: Character. One of 'near', 'in', or 'out', to determine in which direction the extent should be aligned. To the nearest border, inwards or outwards

Details

Aligning an Extent object to another object assures that it gets the same origin and resolution. This should only be used to adjust objects because of imprecision in the data. `alignExtent` should not be used to force data to match that really does not match (use e.g. `resample` or (dis)aggregate for this).
animate

Value
Extent object

See Also
extent, drawExtent, Extent-class

Examples
r <- raster()
e <- extent(-10.1, 9.9, -20.1, 19.9)
ea <- alignExtent(e, r)
e
extent(r)
ea

animate | Animate layers of a Raster* object

Description
Animate (sequentially plot) the layers of a RasterStack or RasterBrick* object to create a movie

Usage
S4 method for signature 'RasterStackBrick'
animate(x, pause=0.25, main, zlim, maxpixels=50000, n=10, ...)

Arguments

<table>
<thead>
<tr>
<th></th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Raster* object</td>
</tr>
<tr>
<td>pause</td>
<td>numeric. How long should the pause be between layers?</td>
</tr>
<tr>
<td>main</td>
<td>title for each layer. If not supplied the z-value is used if available. Otherwise the names are used.</td>
</tr>
<tr>
<td>zlim</td>
<td>numeric vector of length 2. Range of values to plot</td>
</tr>
<tr>
<td>maxpixels</td>
<td>integer > 0. Maximum number of cells to use for the plot. If maxpixels < ncell(x), sampleRegular is used before plotting</td>
</tr>
<tr>
<td>n</td>
<td>integer > 0. Number of loops</td>
</tr>
<tr>
<td>...</td>
<td>Additional arguments passed to plot</td>
</tr>
</tbody>
</table>

Value
None
approxNA

Estimate values for cell values that are NA by interpolating between layers

Description

approxNA uses the stats function `approx` to estimate values for cells that are NA by interpolation across layers. Layers are considered equidistant, unless an argument 'z' is used, or `getZ` returns values, in which case these values are used to determine distance between layers.

For estimation based on neighbouring cells see `focal`

Usage

```r
## S4 method for signature 'RasterStackBrick'
approxNA(x, filename='', method="linear", yleft, yright,
    rule=1, f=0, ties=mean, z=NULL, NArule=1, ...)
```

Arguments

- `x` RasterStack or RasterBrick object
- `filename` character. Output filename (optional)
- `method` specifies the interpolation method to be used. Choices are "linear" or "constant" (step function; see the example in `approx`)
- `yleft` the value to be returned before a non-NA value is encountered. The default is defined by the value of rule given below
- `yright` the value to be returned after the last non-NA value is encountered. The default is defined by the value of rule given below
- `rule` an integer (of length 1 or 2) describing how interpolation is to take place at for the first and last cells (before or after any non-NA values are encountered). If rule is 1 then NAs are returned for such points and if it is 2, the value at the closest data extreme is used. Use, e.g., `rule = 2:1`, if the left and right side extrapolation should differ
- `f` for method = "constant" a number between 0 and 1 inclusive, indicating a compromise between left- and right-continuous step functions. If y0 and y1 are the values to the left and right of the point then the value is y0*(1-f)+y1*f so that f = 0 is right-continuous and f = 1 is left-continuous

See Also

`plot`, `spplot`, `plotRGB`
ties Handling of tied 'z' values. Either a function with a single vector argument returning a single number result or the string "ordered"

z numeric vector to indicate the distance between layers (e.g., time, depth). The default is 1:nlayers(x)

NArule single integer used to determine what to do when only a single layer with a non-NA value is encountered (and linear interpolation is not possible). The default value of 1 indicates that all layers will get this value for that cell; all other values do not change the cell values

... additional arguments as for writeRaster

Value

RasterBrick

See Also

focal

Examples

```r
r <- raster(ncols=5, nrows=5)
r1 <- setValues(r, runif(ncell(r)))
r2 <- setValues(r, runif(ncell(r)))
r3 <- setValues(r, runif(ncell(r)))
r4 <- setValues(r, runif(ncell(r)))
r5 <- setValues(r, NA)
r6 <- setValues(r, runif(ncell(r)))
r[6:10] <- NA
r[5:15] <- NA
r[8:25] <- NA
s <- stack(r1,r2,r3,r4,r5,r6)
s[1:5] <- NA
x1 <- approxNA(s)
x2 <- approxNA(s, rule=2)
x3 <- approxNA(s, rule=2, z=c(1,2,3,5,14,15))
```

area Size of cells

Description

Raster objects: Compute the approximate surface area of cells in an unprojected (longitude/latitude) Raster object. It is an approximation because area is computed as the height (latitudinal span) of a cell (which is constant among all cells) times the width (longitudinal span) in the (latitudinal) middle of a cell. The width is smaller at the poleward side than at the equator-ward side of a cell. This variation is greatest near the poles and the values are thus not very precise for very high latitudes.

SpatialPolygons: Compute the area of the spatial features. Works for both planar and angular (lon/lat) coordinate reference systems
Usage

```r
## S4 method for signature 'RasterLayer'
area(x, filename="", na.rm=FALSE, weights=FALSE, ...)

## S4 method for signature 'RasterStackBrick'
area(x, filename="", na.rm=FALSE, weights=FALSE, ...)

## S4 method for signature 'SpatialPolygons'
area(x, ...)
```

Arguments

- `x` Raster* or SpatialPolygons object
- `filename` character. Filename for the output Raster object (optional)
- `na.rm` logical. If TRUE, cells that are NA are ignored
- `weights` logical. If TRUE, the area of each cells is divided by the total area of all cells that are not NA
- `...` additional arguments as for `writeRaster`

Details

If `x` is a RasterStack/Brick, a RasterBrick will be returned if `na.rm=TRUE`. However, if `na.rm=FALSE`, a RasterLayer is returned, because the values would be the same for all layers.

Value

If `x` is a Raster* object: RasterLayer or RasterBrick. Cell values represent the size of the cell in km², or the relative size if `weights=TRUE`

If `x` is a SpatialPolygons* object: area if each spatial object in squared meters if the CRS is longitude/latitude, or in squared map units (typically meter)

Examples

```r
r <- raster(nrow=18, ncol=36)
a <- area(r)

if (require(rgdal) & require(rgdal)) {
p <- shapefile(system.file("external/lux.shp", package="raster"))
p$area <- round(area(p) / 10000000,1)
p$area
}
```
Arithmetic with Raster* objects

Description

Standard arithmetic operators for computations with Raster* objects and numeric values. The following operators are available: +, -, *, /, ^, %%

The input Raster* objects should have the same extent, origin and resolution. If only the extent differs, the computation will continue for the intersection of the Raster objects. Operators are applied on a cell by cell basis. For a RasterLayer, numeric values are recycled by row. For a RasterStack or RasterBrick, recycling is done by layer. RasterLayer objects can be combined RasterStack/Brick objects, in which case the RasterLayer is 'recycled'. When using multiple RasterStack or RasterBrick objects, the number of layers of these objects needs to be the same.

In addition to arithmetic with Raster* objects, the following operations are supported for SpatialPolygons* objects. Given SpatialPolygon objects x and y:

- \(x + y \) is the same as \(\text{union}(x, y) \). For SpatialLines* and SpatialPoints* it is equivalent to \(\text{bind}(x, y) \)
- \(x \times y \) is the same as \(\text{intersect}(x, y) \)
- \(x \sim y \) is the same as \(\text{erase}(x, y) \)

Details

If the values of the output Raster* cannot be held in memory, they will be saved to a temporary file. You can use options to set the default file format, datatype and progress bar.

Value

A Raster* object, and in some cases the side effect of a new file on disk.

See Also

Math-methods, overlay, calc

Examples

```r
r1 <- raster(ncols=10, nrows=10)
r1[] <- runif(ncell(r1))
r2 <- setValues(r1, 1:ncell(r1) / ncell(r1) )
r3 <- r1 + r2
r2 <- r1 / 10
r3 <- r1 * (r2 - 1 + r1^2 / r2)

# recycling by row
r4 <- r1 * 0 + 1:ncol(r1)

# multi-layer object multiplication, no recycling
b1 <- brick(r1, r2, r3)
b2 <- b1 * 10
```
recycling by layer
b3 <- b1 + c(1, 5, 10)

addition of the cell-values of two RasterBrick objects
b3 <- b2 + b1

summing two RasterBricks and one RasterLayer. The RasterLayer is 'recycled'
b3 <- b1 + b2 + r1

as.data.frame

Get a data.frame with raster cell values, or coerce SpatialPolygons, Lines, or Points to a data.frame

Description

`as.matrix` returns all values of a Raster* object as a matrix. For RasterLayers, rows and columns in the matrix represent rows and columns in the RasterLayer object. For other Raster* objects, the matrix returned by `as.matrix` has columns for each layer and rows for each cell.

`as.array` returns an array of matrices that are like those returned by `as.matrix` for a RasterLayer.

If there is insufficient memory to load all values, you can use `getValues` or `getValuesBlock` to read chunks of the file. You could also first use `sampleRegular`.

The methods for Spatial* objects allow for easy creation of a data.frame with the coordinates and attributes; the default method only returns the attributes data.frame.

Usage

```r
## S4 method for signature 'Raster'
as.data.frame(x, row.names=NULL, optional=FALSE, xy=FALSE, na.rm=FALSE, long=FALSE, ...)

## S4 method for signature 'SpatialPolygons'
as.data.frame(x, row.names=NULL, optional=FALSE, xy=FALSE, centroids=TRUE, sepNA=FALSE, ...)

## S4 method for signature 'SpatialLines'
as.data.frame(x, row.names=NULL, optional=FALSE, xy=FALSE, sepNA=FALSE, ...)
```

Arguments

- **x**
 - Raster* object
- **row.names**
 - NULL or a character vector giving the row names for the data frame. Missing values are not allowed
- **optional**
 - logical. If TRUE, setting row names and converting column names (to syntactic names: see `make.names`) is optional
as.list

Create a list of RasterLayer objects

Description

Create a list of RasterLayer objects from Raster* objects

Usage

S4 method for signature 'Raster'
as.list(x, ...)

Arguments

x Raster* object

... additional Raster* objects

Value

list

xy logical. If TRUE, also return the spatial coordinates

na.rm logical. If TRUE, remove rows with NA values. This can be particularly useful for very large datasets with many NA values

long logical. If TRUE, values are reshaped from a wide to a long format

centroids logical. If TRUE return the centroids instead of all spatial coordinates (only relevant if xy=TRUE)

sepNA logical. If TRUE the parts of the spatial objects are separated by lines that are NA (only if xy=TRUE and, for polygons, if centroids=FALSE)

... Additional arguments (none)

Examples

r <- raster(ncol=3, nrow=3)
r[] <- sqrt(1:ncell(r))
r[3:5] <- NA
as.data.frame(r)
s <- stack(r, r*2)
as.data.frame(s)
as.data.frame(s, na.rm=TRUE)

Examples

```r
r <- raster(ncol=3, nrow=3)
r[] <- 1:ncell(r)
as.list(r)

s <- stack(r, r*2, r*3)
as.list(s, r)
```

as.logical

Change cell values to logical or integer values

Description

Change values of a Raster* object to logical or integer values. With `as.logical`, zero becomes `FALSE`, all other values become `TRUE`. With `as.integer` values are truncated.

Usage

```r
## S4 method for signature 'Raster'
as.logical(x, filename='', ...)

## S4 method for signature 'Raster'
as.integer(x, filename='', ...)
```

Arguments

- `x`: Raster* object
- `filename`: character. Output filename (optional)
- `...`: additional optional arguments as for `writeRaster`

See Also

`as.logical`, `as.integer`

Examples

```r
r <- raster(nrow=10, ncol=10)
set.seed(0)
r[] <- runif(ncell(r)) * 10
r
r <- as.integer(r)
r
as.logical(r)
```
as.matrix

Get a vector, matrix, or array with raster cell values

Description

as.vector returns a vector of cell values. For a RasterLayer it is equivalent to getValues(x).
as.matrix returns all values of a Raster* object as a matrix. For RasterLayers, rows and columns in the matrix represent rows and columns in the RasterLayer object. For other Raster* objects, the matrix returned by as.matrix has columns for each layer and rows for each cell.
as.array returns an array of matrices that are like those returned by as.matrix for a RasterLayer.

If there is insufficient memory to load all values, you can use getValues or getValuesBlock to read chunks of the file.
as.matrix and as.vector can also be used to obtain the coordinates from an Extent object.

Usage

as.matrix(x, ...)
as.array(x, ...)

S4 method for signature 'Extent'
as.vector(x, mode='any')

S4 method for signature 'Raster'
as.vector(x, mode='any')

Arguments

x Raster* or (for as.matrix and as.vector) Extent object
mode Character string giving an atomic mode (such as "numeric" or "character") or "list", or "any". Note: this argument is currently ignored!
... additional arguments:
maxpixels Integer. To regularly subsample very large objects
transpose Logical. Transpose the data? (for as.array only)

Value

matrix, array, or vector

Examples

r <- raster(ncol=3, nrow=3)
r[] <- 1:ncell(r)
as.matrix(r)
s <- stack(r, r)
as.array(s)
as.vector(extent(s))
as.raster
Coerce to a 'raster' object

Description

Implementation of the generic `as.raster` function to create a 'raster' (small r) object. NOT TO BE CONFUSED with the Raster* (big R) objects defined by the raster package! Such objects can be used for plotting with the `rasterImage` function.

Usage

```r
as.raster(x, ...)
```

Arguments

- `x` RasterLayer object
- `...` Additional arguments.
 - `maxpixels` Integer. To regularly subsample very large objects
 - `col` Vector of colors. Default is `col=rev(terrain.colors(255))`

Value

'raster' object

Examples

```r
r <- raster(ncol=3, nrow=3)
r[] <- 1:ncell(r)
as.raster(r)
```

atan2
Two argument arc-tangent

Description

For Raster* objects `x` and `y`, `atan2(y, x)` returns the angle in radians for the tangent `y/x`, handling the case when `x` is zero. See `Trig`

See `Math-methods` for other trigonometric and mathematical functions that can be used with Raster* objects.

Usage

```r
atan2(y, x)
```
autocorrelation

Arguments

\(y \) Raster* object
\(x \) Raster* object

See Also

Math-methods

Examples

```r
r1 <- r2 <- raster(nrow=10, ncol=10)
r1[] <- (runif(ncell(r1))-0.5) * 10
r2[] <- (runif(ncell(r1))-0.5) * 10
atan2(r1, r2)
```

```
autocorrelation  Spatial autocorrelation
```

Description

Compute Moran’s I or Geary’s C measures of global spatial autocorrelation in a RasterLayer, or compute the local Moran or Geary index (Anselin, 1995).

Usage

```r
Geary(x, w=matrix(c(1,1,1,0,1,1,1), 3,3))
Moran(x, w=matrix(c(1,1,1,0,1,1,1), 3,3))
MoranLocal(x, w=matrix(c(1,1,1,0,1,1,1), 3,3))
GearyLocal(x, w=matrix(c(1,1,1,0,1,1,1), 3,3))
```

Arguments

\(x \) RasterLayer
\(w \) Spatial weights defined by or a rectangular matrix with odd length (3, 5, ...) sides (as in focal)

Details

The default setting uses a 3x3 neighborhood to compute "Queen’s case" indices. You can use a filter (weights matrix) to do other things, such as "Rook’s case", or different lags.

Value

A single value (Moran’s I or Geary’s C) or a RasterLayer (Local Moran or Geary values)

Author(s)

Robert J. Hijmans and Babak Naimi
References

Geary, R.C., 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician 5: 115-145

See Also

The spdep package for additional and more general approaches for computing indices of spatial autocorrelation

Examples

```r
r <- raster(nrows=10, ncols=10)
r[] <- 1:ncell(r)

Moran(r)
# Rook's case
f <- matrix(c(0,1,0,1,0,1,0,1,0), nrow=3)
Moran(r, f)

Geary(r)

x1 <- MoranLocal(r)
# Rook's case
x2 <- MoranLocal(r, w=f)
```

<table>
<thead>
<tr>
<th>bands</th>
<th>Number of bands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description

A 'band' refers to a single layer for a possibly multi-layer file. Most RasterLayer objects will refer to files with a single layer. The term 'band' is frequently used in remote sensing to refer to a variable (layer) in a multi-variable dataset as these variables typically represent reflection in different bandwidths in the electromagnetic spectrum. But in that context, bands could be stored in a single or in separate files. In the context of the raster package, the term band is equivalent to a layer in a raster file.

nbands returns the number of bands of the file that a RasterLayer points to (and 1 if it does not point at any file). This functions also works for a RasterStack for which it is equivalent to nlayers.
band returns the specific band the RasterLayer refers to (1 if the RasterLayer points at single layer file or does not point at any file).
barplot

Usage

 nbands(x)
 bandnr(x, ...)

Arguments

 x RasterLayer
 ... Additional arguments (none at this time)

Value

 numeric >= 1

See Also

 nlayers

Examples

 f <- system.file("external/rlogo.grd", package="raster")
 r <- raster(f, layer=2)
 nbands(r)
 bandnr(r)

Bar plot of a RasterLayer

Description

 Create a barplot of the values of a RasterLayer. For large datasets a regular sample with a size of approximately maxpixels is used.

Usage

 ## S4 method for signature 'RasterLayer'
 barplot(height, maxpixels=1000000, digits=0, breaks=NULL, col=rainbow, ...)

Arguments

 height RasterLayer
 maxpixels integer. To regularly subsample very large objects
 digits integer used to determine how to round the values before tabulating. Set to NULL or to a large number if you do not want any rounding
 breaks breaks used to group the data as in cut
 col a color generating function such as rainbow, or a vector of colors
 ... additional arguments for plotting as in barplot
Value
A numeric vector (or matrix, when beside = TRUE) of the coordinates of the bar midpoints, useful for adding to the graph. See barplot

See Also
hist, boxplot

Examples

f <- system.file("external/test.grd", package="raster")
r <- raster(f)
barplot(r, digits=-2, las=2, ylab='Frequency')

op <- par(no.readonly = TRUE)
par(mai = c(1, 2, .5, .5))
barplot(r, breaks=10, col=c('red', 'blue'), horiz=TRUE, digits=NULL, las=1)
par(op)

bind

Bind Spatial* objects

Description
Bind (append) Spatial* objects into a single object. All objects must be of the same vector type base class (SpatialPoints, SpatialLines, or SpatialPolygons)

Usage

S4 method for signature 'SpatialPolygons,SpatialPolygons'
bind(x, y, ..., keepnames=FALSE)

S4 method for signature 'SpatialLines,SpatialLines'
bind(x, y, ..., keepnames=FALSE)

S4 method for signature 'SpatialPoints,SpatialPoints'
bind(x, y, ..., keepnames=FALSE)

S4 method for signature 'data.frame,data.frame'
bind(x, y, ..., variables=NULL)

Arguments

x Spatial* object or data.frame
y Spatial* object or data.frame
... Additional Spatial* objects
blockSize

keepnames Logical. If TRUE the row.names are kept (if unique)
variables character. Variable (column) names to keep. If NULL, all variables are kept

Value
Spatial* object

See Also
merge

Examples
if (require(rgdal) & require(rgeos)) {
p <- shapefile(system.file("external/lux.shp", package="raster"))
mersch <- p[p$name_2 == 'Mersch',]
diekirch <- p[p$name_2 == 'Diekirch',]
remich <- p[p$name_2 == 'Remich',]
remich$name_1 <- NULL
x <- bind(mersch, diekirch, remich)
plot(x)
data.frame(x)
}

blockSize

Block size for writing files

Description
This function can be used to suggest chunk sizes (always a number of entire rows), and corresponding row numbers, to be used when processing Raster* objects in chunks. Normally used together with writeValues.

Usage
blockSize(x, chunksize, n=nlayers(x), minblocks=4, minrows=1)

Arguments

x Raster* object
chunksize Integer, normally missing. Can be used to set the block size; unit is number of cells. Block size is then computed in units of number of rows (always >= 1)
n Integer. number of layers to consider. The function divides chunksize by n to determine blocksize
minblocks Integer. Minimum number of blocks
minrows Integer. Minimum number of rows in each block
Value

A list with three elements:
rows, the suggested row numbers at which to start the blocks for reading and writing,
nrows, the number of rows in each block, and,
n, the total number of blocks

See Also

writeValues

Examples

r <- raster(system.file("external/test.grd", package="raster"))
blockSize(r)

boundaries

boundaries (edges) detection

Description

Detect boundaries (edges). boundaries are cells that have more than one class in the 4 or 8 cells surrounding it, or, if classes=FALSE, cells with values and cells with NA.

Usage

S4 method for signature 'RasterLayer'
boundaries(x, type='inner', classes=FALSE, directions=8, asNA=FALSE, filename="", ...)

Arguments

x RasterLayer object
type character. 'inner' or 'outer'
classes character. Logical. If TRUE all different values are (after rounding) distinguished, as well as NA. If FALSE (the default) only edges between NA and non-NA cells are considered
directions integer. Which cells are considered adjacent? Should be 8 (Queen's case) or 4 (Rook's case)
asNA logical. If TRUE, non-edges are returned as NA instead of zero
filename character. Filename for the output RasterLayer (optional)
... additional arguments as for writeRaster

Value

RasterLayer. Cell values are either 1 (a border) or 0 (not a border), or NA
boxplot

Note

'edge' is obsolete and should not be used. It will be removed from this package.

See Also

`focal, clump`

Examples

```r
r <- raster(nrow=18, ncol=36, xmn=0)
r[150:250] <- 1
r[251:450] <- 2
plot( boundaries(r, type='inner') )
plot( boundaries(r, type='outer') )
plot( boundaries(r, classes=TRUE) )
```

```
boxplot(r) # Box plot of Raster objects
```

Description

Box plot of layers in a Raster object

Usage

```r
## S4 method for signature 'RasterStackBrick'
boxplot(x, maxpixels=100000, ...)

## S4 method for signature 'RasterLayer'
boxplot(x, y=NULL, maxpixels=100000, ...)
```

Arguments

- `x` Raster* object
- `y` If `x` is a RasterLayer object, `y` can be an additional RasterLayer to group the values of `x` by 'zone'
- `maxpixels` Integer. Number of pixels to sample from each layer of large Raster objects
- `...` Arguments passed to `graphics::boxplot`

See Also

`pairs, hist`
Examples

```r
r1 <- r2 <- r3 <- raster(ncol=10, nrow=10)
r1[] <- rnorm(ncell(r1), 100, 40)
r2[] <- rnorm(ncell(r1), 80, 10)
r3[] <- rnorm(ncell(r1), 120, 30)
s <- stack(r1, r2, r3)
names(s) <- c('A', 'B', 'C')

boxplot(s, notch=TRUE, col=c('red', 'blue', 'orange'), main='Box plot', ylab='random')
```

brick **Create a RasterBrick object**

Description

A RasterBrick is a multi-layer raster object. They are typically created from a multi-layer (band) file; but they can also exist entirely in memory. They are similar to a RasterStack (that can be created with `stack`), but processing time should be shorter when using a RasterBrick. Yet they are less flexible as they can only point to a single file.

A RasterBrick can be created from RasterLayer objects, from a RasterStack, or from a (multi-layer) file. The can also be created from SpatialPixels*, SpatialGrid*, and Extent objects, and from a three-dimensional array.

Usage

```r
## S4 method for signature 'character'
brick(x, ...)

## S4 method for signature 'RasterStack'
brick(x, values=TRUE, nl, filename='', ...)

## S4 method for signature 'RasterBrick'
brick(x, nl, ...)

## S4 method for signature 'RasterLayer'
brick(x, ..., values=TRUE, nl=1, filename='')

## S4 method for signature 'missing'
brick(nrows=180, ncols=360, xmin=-180, xmax=180, ymin=-90, ymax=90, nl=1, crs)

## S4 method for signature 'Extent'
brick(x, nrows=10, ncols=10, crs=NA, nl=1)

## S4 method for signature 'array'
brick(x, xmin=0, xmax=1, ymin=0, ymax=1, crs=NA, transpose=FALSE)

## S4 method for signature 'big.matrix'
```
brick(x, template, filename='', ...)

S4 method for signature 'SpatialGrid'
brick(x)

S4 method for signature 'SpatialPixels'
brick(x)

Arguments

- **x**: character (filename, see Details); Raster* object; missing; array; SpatialGrid*; SpatialPixels*; Extent; or list of Raster objects. Supported file types are the 'native' raster package format and those that can be read via rgdal (see `readGDAL`), and NetCDF files (see details)
- **...**: see Details
- **values**: logical. If TRUE, the cell values of 'x' are copied to the RasterBrick object that is returned
- **nl**: integer > 0. How many layers should the RasterBrick have?
- **filename**: character. Filename if you want the RasterBrick to be saved on disk
- **nrows**: integer > 0. Number of rows
- **ncols**: integer > 0. Number of columns
- **xmin**: minimum x coordinate (left border)
- **xmax**: maximum x coordinate (right border)
- **ymin**: minimum y coordinate (bottom border)
- **ymax**: maximum y coordinate (top border)
- **crs**: character or object of class CRS. PROJ4 type description of a Coordinate Reference System (map projection). If this argument is missing, and the x coordinates are within -360 .. 360 and the y coordinates are within -90 .. 90, "+proj=longlat +datum=WGS84" is used
- **transpose**: if TRUE, the values in the array are transposed
- **template**: Raster* object used to set the extent, number of rows and columns and CRS

Details

If x is a RasterLayer, the additional arguments can be used to pass additional Raster* objects.

If there is a filename argument, the additional arguments are as for `writeRaster`. The big.matrix most have rows representing cells and columns representing layers.

If x represents a filename there is the following additional argument:

- **native**: logical. If TRUE (not the default), reading and writing of IDRISI, BIL, BSQ, BIP, and Arc ASCII files is done with native (raster package) drivers, rather then via rgdal.

In addition, if x is a NetCDF filename there are the following additional arguments:

- **varname**: character. The variable name (e.g. 'altitude' or 'precipitation'. If not supplied and the file has multiple variables are a guess will be made (and reported))
1var: integer > 0 (default=3). To select the 'level variable' (3rd dimension variable) to use, if the file has 4 dimensions (e.g. depth instead of time)

level: integer > 0 (default=1). To select the 'level' (4th dimension variable) to use, if the file has 4 dimensions, e.g. to create a RasterBrick of weather over time at a certain height.

To use NetCDF files the ncdf4 package needs to be available. It is assumed that these files follow, or are compatible with the CF-1 convention.

Value

RasterBrick

See Also

raster

Examples

```r
b <- brick(system.file("external/rlogo.grd", package="raster"))
b
nlayers(b)
names(b)
extract(b, 870)
```

Description

Calculate a buffer around all cells that are not NA or around SpatialPoints, Lines, or Polygons.

Note that the distance unit of the buffer width parameter is meters if the RasterLayer is not projected (+proj=longlat), and in map units (typically also meters) when it is projected.

Except for SpatialLines and SpatialPolygons that are currently handled by rgeos, and can only deal with planar coordinate reference systems.

Usage

```r
## S4 method for signature 'RasterLayer'
buffer(x, width=0, filename='', doEdge=FALSE, ...)

## S4 method for signature 'Spatial'
buffer(x, width=1, dissolve=TRUE, ...)
```
Arguments

- **x**: RasterLayer or Spatial* object
- **width**: numeric > 0. Unit is meter if \(x \) has a longitude/latitude CRS, or mapunits in other cases
- **filename**: character. Filename for the output RasterLayer (optional)
- **doEdge**: logical. If TRUE, the boundaries function is called first. This may be efficient in cases where you compute a buffer around very large areas because boundaries determines the edge cells that matter for distance computation
- **dissolve**: logical. If TRUE, buffer geometries of overlapping polygons are dissolved and all geometries are aggregated and attributes (the data.frame) are dropped
- **...**: Additional arguments as for writeRaster

Value

RasterLayer or SpatialPolygons* object

See Also

distance, gridDistance, pointDistance

Examples

```r
r <- raster(ncol=36,nrow=18)
r[] <- NA
r[500] <- 1
b <- buffer(r, width=5000000)
#plot(b)
```

calc

Calculate

Description

Calculate values for a new Raster* object from another Raster* object, using a formula.

If \(x \) is a RasterLayer, \(\text{fun} \) is typically a function that can take a single vector as input, and return a vector of values of the same length (e.g. \(\sqrt{\text{r}} \)). If \(x \) is a RasterStack or RasterBrick, \(\text{fun} \) should operate on a vector of values (one vector for each cell). \(\text{calc} \) returns a RasterLayer if \(\text{fun} \) returns a single value (e.g. \(\text{sum} \)) and it returns a RasterBrick if \(\text{fun} \) returns more than one number, e.g., \(\text{fun}=\text{quantile} \).

In many cases, what can be achieved with \(\text{calc} \), can also be accomplished with a more intuitive `raster-algebra` notation (see Arith-methods). For example, \(r \leftarrow r \times 2 \) instead of \(r \leftarrow \text{calc}(r, \text{fun} = \text{function}(x)(x \times 2) \}, \text{or } r \leftarrow \text{sum}(s) \) instead of \(r \leftarrow \text{calc}(s, \text{fun} = \text{sum}) \). However, \(\text{calc} \) should be faster when using complex formulas on large datasets. With \(\text{calc} \) it is possible to set an output filename and file type preferences.

See (overlay) to use functions that refer to specific layers, like \(\text{function}(a,b,c)(a + \sqrt{\text{b}} / c) \)
Usage

```r
## S4 method for signature 'Raster, function'
calc(x, fun, filename='', na.rm, forcefun=FALSE, forceapply=FALSE, ...)
```

Arguments

- `x`: Raster* object
- `fun`: function
- `filename`: character. Output filename (optional)
- `na.rm`: Remove NA values, if supported by 'fun' (only relevant when summarizing a multilayer Raster object into a RasterLayer)
- `forcefun`: logical. Force `calc` to not use `fun` with `apply`; for use with ambiguous functions and for debugging (see Details)
- `forceapply`: logical. Force `calc` to use `fun` with `apply`; for use with ambiguous functions and for debugging (see Details)
- `...`: Additional arguments as for `writeRaster`

Details

The intent of some functions can be ambiguous. Consider:

```r
library(raster)
r <- raster(volcano)
calc(r, function(x) x * 1:10)
```

In this case, the cell values are multiplied in a vectorized manner and a single layer is returned where the first cell has been multiplied with one, the second cell with two, the 11th cell with one again, and so on. But perhaps the intent was to create 10 new layers (`x * 1:10`)? This can be achieved by using argument `forceapply=TRUE`

```r
calc(r, function(x) x * 1:10), forceapply=TRUE
```

Value

A Raster* object

Note

For large objects `calc` will compute values chunk by chunk. This means that for the result of `fun` to be correct it should not depend on having access to _all_ values at once. For example, to scale the values of a Raster* object by subtracting its mean value (for each layer), you would _not_ do, for Raster object `x`:

```r
calc(x, function(x)scale(x, scale=FALSE))
```

Because the mean value of each chunk will likely be different. Rather do something like

```r
m <- cellStats(x, 'mean')
x <- m
```
Author(s)

Robert J. Hijmans and Matteo Mattiuzzi

See Also

`overlay`, `reclassify`, `Arith-methods`, `Math-methods`

Examples

```r
r <- raster(ncols=36, nrows=18)
r[] <- 1:ncell(r)

# multiply values with 10
fun <- function(x) { x * 10 }
rc1 <- calc(r, fun)

# set values below 100 to NA.
fun <- function(x) { x[x<100] <- NA; return(x) }
rc2 <- calc(r, fun)

# set NA values to -9999
fun <- function(x) { x[is.na(x)] <- -9999; return(x) }
rc3 <- calc(rc2, fun)

# using a RasterStack as input
s <- stack(r, r*2, sqrt(r))
# return a RasterLayer
rs1 <- calc(s, sum)

# return a RasterBrick
rs2 <- calc(s, fun=function(x){x*10})
# recycling by layer
rs3 <- calc(s, fun=function(x){x*c(1, 5, 10)})

# use overlay when you want to refer to indivudual layer in the function
# but it can be done with calc:
rs4 <- calc(s, fun=function(x){x[1]+x[2]*x[3]})

##
# Some regression examples
##

# create data
r <- raster(nrow=10, ncol=10)
s1 <- lapply(1:12, function(i) setValues(r, rnorm(ncell(r), i, 3)))
s2 <- lapply(1:12, function(i) setValues(r, rnorm(ncell(r), i, 3)))
s1 <- stack(s1)
s2 <- stack(s2)

# regression of values in one brick (or stack) with another
s <- stack(s1, s2)
# s1 and s2 have 12 layers; coefficients[2] is the slope
```
x1 <- calc(s, fun)

regression of values in one brick (or stack) with 'time'
time <- 1:nlayers(s)
fun <- function(x) { lm(x ~ time)$coefficients[2] }
x2 <- calc(s, fun)

get multiple layers, e.g. the slope_and_intercept
fun <- function(x) { lm(x ~ time)$coefficients }
x3 <- calc(s, fun)

A much (> 100 times) faster approach is to directly use
linear algebra and pre-compute some constants

add 1 for a model with an intercept
X <- cbind(1, time)

pre-computing constant part of least squares
invXtX <- solve(t(X) %*% X) %*% t(X)

much reduced regression model; [2] is to get the slope
quickfun <- function(y) (invXtX %*% y)[2]
x4 <- calc(s, quickfun)

cellFrom

Get cell, row, or column number

Description

Get cell number(s) of a Raster* object from row and/or column numbers. Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top to bottom. The last cell number equals the number of cells of the Raster* object.

Usage

```
cellFromRowCol(object, rownr, colnr)
cellFromRowColCombine(object, rownr, colnr)
cellFromRow(object, rownr)
cellFromCol(object, colnr)
colFromX(object, x)
rowFromY(object, y)
cellFromXY(object, xy)
cellFromLine(object, lns)
cellFromPolygon(object, p, weights=FALSE)
fourCellsFromXY(object, xy, duplicates=TRUE)
```
cellFrom

Arguments

- **object**: Raster* object (or a SpatialPixels* or SpatialGrid* object)
- **colnr**: column number; or vector of column numbers
- **rownr**: row number; or vector of row numbers
- **x**: x coordinate(s)
- **y**: y coordinate(s)
- **xy**: matrix of x and y coordinates, or a SpatialPoints or SpatialPointsDataFrame object
- **lns**: SpatialLines object
- **p**: SpatialPolygons object
- **weights**: Logical. If TRUE, the fraction of each cell that is covered is also returned
- **duplicates**: Logical. If TRUE, the same cell number can be returned twice (if the point in the middle of a division between two cells) or four times (if a point is in the center of a cell)

Details

- **cellFromRowCol** returns the cell numbers obtained for each row / col number pair. In contrast, **cellFromRowColCombine** returns the cell numbers obtained by the combination of all row and column numbers supplied as arguments.
- **fourCellsFromXY** returns the four cells that are nearest to a point (if the point falls on the raster). Also see **adjacent**.

Value

- vector of row, column or cell numbers. **cellFromLine** and **cellFromPolygon** return a list, **fourCellsFromXY** returns a matrix.

See Also

- **xyFromCell**, **cellsFromExtent**, **rowColFromCell**

Examples

```r
r <- raster(ncols=10, nrows=10)
cellFromRowCol(r, 5, 5)
cellFromRowCol(r, 1:2, 1:2)
cellFromRowColCombine(r, 1:3, 1:2)
cellFromCol(r, 1)
cellFromRow(r, 1)

colFromX(r, 0.5)
rowFromY(r, 0.5)
cellFromXY(r, cbind(c(0.5,5), c(15, 88)))
fourCellsFromXY(r, cbind(c(0.5,5), c(15, 88)))

cds1 <- rbind(c(-180,-20), c(-160,5), c(-60, 0), c(-160,-60), c(-180,-20))
```
cellsFromExtent

Description

cellsFromExtent returns the cell numbers for a Raster* object that are within a specified extent (rectangular area), supply an object of class Extent, or another Raster* object.

extentFromCells returns an Extent object from a Raster* object and cell numbers. All cells are within the returned Extent.

Usage

cellsFromExtent(object, extent, expand=FALSE)
extentFromCells(object, cells)

Arguments

object A Raster* object
extent An object of class Extent (which you can create with newExtent(), or another Raster* object)
expand Logical. If TRUE, NA is returned for (virtual) cells implied by bbox, that are outside the RasterLayer (object). If FALSE, only cell numbers for the area where object and bbox overlap are returned (see intersect)
cells numeric. A vector of cell numbers

Value

a vector of cell numbers

See Also

extent, cellFromXY

Examples

r <- raster()
bb <- extent(-5, 5, -5, 5)
cells <- cellsFromExtent(r, bb)
r <- crop(r, bb)
r[] <- cells

e <- extentFromCells(r, 50:55)
cellStats

Statistics across cells

Description

Compute statistics for the cells of each layer of a Raster* object. In the raster package, functions such as max, min, and mean, when used with Raster* objects as argument, return a new Raster* object (with a value computed for each cell). In contrast, cellStats returns a single value, computed from all the values of a layer. Also see layerStats

Usage

S4 method for signature 'RasterLayer'
cellStats(x, stat='mean', na.rm=TRUE, asSample=TRUE, ...)

S4 method for signature 'RasterStackBrick'
cellStats(x, stat='mean', na.rm=TRUE, asSample=TRUE, ...)

Arguments

- **x**: Raster* object
- **stat**: The function to be applied. See Details
- **na.rm**: Logical. Should NA values be removed?
- **asSample**: Logical. Only relevant for stat=sd in which case, if TRUE, the standard deviation for a sample (denominator is n-1) is computed, rather than for the population (denominator is n)
- **...**: Additional arguments

Details

cellStats will fail (gracefully) for very large Raster* objects except for a number of known functions: sum, mean, min, max, sd, 'skew' and 'rms'. 'skew' (skewness) and 'rms' (Root Mean Square) must be supplied as a character value (with quotes), the other known functions may be supplied with or without quotes. For other functions you could perhaps use a sample of the RasterLayer that can be held in memory (see sampleRegular)

Value

Numeric

See Also

freq, quantile, minValue, maxValue, setMinMax
Examples

```r
r <- raster(nrow=18, ncol=36)
r[] <- runif(ncell(r)) * 10
# works for large files
cellStats(r, 'mean')
# same, but does not work for very large files
cellStats(r, mean)
# multi-layer object
cellStats(brick(r,r), mean)
```

clamp

Clamp values

Description

Clamp values to a minimum and maximum value. That is, all values below the lower clamp value and the upper clamp value become NA (or the lower/upper value if `useValue=TRUE`).

Usage

```r
## S4 method for signature 'Raster'
clamp(x, lower=-Inf, upper=Inf, useValues=TRUE, filename='', ...)  
## S4 method for signature 'numeric'
clamp(x, lower=-Inf, upper=Inf, ...)  
```

Arguments

- `x`: RasterLayer, or numeric vector
- `lower`: numeric. lowest value
- `upper`: numeric. highest value
- `useValues`: logical. If FALSE values outside the clamping range become NA, if TRUE, they get the extreme values
- `filename`: character. Filename for the output RasterLayer (optional)
- `...`: additional arguments as for `writeRaster`

Value

Raster object

See Also

- reclassify

Examples

```r
r <- raster(ncols=12, nrows=12)
values(r) <- 1:ncell(r)
rc <- clamp(r, 25, 75)
rc
```
clearValues

Clear values

Description

Clear cell values of a Raster* object from memory

Usage

clearValues(x)

Arguments

x
Raster* object

Value

a Raster* object

See Also

values, replacement

Examples

r <- raster(ncol=10, nrow=10)
r[] <- 1:ncell(r)
r <- clearValues(r)

click
Query by clicking on a map

Description

Click on a map (plot) to get values of a Raster* or Spatial* object at that location; and optionally the coordinates and cell number of the location. For SpatialLines and SpatialPoints you need to click twice (draw a box).
Usage

S4 method for signature 'Raster'
```
click(x, n=Inf, id=FALSE, xy=FALSE, cell=FALSE, type="n", show=TRUE, ...)
```

S4 method for signature 'SpatialGrid'
```
click(x, n=1, id=FALSE, xy=FALSE, cell=FALSE, type="n", ...)
```

S4 method for signature 'SpatialPolygons'
```
click(x, n=1, id=FALSE, xy=FALSE, type="n", ...)
```

S4 method for signature 'SpatialLines'
```
click(x, ...)
```

S4 method for signature 'SpatialPoints'
```
click(x, ...)
```

Arguments

- **x**: Raster*, or Spatial* object (or missing)
- **n**: number of clicks on the map
- **id**: Logical. If TRUE, a numeric ID is shown on the map that corresponds to the row number of the output
- **xy**: Logical. If TRUE, xy coordinates are included in the output
- **cell**: Logical. If TRUE, cell numbers are included in the output
- **type**: One of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l" or "o" they are joined by lines. See ?locator
- **show**: logical. Print the values after each click?
- **...**: additional graphics parameters used if type != "n" for plotting the locations. See ?locator

Value

The value(s) of x at the point(s) clicked on (or touched by the box drawn).

Note

The plot only provides the coordinates for a spatial query, the values are read from the Raster* or Spatial* object that is passed as an argument. Thus you can extract values from an object that has not been plotted, as long as it spatially overlaps with with the extent of the plot.

Unless the process is terminated prematurely values at at most n positions are determined. The identification process can be terminated by clicking the second mouse button and selecting 'Stop' from the menu, or from the 'Stop' menu on the graphics window.

See Also

- `select`, `drawExtent`
Example

```r
r <- raster(system.file("external/test.grd", package="raster"))
#plot(r)
#click(r)
#now click on the plot (map)
```

clump

Detect clumps

Description

Detect clumps (patches) of connected cells. Each clump gets a unique ID. NA and zero are used as background values (i.e. these values are used to separate clumps). You can use queen’s or rook’s case, using the `directions` argument. For larger files that are processed in chunks, the highest clump number is not necessarily equal to the number of clumps (unless you use argument `gaps=FALSE`).

Usage

```r
## S4 method for signature 'RasterLayer'
clamp(x, filename="", directions=8, gaps=TRUE, ...)  
```

Arguments

- `x` : RasterLayer
- `filename` : Character. Filename for the output RasterLayer (optional)
- `directions` : Integer. Which cells are considered adjacent? Should be 8 (Queen’s case) or 4 (Rook’s case)
- `gaps` : Logical. If TRUE (the default), there may be 'gaps' in the chunk numbers (e.g. you may have clumps with IDs 1, 2, 3 and 5, but not 4). If it is FALSE, these numbers will be recoded from 1 to n (4 in this example)
- `...` : Additional arguments as for `writeRaster`

Value

RasterLayer

Note

This function requires that the igraph package is available.

Author(s)

Robert J. Hijmans and Jacob van Etten
Examples

```
r <- raster(ncols=12, nrows=12)
set.seed(0)
r[] <- round(runif(ncell(r))*0.7 )
rc <- clump(r)
freq(rc)
plot(rc)
```

Description

`beginCluster` creates, and `endCluster` deletes a ‘snow’ cluster object. This object can be used for multi-core computing with those ‘raster’ functions that support it.

`beginCluster` determines the number of nodes (cores) that are available and uses all of them (unless the argument `n` is used).

NOTE: `beginCluster` may fail when the package ‘nws’ is installed. You can fix that by removing the ‘nws’ package, or by setting the cluster type manually, e.g. `beginCluster(type="SOCK")`

`endCluster` closes the cluster and removes the object.

The use of the cluster is automatic in these functions: `projectRaster`, `resample` and in `extract` when using polygons.

`clusterR` is a flexible interface for using cluster with other functions. This function only works with functions that have a `Raster*` object as first argument and that operate on a cell by cell basis (i.e., there is no effect of neighboring cells) and return an object with the same number of cells as the input raster object. The first argument of the function called must be a `Raster*` object argument. There can only be one `Raster*` object argument. For example, it works with `calc` and it also works with `overlay` as long as you provide a single `RasterStack` or `RasterBrick` as the first argument.

This function is particularly useful to speed up computations in functions like predict, interpolate, and perhaps calc.

Among other functions, it does _not_ work with merge, crop, mosaic, (dis)aggregate, resample, `projectRaster`, focal, distance, buffer, direction. But note that `projectRaster` has a build-in capacity for clustering that is automatically used if `beginCluster()` has been called.

Usage

```
beginCluster(n, type='SOCK', nice, exclude)
endCluster()
clusterR(x, fun, args=NULL, export=NULL, filename='', cl=NULL, m=2, ...)
```
Arguments

- **n**: Integer. The number of nodes to be used (optional)
- **type**: Character. The cluster type to be used
- **nice**: Integer. To set the priority for the workers, between -20 and 20 (UNIX like platforms only)
- **exclude**: Character. Packages to exclude from loading on the nodes (because they may fail there) but are required/loaded on the master
- **x**: Raster* object
- **fun**: function that takes x as its first argument
- **args**: list with the arguments for the function (excluding x, which should always be the first argument)
- **export**: character. Vector of variable names to export to the cluster nodes such that the are visible to fun (e.g. a parameter that is not passed as an argument)
- **filename**: character. Output filename (optional)
- **cl**: cluster object (do not use it if beginCluster() has been called
- **m**: tuning parameter to determine how many blocks should be used. The number is rounded and multiplied with the number of nodes.
- **...**: additional arguments as for `writeRaster`

Value

- `beginCluster` and `endCluster`: None. The side effect is to create or delete a cluster object.
- `clusterR`: as for the function called with argument `fun`

Note

If you want to write your own cluster-enabled functions see `getCluster`, `returnCluster`, and the vignette about writing functions.

Author(s)

Matteo Mattiuzzi and Robert J. Hijmans

Examples

```r
## Not run:
set up the cluster object for parallel computing
beginCluster()

r <- raster()
r[] <- 1:ncell(r)

x <- clusterR(r, sqrt, verbose=T)

f1 <- function(x) calc(x, sqrt)
```
colortable

Description

Get or set the colortable of a RasterLayer. A colortable is a vector of 256 colors in the RGB triple format as returned by the rgb function (e.g. "#C4CDDA").

When setting the colortable, it is assumed that the values are integers in the range [0,255]
Usage

```
colortable(x)
colortable(x) <- value
```

Arguments

- `x`: RasterLayer object
- `value`: vector of 256 character values

See Also

- `plotRGB`

Examples

```r
r <- raster(ncol=10, nrow=10)
values(r) <- sample(0:255, ncell(r), replace=TRUE)
ctab <- sample(rainbow(256))
colortable(r) <- ctab
plot(r)
head(colortable(r))
```

Description

These methods compare the location and resolution of Raster* objects. That is, they compare their spatial extent, projection, and number of rows and columns.

For BasicRaster objects you can use `==` and `!=`, the values returned is a single logical value `TRUE` or `FALSE`.

For RasterLayer objects, these operators also compare the values associated with the objects, and the result is a RasterLayer object with logical (Boolean) values.

The following methods have been implemented for RasterLayer objects:

- `==`, `!=`, `>`, `<`, `<=`, `>=`

Value

A logical value or a RasterLayer object, and in some cases the side effect of a new file on disk.
Examples

```r
r1 <- raster()
r1 <- setValues(r1, round(10 * runif(ncell(r1))))
r2 <- setValues(r1, round(10 * runif(ncell(r1))))
as(r1, 'BasicRaster') == as(r2, 'BasicRaster')
r3 <- r1 == r2

b <- extent(0, 360, 0, 180)
r4 <- setExtent(r2, b)
as(r2, 'BasicRaster') != as(r4, 'BasicRaster')
# The following would give an error. You cannot compare RasterLayer
# that do not have the same BasicRaster properties.
# r3 <- r1 > r4
```

compareCRS

Partially compare two CRS objects

Description

Compare CRS objects

Usage

```r
compareCRS(x, y, unknown=FALSE, verbatim=FALSE, verbose=FALSE)
```

Arguments

- `x` CRS object, or object from which it can be extracted with `projection`, or PROJ.4 format character string
- `y` same as `x`
- `unknown` logical. Return TRUE if `x` or `y` is TRUE
- `verbatim` logical. If TRUE compare `x` and `y`, verbatim (not partially)
- `verbose` logical. If TRUE, messages about the comparison may be printed

Value

logical

See Also

crs
compareRaster

Compare Raster objects

Description
Evaluate whether two or more Raster* objects have the same extent, number of rows and columns, projection, resolution, and origin (or a subset of these comparisons).

all.equal is a wrapper around compareRaster with options values=TRUE, stopiffalse=FALSE and showwarning=TRUE.

Usage
compareRaster(x, ..., extent=TRUE, rowcol=TRUE, crs=TRUE, res=FALSE, orig=FALSE, rotation=TRUE, values=FALSE, tolerance, stopiffalse=TRUE, showwarning=FALSE)

Arguments
x
Raster* object

... Raster* objects

extent logical. If TRUE, bounding boxes are compared

rowcol logical. If TRUE, number of rows and columns of the objects are compared

crs logical. If TRUE, coordinate reference systems are compared.

res logical. If TRUE, resolutions are compared (redundant when checking extent and rowcol)

orig logical. If TRUE, origins are compared

rotation logical. If TRUE, rotations are compared

values logical. If TRUE, cell values are compared

tolerance numeric between 0 and 0.5. If not supplied, the default value is used (see rasterOptions). It sets difference (relative to the cell resolution) that is permissible for objects to be considered 'equal', if they have a non-integer origin or resolution. See all.equal.

stopiffalse logical. If TRUE, an error will occur if the objects are not the same

showwarning logical. If TRUE, an warning will be given if objects are not the same. Only relevant when stopiffalse is TRUE
Examples

r1 <- raster()
r2 <- r1
r3 <- r1
compareRaster(r1, r2, r3)
nrow(r3) <- 10

compareRaster(r1, r3)
compareRaster(r1, r3, stopiffalse=FALSE)
compareRaster(r1, r3, rowcol=FALSE)

all.equal(r1, r2)
all.equal(r1, r3)

Description

Contour plot of a RasterLayer.

Usage

S4 method for signature 'RasterLayer'
contour(x, maxpixels=100000, ...)

Arguments

x Raster* object

maxpixels maximum number of pixels used to create the contours

... any argument that can be passed to contour (graphics package)

See Also

persp, filledContour, rasterToContour

Examples

r <- raster(system.file("external/test.grd", package="raster"))
plot(r)
contour(r, add=TRUE)
corLocal

Local correlation coefficient

Description

Local correlation coefficient for two RasterLayer objects (using a focal neighborhood) or for two RasterStack or Brick objects (with the same number of layers (> 2))

Usage

```r
## S4 method for signature 'RasterLayer,RasterLayer'
corLocal(x, y, ngb=5,
    method=c("pearson", "kendall", "spearman"), test=FALSE, filename='', ...)

## S4 method for signature 'RasterStackBrick,RasterStackBrick'
corLocal(x, y,
    method=c("pearson", "kendall", "spearman"), test=FALSE, filename='', ...)
```

Arguments

- `x` RasterLayer or RasterStack/RasterBrick
- `y` object of the same class as `x`, and with the same number of layers
- `ngb` neighborhood size. Either a single integer or a vector of two integers c(nrow, ncol)
- `method` character indicating which correlation coefficient is to be used. One of "pearson", "kendall", or "spearman"
- `test` logical. If TRUE, return a p-value
- `filename` character. Output filename (optional)
- `...` additional arguments as for `writeRaster`

Value

RasterLayer

Note

NA values are omitted

See Also

`cor`, `cor.test`
Examples

```r
b <- stack(system.file("external/rlogo.grd", package="raster"))
b <- aggregate(b, 2, mean)

set.seed(0)
b[[2]] <- flip(b[[2]], 'y') + runif(ncell(b))
b[[1]] <- b[[1]] + runif(ncell(b))

x <- corLocal(b[[1]], b[[2]], test=TRUE )
# plot(x)

# only cells where the p-value < 0.1
xm <- mask(x[[1]], x[[2]] < 0.1, maskvalue=FALSE)
plot(xm)

# for global correlation, use the cor function
x <- as.matrix(b)
cor(x, method="spearman")

# use sampleRegular for large datasets
x <- sampleRegular(b, 1000)
cor.test(x[,1], x[,2])

# RasterStack or Brick objects
y <- corLocal(b, flip(b, 'y'))
```

Description

For Raster* objects: Replace NA values in the first Raster object (x) with the values of the second (y), and so forth for additional Rasters. If x has multiple layers, the subsequent Raster objects should have the same number of layers, or have a single layer only (which will be recycled).

For SpatialPolygons* objects: Areas of x that overlap with y are replaced by (or intersected with) y.

Usage

```r
## S4 method for signature 'RasterLayer,RasterLayer'
cover(x, y, ..., filename='')

## S4 method for signature 'RasterStack,Raster'
cover(x, y, ..., filename='')

## S4 method for signature 'SpatialPolygons,SpatialPolygons'
cover(x, y, ..., identity=FALSE)
```
Arguments

- **x**: Raster* or SpatialPolygons* object
- **y**: Same as x
- **filename**: character. Output filename (optional)
- **identity**: logical. If TRUE overlapping areas are intersected rather than replaced

Value

RasterLayer or RasterBrick object, or SpatialPolygons object

Examples

C raster objects

```r
r1 <- raster(ncols=36, nrows=18)
r1[] <- 1:ncell(r1)
r2 <- setValues(r1, runif(ncell(r1)))
r2[r2 < 0.5] <- NA
r3 <- cover(r2, r1)
```

Cspatialpolygons

```r
# SpatialPolygons
if (require(rgdal) & require(rgeos)) {
p <- shapefile(system.file("external/lux.shp", package="raster"))
b <- as(extent(6, 6.4, 49.75, 50), 'SpatialPolygons')
crs(b) <- crs(p)
b <- SpatialPolygonsDataFrame(b, data.frame(ID_1=9))

cv1 <- cover(p, b)
cv2 <- cover(p, b, identity=TRUE)
}
```

Description

crop returns a geographic subset of an object as specified by an Extent object (or object from which an extent object can be extracted/created). If x is a Raster* object, the Extent is aligned to x. Areas included in y but outside the extent of x are ignored (see extend if you want a larger area).

Usage

```r
# S4 method for signature 'Raster'
crop(x, y, filename="", snap='near', datatype=NULL, ...)

# S4 method for signature 'Spatial'
crop(x, y, ...)
```
Arguments

- **x**: Raster* object or SpatialPolygons*, SpatialLines*, or SpatialPoints* object
- **y**: Extent object, or any object from which an Extent object can be extracted (see Details)
- **filename**: Character, output filename. Optional
- **snap**: Character. One of 'near', 'in', or 'out', for use with alignExtent
- **datatype**: Character. Output dataType (by default it is the same as the input datatype)
- ... Additional arguments as for writeRaster

Details

Objects from which an Extent can be extracted/created include RasterLayer, RasterStack, RasterBrick and objects of the Spatial* classes from the sp package. You can check this with the extent function. New Extent objects can be also be created with function extent and drawExtent by clicking twice on a plot.

To crop by row and column numbers you can create an extent like this (for Raster x, row 5 to 10, column 7 to 12) crop(x, extent(x, 5, 10, 7, 15))

Value

RasterLayer or RasterBrick object; or SpatialLines or SpatialPolygons object.

Note

values within the extent of a Raster* object can be set to NA with mask

See Also

extend, merge

Examples

```r
r <- raster(nrow=45, ncol=90)
r[] <- 1:ncell(r)
e <- extent(-160, 10, 30, 60)
rc <- crop(r, e)

# use row and column numbers:
rc2 <- crop(r, extent(r, 5, 10, 7, 15))

# crop Raster* with Spatial* object
b <- as(extent(6, 6.4, 49.75, 50), 'SpatialPolygons')
crs(b) <- crs(r)
rb <- crop(r, b)

# crop a SpatialPolygon* object with another one
if (require(rgdal) & require(rgeos)) {
p <- shapefile(system.file("external/lux.shp", package="raster"))
pb <- crop(p, b)
}```
Description
Cross-tabulate two RasterLayer objects, or multiple layers in a RasterStack or RasterBrick to create a contingency table.

Usage

```r
S4 method for signature 'Raster,Raster'
crosstab(x, y, digits=0, long=FALSE, useNA=FALSE, progress='', ...)

S4 method for signature 'RasterStack,RasterBrick,missing'
crosstab(x, y, digits=0, long=FALSE, useNA=FALSE, progress='', ...)
```

Arguments

- `x` Raster* object
- `y` Raster* object if `x` is a RasterLayer; Can be missing if `x` is a RasterStack or RasterBrick
- `digits` integer. The number of digits for rounding the values before cross-tabulation
- `long` logical. If TRUE the results are returned in 'long' format data.frame instead of a table
- `useNA` logical, indicating if the table should include counts of NA values
- `progress` character. "text", "window", or "" (the default, no progress bar), only for large files that cannot be processed in one step

Value

A table or data.frame

See Also

freq, zonal
Examples

```r
r <- raster(nc=5, nr=5)
r[] <- runif(ncell(r)) * 2
s <- setValues(r, runif(ncell(r)) * 3)
crosstab(r,s)

rs <- r/s
r[1:5] <- NA
s[20:25] <- NA
x <- stack(r, s, rs)
crosstab(x, useNA=TRUE, long=TRUE)
```

---

**cut**

Convert values to classes

Description

Cut uses the base function `cut` to classify the values of a Raster* object according to which interval they fall in. The intervals are defined by the argument `breaks`. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

```r
cut(x, ...)
```

Arguments

- `x` A Raster* object
- `...` additional arguments. See `cut`

Value

Raster* object

See Also

`subs`, `reclassify`, `calc`

Examples

```r
r <- raster(ncols=36, nrows=18)
r[] <- rnorm(ncell(r))
b breaks <- -2:2 * 3
rc <- cut(r, breaks=breaks)
```
Description
Compute the coefficient of variation (expressed as a percentage). If there is only a single value, sd is NA and cv returns NA if aszero=FALSE (the default). However, if (aszero=TRUE), cv returns 0.

Usage

```
S4 method for signature 'ANY'
cv(x, ..., aszero=FALSE, na.rm = FALSE)
```

```
S4 method for signature 'Raster'
cv(x, ..., aszero=FALSE, na.rm = FALSE)
```

Arguments

- `x`: A vector of numbers (typically integers for modal), or a Raster* object
- `...`: additional (vectors of) numbers, or Raster objects
- `aszero`: logical. If TRUE, a zero is returned (rather than an NA) if the cv of single value is computed
- `na.rm`: Remove (ignore) NA values

Value
vector or RasterLayer

Examples
```
data <- c(0,1,2,3,3,3,3,4,4,4,5,5,6,7,7,8,9,NA)
cv(data, na.rm=TRUE)
```

Description
These are helper functions for programmers and for debugging that provide information about whether a Raster object has associated values, and if these are in memory or on disk.

- `fromDisk` is TRUE if the data source is a file on disk; and FALSE if the object only exists in memory.
- `inMemory` is TRUE if all values are currently in memory (RAM); and FALSE if not (in which case they either are on disk, or there are no values).
- `hasValues` is TRUE if the object has cell values.
Usage

fromDisk(x)
inMemory(x)
hasValues(x)

Arguments

x Raster* object

Value

Logical value

Examples

rs <- raster(system.file("external/test.grd", package="raster"))
inMemory(rs)
fromDisk(rs)
rs <- readAll(rs)
inMemory(rs)
fromDisk(rs)
rs <- rs + 1
inMemory(rs)
fromDisk(rs)
rs <- raster(rs)
inMemory(rs)
fromDisk(rs)
rs <- setValues(rs, 1:nCell(rs))
inMemory(rs)
fromDisk(rs)
rs <- writeRaster(rs, filename='test', overwrite=TRUE)
inMemory(rs)
fromDisk(rs)

dataType	Data type

Description

Get the datatype of a RasterLayer object. The datatype determines the interpretation of values written to disk. Changing the datatype of a Raster* object does not directly affect the way they are stored in memory. For native file formats (.grd/.gri files) it does affect how values are read from file. This is not the case for file formats that are read via rgdal (such as .tif and .img files) or netcdf.

If you change the datatype of a RasterLayer and then read values from a native format file these may be completely wrong, so only do this for debugging or when the information in the header file was wrong. To set the datatype of a new file, you can give a ‘datatype’ argument to the functions that write values to disk (e.g. writeRaster).
Usage

dataType(x)
dataType(x) <- value

Arguments

x A RasterLayer object
value A data type (see below)

Details

Setting the data type is useful if you want to write values to disk. In other cases use functions such as round()

Datatypes are described by 5 characters. The first three indicate whether the values are integers, decimal number or logical values. The fourth character indicates the number of bytes used to save the values on disk, and the last character indicates whether the numbers are signed (i.e. can be negative and positive values) or not (only zero and positive values allowed)

The following datatypes are available:

<table>
<thead>
<tr>
<th>Datatype definition</th>
<th>minimum possible value</th>
<th>maximum possible value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG1S</td>
<td>FALSE (0)</td>
<td>TRUE (1)</td>
</tr>
<tr>
<td>INT1S</td>
<td>-127</td>
<td>127</td>
</tr>
<tr>
<td>INT1U</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>INT2S</td>
<td>-32,767</td>
<td>32,767</td>
</tr>
<tr>
<td>INT2U</td>
<td>0</td>
<td>65,534</td>
</tr>
<tr>
<td>INT4S</td>
<td>-2,147,483,647</td>
<td>2,147,483,647</td>
</tr>
<tr>
<td>INT4U</td>
<td>0</td>
<td>4,294,967,296</td>
</tr>
<tr>
<td>FLT4S</td>
<td>-3.4e+38</td>
<td>3.4e+38</td>
</tr>
<tr>
<td>FLT8S</td>
<td>-1.7e+308</td>
<td>1.7e+308</td>
</tr>
</tbody>
</table>

For all integer types, except the single byte types, the lowest (signed) or highest (unsigned) value is used to store NA. Single byte files do not have NA values. Logical values are stored as signed single byte integers, they do have an NA value (-127)

INT4U is available but they are best avoided as R does not support 32-bit unsigned integers.

Value

Raster* object

Examples

r <- raster(system.file("external/test.grd", package="raster"))
dataType(r)
s <- writeRaster(r, 'new.grd', datatype='INT2U', overwrite=TRUE)
dataType(s)
**Density**

*Density plot*

**Description**

Create density plots of values in a Raster object

**Usage**

```r
S4 method for signature 'Raster'
density(x, layer, maxpixels=100000, plot=TRUE, main, ...)
```

**Arguments**

- `x` Raster object
- `layer` numeric. Can be used to subset the layers to plot in a multilayer object (RasterBrick or RasterStack)
- `maxpixels` the maximum number of (randomly sampled) cells to be used for creating the plot
- `plot` if TRUE produce a plot, else return a density object
- `main` main title for each plot (can be missing)
- `...` Additional arguments passed to `plot`

**Value**

density plot (and a density object, returned invisibly if `plot=TRUE`)

**Examples**

```r
logo <- stack(system.file("external/rlogo.grd", package="raster"))
density(logo)
```

---

**dim**

*Dimensions of a Raster* object

**Description**

Get or set the number of rows, columns, and layers of a Raster* object. You cannot use this function to set the dimensions of a RasterStack object.

When setting the dimensions, you can provide a row number, or a vector with the row and the column number (for a RasterLayer and a RasterBrick), or a row and column number and the number of layers (only for a RasterBrick)
direction

Usage

```r
S4 method for signature 'BasicRaster'
dim(x)
```

Arguments

- **x**: Raster* object

Value

Integer or Raster* object

See Also

`ncell, extent, res`

Examples

```r
r <- raster()
dim(r)
dim(r) <- c(18)
dim(r)
dim(r) <- c(18, 36)
dim(r)
b <- brick(r)
dim(b)
dim(b) <- c(10, 10, 5)
dim(b)
```

---

direction  Direction

Description

The direction (azimuth) to or from the nearest cell that is not NA. The direction unit is in radians, unless you use argument `degrees=TRUE`.

Usage

```r
S4 method for signature 'RasterLayer'
direction(x, filename='', degrees=FALSE, from=FALSE, doEdge=FALSE, ...)
```
Arguments

- **x**: RasterLayer object
- **filename**: Character. Output filename (optional)
- **degrees**: Logical. If FALSE (the default) the unit of direction is radians.
- **from**: Logical. Default is FALSE. If TRUE, the direction from (instead of to) the nearest cell that is not NA is returned.
- **doEdge**: Logical. If TRUE, the `boundaries` function is called first. This may be efficient in cases where you compute the distance to large blobs. Calling `boundaries` determines the edge cells that matter for distance computation.
- ... Additional arguments as for `writeRaster`

Value

RasterLayer

See Also

distance, gridDistance

distance, gridDistance

For the direction between (longitude/latitude) points, see the azimuth function in the geosphere package

Examples

```r
r <- raster(ncol=36,nrow=18)
r[] <- NA
r[386] <- 1
b <- direction(r)
#plot(b)
```

disaggregate Disaggregate

Description

Disaggregate a RasterLayer to create a new RasterLayer with a higher resolution (smaller cells). The values in the new RasterLayer are the same as in the larger original cells unless you specify method="bilinear", in which case values are locally interpolated (using the `resample` function).

Usage

```r
S4 method for signature 'Raster'
disaggregate(x, fact=NULL, method='bilinear', filename='', ...)```
Arguments

- **x**: a Raster object
- **fact**: integer. Amount of disaggregation expressed as number of cells (horizontally and vertically). This can be a single integer or two integers \(c(x,y) \), in which case the first one is the horizontal disaggregation factor and the vertical disaggregation factor. If a single integer value is supplied, cells are disaggregated with the same factor in \(x \) and \(y \) direction.
- **method**: Character. `' '` or `'bilinear'`. If `'bilinear'`, values are locally interpolated (using the `resample` function).
- **filename**: Character. Output filename (optional).
- **...**: Additional arguments as for `writeRaster`.

Value

Raster object

Author(s)

Robert J. Hijmans and Jim Regetz

See Also

- `aggregate`

Examples

```r
r <- raster(ncols=10, nrows=10)
r <- disaggregate(r, fact=c(10, 2))
ncol(rd)
nrow(rd)
r[,] <- 1:ncell(r)
r <- disaggregate(r, fact=c(4, 2), method='bilinear')```

Description

For a single `RasterLayer` \((y \text{ is missing})\) this method computes the distance, for all cells that are \( \text{NA} \), to the nearest cell that is not \( \text{NA} \). The distance unit is in meters if the `RasterLayer` is not projected (+proj=longlat) and in map units (typically also meters) when it is projected.

If two `RasterLayer` objects are provided, the cell-value distances are computed. If two `Spatial` vector type objects are provided, the distances between pairs of geographic object are computed.
Usage

```r
S4 method for signature 'RasterLayer,missing'
distance(x, y, filename='', doEdge=TRUE, ...)

S4 method for signature 'RasterLayer,RasterLayer'
distance(x, y, ...)

S4 method for signature 'Spatial,Spatial'
distance(x, y, ...)
```

Arguments

- **x**: RasterLayer object
- **y**: missing, RasterLayer or Spatial object
- **filename**: Character. Filename for the output RasterLayer (optional)
- **doEdge**: Logical. If TRUE, the `boundaries` function is called first. This may be efficient in cases where you compute the distance to large blobs. Calling `boundaries` determines the edge cells that matter for distance computation
- **...**: Additional arguments as for `writeRaster`

Value

RasterLayer

See Also

- `distanceFromPoints`, `gridDistance`, `pointDistance`

See the `gdistance` package for more advanced distances, and the `geosphere` package for great-circle distances (and more) between points in longitude/latitude coordinates.

Examples

```r
r <- raster(ncol=36,nrow=18)
r[] <- NA
r[500] <- 1
dist <- distance(r)
#plot(dist / 1000)
```

---

### distanceFromPoints

**Distance from points**

Description

The function calculates the distance from a set of points to all cells of a Raster* object. The distance unit is in meters if the coordinate reference system (crs) of the Raster* object is (+proj=longlat) or assumed to be if the crs is NA. In all other cases it is in the units defined by the crs (which typically is meters).
distanceFromPoints

Usage

distanceFromPoints(object, xy, filename='', ...)

Arguments

object Raster object
xy matrix of x and y coordinates, or a SpatialPoints* object.
filename character. Optional filename for the output RasterLayer
... Additional arguments as for writeRaster

Details

Distances for longlat data are computed on the WGS84 spheroid using GeographicLib (Karney, 2013)

Value

RasterLayer

References


See Also

crs, distance, gridDistance, pointDistance

Examples

r <- raster(ncol=36,nrow=18)
xy <- c(0,0)
d1 <- distanceFromPoints(r, xy)
crs(r) = '+proj=utm +zone=12 +datum=WGS84'
d2 <- distanceFromPoints(r, xy)
par(mfrow=c(1,2))
plot(d1)
plot(d2)
**draw**  
*Draw a line or polygon*

**Description**

Draw a line or polygon on a plot (map) and save it for later use. After calling the function, start clicking on the map. To finish, right-click and select 'stop'.

**Usage**

drawPoly(sp=TRUE, col='red', lwd=2, ...)  
drawLine(sp=TRUE, col='red', lwd=2, ...)

**Arguments**

- **sp** logical. If TRUE, the output will be a sp object (SpatialPolygons or SpatialLines). Otherwise a matrix of coordinates is returned.
- **col** the color of the lines to be drawn
- **lwd** the width of the lines to be drawn
- **...** additional arguments padded to locator

**Value**

If sp==TRUE a SpatialPolygons or SpatialLines object; otherwise a matrix of coordinates

**See Also**

locator

**drawExtent**  
*Create an Extent object by drawing on a map*

**Description**

Click on two points of a plot (map) to obtain an object of class Extent ('bounding box')

**Usage**

drawExtent(show=TRUE, col="red")

**Arguments**

- **show** logical. If TRUE, the extent will be drawn on the map
- **col** sets the color of the lines of the extent
Erase parts of a SpatialPolygons* or SpatialLines* object. The inverse of this can be done with `intersect`.

**Description**

Erase parts of a SpatialPolygons* or SpatialLines* object with a SpatialPolygons* object.

**Usage**

```r
S4 method for signature 'SpatialPolygons,SpatialPolygons'
erase(x, y, ...)
S4 method for signature 'SpatialLines,SpatialPolygons'
erase(x, y, ...)
```

**Arguments**

- `x`: SpatialPolygons or SpatialLines object
- `y`: SpatialPolygons object
- `...`: Additional arguments (none)

**Value**

Spatial*

**Author(s)**

Robert J. Hijmans

**See Also**

The equivalent for raster data is `mask`
Examples

```r
if (require(rgdal) & require(rgeos)) {
 # erase parts of polygons with other polygons
 p <- shapefile(system.file("external/lux.shp", package="raster"))
 b <- as(extent(6, 6.4, 49.75, 50), 'SpatialPolygons')
 projection(b) <- projection(p)
 e <- erase(p, b)
 plot(e)

 # erase parts of lines with polygons
 r <- raster(extent(p) +c(-.1,.1,-.1,.1), crs=crs(p))
 start <- xyFromCell(r, cellFromCol(r, 1))
 end <- xyFromCell(r, cellFromCol(r, ncol(r)))
 lines <- do.call(spLines, lapply(1:10, function(i)rbind(start[i,], end[i,])))
 crs(lines) <- crs(p)

 e2 <- erase(lines, p)
 plot(e)
 lines(lines, col='blue', lwd=4, lty=3)
 lines(e2, col='red', lwd=2)
}
```

Description

Extend returns an Raster* object with a larger spatial extent. The output Raster object has the outer minimum and maximum coordinates of the input Raster and Extent arguments. Thus, all of the cells of the original raster are included. See crop if you (also) want to remove rows or columns.

There is also an extend method for Extent objects to enlarge (or reduce) an Extent. You can also use algebraic notation to do that (see examples).

This function has replaced function "expand" (to avoid a name conflict with the Matrix package).

Usage

```r
S4 method for signature 'Raster'
extend(x, y, value=NA, filename='', ...)

S4 method for signature 'Extent'
extend(x, y, ...)
```

Arguments

- `x` Raster or Extent object
If `x` is a Raster object, `y` should be an Extent object, or any object that is or has an Extent object, or an object from which it can be extracted (such as sp objects). Alternatively, you can provide a numeric vector of length 2 indicating the number of rows and columns that need to be added (or a single number when the number of rows and columns is equal).

If `x` is an Extent object, `y` should be a numeric vector of 1, 2, or 4 elements.

- **value**: value to assign to new cells
- **filename**: Character (optional)

... Additional arguments as for `writeRaster`

**Value**

RasterLayer or RasterBrick, or Extent

**Author(s)**

Robert J. Hijmans and Etienne B. Racine (Extent method)

**See Also**

crop, merge

**Examples**

```r
r <- raster(xmn=-150, xmx=-120, ymn=60, ymn=30, ncol=36, nrow=18)
rr <- 1:ncell(r)
e <- extent(-180, 0, 0, 90)
re <- extend(r, e)

extend with a number of rows and columns (at each side)
re2 <- extend(r, c(2,10))

Extent object
e <- extent(r)
e
extend(e, 10)
extend(e, 10, -10, 0, 20)
e + 10
e * 2
```

---

**extension**  
*Filename extensions*

**Description**

Get or change a filename extension
Usage

`extension(filename, value=NULL, maxchar=10)`

`extension(filename) <- value`

Arguments

- **filename**: A filename, with or without the path
- **value**: A file extension with or without a dot, e.g., ".txt" or "txt"
- **maxchar**: Maximum number of characters after the last dot in the filename, for that string to be considered a filename extension

Value

A file extension, filename or path.

If `ext(filename)` is used without a `value` argument, it returns the file extension; otherwise it returns the filename (with new extensions set to `value`)

Examples

```r
fn <- "c:/temp folder/filename.extension"
extension(fn)
extension(fn) <- ".txt"
extension(fn)
fn <- extension(fn, ".document")
extension(fn)
extension(fn, maxchar=4)
```

---

**extent**

**Extent**

Description

This function returns an Extent object of a Raster, or Spatial object (or an Extent object), or creates an Extent object from a 2x2 matrix (first row: xmin, xmax; second row: ymin, ymax), vector (length=4; order= xmin, xmax, ymin, ymax) or list (with at least two elements, with names 'x' and 'y')

bbox returns a sp package like 'bbox' object (a matrix)

Usage

`extent(x, ...)`
Arguments

x

Arguments. When x is a single number representing `xmin’, you can pass three additional numbers (xmax, ymin, ymax)

When x is a Raster* object, you can pass four additional arguments to crop the extent: r1L, r1R, c1L, c1R, representing the first and last row and column number

Value

Extent object

Author(s)

Robert J. Hijmans; Etienne Racine wrote the extent function for a list

See Also

extent, drawExtent

Examples

r <- raster()
extent(r)
extent(c(0, 20, 0, 20))
#is equivalent to
extent(0, 20, 0, 20)
extent(matrix(c(0, 0, 20, 20), nrow=2))
x <- list(x=c(0,1,2), y=c(-3,5))
extent(x)

#crop the extent by row and column numbers
extent(r, 1, 20, 10, 30)

Description

use round(x, digits=0) to round the coordinates of an Extent object to the number of digits specified. This can be useful when dealing with a small imprecision in the data (e.g. 179.9999 instead of 180). floor and ceiling move the coordinates to the outer or inner whole integer numbers.

It is also possible to use Arithmetic functions with Extent objects (but these work perhaps unexpectedly!)

See Math-methods for these (and many more) methods with Raster* objects.
Usage

```r
S4 method for signature 'Extent'
floor(x)
S4 method for signature 'Extent'
ceiling(x)
```

Arguments

- `x` Extent object

See Also

- `Math-methods`

Examples

```r
e <- extent(c(0.999999, 10.000011, -60.4, 60))
round(e)
ceiling(e)
floor(e)
```

---

### Extent-class

**Class "Extent"**

Description

Objects of class Extent are used to define the spatial extent (extremes) of objects of the BasicRaster and Raster* classes.

Objects from the Class

You can use the `extent` function to create Extent objects, or to extract them from Raster* and Spatial* objects.

Slots

- `xmin`: minimum x coordinate
- `xmax`: maximum x coordinate
- `ymin`: minimum y coordinate
- `ymax`: maximum y coordinate

Methods

- `show` display values of a Extent object

See Also

- `extent, setExtent`
Examples

```r
ext <- extent(-180,180,-90,90)
extract(ext, ext)
```

**Extract values from Raster objects**

Description

Extract values from a Raster* object at the locations of other spatial data. You can use coordinates (points), lines, polygons or an Extent (rectangle) object. You can also use cell numbers to extract values.

If `y` represents points, `extract` returns the values of a Raster* object for the cells in which a set of points fall. If `y` represents lines, the `extract` method returns the values of the cells of a Raster* object that are touched by a line. If `y` represents polygons, the `extract` method returns the values of the cells of a Raster* object that are covered by a polygon. A cell is covered if its center is inside the polygon (but see the `weights` option for considering partly covered cells; and argument `small` for getting values for small polygons anyway).

It is also possible to extract values for point locations from SpatialPolygons.

Usage

```r
S4 method for signature 'Raster, matrix'
extract(x, y, method='simple', buffer=NULL, small=FALSE, cellnumbers=FALSE,
 fun=NULL, na.rm=TRUE, layer, nl, df=FALSE, factors=FALSE, ...)

S4 method for signature 'Raster, SpatialLines'
extract(x, y, fun=NULL, na.rm=FALSE, cellnumbers=FALSE, df=FALSE, layer,
 nl, factors=FALSE, along=FALSE, sp=FALSE, ...)

S4 method for signature 'Raster, SpatialPolygons'
extract(x, y, fun=NULL, na.rm=FALSE, weights=FALSE,
 normalizeWeights=TRUE, cellnumbers=FALSE, small=TRUE, df=FALSE, layer, nl,
 factors=FALSE, sp=FALSE, ...)

S4 method for signature 'SpatialPolygons, SpatialPoints'
extract(x, y, ...)
```

Arguments

- `x` - Raster* object
- `y` - points represented by a two-column matrix or data.frame, or SpatialPoints*; SpatialPolygons*; SpatialLines; Extent; or a numeric vector representing cell numbers
<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>method</td>
<td>character. 'simple' or 'bilinear'. If 'simple' values for the cell a point falls in are returned. If 'bilinear' the returned values are interpolated from the values of the four nearest raster cells.</td>
</tr>
<tr>
<td>buffer</td>
<td>numeric. The radius of a buffer around each point from which to extract cell values. If the distance between the sampling point and the center of a cell is less than or equal to the buffer, the cell is included. The buffer can be specified as a single value, or as a vector of the length of the number of points. If the data are not projected (latitude/longitude), the unit should be meters. Otherwise it should be in map-units (typically also meters).</td>
</tr>
<tr>
<td>small</td>
<td>logical. If TRUE and y represents points and a buffer argument is used, the function always return a number, also when the buffer does not include the center of a single cell. The value of the cell in which the point falls is returned if no cell center is within the buffer. If y represents polygons, a value is also returned for relatively small polygons (e.g. those smaller than a single cell of the Raster* object), or polygons with an odd shape, for which otherwise no values are returned because they do not cover any raster cell centers. In some cases, you could alternatively use the centroids of such polygons, for example using extract(x, coordinates(y)) or extract(x, coordinates(y), method='bilinear').</td>
</tr>
<tr>
<td>fun</td>
<td>function to summarize the values (e.g. mean). The function should take a single numeric vector as argument and return a single value (e.g. mean, min or max), and accept a na.rm argument. Thus, standard R functions not including an na.rm argument must be wrapped as in this example: fun=function(x,...)length(x). If y represents points, fun is only used when a buffer is used (and hence multiple values per spatial feature would otherwise be returned).</td>
</tr>
<tr>
<td>na.rm</td>
<td>logical. Only useful when an argument fun is supplied. If na.rm=TRUE (the default value), NA values are removed before fun is applied. This argument may be ignored if the function used has a ... argument and ignores an additional na.rm argument</td>
</tr>
<tr>
<td>cellnumbers</td>
<td>logical. If cellnumbers=TRUE, cell-numbers will also be returned (if no fun argument is supplied, and when extracting values with points, if buffer is NULL)</td>
</tr>
<tr>
<td>df</td>
<td>logical. If df=TRUE, results will be returned as a data.frame. The first column is a sequential ID, the other column(s) are the extracted values</td>
</tr>
<tr>
<td>weights</td>
<td>logical. If TRUE and normalizeWeights=FALSE, the function returns, for each polygon, a matrix with the cell values and the approximate fraction of each cell that is covered by the polygon(rounded to 1/100). If TRUE and normalizeWeights=TRUE the weights are normalized such that they add up to one. The weights can be used for averaging; see examples. This option can be useful (but slow) if the polygons are small relative to the cells size of the Raster* object</td>
</tr>
<tr>
<td>normalizeWeights</td>
<td>logical. If TRUE, weights are normalized such that they add up to one for each polygon</td>
</tr>
<tr>
<td>factors</td>
<td>logical. If TRUE, factor values are returned, else their integer representation is returned</td>
</tr>
<tr>
<td>layer</td>
<td>integer. First layer for which you want values (if x is a multilayer object)</td>
</tr>
<tr>
<td>nl</td>
<td>integer. Number of layers for which you want values (if x is a multilayer object)</td>
</tr>
</tbody>
</table>
along boolean. Should returned values be ordered to go along the lines?

sp boolean. Should the extracted values be added to the data.frame of the Spatial* object y? This only applies if y is a Spatial* object and, for SpatialLines and SpatialPolygons, if fun is not NULL. In this case the returned value is the expanded Spatial object

... additional arguments (none implemented)

Value

A vector for RasterLayer objects, and a matrix for RasterStack or RasterBrick objects. A list (or a data.frame if df=TRUE) if y is a SpatialPolygons* or SpatialLines* object or if a buffer argument is used (but not a fun argument). If sp=TRUE and y is a Spatial* object and fun is not NULL a Spatial* object is returned. The order of the returned values corresponds to the order of object y. If df=TRUE, this is also indicated in the first variable ('ID').

See Also

getValues, getValuesFocal

Examples

r <- raster(ncol=36, nrow=18)
r[] <- 1:ncell(r)

# extract values by cell number
extract(r, c(1:2, 10, 100))
s <- stack(r, sqrt(r), r/r)
extract(s, c(1, 10, 100), layer=2, n=2)

# extract values with points
xy <- cbind(~50, seq(~80, 80, by=20))
extract(r, xy)

sp <- SpatialPoints(xy)
extract(r, sp, method='bilinear')

# examples with a buffer
extract(r, xy[1:3,], buffer=1000000)
extract(r, xy[1:3,], buffer=1000000, fun=mean)

## illustrating the varying size of a buffer (expressed in meters)
## on a longitude/latitude raster
z <- extract(r, xy, buffer=1000000)
s <- raster(r)
for (i in 1:length(z)) { s[z[i]] <- i }

## compare with raster that is not longitude/latitude
projection(r) <- "+proj=utm +zone=17"
xy[,1] <- 50
z <- extract(r, xy, buffer=8)
for (i in 1:length(z)) { s[z[i]] <- i }
plot(s)
# library(maptools)
# data(wrld_simpl)
# plot(wrld_simpl, add=TRUE)

# extract values with lines
cds1 <- rbind(c(-50,0), c(0,60), c(40,5), c(15,-45), c(-10,-25))
lines <- splines(cds1, cds2)

# extract values with polygons
cds1 <- rbind(c(-180,-20), c(-160,5), c(-60,0), c(-160,-60), c(-180,-20))
polys <- spPolygons(cds1, cds2)

# extract values with an extent
e <- extent(150,170, -60, -40)
extract(r, e)
#plot(r)
#plot(e, add=T)

---

**Extract by index**

**Indexing to extract values of a Raster* object**
Description

These are shorthand methods that call other methods that should normally be used, such as `getValues`, `extract`, `crop`.

`object[i]` can be used to access values of a Raster* object, using cell numbers. You can also use row and column numbers as index, using `object[i,j]` or `object[i,]` or `object[,]`. In addition you can supply an Extent, SpatialPolygons, SpatialLines or SpatialPoints object.

If `drop=TRUE` (the default) cell values are returned (a vector for a RasterLayer, a matrix for a Raster-Stack or RasterBrick). If `drop=FALSE` a Raster* object is returned that has the extent covering the requested cells, and with all other non-requested cells within this extent set to NA.

If you supply a RasterLayer, its values will be used as logical (TRUE/FALSE) indices if both Raster objects have the same extent and resolution; otherwise the cell values within the extent of the RasterLayer are returned.

Double brackets `[[ ]]` can be used to extract one or more layers from a multi-layer object.

Methods

```r
x[i]
```

```r
x[i,j]
```

Arguments

```r
x a Raster* object
i cell number(s), row number(s), a (logical) RasterLayer, Spatial* object
j column number(s) (only available if i is (are) a row number(s))
drop If TRUE, cell values are returned. Otherwise, a Raster* object is returned
```

See Also

`getValues`, `setValues`, `extract`, `crop`, `rasterize`

Examples

```r
r <- raster(ncol=10, nrow=5)
r[] <- 1:ncell(r)

r[1]
r[1:10]
r[1,]
r[,] r[1:2, 1:2]

s <- stack(r, sqrt(r))
s[1:3]
s[[2]]
```
Extreme coordinates

Coordinates of the Extent of a Raster object

Description

These functions return or set the extreme coordinates of a Raster* object; and return them for Spatial* objects.

Usage

```r
xmin(x)
xmax(x)
ymin(x)
ymax(x)
```

```r
xmin(x) <- value
xmax(x) <- value
ymin(x) <- value
ymax(x) <- value
```

Arguments

- `x` A Raster* object
- `value` A new x or y coordinate

Value

- a single number

See Also

- `extent`, `dimensions`

Examples

```r
r <- raster(xmn=-0.5, xmax = 9.5, ncols=10)
xmin(r)
xmax(r)
ymin(r)
ymax(r)
xmin(r) <- -180
xmax(r) <- 180
```
extremeValues

Minimum and maximum values

Description

Returns the minimum or maximum value of a RasterLayer or layer in a RasterStack

Usage

`minValue(x, ...)`
`maxValue(x, ...)`

Arguments

- `x` RasterLayer or RasterStack object
- `...` Additional argument: layer number (for RasterStack or RasterBrick objects)

Details

If a Raster* object is created from a file on disk, the min and max values are often not known (depending on the file format). You can use `setMinMax` to set them in the Raster* object.

Value

- a number

Examples

```r
r <- raster()
r <- setValues(r, 1:ncell(r))
minValue(r)
maxValue(r)
r <- setValues(r, round(100 * runif(ncell(r)) + 0.5))
minValue(r)
maxValue(r)
r <- raster(system.file("external/test.grd", package="raster"))
minValue(r)
maxValue(r)
```
Factors

Description

These functions allow for defining a RasterLayer as a categorical variable. Such a RasterLayer is linked to other values via a "Raster Attribute Table" (RAT). Thus the cell values are an index, whereas the actual values of interest are in the RAT. The RAT is a data.frame. The first column in the RAT ("ID") has the unique cell values of the layer; this column should normally not be changed. The other columns can be of any basic type (factor, character, integer, numeric or logical). The functions documented here are mainly available such that files with a RAT can be read and processed; currently there is not too much further support. Whether a layer is defined as a factor or not is currently ignored by almost all functions. An exception is the 'extract' function (when used with option df=TRUE).

Function 'levels' returns the RAT for inspection. It can be modified and set using levels <- value (but use caution as it is easy to mess things up).
as.factor and ratify create a layer with a RAT table. Function 'deratify' creates a single layer for a (or each) variable in the RAT table.

Usage

is.factor(x)
as.factor(x)
levels(x)

factorValues(x, v, layer=1, att=NULL, append.names=FALSE)

ratify(x, filename='', count=FALSE, ...)
deratify(x, att=NULL, layer=1, complete=FALSE, drop=TRUE, fun='mean', filename='', ...)
asFactor(x, ...)

Arguments

x Raster* object
v integer cell values
layer integer > 0 indicating which layer to use (in a RasterStack or RasterBrick)
att numeric or character. Which variable(s) in the RAT table should be used. If NULL, all variables are extracted. If using a numeric, skip the first two default columns
append.names logical. Should names of data.frame returned by a combination of the name of the layer and the RAT variables? (can be useful for multilayer objects
filename character. Optional
count logical. If TRUE, a columns with frequencies is added
... additional arguments as for `writeRaster`

`complete` logical. If TRUE, the layer returned is no longer a factor

`drop` logical. If TRUE a factor is converted to a numerical value if possible

`fun` character. Used to get a single value for each class for a weighted RAT table. 'mean', 'min', 'max', 'smallest', or 'largest'

**Value**

Raster* object; list (levels); boolean (is.factor); matrix (factorValues)

**Note**

asFactor is deprecated and should not be used

**Examples**

```r
set.seed(0)
r <- raster(nrow=10, ncol=10)
r[] <- runif(ncell(r)) * 10
is.factor(r)

r <- round(r)
f <- as.factor(r)
is.factor(f)

x <- levels(f)[[1]]
x
x$code <- letters[10:20]
levels(f) <- x
levels(f)
f

r <- raster(nrow=10, ncol=10)
r[] = 1
r[51:100] = 2
r[3:6, 1:5] = 3
r <- ratify(r)

rat <- levels(r)[[1]]
rat$landcover <- c('Pine', 'Oak', 'Meadow')
rat$code <- c(12, 25, 30)
levels(r) <- rat
r

extract values for some cells
i <- extract(r, c(1,2, 25,100))
i
get the attribute values for these cells
factorValues(r, i)

write to file:
```
filename(x)

Arguments

x A Raster* object

Value

a Raster* object

Examples

r <- raster(system.file("external/test.grd", package="raster")
filename(r)

filledContour

Filled contour plot

Description

Filled contour plot of a RasterLayer. This is a wrapper around filledContour for RasterLayer objects.

Usage

filledContour(x, y=1, maxpixels=100000, ...)
Arguments

x A Raster* object
y Integer. The layer number of x (if x has multiple layers)
maxpixels The maximum number of pixels
... Any argument that can be passed to filled.contour (graphics package)

See Also

filled.contour, persp, plot

Examples

r <- raster(system.file("external/test.grd", package="raster"))
filledContour(r)

Description

Flip the values of a Raster* object by inverting the order of the rows (direction=y) or the columns (direction=x).

Usage

flip(x, direction, ...)

Arguments

x Raster* object
direction Character. 'y' or 'x'; or 1 (=x) or 2 (=y)
... Additional arguments as for writeRaster

Value

RasterLayer or RasterBrick

See Also

transpose: t, rotate

Examples

r <- raster(nrow=18, ncol=36)
m <- matrix(1:ncell(r), nrow=18)
r[] <- as.vector(t(m))
rx <- flip(r, direction='x')
r[] <- as.vector(m)
ry <- flip(r, direction='y')
Description

Compute the flow path (drainage path) starting at a given point. See package gdistance for more path computations.

Usage

```r
flowPath(x, p, ...)
```

Arguments

- `x`: RasterLayer of flow direction (as can be created with `terrain`)
- `p`: starting point. Either two numbers: x (longitude) and y (latitude) coordinates; or a single cell number
- `...`: additional arguments (none implemented)

Value

numeric (cell numbers)

Author(s)

Ashton Shortridge

Examples

```r
data(volcano)
volcano <- raster(volcano, xmn=2667400, xmx=2668010, ymn=6478700, ymx=6479570, crs=+init=epsg:27200)
flowdir <- terrain(volcano, opt = "flowdir")

path <- flowPath(flowdir, 2407)
xy <- xyFromCell(flowdir, path)
plot(flowdir)
lines(xy)
```
Description

Calculate focal ("moving window") values for the neighborhood of focal cells using a matrix of weights, perhaps in combination with a function.

Usage

```r
S4 method for signature 'RasterLayer'
focal(x, w, fun, filename='', na.rm=FALSE, pad=FALSE, padValue=NA, NAonly=FALSE, ...)
```

Arguments

- `x` RasterLayer
- `w` matrix of weights (the moving window), e.g. a 3 by 3 matrix with values 1; see Details. The matrix does not need to be square, but the sides must be odd numbers. If you need even sides, you can add a column or row with weights of zero
- `fun` function (optional). The function `fun` should take multiple numbers, and return a single number. For example mean, modal, min or max. It should also accept a `na.rm` argument (or ignore it, e.g. as one of the 'dots' arguments. For example, `length` will fail, but `function(x, ...){na.omit(length(x))}` works.
- `filename` character. Filename for a new raster (optional)
- `na.rm` logical. If `TRUE`, NA will be removed from focal computations. The result will only be NA if all focal cells are NA. Except for some special cases (weights of 1, functions like min, max, mean), using `na.rm=TRUE` is generally not a good idea in this function because it will unbalance the effect of the weights
- `pad` logical. If `TRUE`, additional 'virtual' rows and columns are padded to `x` such that there are no edge effects. This can be useful when a function needs to have access to the central cell of the filter
- `padValue` numeric. The value of the cells of the padded rows and columns
- `NAonly` logical. If `TRUE`, only cell values that are NA are replaced with the computed focal values
- `...` Additional arguments as for `writeRaster`

Details

`focal` uses a matrix of weights for the neighborhood of the focal cells. The default function is `sum`. It is computationally much more efficient to adjust the weights-matrix than to use another function through the `fun` argument. Thus while the following two statements are equivalent (if there are no NA values), the first one is faster than the second one:

```r
a <- focal(x, w=matrix(1/9, nc=3, nr=3))
```
b <- focal(x, w=matrix(1,3,3), fun=mean)

There is, however, a difference if NA values are considered. One can use the na.rm=TRUE option which may make sense when using a function like mean. However, the results would be wrong when using a weights matrix.

Laplacian filter: filter=matrix(c(0,1,0,-1,0,0), nrow=3)
Sobel filter: filter=matrix(c(1,2,1,0,0,-1,-2,-1) / 4, nrow=3)

see the focalWeight function to create distance based circular, rectangular, or Gaussian filters.

Value

RasterLayer

See Also

focalWeight

Examples

r <- raster(ncols=36, nrows=18, xmn=0)
r[] <- runif(ncell(r))

# 3x3 mean filter
r3 <- focal(r, w=matrix(1/9,nrow=3,ncol=3))

# 5x5 mean filter
r5 <- focal(r, w=matrix(1/25,nrow=5,ncol=5))

# Gaussian filter
gf <- focalWeight(r, 2, "Gauss")
rg <- focal(r, w=gf)

# The max value for the lower-right corner of a 3x3 matrix around a focal cell
f = matrix(c(0,0,0,1,1,0,1,1,1), nrow=3)
f
rm <- focal(r, w=f, fun=max)

# global lon/lat data: no 'edge effect' for the columns
xmin(r) <- -180
r3g <- focal(r, w=matrix(1/9,nrow=3,ncol=3))

## Not run:
## focal can be used to create a cellular automaton

# Conway's Game of Life
w <- matrix(c(1,1,1,1,1,1,1,1,1), nr=3,nc=3)
gameOfLife <- function(x) {
f <- focal(x, w=w, pad=TRUE, padValue=0)
# cells with less than two or more than three live neighbours die
x[f<2 | f>3] <- 0
# cells with three live neighbours become alive
return(x)
}
focalWeight

focalWeight <- function(x, d, type=c('circle', 'Gauss', 'rectangle')) {
  x
}

# simulation function
sim <- function(x, fun, n=100, pause=0.25) {
  for (i in 1:n) {
    x <- fun(x)
    plot(x, legend=FALSE, asp=NA, main=i)
    dev.flush()
    Sys.sleep(pause)
  }
  invisible(x)
}

# Gosper glider gun
m <- matrix(0, nc=48, nr=34)
m[c(40, 41, 74, 75, 380, 381, 382, 413, 417, 446, 452, 480, 486, 517, 549, 553, 584, 585, 586, 619, 718, 719, 720, 752, 753, 754, 785, 789, 852, 853, 857, 858, 1194, 1195, 1228, 1229)] <- 1
init <- raster(m)

# run the model
sim(init, gameOfLife, n=150, pause=0.05)

## End(Not run)

---

focalWeight | **Focal weights matrix**

### Description

Calculate focal ("moving window") weight matrix for use in the `focal` function. The sum of the values adds up to one.

### Usage

`focalWeight(x, d, type=c('circle', 'Gauss', 'rectangle'))`

### Arguments

- **x**
  - Raster* object
- **d**
  - numeric. If type=.circle, the radius of the circle (in units of the CRS). If type=rectangle the dimension of the rectangle (one or two numbers). If type=Gauss the size of sigma, and optionally another number to determine the size of the matrix returned (default is 3 times sigma)
- **type**
  - character indicating the type of filter to be returned
Value

matrix that can be used in `focal`

Examples

```r
r <- raster(ncols=36, nrows=18, xmn=0)
Gaussian filter for square cells
gf <- focalWeight(r, 2, "Gauss")
```

---

freq

*Frequency table*

Description

Frequency table of the values of a `RasterLayer`.

Usage

```r
S4 method for signature 'RasterLayer'
freq(x, digits=0, value=NULL, useNA='ifany', progress='', ...)

S4 method for signature 'RasterStackBrick'
freq(x, digits=0, value=NULL, useNA='ifany', merge=FALSE, progress='', ...)
```

Arguments

- `x` RasterLayer
- `digits` non-negative integer for rounding the cell values. Argument is passed to `round`
- `value` numeric, logical or NA. An optional single value to only count the number of cells with that value
- `useNA` character. What to do with NA values? Options are "no", "ifany", "always". See to `table`
- `progress` character to specify a progress bar. Choose from 'text', 'window', or '' (the default, no progress bar)
- `merge` logical. If TRUE the list will be merged into a single data.frame
- `...` additional arguments (none implemented)

Value

matrix (RasterLayer). List of matrices (one for each layer) or data.frame (if `merge`=TRUE) (RasterStack or RasterBrick)

See Also

`crosstab` and `zonal`
Gain and offset

Examples

```r
r <- raster(nrow=18, ncol=36)
r[] <- runif(ncell(r))
r[1:5] <- NA
r <- r * r * r * 5
freq(r)

freq(r, value=2)

s <- stack(r, r*2, r*3)
freq(s, merge=TRUE)
```

Description

These functions can be used to get or set the gain and offset parameters used to transform values when reading them from a file. The gain and offset parameters are applied to the raw values using the formula below:

```
value <- value * gain + offset
```

The default value for gain is 1 and for offset is 0. 'gain' is sometimes referred to as 'scale'.

Note that setting gain and/or offset are intended to be used with values that are stored in a file. For a Raster* object with values in memory, assigning gain or offset values will lead to the immediate computation of new values; in such cases it would be clearer to use Arith-methods.

Usage

```
gain(x)
gain(x) <- value
offs(x)
offs(x) <- value
```

Arguments

- `x` Raster* object
- `value` Single numeric value

Value

Raster* object or numeric value(s)
Examples

\[
\begin{align*}
  r & \leftarrow \text{raster(system.file("external/test.grd", package="raster"))} \\
  \text{gain}(r) & \\
  \text{offs}(r) & \\
  r[1505:1510] & \\
  \text{gain}(r) & \leftarrow 10 \\
  \text{offs}(r) & \leftarrow 5 \\
  r[1505:1510] & 
\end{align*}
\]

\[\text{geom} \quad \text{Get the coordinates of a vector type Spatial* object}\]

Description

Extract the coordinates of a Spatial object.

Usage

\[
\text{## S4 method for signature 'SpatialPolygons'} \\
\text{geom}(x, \text{sepNA=}\text{FALSE}, \ldots)
\]

Arguments

- **x**: SpatialPolygons*, SpatialLines*, or SpatialPoints* object.
- **sepNA**: logical. If TRUE, geometries are separated by a row with NA values.
- **...**: additional arguments, none implemented.

Value

Matrix with 6, (5 SpatialLines), or 3 (SpatialPoints) columns. object (sequential object number) part (sequential part number within the object; not for SpatialPoints), cump (cumulative part number; not for SpatialPoints), hole (is this a hole or not; only for SpatialPolygons), x (x coordinate or longitude), y (y coordinate or latitude).

See Also

coordinates, geometry

Examples

\[
\begin{align*}
  \text{if} (\text{require(rgdal)} & \& \text{require(rgeos)}) \{ \\
  p & \leftarrow \text{shapefile(system.file("external/lux.shp", package="raster"))} \\
  x & \leftarrow \text{geom}(p) \\
  \}
\end{align*}
\]
**getData**  
*Get geographic data*

**Description**
Get geographic data for anywhere in the world. Data are read from files that are first downloaded if necessary. Function `ccodes` returns country names and the ISO codes.

**Usage**
```r
getData(name, download=TRUE, path='', ...)
ccodes()
```

**Arguments**
- `name` Data set name, currently supported are 'GADM', 'countries', 'SRTM', 'alt', and 'worldclim'. See Details for more info.  
- `download` Logical. If `TRUE` data will be downloaded if not locally available.  
- `path` Character. Path name indicating where to store the data. Default is the current working directory.  
- `...` Additional required (!) parameters. These are data set specific. See Details.

**Details**
- 'alt' stands for altitude (elevation); the data were aggregated from SRTM 90 m resolution data between -60 and 60 latitude. 'GADM' is a database of global administrative boundaries. 'worldclim' is a database of global interpolated climate data. 'SRTM' refers to the hole-filled CGIAR-SRTM (90 m resolution). 'countries' has polygons for all countries at a higher resolution than the 'wrld_simpl' data in the maptools package.

If `name` is 'alt' or 'GADM' you must provide a 'country=' argument. Countries are specified by their 3 letter ISO codes. Use `getData('ISO3')` to see these codes. In the case of GADM you must also provide the level of administrative subdivision (0=country, 1=first level subdivision). In the case of alt you can set 'mask' to FALSE. If it is TRUE values for neighbouring countries are set to NA. For example:
```r
getData('GADM', country='FRA', level=1)
getData('alt', country='FRA', mask=TRUE)
```

If `name` is 'SRTM' you must provide 'lon' and 'lat' arguments (longitude and latitude). These should be single numbers somewhere within the SRTM tile that you want.
```r
getData('SRTM', lon=5, lat=45)
```

If `name`='worldclim' you must also provide arguments `var` and a resolution `res`. Valid variables names are 'tmin', 'tmax', 'prec' and 'bio'. Valid resolutions are 0.5, 2.5, 5, and 10 (minutes of a degree). In the case of `res`=0.5, you must also provide a `lon` and `lat` argument for a tile; for the lower resolutions global data will be downloaded. In all cases there are 12 (monthly) files for each variable except for 'bio' which contains 19 files.
getValues('worldclim', var='tmin', res=0.5, lon=5, lat=45)
getValues('worldclim', var='bio', res=10)

To get (projected) future climate data (CMIP5), you must provide arguments var and res as above. Only resolutions 2.5, 5, and 10 are currently available. In addition, you need to provide model, rcp and year. For example,

getData('CMIP5', var='tmin', res=10, rcp=85, model='AC', year=70)

function (var, model, rcp, year, res, lon, lat, path, download = TRUE)

'model' should be one of "AC", "BC", "CC", "CE", "CN", "GF", "GD", "GS", "HD", "HG", "HE", "IN", "IP", "MI", "MR", "MC", "MP", "MG", or "NO".

'rcp' should be one of 26, 45, 60, or 85.

'year' should be 50 or 70

Not all combinations are available. See www.worldclim.org for details.

Value
A spatial object (Raster* or Spatial*)

References
http://www.worldclim.org
http://www.gadm.org
http://srtm.csi.cgiar.org/
http://diva-gis.org/gdata

---

**getValues**  
Get raster cell values

**Description**

getValues returns all values or the values for a number of rows of a Raster* object. Values returned for a RasterLayer are a vector. The values returned for a RasterStack or RasterBrick are always a matrix, with the rows representing cells, and the columns representing layers.

values is a shorthand version of getValues (for all rows).

**Usage**

getValues(x, row, nrows, ...)

values(x, ...)
getValuesBlock

Arguments

x Raster* object
row Numeric. Row number, should be between 1 and nrow(x), or missing in which case all values are returned
nrows Numeric. Number of rows. Should be an integer > 0, or missing
... Additional arguments. When x is a RasterLayer: format to specify the output format. Either "matrix" or, the default "", in which case a vector is returned

Value

vector or matrix of raster values

See Also

getValuesBlock, getValuesFocal, setValues

Examples

r <- raster(system.file("external/test.grd", package="raster"))
r
v <- getValues(r)
length(v)
head(v)
getValues(r, row=10)

getValuesBlock  Get a block of raster cell values

Description

getValuesBlock returns values for a block (rectangular area) of values of a Raster* object.

Usage

## S4 method for signature 'RasterLayer'
getValuesBlock(x, row=1, nrows=1, col=1, ncols=(ncol(x)-col+1), format='', ...)

## S4 method for signature 'RasterBrick'
getValuesBlock(x, row=1, nrows=1, col=1, ncols=(ncol(x)-col+1), lys, ...)

## S4 method for signature 'RasterStack'
getValuesBlock(x, row=1, nrows=1, col=1, ncols=(ncol(x)-col+1), lys, ...)
getValuesFocal

Arguments

x  
   Raster* object

row  
   positive integer. Row number to start from, should be between 1 and nrow(x)

nrows  
   positive integer. How many rows? Default is 1

col  
   positive integer. Column number to start from, should be between 1 and ncol(x)

ncols  
   positive integer. How many columns? Default is the number of columns left after the start column

format  
   character. When x is a RasterLayer, if format='matrix' or format='m', a matrix is returned instead of a vector. If format='matrix', it is a nrow x ncol matrix. If format='m' it is a 1 column matrix (the benefit is that the type of output is now the same for all Raster objects)

lyrs  
   integer (vector). Which layers? Default is all layers (1:nlayers(x))

Value

matrix or vector (if (x=RasterLayer), unless format='matrix')

See Also

getValues

Examples

r <- raster(system.file("external/test.grd", package="raster"))
b <- getValuesBlock(r, row=100, nrows=3, col=10, ncols=5)
b <- matrix(b, nrow=3, ncol=5, byrow=TRUE)
b

logo <- brick(system.file("external/logo.grd", package="raster"))
getValuesBlock(logo, row=35, nrows=3, col=50, ncols=3, lyrs=2:3)

generateGETFOCAL  

Get focal raster cell values

Description

This function returns a matrix (or matrices) for all focal values of a number of rows of a Raster* object

Usage

## S4 method for signature 'Raster'
getValuesFocal(x, row, nrows, ngb, names=FALSE, padValue=NA, array=FALSE, ...)
Arguments

- **x**: Raster* object
- **row**: Numeric. Row number, should be between 1 and nrow(x). Can be omitted to get all rows
- **nrows**: Numeric. Number of rows, should be a positive integer smaller than row+nrow(x). Should be omitted if row is omitted
- **ngb**: Neighbourhood size. Either a single integer or a vector of two integers c(nrow, ncol)
- **names**: logical. If TRUE, the matrix returned has row and column names
- **padValue**: numeric. The value of the cells of the "padded" rows and columns. That is 'virtual' values for cells within a neighbourhood, but outside the raster
- **array**: logical. If TRUE and x has multiple layers, an array is returned in stead of a list of matrices
- **...**: additional arguments (none implemented)

Value

If x has a single layer, a matrix with one row for each focal cell, and one column for each neighbourhood cell around it.

If x has multiple layers, an array (if array=TRUE) or a list of such matrices (one list element (matrix) for each layer)

See Also

getValues, focal

Examples

```r
r <- raster(nr=5, nc=5, crs='+proj=utm +zone=12')
r[] <- 1:25
as.matrix(r)
getValuesFocal(r, row=1, nrows=2, ngb=3, names=TRUE)
getValuesFocal(stack(r,r), row=1, nrows=1, ngb=3, names=TRUE, array=TRUE)
```

Description

The function calculates the distance to cells of a RasterLayer when the path has to go through the centers of neighboring raster cells (currently only implemented as a 'queen' case in which cells have 8 neighbors).

The distance is in meters if the coordinate reference system (CRS) of the RasterLayer is longitude/latitude (+proj=longlat) and in the units of the CRS (typically meters) in other cases.

Distances are computed by summing local distances between cells, which are connected with their neighbours in 8 directions.
Usage

```r
S4 method for signature 'RasterLayer'
gridDistance(x, origin, omit=NULL, filename="", ...)```

Arguments

- `x`: RasterLayer
- `origin`: value(s) of the cells from which the distance is calculated
- `omit`: value(s) of the cells which cannot be traversed (optional)
- `filename`: character. output filename (optional)
- `...`: additional arguments as for `writeRaster`

Details

If the RasterLayer to be processed is big, it will be processed in chunks. This may lead to errors in the case of complex objects spread over different chunks (meandering rivers, for instance). You can try to solve these issues by varying the chunk size, see function `setOptions()`.

Value

RasterLayer

Author(s)

Jacob van Etten and Robert J. Hijmans

See Also

See `distance` for 'as the crow flies' distance. Additional distance measures and options (directions, cost-distance) are available in the 'gdistance' package.

Examples

```r
#world lon/lat raster
r <- raster(ncol=10,nrow=10)
r[] <- 1
r[48] <- 2
r[66:68] <- 3
d <- gridDistance(r,origin=2,omit=3)
plot(d)

#UTM small area
projection(r) <- "+proj=utm +zone=15 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"
d <- gridDistance(r,origin=2,omit=3)
plot(d)```
Description

Write header files to use together with raster binary files to read the data in other applications.

Usage

```r
hdr(x, format, extension='wld', filename='')
```

Arguments

- `x`: RasterLayer or RasterBrick object associated with a binary values file on disk
- `format`: Type of header file: 'VRT', 'BIL', 'ENVI', 'ErdasRaw', 'IDRISI', 'SAGA', 'RASTER', 'WORLDFILE', 'PRJ'
- `extension`: File extension, only used with an ESRI worldfile (format='WORLDFILE')
- `filename`: character. Need to be provided if `x` is not associated with a file

Details

The RasterLayer object must be associated with a file on disk.

You can use `writeRaster` to save a existing file in another format. But if you have a file in a 'raster' format (or similar), you can also only export a header file, and use the data file (.gri) that already exists. The function can write a VRT (GDAL virtual raster) header (.vrt); an ENVI or BIL header (.hdr) file; an Erdas Raw (.raw) header file; an IDRISI (.rdc) or SAGA (.sgrd). This (hopefully) allows for reading the binary data (.gri), perhaps after changing the file extension, in other programs such as ENVI or ArcGIS.

See Also

- `writeRaster`, `writeGDAL`

Examples

```r
class(r) <- raster(system.file("external/test.grd", package="raster"))
class(r) <- writeRaster(r, filename="export.grd", overwrite=TRUE)
hdr(r, format="ENVI")
```
Head

Show the head or tail of a Raster* object

Description

Show the head (first rows/columns) or tail (last rows/columns) of the cell values of a Raster* object.

Usage

head(x, ...)
tail(x, ...)

Arguments

x Raster* object

... Additional arguments: rows=10 and cols=20, to set the maximum number of rows and columns that are shown. For RasterStack and RasterBrick objects there is an additional argument lyr

Value

matrix

See Also

getValueBlock

Examples

r <- raster(nrow=25, ncol=25)
r[] = 1:ncell(r)
head(r)
tail(r, cols=10, rows=5)

Hill Shade

Hill shading

Description

Compute hill shade from slope and aspect layers (both in radians). Slope and aspect can be computed with function terrain.

A hill shade layer is often used as a backdrop on top of which another, semi-transparent, layer is drawn.
Usage

hillShade(slope, aspect, angle=45, direction=0, filename='', normalize=FALSE, ...)

Arguments

- **slope**: RasterLayer object with slope values (in radians)
- **aspect**: RasterLayer object with aspect values (in radians)
- **angle**: The the elevation angle of the light source (sun), in degrees
- **direction**: The direction (azimuth) angle of the light source (sun), in degrees
- **filename**: Character. Optional filename
- **normalize**: Logical. If TRUE, values below zero are set to zero and the results are multiplied with 255
- **...**: Standard additional arguments for writing RasterLayer files

Author(s)

Andrew Bevan, Robert J. Hijmans

References


See Also

terrain

Examples

```r
Not run:
alt <- getData('alt', country='CHE')
slope <- terrain(alt, opt='slope')
aspect <- terrain(alt, opt='aspect')
hill <- hillShade(slope, aspect, 40, 270)
plot(hill, col=grey(0:100/100), legend=FALSE, main='Switzerland')
plot(alt, col=rainbow(25, alpha=0.35), add=TRUE)

End(Not run)
```
hist

Histogram

Description

Create a histogram of the values of a RasterLayer. For large datasets a sample is used.

Usage

```r
S4 method for signature 'Raster'
hist(x, layer, maxpixels=100000, plot=TRUE, main, ...)
```

Arguments

- `x` Raster* object
- `layer` integer (or character) to indicate layer number (or name). Can be used to subset the layers to plot in a multilayer Raster* object
- `maxpixels` integer. To regularly subsample very large objects
- `plot` logical. Plot the histogram or only return the histogram values
- `main` character. Main title(s) for the plot. Default is the value of `names`
- `...` Additional arguments. See under Methods and at `hist`

Value

This function is principally used for the side-effect of plotting a histogram, but it also returns an S3 object of class 'histogram' (invisibly if `plot=TRUE`).

See Also

`pairs`, `boxplot`

Examples

```r
r1 <- raster(nrows=50, ncols=50)
r1 <- setValues(r1, runif(ncell(r1)))
r2 <- setValues(r1, runif(ncell(r1)))
rs <- r1 + r2
rp <- r1 * r2
par(mfrow=c(2,2))
plot(rs, main='sum')
plot(rp, main='product')
hist(rs)
a = hist(rp)
a
```
Description

Create an "image" type plot of a RasterLayer. This is an implementation of a generic function in the graphics package. In most cases the plot function would be preferable because it produces a legend (and has some additional options).

Usage

image(x, ...)
## S4 method for signature 'RasterLayer'
image(x, maxpixels=500000, useRaster=TRUE, ...)

## S4 method for signature 'RasterStackBrick'
image(x, y=1, maxpixels=100000, useRaster=TRUE, main, ...)

Arguments

x
  Raster* object

maxpixels
  integer > 0. Maximum number of cells to use for the plot. If maxpixels < ncell(x), sampleRegular is used before plotting

useRaster
  If TRUE, the rasterImage function is used for plotting. Otherwise the image function is used. This can be useful if rasterImage does not work well on your system (see note)

main
  character. Main plot title

...  
  Any argument that can be passed to image (graphics package)

y
  If x is a RasterStack or RasterBrick: integer, character (layer name(s)), or missing to select which layer(s) to plot

Note

raster uses rasterImage from the graphics package. For unknown reasons this does not work on Windows Server and on a few versions of Windows XP. On that system you may need to use argument useRaster=FALSE to get a plot.

See Also

plot, image, contour

Examples

r <- raster(system.file("external/test.grd", package="raster"))
image(r)
### iniFile

**Read a .ini file**

**Description**

This function reads `.ini` files. These are text file databases that are organized in sections containing pairs of "name = value".

**Usage**

```r
definiFile(filename, token='=', commenttoken=';', aslist=FALSE, case)
```

**Arguments**

- **filename** Character. Filename of the .ini file
- **token** Character. The character that separates the "name" (variable name) from the "value"
- **commenttoken** Character. This token and everything that follows on the same line is considered a 'comment' that is not for machine consumption and is ignored in processing
- **aslist** Logical. Should the values be returned as a list
- **case** Optional. Function that operates on the text, such as `toupper` or `tolower`

**Details**

This function allows for using instrings that have "=" as part of a value (but the token cannot be part of the 'name' of a variable!). Sections can be missing.

**Value**

A n*3 matrix of characters with columns: section, name, value; or a list if aslist=TRUE.

---

### initialize

**Initialize a Raster object with values**

**Description**

Create a new RasterLayer with values reflecting a cell property: 'x', 'y', 'col', 'row', or 'cell'. Alternatively, a function can be used. In that case, cell values are initialized without reference to pre-existing values. E.g., initialize with a random number (`fun=runif`). While there are more direct ways of achieving this for small objects (see examples) for which a vector with all values can be created in memory, the init function will also work for Raster* objects with many cells.

**Usage**

```r
init(x, fun, filename="", ...)
```
Arguments

- **x**: Raster* object
- **fun**: function to be applied. This must be a function that can take the number of cells as a single argument to return a vector of values with a length equal to the number of cells, such as `fun=runif`. You can also supply one of the following character values: 'x', 'y', 'row', 'col', or 'cell' to get the x or coordinate, row, col or cell number.
- **filename**: character. Optional output filename
- **...**: Additional arguments as for `writeRaster`

Value

RasterLayer

Note

For backwards compatibility, the character values valid for **fun** can also be passed as named argument `v`.

Examples

```r
r <- raster(ncols=36, nrows=18)
x <- init(r, fun='cell')
y <- init(r, fun=runif)

there are different ways to set all values to 1
for large rasters:
set1f <- function(x){rep(1, x)}
z1 <- init(r, fun=set1f, filename='test.grd', overwrite=TRUE)

This is equivalent to (but not memory safe):
z2 <- setValues(r, rep(1, ncell(r)))

or
r[] <- rep(1, ncell(r))

or
r[] <- 1
```
Description

Make a RasterLayer with interpolated values using a fitted model object of classes such as `gstat` (gstat package) or `Krige` (fields package). That is, these are models that have location ('x' and 'y', or 'longitude' and 'latitude') as independent variables. If x and y are the only independent variables provide an empty (no associated data in memory or on file) RasterLayer for which you want predictions. If there are more spatial predictor variables provide these as a Raster* object in the first argument of the function. If you do not have x and y locations as implicit predictors in your model you should use `predict` instead.

Usage

```r
S4 method for signature 'Raster'
interpolate(object, model, filename="", fun=predict, xyOnly=TRUE,
 xyNames=c('x', 'y'), ext=NULL, const=NULL, index=1, na.rm=TRUE, debug.level=1, ...)
```

Arguments

- `object`: Raster* object
- `model`: model object
- `filename`: character. Output filename (optional)
- `fun`: function. Default value is 'predict', but can be replaced with e.g. 'predict.se' (depending on the class of the model object)
- `xyOnly`: logical. If TRUE, values of the Raster* object are not considered as co-variables; and only x and y (longitude and latitude) are used. This should match the model
- `xyNames`: character. variable names that the model uses for the spatial coordinates. E.g., c('longitude', 'latitude')
- `ext`: Extent object to limit the prediction to a sub-region of x
- `const`: data.frame. Can be used to add a constant for which there is no Raster object for model predictions. This is particulary useful if the constant is a character-like factor value
- `index`: integer. To select the column if `predict.model` returns a matrix with multiple columns
- `na.rm`: logical. Remove cells with NA values in the predictors before solving the model (and return NA for those cells). In most cases this will not affect the output. This option prevents errors with models that cannot handle NA values
- `debug.level`: for gstat models only. See ?
- `...`: additional arguments passed to the predict.'model' function

Value

Raster* object

See Also

`predict, predict.gstat, Tps`
Examples

## Not run:
## Thin plate spline interpolation with x and y only
# some example data
r <- raster(system.file("external/test.grd", package="raster"))
ra <- aggregate(r, 10)
xy <- data.frame(xyFromCell(ra, 1:nCell(ra)))
v <- getValues(ra)

```r
Thin plate spline model
library(fields)
tps <- Tps(xy, v)
p <- raster(r)

use model to predict values at all locations
p <- interpolate(p, tps)
p <- mask(p, r)
```

plot(p)
## change the fun from predict to fields::predictSE to get the TPS standard error
se <- interpolate(p, tps, fun=predictSE)
se <- mask(se, r)
plot(se)

## another variable; let's call it elevation
```r
elevation <- (init(r, 'x') * init(r, 'y')) / 100000000
names(elevation) <- 'elev'
elevation <- mask(elevation, r)
```

z <- extract(elevation, xy)

# add as another independent variable
xyz <- cbind(xy, z)
tps2 <- Tps(xyz, v)
p2 <- interpolate(elevation, tps2, xyOnly=FALSE)

# as a linear covariate
tps3 <- Tps(xy, v, Z=z)

# Z is a separate argument in Krig.predict, so we need a new function
# Internally (in interpolate) a matrix is formed of x, y, and elev (Z)

```r
pfun <- function(model, x, ...) {
predict(model, x[,1:2], Z=x[,3], ...)
}
p3 <- interpolate(elevation, tps3, xyOnly=FALSE, fun=pfun)
```

### gstat examples
library(gstat)
data(meuse)

## inverse distance weighted (IDW)
intersect

```r
r <- raster(system.file("external/test.grd", package="raster"))
data(meuse)
mg <- gstat(id = "zinc", formula = zinc~1, locations = ~x+y, data=meuse, nmax=7, set=list(idp = .5))
z <- interpolate(r, mg)
z <- mask(z, r)

kriging
coordinates(meuse) <- ~x+y
projection(meuse) <- projection(r)

ordinary kriging
v <- variogram(log(zinc)-1, meuse)
m <- fit.variogram(v, vgm(1, "Sph", 300, 1))
gOK <- gstat(NULL, "log.zinc", log(zinc)-1, meuse, model=m)
OK <- interpolate(r, gOK)

examples below provided by Maurizio Marchi
universal kriging
vu <- variogram(log(zinc)-elev, meuse)
mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))
gUK <- gstat(NULL, "log.zinc", log(zinc)-elev, meuse, model=mu)
names(r) <- 'elev'
UK <- interpolate(r, gUK, xyOnly=FALSE)

co-kriging
gCoK <- gstat(NULL, 'log.zinc', log(zinc)-1, meuse)
gCoK <- gstat(gCoK, 'elev', elev-1, meuse)
gCoK <- gstat(gCoK, 'cadmium', cadmium-1, meuse)
gCoK <- gstat(gCoK, 'copper', copper~1, meuse)
cov <- variogram(gCoK)
plot(cov, type='b', main='Co-variogram')
cov.fit <- fit.lmc(cov, gCoK, vgm(model='Sph', range=1000))
cov.fit
plot(cov, cov.fit, main='Fitted Co-variogram')
cok <- interpolate(r, cov.fit)
plot(cok)

End(Not run)
```

---

**Description**

It depends on the classes of the `x` and `y` what is returned.

If `x` is a `Raster*` object the extent of `y` is used, irrespective of the class of `y`, and a `Raster*` is returned. This is equivalent to `crop`. 

**intersect**

- **Intersect**

- **Description**
  
  It depends on the classes of the `x` and `y` what is returned.

  If `x` is a `Raster*` object the extent of `y` is used, irrespective of the class of `y`, and a `Raster*` is returned. This is equivalent to `crop`. 
If \( x \) is a Spatial\* object, a new Spatial\* object is returned. If \( x \) or \( y \) has a data.frame, these are also returned (after merging if necessary) as part of a Spatial\*DataFrame, and this is how \( \text{intersect} \) is different from \text{rgeos}::\text{gIntersection} on which it depends.

Intersecting SpatialPoints\* with SpatialPoints\* uses the extent (bounding box) of \( y \) to get the intersection. Intersecting of SpatialPoints\* and SpatialLines\* is not supported because of numerical inaccuracies with that. You can use \text{buffer}, to create SpatialPoygons\* from SpatialLines\* and use that in intersect. Or try \text{gIntersection}.

### Usage

```r
S4 method for signature 'Extent,ANY'
intersect(x, y)

S4 method for signature 'Raster,ANY'
intersect(x, y)

S4 method for signature 'SpatialPoints,ANY'
intersect(x, y)

S4 method for signature 'SpatialPolygons,SpatialPolygons'
intersect(x, y)

S4 method for signature 'SpatialPolygons,SpatialLines'
intersect(x, y)

S4 method for signature 'SpatialPolygons,SpatialPoints'
intersect(x, y)

S4 method for signature 'SpatialLines,SpatialPolygons'
intersect(x, y)

S4 method for signature 'SpatialLines,SpatialLines'
intersect(x, y)
```

### Arguments

- \( x \) Extent, Raster\*, SpatialPolygons\*, SpatialLines\* or SpatialPoints\* object
- \( y \) same as for \( x \)

### Value

- if \( x \) is an Extent object: Extent
- if \( x \) is a Raster\* object: Raster\*
- if \( x \) is a SpatialPoints\* object: SpatialPoints\*
- if \( x \) is a SpatialPolygons\* object: SpatialPolygons\*
- if \( x \) is a SpatialLines\* object and if \( y \) is a SpatialLines\* object: SpatialPoints\*
- if \( x \) is a SpatialLines\* object and if \( y \) is a SpatialPolygons\* object: SpatialLines\*
isLonLat

Is this longitude/latitude data?

Description

Test whether a Raster* or other object has a longitude/latitude coordinate reference system (CRS) by inspecting the PROJ.4 coordinate reference system description. couldBeLonLat also returns TRUE if the CRS is NA but the x coordinates are within -365 and 365 and the y coordinates are within -90.1 and 90.1.

Usage

isLonLat(x)
couldBeLonLat(x, warnings=TRUE)

Arguments

x Raster* object

warnings logical. If TRUE, a warning is given if the CRS is NA or when the CRS is longitude/latitude but the coordinates do not match that

Value

Logical
Examples

```r
r <- raster()
isLonLat(r)
projection(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"
isLonLat(r)
```

Write a KML or KMZ file

Description

Export raster data to a KML file and an accompanying PNG image file. Multi-layer objects can be used to create an animation. The function attempts to combine these into a single (and hence more convenient) KMZ file (a zip file containing the KML and PNG files).

See package plotKML for more advanced functionality

Usage

```r
KML(x, filename, col=rev(terrain.colors(255)),
 colNA=NA, maxpixels=100000, blur=1, zip='', overwrite=FALSE, ...)
```

```r
KML(x, filename, time=NULL, col=rev(terrain.colors(255)),
 colNA=NA, maxpixels=100000, blur=1, zip='', overwrite=FALSE, ...)
```

```r
KML(x, filename, zip='', overwrite=FALSE, ...)
```

Arguments

- `x` Raster* object
- `filename` output filename
- `time` character vector with time labels for multilayer objects. The length of this vector should be nLayers(x) to indicate "when" or nLayers(x)+1 to indicate "begin-end"
- `col` color scheme to be used (see `image`)
- `colNA` The color to use for the background (default is transparent)
- `maxpixels` maximum number of pixels. If ncell(raster) > maxpixels, sampleRegular is used to reduce the number of pixels
- `blur` Integer (default=1). Higher values help avoid blurring of isolated pixels (at the expense of a png file that is blur^2 times larger)
- `zip` If there is no zip program on your path (on windows), you can supply the full path to a zip.exe here, in order to make a KMZ file
- `overwrite` logical. If TRUE, overwrite the file if it exists
- `...` If x is a Raster* object, additional arguments that can be passed to `image`
layerize

Value

None. Used for the side-effect files written to disk.

Author(s)

This function was adapted for the raster package by Robert J. Hijmans, with ideas from Tony Fischbach, and based on functions in the maptools package by Duncan Golicher, David Forrest and Roger Bivand.

Examples

```r
Not run:
Meuse data from the sp package
data(meuse.grid)
b <- rasterFromXYZ(meuse.grid)
projection(b) <- "+init=epsg:28992"
transform to longitude/latitude
p <- projectRaster(b, crs="+proj=longlat +datum=WGS84", method='ngb')
KML(p, file='meuse.kml')

End(Not run)
```

Description

Create a RasterBrick with a Boolean layer for each class (value, or subset of the values) in a RasterLayer. For example, if the cell values of a RasterLayer indicate what vegetation type they are, this function will create a layer (presence/absence; dummy variable) for each of these classes. Classes and cell values are always truncated to integers.

You can supply a second spatially overlapping RasterLayer with larger cells (do not use smaller cells!). In this case the cell values are counts for each class. A similar result might be obtained more efficiently by using layerize with a single RasterLayer followed by aggregate(x, , sum).

Usage

```r
S4 method for signature 'RasterLayer,missing'
layerize(x, classes=NULL, falseNA=FALSE, filename='', ...)

S4 method for signature 'RasterLayer,RasterLayer'
layerize(x, y, classes=NULL, filename='', ...)
```
layerStats

Arguments

- **x**: RasterLayer
- **y**: RasterLayer or missing
- **classes**: numeric. The values (classes) for which layers should be made. If NULL all classes are used
- **falseNA**: logical. If TRUE, cells that are not of the class represented by a layer are NA rather than FALSE
- **filename**: character. Output filename (optional)
- **...**: Additional arguments as for writeRaster

Value

RasterBrick

Examples

```r
r <- raster(nrow=36, ncol=72)
r[] <- round(runif(ncell(r)) * 5)
r[1:5] <- NA
b <- layerize(r)

r2 <- raster(nrow=10, ncol=10)
b2 <- layerize(r, r2)
```

Description

Compute correlation and (weighted) covariance for multi-layer Raster objects. Like `cellStats` this function returns a few values, not a Raster* object (see `summaryMethods` for that).

Usage

```r
layerStats(x, stat, w, asSample=TRUE, na.rm=FALSE, ...)
```

Arguments

- **x**: RasterStack or RasterBrick for which to compute a statistic
- **stat**: Character. The statistic to compute: either 'cov' (covariance), 'weighted.cov' (weighted covariance), or 'pearson' (correlation coefficient)
- **w**: RasterLayer with the weights (should have the same extent, resolution and number of layers as x) to compute the weighted covariance
- **asSample**: Logical. If TRUE, the statistic for a sample (denominator is n-1) is computed, rather than for the population (denominator is n)
- **na.rm**: Logical. Should missing values be removed?
- **...**: Additional arguments (none implemented)
localFun

Value

List with two items: the correlation or (weighted) covariance matrix, and the (weighted) means.

Author(s)

Jonathan A. Greenberg & Robert Hijmans. Weighted covariance based on code by Mort Canty

References

For the weighted covariance:


See Also
cellStats, covNwt, weightedNmean

Examples

b <- brick(system.file("external/rlogo.grd", package="raster"))
layerStats(b, 'pearson')
layerStats(b, 'cov')

# weigh by column number
w <- init(b, v='col')
layerStats(b, 'weighted.cov', w=w)

localFun

Local functions

Description

Local functions for two RasterLayer objects (using a focal neighborhood)

Usage

## S4 method for signature 'RasterLayer,RasterLayer'
localFun(x, y, ngb=5, fun, filename='', ...)


Arguments

x RasterLayer or RasterStack/RasterBrick
y object of the same class as x, and with the same number of layers
ngb integer. rectangular neighbourhood size. Either a single integer or a vector of
two integers c(rows, cols), such as c(3,3) to have a 3 x 3 focal window
fun function
filename character. Output filename (optional)
... additional arguments as for writeRaster

Value

RasterLayer

Note

The first two arguments that fun needs to accept are vectors representing the local cells of Raster-
Layer x and y (each of length ngb * ngb). It also must have an ellipsis (…) argument

See Also

corLocal, localFun

Examples

set.seed(8)
b <- stack(system.file("external/rlogo.grd", package="raster"))
x <- flip(b[[2]], 'y') + runif(ncell(b))
y <- b[[1]] + runif(ncell(b))

f <- localFun(x, y, fun=cor)

## Not run:
# local regression:
rfun <- function(x, y, ...) {
m <- lm(y~x)
# return R^2
summary(m)$r.squared
}

ff <- localFun(x, y, fun=rfun)
plot(f, ff)

## End(Not run)
Description

The following logical (boolean) operators are available for computations with RasterLayer objects:

\&, |, and !

The following functions are available with a Raster* argument:

is.na, is.nan, is.finite, is.infinite

Value

A Raster object with logical (TRUE/FALSE values)

Note

These are convenient operators/functions that are most useful for relatively small RasterLayers for which all the values can be held in memory. If the values of the output RasterLayer cannot be held in memory, they will be saved to a temporary file. In that case it could be more efficient to use calc instead.

See Also

Math-methods, overlay, calc

Examples

```r
r <- raster(ncols=10, nrows=10)
r[] <- runif(ncell(r)) * 10
r1 <- r < 3 | r > 6
r2 <- !r1
r3 <- r >= 3 & r <= 6
r4 <- r2 == r3
r[r>3] <- NA
r5 <- is.na(r)
r[1:5]
r1[1:5]
r2[1:5]
r3[1:5]
```
Description

Create a new Raster* object that has the same values as x, except for the cells that are NA (or other maskvalue) in a 'mask'. These cells become NA (or other updatevalue). The mask can be either another Raster* object of the same extent and resolution, or a Spatial* object (e.g. SpatialPolygons) in which case all cells that are not covered by the Spatial object are set to updatevalue. You can use inverse=TRUE to set the cells that are not NA (or other maskvalue) in the mask, or not covered by the Spatial* object, to NA (or other updatevalue).

Usage

```r
S4 method for signature 'RasterLayer,RasterLayer'
mask(x, mask, filename="", inverse=FALSE, maskvalue=NA, updatevalue=NA, updateNA=FALSE, ...)

S4 method for signature 'RasterStackBrick,RasterLayer'
mask(x, mask, filename="", inverse=FALSE, maskvalue=NA, updatevalue=NA, updateNA=FALSE, ...)

S4 method for signature 'RasterLayer,RasterStackBrick'
mask(x, mask, filename="", inverse=FALSE, maskvalue=NA, updatevalue=NA, updateNA=FALSE, ...)

S4 method for signature 'RasterStackBrick,RasterStackBrick'
mask(x, mask, filename="", inverse=FALSE, maskvalue=NA, updatevalue=NA, updateNA=FALSE, ...)

S4 method for signature 'Raster,Spatial'
mask(x, mask, filename="", inverse=FALSE, updatevalue=NA, updateNA=FALSE, ...)
```

Arguments

- `x` Raster* object
- `mask` Raster* object or a Spatial* object
- `filename` character. Optional output filename
- `inverse` logical. If TRUE, areas on mask that are _not_ the maskvalue are masked
- `maskvalue` numeric. The value in mask that indicates the cells of x that should become updatevalue (default = NA)
- `updatevalue` numeric. The value that cells of x should become if they are not covered by mask (and not NA)
- `updateNA` logical. If TRUE, NA values outside the masked area are also updated to the the updatevalue (only relevant if the updatevalue is not NA)
Value matching for Raster* objects

**Description**

`match` returns a Raster* object with the position of the matched values. The cell values are the index of the table argument.

%in% returns a logical Raster* object indicating if the cells values were matched or not.

**Usage**

```r
match(x, table, nomatch = NA_integer_, incomparables = NULL)
```

**Arguments**

- `x`: Raster* object
- `table`: vector of the values to be matched against
- `nomatch`: the value to be returned in the case when no match is found. Note that it is coerced to integer
- `incomparables`: a vector of values that cannot be matched. Any value in x matching a value in this vector is assigned the nomatch value. For historical reasons, FALSE is equivalent to NULL.

**Examples**

```r
r <- raster(ncol=10, nrow=10)
m <- raster(ncol=10, nrow=10)
r[] <- runif(ncell(r)) * 10
m[] <- runif(ncell(r))
m[m < 0.5] <- NA
mr <- mask(r, m)

m2 <- m > .7
mr2 <- mask(r, m2, maskvalue=TRUE)
```
### Math-methods

**Value**

Raster* object

**See Also**

calc, match

**Examples**

```r
r <- raster(nrow=10, ncol=10)
r[] <- 1:100
m <- match(r, c(5:10, 50:55))
n <- r %in% c(5:10, 50:55)
```

---

**Mathematical functions**

**Description**

Generic mathematical functions that can be used with a Raster* object as argument:

```
"abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin",
"cumprod", "cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin",
"asinh", "atan", "atanh", "exp", "expm1", "cos", "cosh", "sin", "sinh", "tan", "tanh".
```

**Note**

You can use the, somewhat more flexible, function `calc` instead of the Math-methods.

**See Also**

Arith-methods, calc, overlay, atan2

**Examples**

```r
r1 <- raster(nrow=10, ncol=10)
r1 <- setValues(r1, runif(ncell(r1)) * 10)
r2 <- sqrt(r1)
s <- stack(r1, r2) - 5
b <- abs(s)
```
merge

Merge Raster* objects

Description

Merge Raster* objects to form a new Raster object with a larger spatial extent. If objects overlap, the values get priority in the same order as the arguments, but NA values are ignored (except when overlap=FALSE). See subs to merge a Raster* object and a data.frame.

Usage

```r
S4 method for signature 'Raster,Raster'
merge(x, y, ..., tolerance=0.05, filename="", overlap=TRUE, ext=NULL)

S4 method for signature 'RasterStackBrick,missing'
merge(x, ..., tolerance=0.05, filename="", ext=NULL)

S4 method for signature 'Extent,ANY'
merge(x, y, ...)
```

Arguments

- `x` Raster* or Extent object
- `y` Raster* if `x` is a Raster* object (or missing). If `x` is an Extent, `y` can be an Extent or object from which an Extent can be extracted
- `...` additional Raster or Extent objects (and/or arguments for writing files as in writeRaster)
- `tolerance` numeric. permissible difference in origin (relative to the cell resolution). See all.equal
- `filename` character. Output filename (optional)
- `overlap` logical. If FALSE values of overlapping objects are based on the first layer, even if they are NA
- `ext` Extent object (optional) to limit the output to that extent

Details

The Raster objects must have the same origin and resolution. In areas where the Raster objects overlap, the values of the Raster object that is first in the sequence of arguments will be retained. If you would rather use the average of cell values, or do another computation, you can use mosaic instead of merge.

Value

RasterLayer or RasterBrick
Examples

```r
r1 <- raster(xmx=-150, ymn=60, ncols=30, nrows=30)
r1[] <- 1:ncell(r1)
r2 <- raster(xmn=-100, xmx=-50, ymx=50, ymn=30)
res(r2) <- c(xres(r1), yres(r1))
r2[] <- 1:ncell(r2)
rm <- merge(r1, r2)
```

# if you have many RasterLayer objects in a list
# you can use do.call:
x <- list(r1, r2)
# add arguments such as filename
# x$filename <- 'test.tif'
m <- do.call(merge, x)

---

### metadata

<table>
<thead>
<tr>
<th>Metadata</th>
</tr>
</thead>
</table>

**Description**

Get or set a metadata to a Raster object

**Usage**

```r
metadata(x)
metadata(x) <- value
```

**Arguments**

- `x` : Raster* object
- `value` : list with named elements. Each element may be another list of named elements (but these nested lists are not allowed to be lists themselves)

**Value**

Raster* object or list

**Note**

The metadata can contain single values or vectors of basic data types (character, integer, numeric) and Date. Some other types may also be supported. You cannot use a matrix or data.frame as a meta-data element.
Examples

```r
r <- raster(nc=10, nr=10)
r[] <- 1:ncell(r)

m <- list(wave=list(a=1, b=2, c=c('cool', 'important')), that=list(red='44', blue=1:5,
days=as.Date(c('2014-1-15','2014-2-15'))), this='888 miles from here', today=NA)

metadata(r) <- m
x <- writeRaster(r, 'test.grd', overwrite=TRUE)
metax <- metadata(x)

identical(metax, m)

Not run:
nested too deep
badmetal <- list(wave=list(a=1, b=2, c='x'), that=list(red='44', blue=list(bad=5)))
metadata(r) <- badmetal

missing names
badmeta2 <- list(wave=list(1, 2, c='x'), that=list(red='44', blue=14), this='8m')
metadata(r) <- badmeta2

matrix not allowed
badmeta3 <- list(wave=list(a=1, b=matrix(1:4, ncol=2), c='x'), that=list(red='44'))
metadata(r) <- badmeta3

End(Not run)
```

---

**modal**

**modal value**

### Description

Compute the mode for a vector of numbers, or across raster layers. The mode, or modal value, is the most frequent value in a set of values.

### Usage

```r
S4 method for signature 'ANY'
modal(x, ..., ties='random', na.rm=FALSE, freq=FALSE)

S4 method for signature 'Raster'
modal(x, ..., ties='random', na.rm=FALSE, freq=FALSE)
```

### Arguments

- **x**
  - vector of numbers (typically integers), characters, logicals, or factors, or a Raster* object
... additional argument of the same type as x

ties character. Indicates how to treat ties. Either 'random', 'lowest', 'highest', 'first', or 'NA'

na.rm logical. If TRUE, NA values are ignored. If FALSE, NA is returned if x has any NA values

freq return the frequency of the modal value, instead of the modal value

Value

vector or RasterLayer. The vector has length 1 and is of the same type as x, except when x is a factor and additional arguments (values) are supplied, in which case the values are coerced to characters and a character value is returned.

Examples

data <- c(0,1,2,3,3,3,3,4,4,4,5,5,5,6,7,7,8,9,NA)
modal(data, na.rm=TRUE)

mosaic

Merge Raster* objects using a function for overlapping areas

Description

Mosaic Raster* objects to form a new object with a larger spatial extent. A function is used to compute cell values in areas where layers overlap (in contrast to the merge function which uses the values of the 'upper' layer). All objects must have the same origin, resolution, and coordinate reference system.

Usage

## S4 method for signature 'Raster,Raster'
mosaic(x, y, ..., fun, tolerance=0.05, filename="")

Arguments

x Raster* object
y Raster* object
... Additional Raster or Extent objects (and/or arguments for writing files as in writeRaster)
fun Function. E.g. mean, min, or max. Must be a function that accepts a 'na.rm' argument
tolerance Numeric. permissible difference in origin (relative to the cell resolution). See all.equal
filename Character. Output filename (optional)
Details

The Raster objects must have the same origin and resolution.

Value

RasterLayer or RasterBrick object.

See Also

merge, extend

Examples

r <- raster(ncol=100, nrow=100)
r1 <- crop(r, extent(-10, 11, -10, 11))
r2 <- crop(r, extent(0, 20, 0, 20))
r3 <- crop(r, extent(9, 30, 9, 30))

r1[] <- 1:ncell(r1)
r2[] <- 1:ncell(r2)
r3[] <- 1:ncell(r3)

m1 <- mosaic(r1, r2, r3, fun=mean)

s1 <- stack(r1, r1*2)
s2 <- stack(r2, r2/2)
s3 <- stack(r3, r3*4)
m2 <- mosaic(s1, s2, s3, fun=min)

# if you have a list of Raster objects, you can use do.call
x <- list(r1, r2, r3)
names(x)[1:2] <- c('x', 'y')
x$fun <- mean
x$na.rm <- TRUE

y <- do.call(mosaic, x)

Description

Helper function to compute 'moving' functions, such as the 'moving average'.

Usage

movingFun(x, n, fun=mean, type='around', circular=FALSE, na.rm=FALSE)
**Arguments**

- **x**: A vector of numbers
- **n**: Size of the 'window', i.e. the number of sequential elements to use in the function
- **fun**: A function like mean, min, max, sum
- **type**: Character. One of 'around', 'to', or 'from'. The choice indicates which values should be used in the computation. The focal element is always used. If type is 'around', the other elements are before and after the focal element. Alternatively, you can select the elements preceding the focal element ('to') or those coming after it 'from'. For example, to compute the movingFun with n=3 for element 5 of a vector; 'around' used elements 4,5,6; 'to' used elements 3,4,5, and 'from' uses elements 5,6,7
- **circular**: Logical. If TRUE, the data are considered to have a circular nature (e.g. months of the year), and the last elements in vector x are used in the computation of the moving function of the first element(s) of the vector, and the first elements are used in the computation of the moving function for the last element(s)
- **na.rm**: Logical. If TRUE, NA values should be ignored (by fun)

**Value**

Numeric

**Author(s)**

Robert J. Hijmans, inspired by Diethelm Wuertz’ rollFun function in the fTrading package

**Examples**

```r
movingFun(1:12, 3, mean)
movingFun(1:12, 3, mean, 'to')
movingFun(1:12, 3, mean, 'from')
movingFun(1:12, 3, mean, circular=TRUE)

v <- c(0,1,2,3,3,3,4,4,4,5,5,6,7,7,8,9,NA)
movingFun(v, n=5)
movingFun(v, n=5, na.rm=TRUE)
```

**names**

*Names of raster layers*

**Description**

Get or set the names of the layers of a Raster* object
Usage

```r
S4 method for signature 'Raster'
names(x)

S4 replacement method for signature 'Raster'
names(x) <- value

S4 method for signature 'Raster'
labels(object)
```

Arguments

- `x` Raster* object
- `object` Raster* object
- `value` character (vector)

Value

Character

See Also

`nlayers`, `bands`

Examples

```r
r <- raster(ncols=5, nrows=5)
r[] <- 1:ncell(r)
s <- stack(r, r, r)
nlayers(s)
names(s)
names(s) <- c('a', 'b', 'c')
names(s)[2] <- 'hello world'
names(s)
s
labels(s)
```

---

NAvalue | *Set the NA value of a RasterLayer*

Description

NAvalue returns the value that is used to write NA values to disk (in 'raster' type files). If you set the NA value of a Raster* object, this value will be interpreted as NA when reading the values from a file. Values already in memory will not be affected.

If the NA value is smaller than zero, all values smaller or equal to that number will be set to NA.
Usage

NAvalue(x) <- value
NAvalue(x)

Arguments

x A Raster object
value the value to be interpreted as NA; set this before reading the values from the file. Integer values are matched exactly; for decimal values files any value <= the value will be interpreted as NA

Value

Returns or set the NA value used for storage on disk.

Examples

r1 <- raster(system.file("external/rlogo.grd", package="raster"))
r2 <- r1
NAvalue(r2)
NAvalue(r2) <- 255
#plot(r1)
#x11()
#plot(r2)

ncell

Number or rows, columns, and cells of a Raster* object

Description

Get the number of rows, columns, or cells of a Raster* object.

Usage

ncol(x)
nrow(x)
ncell(x)
ncol(x) <- value
nrow(x) <- value

Arguments

x a Raster object
value row or column number (integer > 0)
Value

Integer

See Also

dim, extent, res

Examples

r <- raster()
nCell(r)
ncol(r)
nrow(r)
dim(r)

nrow(r) <- 18
ncol(r) <- 36
# equivalent to
dim(r) <- c(18, 36)

---

<table>
<thead>
<tr>
<th>nlayers</th>
<th>Number of layers</th>
</tr>
</thead>
</table>

Description

Get the number of layers in a Raster* object, typically used with a (multilayer) RasterStack or RasterBrick object

Usage

nlayers(x)

Arguments

x Raster* object

Value

integer

See Also

names
Options

Examples

```r
r <- raster(ncols=10, nrows=10)
r[] <- 1:ncell(r)
s <- stack(r, r, r)
nlayers(s)
s <- stack(s, s)
nlayers(s)
s <- dropLayer(s, 2:3)
nlayers(s)
```

Description

Set, inspect, reset, save a number of global options used by the raster package.

Most of these options are used when writing files to disk. They can be ignored by specific functions if the corresponding argument is provided as an argument to these functions.

The default location is returned by `rasterTmpDir`. It is the same as that of the R temp directory but you can change it (for the current session) with `rasterOptions(tmpdir="path").

To permanently set any of these options, you can add them to `<your R installation>/etc/Rprofile.site`. For example, to change the default directory used to save temporary files, add a line like this: `options(rasterTmpDir='c:/temp/')` to that file. All temporary raster files in that folder that are older than 24 hrs are deleted when the raster package is loaded.

Function `tmpDir` returns the location of the temporary files.

Usage

```r
rasterOptions(format, overwrite, datatype, tmpdir, tmptime, progress, timer, chunksize, maxmemory, todisk, setfileext, tolerance, standardnames, depracatedwarnings, addheader, default=FALSE)
```

tmpDir(create=TRUE)

Arguments

- `format` character. The default file format to use. See `writeFormats`
- `overwrite` logical. The default value for overwriting existing files. If TRUE, existing files will be overwritten
- `datatype` character. The default data type to use. See `dataType`
- `tmpdir` character. The default location for writing temporary files; See `rasterTmpFile`
- `tmptime` number > 1. The number of hours after which a temporary file will be deleted. As files are deleted when loading the raster package, this option is only useful if you save this option so that it is loaded when starting a new session
progress character. Valid values are "text", "window" and "" (the default in most functions, no progress bar)

timer Logical. If TRUE, the time it took to complete the function is printed

chunksize integer. Maximum number of cells to read/write in a single chunk while processing (chunk by chunk) disk based Raster* objects

maxmemory integer. Maximum number of cells to read into memory. I.e., if a Raster* object has more than this number of cells, canProcessInMemory will return FALSE

todisk logical. For debugging only. Default is FALSE and should normally not be changed. If TRUE, results are always written to disk, even if no filename is supplied (a temporary filename is used)

setfileext logical. Default is TRUE. If TRUE, the file extension will be changed when writing (if known for the file type). E.g. GTiff files will be saved with the .tif extension

tolerance numeric. The tolerance used when comparing the origin and resolution of Raster* objects. Expressed as the fraction of a single cell. This should be a number between 0 and 0.5

standardnames logical. Default is TRUE. Should names be standardized to be syntactically valid names (using make.names)

depracatedwarnings logical. If TRUE (the default) a warning is generated when a depracated (obsolete) function is used

addheader character. If not equal to "" (the default) an additional header file is written when a raster format file (grd/gri) is written. Supported formats are as in hdr

default logical. If TRUE, all options are set to their default values

create logical. If TRUE, the temporary files directory is created if it does not exist

Value

list of the current options (invisibly). If no arguments are provided the options are printed.

See Also

options, rasterTmpFile

Examples

```r
Not run:
rasterOptions()
rasterOptions(chunksize=2e+07)

End(Not run)
```
Description

Origin returns (or sets) the coordinates of the point of origin of a Raster* object. This is the point closest to (0, 0) that you could get if you moved towards that point in steps of the x and y resolution.

Usage

origin(x, ...)  
origin(x) <- value

Arguments

x Raster* object  
value numeric vector of length 1 or 2  
... additional arguments. None implemented

Value

A vector of two numbers (x and y coordinates), or a changed origin for x.

See Also

extent

Examples

r <- raster(xmn=-0.5, xmx = 9.5, ncol=10)  
origin(r)  
r  
origin(r) <- 0  
r

overlay Overlay Raster objects
Description

Create a new Raster* object, based on two or more Raster* objects. (You can also use a single object, but perhaps calc is what you are looking for in that case).

You should supply a function fun to set the way that the RasterLayers are combined. The number of arguments in the function must match the number of Raster objects (or take any number). For example, if you combine two RasterLayers you could use multiply: fun=function(x,y){return(x*y)} percentage: fun=function(x,y){return(100 * x / y)}. If you combine three layers you could use fun=function(x,y,z){return((x + y) * z)}

Note that the function must work for vectors (not only for single numbers). That is, it must return the same number of elements as its input vectors. Alternatively, you can also supply a function such as sum, that takes n arguments (as ‘...’), and perhaps also has a na.rm argument, like in sum(..., na.rm).

If a single multi-layer object is provided, its layers are treated as individual RasterLayer objects if the argument “unstack=TRUE” is used. If multiple objects are provided, they should have the same number of layers, or it should be possible to recycle them (e.g., 1, 3, and 9 layers, which would return a RasterBrick with 9 layers).

Usage

## S4 method for signature 'Raster,Raster'
overlay(x, y, ..., fun, filename='', recycle=TRUE, forcefun=FALSE)

## S4 method for signature 'Raster,missing'
overlay(x, y, ..., fun, filename='', unstack=TRUE, forcefun=FALSE)

Arguments

x Raster* object

y Raster* object, or missing (only useful if x has multiple layers)

... Additional Raster objects (and/or arguments for writing files as in writeRaster)

fun Function to be applied. When using RasterLayer objects, the number of arguments of the function should match the number of Raster objects, or it should take any number of arguments. When using multi-layer objects the function should match the number of layers of the RasterStack/Brick object (unless unstack=FALSE)

filename Character. Output filename (optional)

recycle Logical. Should layers from Raster objects with fewer layers be recycled?

unstack Logical. Should layers be unstacked before computation (i.e. does the fun refer to individual layers in a multilayer object)?

forcefun Boolean. If TRUE, overlay will not attempt to internally use apply (it is rarely necessary to use this argument)
Details

Instead of the overlay function you can also use arithmetic functions such as *, /, +, - with Raster objects (see examples). In that case you cannot specify an output filename. Moreover, the overlay function should be more efficient when using large data files that cannot be loaded into memory, as the use of the complex arithmetic functions might lead to the creation of many temporary files.

While you can supply functions such as sum or mean, it would be more direct to use the Raster* objects as arguments to those functions (e.g. sum(r1, r2, r3))

See rasterize and extract for "overlays" involving Raster* objects and polygons, lines, or points.

Value

Raster* object

See Also

calc, Arith-methods

Examples

r <- raster(ncol=10, nrow=10)
r1 <- init(r, fun=runif)
r2 <- init(r, fun=runif)
r3 <- overlay(r1, r2, fun=function(x,y)(return(x+y)))

# long version for multiplication
r4 <- overlay(r1, r2, fun=function(x,y){x*y})

# use the individual layers of a RasterStack to get a RasterLayer
s <- stack(r1, r2)
r5 <- overlay(s, fun=function(x,y) x*y )
# equivalent to
r5c <- calc(s, fun=function(x) x[1]*x[2] )

# Combine RasterStack and RasterLayer objects (s2 has four layers.
# r1 (one layer) and s (two layers) are recycled)
s2 <- stack(r1, r2, r3, r4)
b <- overlay(r1, s, s2, fun=function(x,y,z) return(x*y*z) )

# use a single RasterLayer (same as calc function)
r6 <- overlay(r1, fun=sqrt)

# multiplication with more than two layers
# (make sure the number of RasterLayers matches the arguments of 'fun')
r7 <- overlay(r1, r2, r3, r4, fun=function(a,b,c,d)(return(a*b*c*d)) )
# equivalent function, efficient if values can be loaded in memory
r8 <- r1 * r2 + r3 * r4

# Also works with multi-layer objects.
s1 <- stack(r1, r2, r3)
x <- overlay(s1, s1, fun=function(x,y)x+y+5)
# in this case the first layer of the shorter object is recycled.
# i.e., s2 is treated as `stack(r1, r3, r1)`
s2 <- stack(r1, r3)
y <- overlay(s1, s2, fun=sum)

---

pairs

## Pairs plot (matrix of scatterplots)

### Description

Pair plots of layers in a `RasterStack` or `RasterBrick`. This is a wrapper around graphics function `pairs`.

### Usage

```r
S4 method for signature 'RasterStackBrick'
pairs(x, hist=TRUE, cor=TRUE, use="pairwise.complete.obs", maxpixels=100000, ...)
```

### Arguments

- `x`: RasterBrick or RasterStack
- `hist`: Logical. If TRUE a histogram of the values is shown on the diagonal
- `cor`: Logical. If TRUE the correlation coefficient is shown in the upper panels
- `use`: Argument passed to the `cor` function
- `maxpixels`: Integer. Number of pixels to sample from each layer of large Raster objects
- `...`: Additional arguments (only `cex` and `main`)

### See Also

- `boxplot`, `hist`, `density`

### Examples

```r
r <- raster(system.file("external/test.grd", package="raster"))
s <- stack(r, 1/r, sqrt(r))
pairs(s)

Not run:
to make individual histograms:
hist(r)
or scatter plots:
plot(r, 1/r)

End(Not run)
```
Description

Perspective plot of a RasterLayer. This is an implementation of a generic function in the graphics package.

Usage

```r
S4 method for signature 'RasterLayer'
persp(x, maxpixels=1e05, ext=NULL, ...)

S4 method for signature 'RasterStackBrick'
persp(x, y=1, maxpixels=10000, ext=NULL, ...)
```

Arguments

- `x` Raster* object
- `y` integer > 0 & <= nlayers(x) to select the layer of x if x is a RasterLayer or RasterBrick
- `maxpixels` integer > 0. Maximum number of cells to use for the plot. If maxpixels < ncell(x), sampleRegular is used before plotting
- `ext` Extent. Van be used to zoom in a region (see also zoom and crop(x, drawExtent())
- `...` Any argument that can be passed to persp (graphics package)

See Also

plot3D, persp, contour, plot

Examples

```r
r <- raster(system.file("external/test.grd", package="raster"))
persp(r)
```
plot \hspace{1cm} \textit{Plot a Raster* object}

**Description**

Plot (that is, make a map of) the values of a Raster* object, or make a scatterplot of their values. Points, lines, and polygons can be drawn on top of a map using `plot(..., add=TRUE)`, or with functions like points, lines, polygons.

See the \texttt{rasterVis} package for more advanced (trellis/lattice) plotting of Raster* objects.

**Usage**

```r
S4 method for signature 'Raster,ANY'
plot(x, y, maxpixels=500000, col, alpha=NULL,
 colNA=NA, add=FALSE, ext=NULL, useRaster=TRUE, interpolate=FALSE,
 addfun=NULL, nc, nr, maxnl=16, main, npretty=0, ...)
```

```r
S4 method for signature 'Raster,Raster'
plot(x, y, maxpixels=100000, cex, xlab, ylab, nc, nr,
 maxnl=16, main, add=FALSE, gridded=FALSE, ncol=25, nrow=25, ...)
```

**Arguments**

- **x**: Raster* object
- **y**: If `x` is a RasterStack or RasterBrick: integer, character (layer name(s)), or missing to select which layer(s) to plot. If missing, all RasterLayers in the RasterStack will be plotted (up to a maximum of 16). Or another Raster* object of the same extent and resolution, to produce a scatter plot of the cell values.
- **maxpixels**: integer > 0. Maximum number of cells to use for the plot. If `maxpixels < ncell(x)`, `sampleRegular` is used before plotting. If `gridded=TRUE` `maxpixels` may be ignored to get a larger sample.
- **col**: A color palette, i.e. a vector of \( n \) contiguous colors generated by functions like `rainbow`, `heat.colors`, `topo.colors`, `bpy.colors` or one or your own making, perhaps using \texttt{colorRampPalette}. If none is provided, \texttt{rev(terrain.colors(255))} is used unless \( x \) has a 'color table'.
- **alpha**: Number between 0 and 1 to set transparency. 0 is entirely transparent, 1 is not transparent (\texttt{NULL} is equivalent to 1).
- **colNA**: The color to use for the background (default is transparent).
- **add**: Logical. Add to current plot?
- **ext**: An extent object to zoom in a region (see also \texttt{zoom} and \texttt{crop(x, drawExtent())}).
- **useRaster**: If \texttt{TRUE}, the \texttt{rasterImage} function is used for plotting. Otherwise the \texttt{image} function is used. This can be useful if \texttt{rasterImage} does not work well on your system (see note).
interpolate Logical. Should the image be interpolated (smoothed)? Only used when useRaster = TRUE
addfun Function to add additional items such as points or polygons to the plot (map). Typically containing statements like "points(xy); plot(polygons, add=TRUE)". This is particularly useful to add something to each map when plotting a multi-layer Raster* object.
npretty integer. Number of decimals for pretty labels on the axes
... Graphical parameters. Any argument that can be passed to image.plot and to plot, such as axes=FALSE, main='title', ylab='latitude'
xlab Optional. x-axis label)
ylab Optional. y-axis label)
nc Optional. The number of columns to divide the plotting device in (when plotting multiple layers in a RasterLayer or RasterBrick object)
nr Optional. The number of rows to divide the plotting device in (when plotting multiple layers in a RasterLayer or RasterBrick object)
maxnl integer. Maximum number of layers to plot (for a multi-layer object)
main character. Main plot title
cex Symbol size for scatter plots
gridded logical. If TRUE the scatterplot is gridded (counts by cells)
ncol integer. Number of columns for gridding
nrow integer. Number of rows for gridding

Details

Most of the code for the plot function for a single Raster* object was taken from image.plot (fields package). Raster objects with a color-table (e.g. a graphics file) are plotted according to that color table.

Note

raster uses rasterImage from the graphics package. For unknown reasons this does not work on Windows Server and on a few versions of Windows XP. On that system you may need to use argument useRaster=FALSE to get a plot.

See Also

The rasterVis package has lattice based methods for plotting Raster* objects (like spplot) red-green-blue plots (e.g. false color composites) can be made with plotRGB barplot, hist, text, persp, contour, pairs
Examples

```r
RasterLayer
r <- raster(nrows=10, ncols=10)
r <- setValues(r, 1:ncell(r))
plot(r)

e <- extent(r)
plot(e, add=TRUE, col='red', lwd=4)
e <- e / 2
plot(e, add=TRUE, col='red')

Scatterplot of 2 RasterLayers
r2 <- sqrt(r)
plot(r, r2)
plot(r, r2, gridded=TRUE)

Multi-layer object (RasterStack / Brick)
s <- stack(r, r2, r/r)
plot(s, 2)
plot(s)

two objects, different range, one scale:
r[] <- runif(ncell(r))
r2 <- r/2
brks <- seq(0, 1, by=0.1)
nb <- length(brks)-1
cols <- rev(terrain.colors(nb))
par(mfrow=c(1,2))
plot(r, breaks=brks, col=cols, lab=brks, zlim=c(0,1), main='first')
plot(r2, breaks=brks, col=cols, lab=brks, zlim=c(0,1), main='second')

breaks and labels
x <- raster(nc=10, nr=10)
x[] <- runif(ncell(x))
brk <- c(0, 0.25, 0.75, 1)
arg <- list(at=c(0.12,0.5,0.87), labels=c("Low","Med.","High"))
plot(x, col=terrain.colors(3), breaks=brk)
plot(x, col=terrain.colors(3), breaks=brk, axis.args=arg)
par(mfrow=c(1,1))

color ramp
plot(x, col=colorRampPalette(c("red", "white", "blue"))(255))

adding random points to the map
xy <- cbind(-180 + runif(10) * 360, -90 + runif(10) * 180)
points(xy, pch=3, cex=5)

for SpatialPolygons do
plot(pols, add=TRUE)
```
# adding the same points to each map of each layer of a RasterStack
fun <- function()
  points(x, cex=2)
  points(x, pch=3, col='red')
plot(s, addfun=fun)

plotRGB  

Red-Green-Blue plot of a multi-layered Raster object

Description

Make a Red-Green-Blue plot based on three layers (in a RasterBrick or RasterStack). Three layers (sometimes referred to as "bands" because they may represent different bandwidths in the electromagnetic spectrum) are combined such that they represent the red, green and blue channel. This function can be used to make 'true (or false) color images' from Landsat and other multi-band satellite images.

Usage

## S4 method for signature 'RasterStackBrick'
plotRGB(x, r=1, g=2, b=3, scale, maxpixels=500000, stretch=NULL, 
  ext=NULL, interpolate=FALSE, colNA='white', alpha, bgalpha, addfun=NULL, zlim=NULL, 
  zlimcol=NULL, axes=FALSE, xlab='', ylab='', asp=NULL, add=FALSE, ...)

Arguments

- **x**: RasterBrick or RasterStack
- **r**: integer. Index of the Red channel, between 1 and nlayers(x)
- **g**: integer. Index of the Green channel, between 1 and nlayers(x)
- **b**: integer. Index of the Blue channel, between 1 and nlayers(x)
- **scale**: integer. Maximum (possible) value in the three channels. Defaults to 255 or to the maximum value of x if that is known and larger than 255
- **maxpixels**: integer > 0. Maximum number of pixels to use
- **stretch**: character. Option to stretch the values to increase the contrast of the image: "lin" or "hist"
- **ext**: An Extent object to zoom in to a region of interest (see drawExtent)
- **interpolate**: logical. If TRUE, interpolate the image when drawing
- **colNA**: color for the background (NA values)
- **alpha**: transparency. Integer between 0 (transparent) and 255 (opaque)
- **bgalpha**: Background transparency. Integer between 0 (transparent) and 255 (opaque)
addfun Function to add additional items such as points or polygons to the plot (map). See plot
zlim numeric vector of length 2. Range of values to plot (optional)
zlimcol If NULL the values outside the range of zlim get the color of the extremes of the range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA)
axes logical. If TRUE axes are drawn (and arguments such as main="title" will be honored)
lab character. Label of x-axis
lab character. Label of y-axis
asp numeric. Aspect (ratio of x and y. If NULL, and appropriate value is computed to match data for the longitude/latitude coordinate reference system, and 1 for planar coordinate reference systems
add logical. If TRUE add values to current plot
... graphical parameters as in plot or rasterImage

Author(s)
Robert J. Hijmans; stretch option based on functions by Josh Gray

See Also
plot

Examples
b <- brick(system.file("external/rlogo.grd", package="raster"))
plotRGB(b)
plotRGB(b, 3, 2, 1)
plotRGB(b, 3, 2, 1, stretch='hist')

pointDistance Distance between points

Description
Calculate the geographic distance between two (sets of) points on the WGS ellipsoid (lonlat=TRUE) or on a plane (lonlat=FALSE). If both sets do not have the same number of points, the distance between each pair of points is given. If both sets have the same number of points, the distance between each point and the corresponding point in the other set is given, except if allpairs=TRUE.

Usage
pointDistance(p1, p2, lonlat, allpairs=FALSE, ...)

Arguments

- **p1**: x and y coordinate of first (set of) point(s), either as c(x, y), matrix(ncol=2), or SpatialPoints*.
- **p2**: x and y coordinate of second (set of) second point(s) (like for p1). If this argument is missing, a distance matrix is computed for p1.
- **lonlat**: logical. If TRUE, coordinates should be in degrees; else they should represent planar ("Euclidean") space (e.g. units of meters).
- **allpairs**: logical. Only relevant if the number of points in x and y is the same. If FALSE the distance between each point in x with the corresponding point in y is returned. If TRUE a full distance matrix is returned.
- **...**: Additional arguments. None implemented.

Value

A single value, a vector, or a matrix of values giving the distance in meters (lonlat=TRUE) or map-units (for instance, meters in the case of UTM). If p2 is missing, a distance matrix is returned.

Author(s)

Robert J. Hijmans and Jacob van Etten. The distance for longitude/latitude data uses GeographicLib by C.F.F. Karney.

See Also

distanceFromPoints, distance, gridDistance, spDistsN1. The geosphere package has many additional distance functions and other functions that operate on spherical coordinates.

Examples

```r
a <- cbind(c(1,5,55,31),c(3,7,20,22))
b <- cbind(c(4,2,8,65),c(50,-90,20,32))

pointDistance(c(0, 0), c(1, 1), lonlat=FALSE)
pointDistance(c(0, 0), c(1, 1), lonlat=TRUE)
pointDistance(c(0, 0), a, lonlat=TRUE)
pointDistance(a, b, lonlat=TRUE)

Make a distance matrix
dst <- pointDistance(a, lonlat=TRUE)
Coerce to dist object
dst <- as.dist(dst)
```
predict Spatial model predictions

Description

Make a Raster object with predictions from a fitted model object (for example, obtained with \texttt{lm}, \texttt{glm}). The first argument is a Raster object with the independent (predictor) variables. The \texttt{names} in the Raster object should exactly match those expected by the model. This will be the case if the same Raster object was used (via \texttt{extract}) to obtain the values to fit the model (see the example). Any type of model (e.g. \texttt{glm}, \texttt{gam}, \texttt{randomForest}) for which a predict method has been implemented (or can be implemented) can be used.

This approach (predict a fitted model to raster data) is commonly used in remote sensing (for the classification of satellite images) and in ecology, for species distribution modeling.

Usage

\begin{verbatim}
## S4 method for signature 'Raster'
predict(object, model, filename="", fun=predict, ext=NULL,
        const=NULL, index=1, na.rm=TRUE, inf.rm=FALSE, factors=NULL,
        format, datatype, overwrite=FALSE, progress='

Arguments

\begin{itemize}
\item \texttt{object} \hspace{1em} Raster* object. Typically a multi-layer type (RasterStack or RasterBrick)
\item \texttt{model} \hspace{1em} fitted model of any class that has a 'predict' method (or for which you can supply a similar method as \texttt{fun} argument. E.g. \texttt{glm}, \texttt{gam}, or \texttt{randomForest}
\item \texttt{filename} \hspace{1em} character. Optional output filename
\item \texttt{fun} \hspace{1em} function. Default value is 'predict', but can be replaced with e.g. \texttt{predict.se} (depending on the type of model), or your own custom function.
\item \texttt{ext} \hspace{1em} Extent object to limit the prediction to a sub-region of \texttt{x}
\item \texttt{const} \hspace{1em} data.frame. Can be used to add a constant for which there is no Raster object for model predictions. Particularly useful if the constant is a character-like factor value for which it is currently not possible to make a RasterLayer
\item \texttt{index} \hspace{1em} integer. To select the column(s) to use if predict.'model' returns a matrix with multiple columns
\item \texttt{na.rm} \hspace{1em} logical. Remove cells with NA values in the predictors before solving the model (and return a NA value for those cells). This option prevents errors with models that cannot handle NA values. In most other cases this will not affect the output. An exception is when predicting with a boosted regression trees model because these return predicted values even if some (or all!) variables are NA
\item \texttt{inf.rm} \hspace{1em} logical. Remove cells with values that are not finite (some models will fail with -Inf/Inf values). This option is ignored when \texttt{na.rm}=FALSE
\end{itemize}
\end{verbatim}
predict

factors list with levels for factor variables. The list elements should be named with names that correspond to names in object such that they can be matched. This argument may be omitted for standard models such as 'glm' as the predict function will extract the levels from the model object, but it is necessary in some other cases (e.g. cforest models from the party package)

format character. Output file type. See writeRaster (optional)
datatype character. Output data type. See dataType (optional)
overwrite logical. If TRUE, "filename" will be overwritten if it exists
progress character. "text", "window", or "" (the default, no progress bar)
... additional arguments to pass to the predict.'model' function

Value

RasterLayer or RasterBrick

Note

For more on the use of the predict function see this resource on species distribution modeling.

See Also

Use interpolate if your model has 'x' and 'y' as implicit independent variables (e.g., in kriging).

Examples

# A simple model to predict the location of the R in the R-logo using 20 presence points and 50 (random) pseudo-absence points. This type of model is often used to predict species distributions. See the dismo package for more of that.

# create a RasterStack or RasterBrick with with a set of predictor layers
logo <- brick(system.file("external/rlogo.grd", package="raster"))

# Not run
# the predictor variables
par(mfrow=c(2,2))
plotRGB(logo, main='logo')
plot(logo, 1, col=rgb(cbind(0:255,0,0), maxColorValue=255))
plot(logo, 2, col=rgb(cbind(0,0:255,0), maxColorValue=255))
plot(logo, 3, col=rgb(cbind(0,0:255), maxColorValue=255))

# known presence and absence points
p <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85, 66, 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31, 22, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2)
a <- matrix(c(22, 33, 64, 85, 92, 94, 59, 27, 30, 64, 60, 33, 31, 9, 20, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2)

# Not run

predict values for points
xy <- rbind(cbind(1, p), cbind(0, a))
v <- data.frame(cbind(pa=xy[,1], extract(logo, xy[,2:3])))

# build a model, here an example with glm
model <- glm(formula=pa-. , data=v)

# predict to a raster
r1 <- predict(logo, model, progress='text')

plot(r1)
points(p, bg='blue', pch=21)
points(a, bg='red', pch=21)

# use a modified function to get a RasterBrick with p and se
# from the glm model. The values returned by 'predict' are in a list,
# and this list needs to be transformed to a matrix
predfun <- function(model, data) {
  v <- predict(model, data, se.fit=TRUE)
  cbind(p=as.vector(v$fit), se=as.vector(v$se.fit))
}

# predfun returns two variables, so use index=1:2
r2 <- predict(logo, model, fun=predfun, index=1:2)

# Not run:
# You can use multiple cores to speed up the predict function
# by calling it via the clusterR function (you may need to install the snow package)
beginCluster()
r1c <- clusterR(logo, predict, args=list(model))
r2c <- clusterR(logo, predict, args=list(model=model, fun=predfun, index=1:2))

# End(Not run)

# principal components of a RasterBrick
# here using sampling to simulate an object too large
# too feed all its values to prcomp
sr <- sampleRandom(logo, 100)
 pca <- prcomp(sr)

# note the use of the 'index' argument
x <- predict(logo, pca, index=1:3)
plot(x)

# Not run:
# partial least square regression
library(pls)
model <- plsr(formula=pa-. , data=v)
# this returns an array:
predict(model, v[1:5,])
# write a function to turn that into a matrix
pfun <- function(x, data) {
  y <- predict(x, data)
  d <- dim(y)
  dim(y) <- c(prod(d[1:2]), d[3])
  y
}

pp <- predict(logo, model, fun=pfun, index=1:3)

# Random Forest
library(randomForest)
rfmod <- randomForest(pa ~ ., data=v)

## note the additional argument "type='response'" that is
## passed to predict.randomForest
r3 <- predict(logo, rfmod, type='response', progress='window')

## get a RasterBrick with class membership probabilities
vv <- v
vv$pa <- as.factor(vv$pa)
rfmod2 <- randomForest(pa ~ ., data=vv)
rfmod <- predict(logo, rfmod2, type='prob', index=1:2)
spplot(r4)

# cforest (other Random Forest implementation) example with factors argument
v$red <- as.factor(round(v$red/100))
logo$red <- round(logo[1]/100)

library(party)
m <- cforest(pa ~ ., control=cforest_unbiased(mtry=3), data=v)
f <- list(levels(v$red))
names(f) <- 'red'
pc <- predict(logo, m, OOB=TRUE, factors=f)

# knn example, using calc instead of predict
library(class)
c1 <- factor(c(rep(1, nrow(p)), rep(0, nrow(a))))
train <- extract(logo, rbind(p, a))
k <- calc(logo, function(x) as.integer(as.character(knn(train, x, c1))))

## End(Not run)
**Description**

These are low level functions that can be used by programmers to develop new functions. If in doubt, it is almost certain that you do not need these functions as these are already embedded in all other functions in the raster package.

canProcessInMemory is typically used within functions. In the raster package this function is used to determine if the amount of memory needed for the function is available. If there is not enough memory available, the function returns FALSE, and the function that called it will write the results to a temporary file.

readStart opens file connection(s) for reading, readStop removes it.

pbCreate creates a progress bar, pbStep sets the progress, and pbClose closes it.

**Usage**

```r
canProcessInMemory(x, n=4)
pbCreate(nsteps, progress, style=3, label='Progress', ...)
pbStep(pb, step=NULL, label='')
pbClose(pb, timer)
readStart(x, ...)
readStop(x, ...)
getCluster()
returnCluster()
```

**Arguments**

- `x` RasterLayer or RasterBrick object (for connections) or RasterStack object (canProcessInMemory)
- `n` integer. The number of copies of the Raster* object cell values that a function needs to be able to have in memory
- `nsteps` integer. Number of steps the progress bar will make from start to end (e.g. nrow(raster))
- `progress` character. 'text', 'window', or "
- `style` style for text progress bar. See txtProgressBar
- `label` character. Label for the window type progress bar
- `...` additional arguments (None implemented, except for 'silent=TRUE' for readStart for files read with gdal, and other arguments passed to gdal.open)
- `pb` progress bar object created with pbCreate
- `step` which step is this ( 1 <= step <= nsteps ). If step is NULL, a single step is taken
- `timer` logical. If TRUE, time to completion will be printed. If missing, the value will be taken from the rasterOptions

**Value**

- canProcessInMemory: logical
- closeConnection: RasterLayer or RasterBrick object
- getCluster: snow cluster object
**projection**

Get or set a coordinate reference system (projection)

### Examples

```r
r <- raster(nrow=100, ncol=100)
canProcessInMemory(r, 4)
r <- raster(nrow=100000, ncol=100000)
canProcessInMemory(r, 2)
```

### Description

Get or set the coordinate reference system (CRS) of a Raster* object.

### Usage

```r
S4 method for signature 'ANY'
crs(x, asText=FALSE, ...)

projection(x, asText=TRUE)
projection(x) <- value
```

### Arguments

- `x` Raster* or Spatial object
- `asText` logical. If TRUE, the projection is returned as text. Otherwise a CRS object is returned
- `...` additional arguments (not implemented)
- `value` CRS object or a character string describing a projection and datum in the PROJ.4 format

### Details

Projections are done by with the PROJ.4 library exposed by rgdal

### Value

Raster*, Spatial*, CRS, or character object

### Note

`crs` replaces earlier function `projection`. For compatibility with `sp` you can use `proj4string` instead of `crs`. 
**projectRaster**

**See Also**

`projectRaster`, `CRS-class`, `spTransform-methods`, `projInfo`

**Examples**

```r
r <- raster()
crs(r)
crs(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"
crs(r)
```

**Description**

Project the values of a Raster* object to a new Raster* object with another projection (coordinate reference system, CRS). You can do this by providing the new projection as a single argument in which case the function sets the extent and resolution of the new object. To have more control over the transformation, and, for example, to assure that the new object lines up with other datasets, you can provide a Raster* object with the properties that the input data should be projected to.

`projectExtent` returns a RasterLayer with a projected extent, but without any values. This RasterLayer can then be adjusted (e.g. by setting its resolution) and used as a template ‘to’ in `projectRaster`.

**Usage**

```r
projectRaster(from, to, res, crs, method="bilinear",
 alignOnly=FALSE, over=FALSE, filename="", ...)
projectExtent(object, crs)
```

**Arguments**

- **from**: Raster* object
- **to**: Raster* object with the parameters to which 'from' should be projected
- **res**: single or (vector of) two numerics. To, optionally, set the output resolution if 'to' is missing
- **crs**: character or object of class 'CRS'. PROJ.4 description of the coordinate reference system. In `projectRaster` this is used to set the output CRS if 'to' is missing, or if 'to' has no valid CRS
- **method**: method used to compute values for the new RasterLayer. Either 'ngb' (nearest neighbor), which is useful for categorical variables, or 'bilinear' (bilinear interpolation; the default value), which is appropriate for continuous variables.
- **alignOnly**: logical. Use to or other parameters only to align the output (i.e. same origin and resolution), but use the projected extent from `from`
over logical. If TRUE wrapping around the date-line is turned off. This can be des-
irable for global data (to avoid mapping the same areas twice) but it is not
 desirable in other cases
filename character. Output filename
... additional arguments as for writeRaster
object Raster* object

Details

There are two approaches you can follow to project the values of a Raster object.

1) Provide a crs argument, and, optionally, a res argument, but do not provide a to argument.

2) Create a template Raster with the CRS you want to project to. You can use an existing object,
or use projectExtent for this or an existing Raster* object. Also set the number of rows and
columns (or the resolution), and perhaps adjust the extent. The resolution of the output raster should
normally be similar to that of the input raster. Then use that object as from argument to project the
input Raster to. This is the preferred method because you have most control. For example you can
 assure that the resulting Raster object lines up with other Raster objects.

Projection is performed using the PROJ.4 library accessed through the rgdal package.

One of the best places to find PROJ.4 coordinate reference system descriptions is http://www.
spatialreference.org.

You can also consult this page: http://geotiff.maptools.org/proj_list to find the parameter
options and names for projections.

Also see projInfo('proj'), projInfo('ellps'), and projInfo('datum') for valid PROJ.4
values.

Value

RasterLayer or RasterBrick object.

Note

Vector (points, lines, polygons) can be transformed with spTransform.

projectExtent does not work very well when transforming projected circumpolar data to (e.g.)
longitude/latitude. With such data you may need to adjust the returned object. E.g. do ymax(object) <= 90

Author(s)

Robert J. Hijmans and Joe Cheng

See Also

resample, CRS-class, projInfo, spTransform
Examples

```r
create a new (not projected) RasterLayer with cellnumbers as values
r <- raster(xmn=-110, xmx=-90, ymn=40, ymx=60, ncols=40, nrows=40)
r <- setValues(r, 1:ncell(r))
projection(r)
proj.4 projection description
newproj <- "+proj=longlat +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"

we need the rgdal package for this
if (require(rgdal)) {

 # simplest approach
 pr1 <- projectRaster(r, crs=newproj)

 # alternatively also set the resolution
 pr2 <- projectRaster(r, crs=newproj, res=20000)

 # inverse projection, back to the properties of 'r'
 inv <- projectRaster(pr2, r)

 # to have more control, provide an existing Raster object, here we create one
 # using projectExtent (no values are transferred)
 pr3 <- projectExtent(r, newproj)
 # Adjust the cell size
 res(pr3) <- 200000
 # now project
 pr3 <- projectRaster(r, pr3)

 ## Not run:
 # using a higher resolution
 res(pr1) <- 10000
 pr <- projectRaster(r, pr1, method='bilinear')
 inv <- projectRaster(pr, r, method='bilinear')
 dif <- r - inv
 # small difference
 plot(dif)

 ## End(Not run)
}
```

---

**properties**

**Raster file properties**

### Description

Properties of the values of the file that a RasterLayer object points to

- **dataSize** returns the number of bytes used for each value (pixel, grid cell)
- **dataSigned** is TRUE for data types that include negative numbers.
quantile

Usage

   dataSize(object)
   dataSigned(object)

Arguments

   object          Raster* object

Value

   varies

See Also

   filename

Examples

   r <- raster(system.file("external/test.grd", package="raster"))
   dataSize(r)
   dataSigned(r)
   dataType(r)

--------

quantile  Raster quantiles

--------

Description

   Compute quantiles for the cell values of a RasterLayer. If you want to compute quantiles for each cell across a number of layers, you can use calc(x, fun=quantile).

Usage

   quantile(x, ...)

Arguments

   x            Raster object
   ...          Additional arguments: na.rm=TRUE, ncells=NULL, and additional arguments to the stats::quantile function, see quantile. ncells can be used to set the number of cells to be sampled, for very large raster datasets.

Value

   A vector of quantiles
See Also

density, cellStats

Examples

```r
r <- raster(ncol=100, nrow=100)
r[] <- rnorm(ncell(r), 0, 50)
quantile(r)
quantile(r, probs = c(0.25, 0.75), type=7, names = FALSE)
```

raster

Create a RasterLayer object

Description

Methods to create a RasterLayer object. RasterLayer objects can be created from scratch, a file, an Extent object, a matrix, an 'image' object, or from a Raster*, Spatial*, im (spatstat) asc, kase (adehabitat*), grf (geoR) or kde object.

In many cases, e.g. when a RasterLayer is created from a file, it does (initially) not contain any cell (pixel) values in (RAM) memory, it only has the parameters that describe the RasterLayer. You can access cell-values with `getValues`, `extract` and related functions. You can assign new values with `setValues` and with `replacement`.

For an overview of the functions in the raster package have a look here: `raster-package`.

Usage

```r
S4 method for signature 'character'
raster(x, band=1, ...)

S4 method for signature 'RasterLayer'
raster(x)

S4 method for signature 'RasterStack'
raster(x, layer=0)

S4 method for signature 'RasterBrick'
raster(x, layer=0)

S4 method for signature 'missing'
raster(nrows=180, ncols=360, xmn=-180, xmx=180, ymn=-90, ymx=90,
crs, ext, resolution, vals=NULL)

S4 method for signature 'Extent'
raster(x, nrows=10, ncols=10, crs=NA, ...)

S4 method for signature 'matrix'
```
raster(x, xmn=0, xmx=1, ymn=0, ymx=1, crs=NA, template=NULL)

## S4 method for signature 'big.matrix'
raster(x, xmn=0, xmx=1, ymn=0, ymx=1, crs=NA, template=NULL)

## S4 method for signature 'Spatial'
raster(x, origin,...)

## S4 method for signature 'SpatialGrid'
raster(x, layer=1, values=TRUE)

## S4 method for signature 'SpatialPixels'
raster(x, layer=1, values=TRUE)

### Arguments

- **x**: filename (character), Extent, Raster*, SpatialPixels*, SpatialGrid*, object, 'image', matrix, im, or missing. Supported file types are the 'native' raster package format and those that can be read via rgdal (see readGDAL).
- **band**: integer. The layer to use in a multi-layer file.
- **...**: Additional arguments, see Details.
- **layer**: integer. The layer (variable) to use in a multi-layer file, or the layer to extract from a RasterStack/Brick or SpatialPixelsDataFrame or SpatialGridDataFrame. An empty RasterLayer (no associated values) is returned if layer=0.
- **values**: logical. If TRUE, the cell values of 'x' are copied to the RasterLayer object that is returned.
- **nrows**: integer > 0. Number of rows.
- **ncols**: integer > 0. Number of columns.
- **xmn**: minimum x coordinate (left border).
- **xmx**: maximum x coordinate (right border).
- **ymn**: minimum y coordinate (bottom border).
- **ymx**: maximum y coordinate (top border).
- **ext**: object of class Extent. If present, the arguments xmn, xmx, ymn and ynx are ignored.
- **crs**: character or object of class CRS. PROJ.4 type description of a Coordinate Reference System (map projection). If this argument is missing, and the x coordinates are within -360 .. 360 and the y coordinates are within -90 .. 90, "+proj=longlat +datum=WGS84" is used. Also see under Details if x is a character (filename).
- **resolution**: numeric vector of length 1 or 2 to set the resolution (see res). If this argument is used, arguments ncols and nrows are ignored.
- **vals**: optional. Values for the new RasterLayer. Accepted formats are as for setValues.
- **origin**: minimum y coordinate (bottom border).
- **template**: Raster* or Extent object used to set the extent (and CRS in case of a Raster* object). If not NULL, arguments xmn, xmx, ymn, ymx and crs (unless template is an Extent object) are ignored.
Details

If x is a filename, the following additional variables are recognized:

- **sub**: positive integer. Subdataset number for a file with subdatasets
- **native**: logical. Default is **FALSE** except when package rgdal is missing. If **TRUE**, reading and writing of IDRISI, BIL, BSQ, BIP, SAGA, and Arc ASCII files is done with native (raster package) drivers, rather than via rgdal. 'raster' and netcdf format files are always read with native drivers.
- **rat**: logical. The default is **TRUE**, in which case a raster attribute table is created for files that have one
- **offset**: integer. To indicate the number of header rows on non-standard ascii files (rarely useful; use with caution)
- **crs**: character. PROJ.4 string to set the CRS. Ignored when the file provides a CRS description that can be interpreted.

If x represents a **NetCDF** file, the following additional variable is recognized:

- **varname**: character. The variable name, such as 'tasmax' or 'pr'. If not supplied and the file has multiple variables are a guess will be made (and reported)
- **lvar**: integer > 0 (default=3). To select the 'level variable' (3rd dimension variable) to use, if the file has 4 dimensions (e.g. depth instead of time)
- **level**: integer > 0 (default=1). To select the 'level' (4th dimension variable) to use, if the file has 4 dimensions, e.g. to create a RasterBrick of weather over time at a certain height.

To use NetCDF files the **ncdf4** package needs to be available. It is assumed that these files follow, or are compatible with, the CF-1 convention (The GMT format may also work). If the ncdf file does not have a standard extension (which is used to recognize the file format), you can use argument ncdf=TRUE to indicate the format.

If x is a Spatial or an Extent object, additional arguments are for the method with signature 'missing'

Value

- **RasterLayer**

See Also

- **stack**, **brick**

Examples

```r
Create a RasterLayer object from a file
N.B.: For your own files, omit the 'system.file' and 'package="raster"' bits
these are just to get the path to files installed with the package

f <- system.file("external/test.grd", package="raster")
f
r <- raster(f)
```
logo <- raster(system.file("external/rlogo.grd", package="raster"))

# from scratch
r1 <- raster(nrows=108, ncol=21, xmin=0, xmax=10)

# from an Extent object
e <- extent(r)
r2 <- raster(e)

# from another Raster* object
r3 <- raster(r)
s <- stack(r, r, r)
r4 <- raster(s)
r5 <- raster(s, 3)

## Not run:
# from NSIDC sea ice concentration file
baseurl <- "ftp://sidads.colorado.edu/pub/DATASETS/"
# southern hemisphere
f1 <- paste(baseurl, 
  "nsidc0051_gsfc_nasateam_seaice final-gsfc/south/daily/2013/nt_20130114_f17_v01_s.bin",
  sep='.')
# or northern hemisphere
f2 <- paste(baseurl, 
  "nsidc0051_gsfc_nasateam_seaice final-gsfc/north/daily/2013/nt_20130105_f17_v01_n.bin",
  sep='.')

if (!file.exists(basename(f1))) download.file(f1, basename(f1), mode = "wb")
ice1 <- raster(basename(f1))

if (!file.exists(basename(f2))) download.file(f2, basename(f2), mode = "wb")
ice2 <- raster(basename(f2))

## End(Not run)

---

### Description

A raster is a database organized as a rectangular grid that is sub-divided into rectangular cells of equal area (in terms of the units of the coordinate reference system). The 'raster' package defines a number of "S4 classes" to manipulate such data.

The main user level classes are RasterLayer, RasterStack and RasterBrick. They all inherit from BasicRaster and can contain values for the raster cells.
An object of the RasterLayer class refers to a single layer (variable) of raster data. The object can point to a file on disk that holds the values of the raster cells, or hold these values in memory. Or it can not have any associated values at all.

A RasterStack represents a collection of RasterLayer objects with the same extent and resolution. Organizing RasterLayer objects in a RasterStack can be practical when dealing with multiple layers; for example to summarize their values (see calc) or in spatial modeling (see predict).

An object of class RasterBrick can also contain multiple layers of raster data, but they are more tightly related. An object of class RasterBrick can refer to only a single (multi-layer) data file, whereas each layer in a RasterStack can refer to another file (or another band in a multi-band file). This has implications for processing speed and flexibility. A RasterBrick should process quicker than a RasterStack (irrespective if values are on disk or in memory). However, a RasterStack is more flexible as a single object can refer to layers that have values stored on disk as well as in memory. If a layer that does not refer to values on disk (they only exists in memory) is added to a RasterBrick, it needs to load all its values into memory (and this may not be possible because of memory size limitations).

Objects can be created from file or from each other with the following functions: raster, brick and stack.

Raster* objects can also be created from SpatialPixels* and SpatialGrid* objects from the sp package using as, or simply with the function raster, brick, or stack. Vice versa, Raster* objects can be coerced into a sp type object with as(, ), e.g. as(x, 'SpatialGridDataFrame').

Common generic methods implemented for these classes include: summary, show, dim, and plot, ...

[] is implemented for RasterLayer.

The classes described above inherit from the BasicRaster class which inherits from BasicRaster. The BasicRaster class describes the main properties of a raster such as the number of columns and rows, and it contains an object of the link{raster}{Extent-class} to describe its spatial extent (coordinates). It also holds the coordinate reference system in a slot of class CRS-class defined in the sp package. A BasicRaster cannot contain any raster cell values and is therefore seldomly used.

The Raster* class inherits from BasicRaster. It is a virtual class; which means that you cannot create an object of this class. It is used only to define methods for all the classes that inherit from it (RasterLayer, RasterStack and RasterBrick). Another virtual class is the RasterStackBrick class. It is formed by a class union of RasterStack and RasterBrick. You cannot make objects of it, but methods defined for objects of this class as arguments will accept objects of the RasterLayer and RasterStack as that argument.

Classes RasterLayer and RasterBrick have a slot with an object of class RasterFile that describes the properties of the file they point to (if they do). RasterLayer has a slot with an object of class SingleLayerData, and the RasterBrick class has a slot with an object of class MultipleLayerData. These 'datalayer' classes can contain (some of) the values of the raster cells.

These classes are not further described here because users should not need to directly access these slots. The 'setter' functions such as setValues should be used instead. Using such 'setter' functions is much safer because a change in one slot should often affect the values in other slots.
Objects from the Class

Objects can be created by calls of the form `new("RasterLayer", ...)`, or with the helper functions such as `raster`.

Slots

Slots for RasterLayer and RasterBrick objects

title: Character
file: Object of class ".RasterFile"
data: Object of class ".SingleLayerData" or ".MultipleLayerData"
history: To record processing history, not yet in use
legend: Object of class RasterLegend, Default legend. Should store preferences for plotting. Not yet implemented except that it stores the color table of images, if available
extent: Object of Extent-class
ncols: Integer
nrows: Integer
crs: Object of class "CRS", i.e. the coordinate reference system. In Spatial* objects this slot is called 'proj4string'

Examples

```
showClass("RasterLayer")
```

rasterFromCells | Subset a raster by cell numbers

Description

This function returns a new raster based on an existing raster and cell numbers for that raster. The new raster is cropped to the cell numbers provided, and, if `values=TRUE` has values that are the cell numbers of the original raster.

Usage

```
rasterFromCells(x, cells, values=TRUE)
```

Arguments

- **x**: Raster* object (or a SpatialPixels* or SpatialGrid* object)
- **cells**: vector of cell numbers
- **values**: Logical. If TRUE, the new RasterLayer has cell values that correspond to the cell numbers of x
Details

Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top to bottom. The last cell number equals the number of cells of the Raster* object.

Value

RasterLayer

See Also

rowFromCell

Examples

```
r <- raster(ncols=100, nrows=100)
cells <- c(3:5, 210)
r <- rasterFromCells(r, cells)
cbind(1:ncell(r), getValues(r))
```

Description

Create a Raster* object from x, y and z values. x and y represent spatial coordinates and must be on a regular grid. If the resolution is not supplied, it is assumed to be the minimum distance between x and y coordinates, but a resolution of up to 10 times smaller is evaluated if a regular grid can otherwise not be created. z values can be single or multiple columns (variables) If the exact properties of the RasterLayer are known beforehand, it may be preferable to simply create a new RasterLayer with the raster function instead, compute cell numbers and assign the values with these (see example below).

Usage

```
rasterFromXYZ(xyz, res=c(NA,NA), crs=NA, digits=5)
```

Arguments

- **xyz**: matrix or data.frame with at least three columns: x and y coordinates, and values (z). There may be several 'z' variables (columns)
- **res**: numeric. The x and y cell resolution (optional)
- **crs**: CRS object or a character string describing a projection and datum in PROJ.4 format
- **digits**: numeric, indicating the requested precision for detecting whether points are on a regular grid (a low number of digits is a low precision)
rasterize

Value

RasterLayer or RasterBrick

See Also

See rasterize for points that are not on a regular grid

Examples

```r
r <- raster(nrow=10, ncol=10, xmin=0, xmax=10, ymin=0, ymax=10, crs=NA)
r[] <- runif(ncell(r))
r[r<0.5] <- NA
xyz <- rasterToPoints(r)

r2 <- rasterFromXYZ(xyz)

equivalent to:
r3 <- raster(nrow=10, ncol=10, xmin=0, xmax=10, ymin=0, ymax=10)
cells <- cellFromXY(r3, xyz[,1:2])
r3[cells] <- xyz[2]
```

Description

Transfer values associated with 'object' type spatial data (points, lines, polygons) to raster cells.

For polygons, values are transferred if the polygon covers the center of a raster cell. For lines, values are transferred to all cells that are touched by a line. You can combine this behaviour by rasterizing polygons as lines first and then as polygons.

If x represents points, each point is assigned to a grid cell. Points that fall on a border between cells are placed in the cell to the right and/or in the cell below. The value of a grid cell is determined by the values associated with the points and function fun.

Usage

```r
S4 method for signature 'matrix,Raster'
rasterize(x, y, field, fun='last', background=NA,
 mask=FALSE, update=FALSE, updateValue='all', filename="", na.rm=TRUE, ...)

S4 method for signature 'SpatialPoints,Raster'
rasterize(x, y, field, fun='last', background=NA,
 mask=FALSE, update=FALSE, updateValue='all', filename="", na.rm=TRUE, ...)

S4 method for signature 'SpatialLines,Raster'
rasterize(x, y, field, fun='last', background=NA,
 mask=FALSE, update=FALSE, updateValue='all', filename="", ...)
```
## S4 method for signature 'SpatialPolygons,Raster'

```r
rasterize(x, y, field, fun='last', background=NA,
 mask=FALSE, update=FALSE, updateValue='all', filename="",
 getCover=FALSE, silent=TRUE, ...)
```

### Arguments

**x**  
points (a SpatialPoints* object, or a two-column matrix (or data.frame)), SpatialLines*, SpatialPolygons*, or an Extent object

**y**  
Raster* object

**field**  
numeric or character. The value(s) to be transferred. This can be a single number, or a vector of numbers that has the same length as the number of spatial features (points, lines, polygons). If x is a Spatial*DataFrame, this can be the column name of the variable to be transferred. If missing, the attribute index is used (i.e. numbers from 1 to the number of features). You can also provide a vector with the same length as the number of spatial features, or a matrix where the number of rows matches the number of spatial features

**fun**  
function or character. To determine what values to assign to cells that are covered by multiple spatial features. You can use functions such as min, max, or mean, or one of the following character values: 'first', 'last', 'count'. The default value is 'last'. In the case of SpatialLines*, 'length' is also allowed (currently for planar coordinate systems only).

If x represents points, fun must accept a na.rm argument, either explicitly or through 'dots'. This means that `fun=length` fails, but `fun=function(...)length(x)` works, although it ignores the na.rm argument. To use the na.rm argument you can use a function like this: `fun=function(x, na.rm)if (na.rm) length(na.omit(x)) else length(x)`, or use a function that removes NA values in all cases, like this function to compute the number of unique values per grid cell "richness": `fun=function(x, ...) {length(unique(na.omit(x))}

If you want to count the number of points in each grid cell, you can use `fun='count'

You can also pass multiple functions using a statement like `fun=function(x, ...) c(length(x),mean(x))` in which case the returned object is a RasterBrick (multiple layers).

**background**  
numeric. Value to put in the cells that are not covered by any of the features of x. Default is NA

**mask**  
logical. If TRUE the values of the input Raster object are 'masked' by the spatial features of x. That is, cells that spatially overlap with the spatial features retain their values, the other cells become NA. Default is FALSE. This option cannot be used when update=TRUE

**update**  
logical. If TRUE, the values of the Raster* object are updated for the cells that overlap the spatial features of x. Default is FALSE. Cannot be used when mask=TRUE

**updateValue**  
numeric (normally an integer), or character. Only relevant when update=TRUE. Select, by their values, the cells to be updated with the values of the spatial features. Valid character values are 'all', 'NA', and '!NA'. Default is 'all'

**filename**  
character. Output filename (optional)
 rasterize

na.rm If TRUE, NA values are removed if fun honors the na.rm argument
getCover logical. If TRUE, the fraction of each grid cell that is covered by the polygons is returned (and the values of field, fun, mask, and update are ignored. The fraction covered is estimated by dividing each cell into 100 subcells and determining presence/absence of the polygon in the center of each subcell
silent Logical. If TRUE, feedback on the polygon count is suppressed. Default is FALSE
...
Additional arguments for file writing as for writeRaster

Value

RasterLayer or RasterBrick

See Also

extract

Examples

# rasterize points
r <- raster(ncols=36, nrows=18)
n <- 1000
set.seed(123)
x <- runif(n) * 360 - 180
y <- runif(n) * 180 - 90
xy <- cbind(x, y)
# get the (last) indices
r0 <- rasterize(xy, r)
# presence/absence (NA) (is there a point or not?)
r1 <- rasterize(xy, r, field=1)
# how many points?
r2 <- rasterize(xy, r, fun=function(x,...)length(x))
vals <- runif(n)
# sum of the values associated with the points
r3 <- rasterize(xy, r, vals, fun=sum)

# with a SpatialPointsDataFrame
vals <- 1:n
p <- data.frame(xy, name=vals)
coordinates(p) <- ~x+y
r <- rasterize(p, r, 'name', fun=min)
#r2 <- rasterize(p, r, 'name', fun=max)
#plot(r, r2, cex=0.5)

# rasterize lines
cds1 <- rbind(c(-180,-20), c(-140,55), c(10, 0), c(-140,-60))
cds2 <- rbind(c(-10,0), c(140,60), c(160,0), c(140,-55))
cds3 <- rbind(c(-125,0), c(0,60), c(40,5), c(15,-45))

lines <- spLines(cds1, cds2, cds3)

r <- raster(ncols=90, nrows=45)
r <- rasterize(lines, r)

## Not run:
plot(r)
plot(lines, add=TRUE)

r <- rasterize(lines, r, fun='count')
plot(r)

r[] <- 1:ncell(r)
r <- rasterize(lines, r, mask=TRUE)
plot(r)

r[] <- 1
r[lines] <- 10
plot(r)

## End(Not run)

# rasterize polygons

p1 <- rbind(c(-180,-20), c(-140,55), c(10,0), c(-140,-60), c(-180,-20))
hole <- rbind(c(-150,-20), c(-100,-10), c(-110,20), c(-150,-20))
p1 <- list(p1, hole)
p2 <- rbind(c(-10,0), c(140,60), c(160,0), c(140,-55), c(-10,0))
p3 <- rbind(c(-125,0), c(0,60), c(40,5), c(15,-45), c(-125,0))
pols <- spPolygons(p1, p2, p3)

r <- raster(ncol=90, nrow=45)
r <- rasterize(pols, r, fun=sum)

## Not run:

plot(r)
plot(pols, add=T)

# add a polygon
p5 <- rbind(c(-180,10), c(0,90), c(40,90), c(145,-10),
            c(-25,-15), c(-180,0), c(-180,10))
addpoly <- SpatialPolygons(list(Polygons(list(Polygon(p5)), 1)))
addpoly <- as(addpoly, "SpatialPolygonsDataFrame")
addpoly@data[1,1] <- 10
r2 <- rasterize(addpoly, r, field=1, update=TRUE, updateValue="NA")
plot(r2)
rasterTmpFile

plot(pols, border="blue", lwd=2, add=TRUE)
plot(addpoly, add=TRUE, border="red", lwd=2)

# get the percentage cover of polygons in a cell
r3 <- raster(ncol=36, nrow=18)
r3 <- rasterize(pols, r3, getCover=TRUE)

## End(Not run)

Description

Functions in the raster package create temporary files if the values of an output RasterLayer cannot be stored in memory (RAM). This can happen when no filename is provided to a function and in functions where you cannot provide a filename (e.g. when using 'raster algebra'). Temporary files are automatically removed at the start of each session. During a session you can use showTmpFiles to see what is there and removeTmpFiles to delete all the temporary files. rasterTmpFile returns a temporary filename. These can be useful when developing your own functions. These filenames consist of prefix_date_time_pid_rn where pid is the process id returned by Sys.getpid and rn is a 5 digit random number. This should make tempfiles unique if created at different times and also when created in parallel processes (different pid) that use set.seed and call rasterTmpFile at the same time. It is possible, however, to create overlapping names (see the examples), which is undesirable and can be avoided by setting the prefix argument.

Usage

rasterTmpFile(prefix='r_tmp_')
showTmpFiles()
removeTmpFiles(h=24)

Arguments

prefix Character. Prefix to the filename (which will be followed by 10 random numbers)
h Numeric. The minimum age of the files in number of hours (younger files are not deleted)

Details

The default path where the temporary files are stored is returned (can be changed with rasterOptions).

Value

rasterTmpFile returns a valid file name
showTmpFiles returns the names (.grd only) of the files in the temp directory
removeTmpFiles returns nothing
rasterToContour

Raster to contour lines conversion

Description

RasterLayer to contour lines. This is a wrapper around contourLines

Usage

rasterToContour(x, maxpixels=100000, ...)

Arguments

x a RasterLayer object
maxpixels Maximum number of raster cells to use; this function fails when too many cells are used
... Any argument that can be passed to contourLines

Details

Most of the code was taken from maptools::ContourLines2SLDF, by Roger Bivand & Edzer Pebesma

Value

SpatialLinesDataFrame

See Also

rasterOptions, tempfile

Examples

## Not run:
rasterTmpFile('mytemp_')
showTmpFiles()
removeTmpFiles(h=24)

# It is possible (but undesirable!) to create overlapping temp file names.
for (i in 1:10) {
  set.seed(0)
  print(rasterTmpFile())
}
That can be avoided by using a prefix
for (i in 1:10) {
  set.seed(0)
  print(rasterTmpFile(prefix=paste('i', i, '_', sep='')))}

## End(Not run)
**Examples**

```r
f <- system.file("external/test.grd", package="raster")
r <- raster(f)
x <- rasterToContour(r)
class(x)
plot(r)
plot(x, add=TRUE)
```

---

**rasterToPoints**

*Raster to points conversion*

**Description**

Raster to point conversion. Cells with NA are not converted. A function can be used to select a subset of the raster cells (by their values).

**Usage**

```r
rasterToPoints(x, fun=NULL, spatial=FALSE, ...)
```

**Arguments**

- `x` A Raster* object
- `fun` Function to select a subset of raster values
- `spatial` Logical. If TRUE, the function returns a SpatialPointsDataFrame object
- `...` Additional arguments. Currently only `progress` to specify a progress bar. "text", "window", or "" (the default, no progress bar)

**Details**

`fun` should be a simple function returning a logical value.

E.g.: `fun=function(x){x==1}` or `fun=function(x){x>3}`

**Value**

A matrix with three columns: x, y, and v (value), or a SpatialPointsDataFrame object

**Examples**

```r
r <- raster(nrow=18, ncol=36)
r[] <- runif(ncell(r)) * 10
r[r>8] <- NA
p <- rasterToPoints(r)
p <- rasterToPoints(r, fun=function(x){x>6})
plot(r)
points(p)
```
rasterToPolygons  
*Raster to polygons conversion*

**Description**

Raster to polygons conversion. Cells with NA are not converted. A function can be used to select a subset of the raster cells (by their values).

**Usage**

```
rasterToPolygons(x, fun=NULL, n=4, na.rm=TRUE, digits=12, dissolve=FALSE)
```

**Arguments**

- `x`  
  Raster* object
- `fun`  
  function to select a subset of raster values (only allowed if `x` has a single layer)
- `n`  
  integer. The number of nodes for each polygon. Only 4, 8, and 16 are allowed
- `na.rm`  
  If `TRUE`, cells with NA values in all layers are ignored
- `digits`  
  number of digits to round the coordinates to
- `dissolve`  
  logical. If `TRUE`, polygons with the same attribute value will be dissolved into multi-polygon regions. This option requires the rgeos package

**Details**

`fun` should be a simple function returning a logical value.

E.g.: `fun=function(x){x==1}` or `fun=function(x){x>3 & x<6}`

**Value**

SpatialPolygonsDataFrame

**Examples**

```r
r <- raster(nrow=18, ncol=36)
r[] <- runif(ncell(r)) * 10
r[r>8] <- NA
pol <- rasterToPolygons(r, fun=function(x)(x>6))

#plot(r > 6)
#plot(pol, add=TRUE, col='red')
```
**readAll**

**Read values from disk**

**Description**

Read all values from a raster file associated with a Raster* object into memory. This function should normally not be used. In most cases `getValues` or `getValuesBlock` is more appropriate as `readAll` will fail when there is no file associated with the RasterLayer (values may only exist in memory).

**Usage**

`readAll(object)`

**Arguments**

- `object` a Raster* object

**See Also**

`getValues, getValuesBlock, extract`

**Examples**

```r
r <- raster(system.file("external/test.grd", package="raster"))
r <- readAll(r)
```

---

**reclassify**

**Reclassify**

**Description**

Reclassify values of a Raster* object. The function (re)classifies groups of values to other values. For example, all values between 1 and 10 become 1, and all values between 11 and 15 become 2 (see functions `subs` and `cut` for alternative approaches).

Reclassification is done with matrix `rcl`, in the row order of the reclassify table. Thus, if there are overlapping ranges, the first time a number is within a range determines the reclassification value.

**Usage**

```r
S4 method for signature 'Raster'
reclassify(x, rcl, filename='', include.lowest=FALSE, right=TRUE, ...)
```
**rectify**

**rectify a Raster object**

**Description**

rectify changes a rotated Raster object into a non-rotated (rectangular) object. This is wrapper function around `resample`.

**Arguments**

- **x**: Raster* object
- **rcl**: matrix for reclassification. This matrix must have 3 columns. The first two columns are "from" "to" of the input values, and the third column "becomes" has the new value for that range. (You can also supply a vector that can be coerced into a n*3 matrix (with byrow=TRUE)). You can also provide a two column matrix ("is", "becomes") which can be useful for integer values. In that case, the right argument is automatically set to NA.
- **filename**: character. Output filename (optional)
- **include.lowest**: logical, indicating if a value equal to the lowest value in rcl (or highest value in the second column, for right = FALSE) should be included. The default is FALSE.
- **right**: logical, indicating if the intervals should be closed on the right (and open on the left) or vice versa. The default is TRUE. A special case is to use right=NA. In this case both the left and right intervals are open.
- **...**: additional arguments as for `writeRaster`

**Value**

Raster* object

**See Also**

`sbs`, `cut`, `calc`

**Examples**

```r
r <- raster(ncols=36, nrows=18)
r[] <- runif(ncell(r))
reclassify the values into three groups
all values >= 0 and <= 0.25 become 1, etc.
m <- c(0, 0.25, 1, 0.25, 0.5, 2, 0.5, 1, 3)
rclmat <- matrix(m, ncol=3, byrow=TRUE)
rc <- reclassify(r, rclmat)

equivalent to
rc <- reclassify(r, c(-Inf,0.25,1, 0.25,0.5,2, 0.5,Inf,3))
```
replacement

Usage

rectify(x, ext, res, method='ngb', filename='', ...)  

Arguments

- x: Raster* object to be rectified
- ext: Optional. Extent object or object from which an Extent object can be extracted
- res: Optional. Single or two numbers to set the resolution
- method: Method used to compute values for the new RasterLayer, should be "bilinear" for bilinear interpolation, or "ngb" for nearest neighbor
- filename: Character. Output filename
- ...: Additional arguments as for writeRaster

Value

RasterLayer or RasterBrick object

Description

You can set values of a Raster* object, when i is a vector of cell numbers, a Raster*, Extent, or Spatial* object.

These are shorthand methods that work best for relatively small Raster* objects. In other cases you can use functions such as calc and rasterize.

Methods

x[i] <- value
x[i,j] <- value

Arguments:

- x: a Raster* object
- i: cell number(s), row number(s), Extent, Spatial* object
- j: columns number(s) (only available if i is (are) a row number(s))
- value: new cell value(s)

See Also

calc, rasterize
Examples

```r
r <- raster(ncol=10, nrow=5)
r[] <- 1:nchild(r) * 2
r[1,] <- 1
r[,]1 <- 2
r[1,1] <- 3

s <- stack(r, sqrt(r))
s[s<5] <- NA
```

---

```r
resample(x, y, method="bilinear", filename="", ...)```

Description

Resample transfers values between non matching Raster* objects (in terms of origin and resolution). Use `projectRaster` if the target has a different coordinate reference system (projection).

Before using resample, you may want to consider using these other functions instead: `aggregate`, `disaggregate`, `crop`, `extend`, `merge`.

Usage

```r
## S4 method for signature 'Raster,Raster'
resample(x, y, method="bilinear", filename="", ...)```

Arguments

- `x`: Raster* object to be resampled
- `y`: Raster* object with parameters that `x` should be resampled to
- `method`: method used to compute values for the new RasterLayer, should be "bilinear" for bilinear interpolation, or "ngb" for using the nearest neighbor
- `filename`: character. Output filename (optional)
- `...`: Additional arguments as for `writeRaster`

Value

RasterLayer or RasterBrick object

Author(s)

Robert J. Hijmans and Joe Cheng

See Also

`aggregate`, `disaggregate`, `crop`, `extend`, `merge`, `projectRaster`
resolution

Examples

\[ r \leftarrow \text{raster}(\text{nrow}=3, \text{ncol}=3) \]
\[ r[1] \leftarrow 1: \text{ncell}(r) \]
\[ s \leftarrow \text{raster}(\text{nrow}=10, \text{ncol}=10) \]
\[ s \leftarrow \text{resample}(r, s, \text{method}='\text{bilinear}') \]
\[ \text{#par(mfrow=c(1,2))} \]
\[ \text{plot}(r) \]
\[ \text{plot}(s) \]

<table>
<thead>
<tr>
<th>resolution</th>
<th>Resolution</th>
</tr>
</thead>
</table>

Description

Get (or set) the x and/or y resolution of a Raster* object

Usage

\[ \text{xres}(x) \]
\[ \text{yres}(x) \]
\[ \text{res}(x) \]
\[ \text{res}(x) \leftarrow \text{value} \]

Arguments

x Raster* object

value Resolution (single number or vector of two numbers)

Value

A single numeric value or two numeric values.

See Also

extent, ncell

Examples

\[ r \leftarrow \text{raster}(\text{ncol}=18, \text{nrow}=18) \]
\[ \text{xres}(r) \]
\[ \text{yres}(r) \]
\[ \text{res}(r) \]
\[ \text{res}(r) \leftarrow 1/120 \]
\[ \text{# set yres differently} \]
\[ \text{res}(r) \leftarrow c(1/120, 1/60) \]
Create a Red-Green-Blue Raster object

Description

Make a Red-Green-Blue object that can be used to create images.

Usage

```r
S4 method for signature 'RasterLayer'
RGB(x, filename='', col=rainbow(25), breaks=NULL, alpha=FALSE, colNA='white', zlim=NULL, zlimcol=NULL, ext=NULL, ...)
```

Arguments

- `x`: RasterBrick or RasterStack
- `filename`: character. Output filename (optional)
- `col`: A color palette, that is a vector of n contiguous colors generated by functions like `rainbow`, `heat.colors`, `topo.colors`, `bpy.colors` or one or your own making, perhaps using `colorRampPalette`. If none is provided, `rev(terrain.colors(255))` is used unless `x` has a 'color table'
- `breaks`: numeric. A set of finite numeric breakpoints for the colours: must have one more breakpoint than colour and be in increasing order
- `alpha`: If TRUE a fourth layer to set the background transparency is added
- `colNA`: color for the background (NA values)
- `zlim`: vector of length 2. Range of values to plot
- `zlimcol`: If NULL the values outside the range of zlim get the color of the extremes of the range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA)
- `ext`: An `Extent` object to zoom in to a region of interest (see `drawExtent`)
- `...`: additional arguments as for `writeRaster`

See Also

`plotRGB`

Examples

```r
r <- raster(system.file("external/test.grd", package="raster"))
x <- RGB(r)
plot(x, col=gray(0:9/10))
plotRGB(x)
```
**Description**

Rotate a Raster* object that has x coordinates (longitude) from 0 to 360, to standard coordinates between -180 and 180 degrees. Longitude between 0 and 360 is frequently used in global climate models.

**Usage**

```r
S4 method for signature 'Raster'
rotate(x, filename='', ...)
```

**Arguments**

- `x` Raster* object
- `filename` character. Output filename (optional)
- `...` additional arguments as for `writeRaster`

**Value**

RasterLayer or a RasterBrick object

**See Also**

`flip`

**Examples**

```r
r <- raster(nrow=18, ncol=36)
m <- matrix(1:ncell(r), nrow=18)
r[] <- as.vector(t(m))
extent(r) <- extent(0, 360, -90, 90)
rr <- rotate(r)
```
Do the raster cells have a rotation?

**Description**
Do the raster cells have a rotation?

**Usage**

\`\`\`r
\texttt{rotated(x)}
\`\`

**Arguments**

- **x**: A Raster* object

**Value**
Logical value

**See Also**
rectify

**Examples**

\`\`\`
\texttt{r <- raster()}  
\texttt{rotated(r)}
\`\`

---

Integer values

**Description**
These functions take a single RasterLayer argument \( x \) and change its values to integers.

- **ceiling** returns a RasterLayer with the smallest integers not less than the corresponding values of \( x \).
- **floor** returns a RasterLayer with the largest integers not greater than the corresponding values of \( x \).
- **trunc** returns a RasterLayer with the integers formed by truncating the values in \( x \) toward 0.
- **round** returns a RasterLayer with values rounded to the specified number of digits (decimal places; default 0).

**Details**
see ?base::round
rowFromCell

Value

a RasterLayer object

Methods

ceiling(x) floor(x) trunc(x, ...) round(x, digits = 0)

a RasterLayer object
digits integer indicating the precision to be used
... additional arguments

See Also

round

Examples

r <- raster(ncol=10, nrow=10)
r[] <- runif(ncell(r)) * 10
s <- round(r)

Description

These functions get the row and/or column number from a cell number of a Raster* object.

Usage

colFromCell(object, cell)
rowFromCell(object, cell)
rowColFromCell(object, cell)

Arguments

object Raster* object (or a SpatialPixels* or SpatialGrid* object)
cell cell number(s)

Details

The colFromCell and similar functions accept a single value, or a vector or list of these values. Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top to bottom. The last cell number equals the number of cells of the Raster* object.
Value

row of column number(s)

See Also

cellFrom

Examples

r <- raster(ncols=10, nrows=10)
colFromCell(r, c(5,15))
rowFromCell(r, c(5,15))
rowColFromCell(r, c(5,15))

Description

Sum values of Raster objects by row or column.

Usage

## S4 method for signature 'Raster'
rowSums(x, na.rm=FALSE, dims=1L,...)
## S4 method for signature 'Raster'
colSums(x, na.rm=FALSE, dims=1L,...)

Arguments

x Raster* object

na.rm logical. If TRUE, NA values are ignored

dims this argument is ignored

... additional arguments (none implemented)

Value

vector (if x is a RasterLayer) or matrix

See Also

See cellStats for summing all cells values
**SampleInt**

Sample integer values

---

**Description**

Take a random sample from a range of integer values between 1 and \( n \). Its purpose is similar to that of `sample`, but that function fails when \( n \) is very large.

**Usage**

```r
sampleInt(n, size, replace=FALSE)
```

**Arguments**

- `n` Positive number (integer); the number of items to choose from
- `size` Non-negative integer; the number of items to choose
- `replace` Logical. Should sampling be with replacement?

**Value**

vector of integer numbers

**Examples**

```r
sampleInt(1e+12, 10)

this may fail:
sampleInt(1e+12, 10)
sample.int(1e+9, 10)
```
sampleRandom

Random sample

Description

Take a random sample from the cell values of a Raster* object (without replacement).

Usage

## S4 method for signature 'Raster'
sampleRandom(x, size, na.rm=TRUE, ext=NULL,
cells=FALSE, rowcol=FALSE, xy=FALSE, sp=FALSE, asRaster=FALSE, ...)

Arguments

- `x`: Raster* object
- `size`: positive integer giving the number of items to choose
- `na.rm`: logical. If TRUE (the default), NA values are removed from random sample
- `ext`: Extent object. To limit regular sampling to the area within the extent
- `cells`: logical. If TRUE, sampled cell numbers are also returned
- `rowcol`: logical. If TRUE, sampled row and column numbers are also returned
- `xy`: logical. If TRUE, coordinates of sampled cells are also returned
- `sp`: logical. If TRUE, a SpatialPointsDataFrame is returned
- `asRaster`: logical. If TRUE, a Raster* object is returned with random cells with values, all other cells with NA
- `...`: Additional arguments as in `writeRaster`. Only relevant when `asRaster=TRUE`

Details

With argument `na.rm=TRUE`, the returned sample may be smaller than requested

Value

A vector, matrix (if `cells=TRUE` or `x` is a multi-layered object), or a SpatialPointsDataFrame (if `sp=TRUE`)

See Also

sampleRegular, sampleStratified

Examples

```r
r <- raster(system.file("external/test.grd", package="raster"))
sampleRandom(r, size=10)
s <- stack(r, r)
sampleRandom(s, size=5, cells=TRUE, sp=TRUE)
```
Description

Take a systematic sample from a Raster* object.

Usage

```r
S4 method for signature 'Raster'
sampleRegular(x, size, ext=NULL, cells=FALSE, xy=FALSE, asRaster=FALSE,
 sp=FALSE, useGDAL=FALSE, ...)
```

Arguments

- `x`: Raster object
- `size`: positive integer giving the number of items to choose.
- `ext`: Extent. To limit regular sampling to the area within that box
- `cells`: logical. Also return sampled cell numbers (if asRaster=FALSE)
- `xy`: logical. If TRUE, coordinates of sampled cells are also returned
- `asRaster`: logical. If TRUE, a RasterLayer or RasterBrick is returned, rather than the sampled values
- `sp`: logical. If TRUE, a SpatialPointsDataFrame is returned
- `useGDAL`: logical. If TRUE, GDAL is used to sample in some cases. This is quicker, but can result in values for a different set of cells than when useGDAL=FALSE. Only for rasters that are accessed via rgdal, and are not rotated. When TRUE arguments cells, xy, and sp are ignored (i.e., FALSE
- `...`: additional arguments. None implemented

Value

A vector (single layer object), matrix (multi-layered object; or if cells=TRUE, or xy=TRUE), Raster* object (if asRaster=TRUE), or SpatialPointsDataFrame (if sp=TRUE)

See Also

`sampleRandom`, `sampleStratified`

Examples

```r
r <- raster(system.file("external/test.grd", package="raster"))
v <- sampleRegular(r, size=100)
x <- sampleRegular(r, size=100, asRaster=TRUE)
```
sampleStratified  

**Stratified random sample**

**Description**

Take a stratified random sample from the cell values of a Raster* object (without replacement). An attempt is made to sample `size` cells from each stratum. The values in the RasterLayer `x` are rounded to integers; with each value representing a stratum.

**Usage**

```r
S4 method for signature 'RasterLayer'
sampleStratified(x, size, exp=10, na.rm=TRUE, xy=FALSE, ext=NULL, sp=FALSE, ...)
```

**Arguments**

- `x`: Raster* object, with values (rounded to integers) representing strata
- `size`: positive integer giving the number of items to choose
- `exp`: numeric >= 1. 'Expansion factor' that is multiplied with size to get an initial sample. Can be increased when you get an insufficient number of samples for small strata
- `na.rm`: logical. If `TRUE` (the default), NA values are removed from random sample
- `xy`: logical. Return coordinates of cells rather than cell numbers
- `ext`: Extent object. To limit regular sampling to the area within the extent
- `sp`: logical. If `TRUE`, a SpatialPointsDataFrame is returned
- `...`: Additional arguments. None implemented

**Details**

The function may not work well when the size (number of cells) of some strata is relatively small.

**Value**

matrix of cell numbers (and optionally coordinates) by stratum

**See Also**

`sampleRandom`, `sampleRegular`

**Examples**

```r
r <- raster(ncol=10, nrow=10)
names(r) <- 'stratum'
r[] <- round((runif(ncell(r))+0.5)*3)
sampleStratified(r, size=3)
```
scale

Scale values

Description

Center and/or scale raster data

Usage

```r
S4 method for signature 'Raster'
scale(x, center=TRUE, scale=TRUE)
```

Arguments

- `x`: Raster* object
- `center`: logical or numeric. If TRUE, centering is done by subtracting the layer means (omitting NAs), and if FALSE, no centering is done. If center is a numeric vector with length equal to the `nlayers(x)`, each layer of `x` has the corresponding value from center subtracted from it.
- `scale`: logical or numeric. If TRUE, scaling is done by dividing the (centered) layers of `x` by their standard deviations if `center` is TRUE, and the root mean square otherwise. If scale is FALSE, no scaling is done. If scale is a numeric vector with length equal to `nlayers(x)`, each layer of `x` is divided by the corresponding value. Scaling is done after centering.

Value

Raster* object

See Also

- `scale`

Examples

```r
b <- brick(system.file("external/rlogo.grd", package="raster"))
bs <- scale(b)
```
Description

Add a scalebar to a plot

Usage

```r
scalebar(d, xy = NULL, type = "line", divs = 2, below = "", lonlat = NULL, label, adj=c(0.5, -0.5), lwd = 2, ...)
```

Arguments

- `d`: distance covered by scalebar
- `xy`: x and y coordinate to place the plot. Can be NULL. Use `xy=click()` to make this interactive
- `type`: "line" or "bar"
- `divs`: Number of divisions for a bar type. 2 or 4
- `below`: Text to go below scalebar (e.g., "kilometers")
- `lonlat`: Logical or NULL. If logical, TRUE indicates if the plot is using longitude/latitude coordinates. If NULL this is guessed from the plot’s coordinates
- `adj`: adjustment for text placement
- `label`: Vector of three numbers to label the scale bar (beginning, midpoint, end)
- `lwd`: line width for the "line" type scalebar
- `...`: arguments to be passed to other methods

Value

None. Use for side effect of a scalebar added to a plot

Author(s)

Robert J. Hijmans; partly based on a function by Josh Gray

See Also

- `plot`

Examples

```r
f <- system.file("external/test.grd", package="raster")
r <- raster(f)
plot(r)
scalebar(1000)
scalebar(1000, xy=c(178000, 333500), type='bar', divs=4)
```
select

Geometric subsetting

Description

Geometrically subset Raster* or Spatial* objects by drawing on a plot (map).

Usage

```r
S4 method for signature 'Raster'
select(x, use='rec', ...)

S4 method for signature 'Spatial'
select(x, use='rec', draw=TRUE, col='cyan', size=2, ...)
```

Arguments

- `x` Raster*, SpatialPoints*, SpatialLines*, or SpatialPolygons*
- `use` character: 'rec' or 'pol'. To use a rectangle or a polygon for selecting
- `draw` logical. Add the selected features to the plot?
- `col` color to use to draw the selected features (when `draw=TRUE`)
- `size` integer > 0. Size to draw the selected features with (when `draw=TRUE`)
- `...` additional arguments. None implemented

Value

Raster* or Spatial* object

See Also

`click`, `crop`

Examples

```r
Not run:

select a subset of a RasterLayer
r <- raster(nrow=10, ncol=10)
r[,] <- 1:ncell(r)
plot(r)
s <- select(r) # now click on the map twice

plot the selection on a new canvas:
x11()
plot(s)
```
# select a subset of a SpatialPolygons object
p1 <- rbind(c(-180,-20), c(-140,55), c(10, 0), c(-140,-60), c(-180,-20))
hole <- rbind(c(-150,-20), c(-100,-10), c(-110,20), c(-150,-20))
p2 <- rbind(c(-10,0), c(140,60), c(160,0), c(140,-55), c(-10,0))
p3 <- rbind(c(-125,0), c(0,60), c(40,5), c(15,-45), c(-125,0))
pols <- SpatialPolygons( list( Polygons(list(Polygon(p1), Polygon(hole)), 1), Polygons(list(Polygon(p2)), 2), Polygons(list(Polygon(p3)), 3)))
pols@polygons[[1]]@polygons[[2]]@hole <- TRUE

plot(pols, col=rainbow(3))
ps <- select(pols) # now click on the map twice
ps

## End(Not run)

---

**setExtent**

*Set the extent of a RasterLayer*

### Description

`setExtent` sets the extent of a Raster* object. Either by providing a new Extent object or by setting the extreme coordinates one by one.

### Usage

```r
setExtent(x, ext, keepres=FALSE, snap=FALSE)
extent(x) <- value
```

### Arguments

- **x**: A Raster* object
- **ext**: An object of class Extent (which you can create with `extent`, or an object that has an extent (e.g. a Raster* or Spatial* object))
- **keepres**: logical. If TRUE, the resolution of the cells will stay the same after adjusting the bounding box (by adjusting the number of rows and columns). If FALSE, the number of rows and columns will stay the same, and the resolution will be adjusted.
- **snap**: logical. If TRUE, the extent is adjusted so that the cells of the input and output RasterLayer are aligned
- **value**: An object of class Extent (which you can create with `extent`

### Value

A Raster* object

### See Also

`extent`, `Extent-class`
`setMinMax`  

**Examples**

```r
r <- raster()
bb <- extent(-10, 10, -20, 20)
extent(r) <- bb
r <- setExtent(r, bbL keepres=TRUE)
```

---

**setMinMax**  

*Compute min and max values*

**Description**

The minimum and maximum value of a RasterLayer are computed (from a file on disk if necessary) and stored in the returned Raster* object.

**Usage**

`setMinMax(x)`

**Arguments**

- `x` A Raster* object

**Value**

a Raster* object

**See Also**

`getValues`

**Examples**

```r
r <- raster(system.file("external/test.grd", package="raster"))
r
r <- setMinMax(r)
r
```
setValues

Set values of a Raster object

Description

Assign (new) values to a Raster* object.

Usage

```r
S4 method for signature 'RasterLayer'
setValues(x, values, ...)

S4 method for signature 'RasterBrick'
setValues(x, values, layer=-1, ...)

S4 method for signature 'RasterStack'
setValues(x, values, layer=-1, ...)

S4 method for signature 'RasterLayerSparse'
setValues(x, values, index=NULL, ...)

values(x) <- value
```

Arguments

- `x`: A Raster*
- `values`: Cell values to associate with the Raster* object. There should be values for all cells
- `value`: Cell values to associate with the Raster* object. There should be values for all cells
- `layer`: Layer number (only relevant for RasterBrick and RasterStack objects). If missing, the values of all layers is set
- `index`: Cell numbers corresponding to the values
- `...`: Additional arguments (none implemented)

Value

A Raster* object

Note

While you can access the 'values' slot of the objects directly, you would do that at your own peril because when setting values, multiple slots need to be changed; which is what setValues takes care of.
See Also

replacement

Examples

```r
r <- raster(ncol=10, nrow=10)
vals <- 1:ncell(r)
r <- setValues(r, vals)
equivalent to
r[] <- vals
```

Description

Reading and writing of "ESRI shapefile" format spatial data. Only the three vector types (points, lines, and polygons) can be stored in shapefiles. These are simple wrapper functions around readOGR and writeOGR (rgdal package). A shapefile should consist of at least four files: .shp (the geometry), .dbf (the attributes), .shx (the index that links the two, and .prj (the coordinate reference system). If the .prj file is missing, a warning is given. If any other file is missing an error occurs (although one could in principle recover the .shx from the .shp file). Additional files are ignored.

Usage

```r
S4 method for signature 'character'
shapefile(x, stringsAsFactors=FALSE, verbose=FALSE, warnPRJ=TRUE, ...)

S4 method for signature 'Spatial'
shapefile(x, filename='', overwrite=FALSE, ...)
```

Arguments

- `x`: character (a file name, when reading a shapefile) or Spatial* object (when writing a shapefile)
- `filename`: character. Filename to write a shapefile
- `overwrite`: logical. Overwrite existing shapefile?
- `verbose`: logical. If TRUE, information about the file is printed
- `warnPRJ`: logical. If TRUE, a warning is given if there is no .prj file
- `stringsAsFactors`: logical. If TRUE, strings are converted to factors
- `...`: Additional arguments passed to rgdal functions readOGR or writeOGR
Value
Spatial*DataFrame (reading). Nothing is returned when writing a shapefile.

Examples
if (require(rgdal)) {

  filename <- system.file("external/lux.shp", package="raster")
  filename
  p <- shapefile(filename)

  ## Not run:
  shapefile(p, 'copy.shp')

  ## End(Not run)
}

shift                   Shift

Description
Shift the location of a Raster* of vector type Spatial* object in the x and/or y direction

Usage
## S4 method for signature 'Raster'
shift(object, x=0, y=0, filename='', ...)  

## S4 method for signature 'SpatialPolygons'
shift(object, x=0, y=0, ...)  

## S4 method for signature 'SpatialLines'
shift(object, x=0, y=0, ...)  

## S4 method for signature 'SpatialPoints'
shift(object, x=0, y=0, ...)  

Arguments

  object     Raster* or Spatial* object
  x          numeric. The shift in horizontal direction
  y          numeric. The shift in vertical direction
  filename   character file name (optional)
  ...        if object is a Raster* object: additional arguments as for writeRaster
Slope and aspect

Value
Same object type as x

See Also
flip, rotate, and the elide function in the maptools package

Examples
r <- raster()
r <- shift(r, x=1, y=-1)

Description
This is a deprecated function. Use terrain instead.

Usage
slopeAspect(dem, filename='', out=c('slope', 'aspect'), unit='radians',
neighbors=8, flatAspect, ...)

Arguments
dem RasterLayer object with elevation values in map units, or in meters when the crs
is longitude/latitude
filename Character. Filename. optional
out Character vector containing one or more of these options: 'slope', 'aspect'
unit Character. 'degrees' or 'radians'
neighbors Integer. Indicating how many neighboring cells to use to compute slope for any
cell. Either 8 (queen case) or 4 (rook case), see Details
flatAspect Numeric or NA. What value to use for aspect when slope is zero (and hence the
aspect is undefined)? The default value is 90 degrees (or 0.5*pi radians)
... Standard additional arguments for writing RasterLayer files

See Also
terrain
Create SpatialLines* or SpatialPolygons*

Description

Helper functions to simplify the creation of SpatialLines* or SpatialPolygons* objects from coordinates.

Usage

splinesHxL NNNL attr[nullL crs[naI
spPolygonsHxL NNNL attr[nullL crs[naI

Arguments

x
matrix of list with matrices. Each matrix must have two columns with x and y coordinates (or longitude and latitude, in that order). Multi-line or multi-polygon objects can be formed by combining matrices in a list

...  
additional matrices and/or lists with matrices

attr
data.frame with the attributes to create a *DataFrame object. The number of rows must match the number of lines/polygons

crs  
the coordinate reference system (PROJ4 notation)

Value

SpatialLines* or SpatialPolygons*

Examples

x1 <- rbind(c(-180,-20), c(-140,55), c(10, 0), c(-140,-60))
x2 <- rbind(c(-10,0), c(140,60), c(160,0), c(140,-55))
x3 <- rbind(c(-125,0), c(0,60), c(40,5), c(15,-45))
x4 <- rbind(c(41,-41.5), c(51,-35), c(62,-41), c(51,-50))
a <- splines(x1, x2, x3)
b <- splines(x1, list(x2, x3), attr=data.frame(id=1:2), crs='+proj=longlat +datum=WGS84')
b

hole <- rbind(c(-150,-20), c(-100,-10), c(-110,20))
d <- spPolygons(list(x1,hole), x2, list(x3, x4))
att <- data.frame(ID=1:3, name=c('a', 'b', 'c'))
e <- spPolygons(list(x1,hole), x2, list(x3, x4), attr=att, crs='+proj=longlat +datum=WGS84')
e
Use `spplot` to plot a Raster* object

**Description**

A wrapper function around `spplot` (sp package). With `spplot` it is easy to map several layers with a single legend for all maps. `ssplot` is itself a wrapper around the `levelplot` function in the lattice package, and see the help for these functions for additional options.

One of the advantages of these wrapper functions is the additional `maxpixels` argument to sample large Raster objects for faster drawing.

**Methods**

`spplot(obj, ..., maxpixels=50000, as.table=TRUE)`

- **obj**: A Raster* object
- **...**: Any argument that can be passed to `spplot` and `levelplot`
- **maxpixels**: Integer. Number of pixels to sample from each layer of large Raster objects

**See Also**

`plot`, `plotRGB`

The rasterVis package has more advanced plotting methods for Raster objects

**Examples**

```r
r <- raster(system.file("external/test.grd", package="raster"))
s <- stack(r, r*2)
names(s) <- c("meuse", "meuse x 2")

spplot(s)

pts <- data.frame(sampleRandom(r, 10, xy=TRUE))
coordinates(pts) <- ~ x + y

spplot(s, scales = list(draw = TRUE),
xlab = "easting", ylab = "northing",
col.regions = rainbow(99, start=.1),
names.attr=c("original", "times two"),
sp.layout = list("sp.points", pts, pch=20, cex=2, col='black'),
par.settings = list(fontsize = list(text = 12)), at = seq(0, 4000, 500))
```
Create a RasterStack object

Description

A RasterStack is a collection of RasterLayer objects with the same spatial extent and resolution. A RasterStack can be created from RasterLayer objects, or from raster files, or both. It can also be created from a SpatialPixelsDataFrame or a SpatialGridDataFrame object.

Usage

```r
S4 method for signature 'character'
stack(x, ..., bands=NULL, varname="", native=FALSE, RAT=TRUE, quick=FALSE)

S4 method for signature 'Raster'
stack(x, ..., layers=NULL)

S4 method for signature 'missing'
stack(x)

S4 method for signature 'list'
stack(x, bands=NULL, native=FALSE, RAT=TRUE, ...)
```

Arguments

- `x` filename (character), Raster* object, missing (to create an empty RasterStack), SpatialGrid*, SpatialPixels*, or list (of filenames and/or Raster* objects). If `x` is a list, additional arguments are ignored.
- `bands` integer. which bands (layers) of the file should be used (default is all layers)
- `layers` integer (or character with layer names) indicating which layers of a RasterBrick should be used (default is all layers)
- `native` logical. If `TRUE` native drivers are used instead of gdal drivers (where available, such as for BIL and Arc-ASCII files)
- `RAT` logical. If `TRUE` a raster attribute table is created for files that have one
- `quick` logical. If `TRUE` the extent and resolution of the objects are not compared. This speeds up the creation of the RasteStack but should be use with great caution. Only use this option when you are absolutely sure that all the data in all the files are aligned, and you need to create RasterStack for many (>100) files
- `varname` character. To select the variable of interest in a NetCDF file (see `raster`
- `...` additional filenames or Raster* objects

Value

RasterStack
See Also

addLayer, dropLayer, raster, brick

Examples

# file with one layer
fn <- system.file("external/test.grd", package="raster")
s <- stack(fn, fn)
r <- raster(fn)
s <- stack(r, fn)
nlayers(s)

# file with three layers
slogo <- stack(system.file("external/rlogo.grd", package="raster"))
nlayers(slogo)
slogo

---

stackApply

Apply a function on subsets of a RasterStack or RasterBrick

Description

Apply a function on subsets of a RasterStack or RasterBrick. The layers to be combined are indicated with the vector indices. The function used should return a single value, and the number of layers in the output Raster* equals the number of unique values in indices. For example, if you have a RasterStack with 6 layers, you can use indices=c(1,1,1,2,2,2) and fun=sum. This will return a RasterBrick with two layers. The first layer is the sum of the first three layers in the input RasterStack, and the second layer is the sum of the last three layers in the input RasterStack. Indices are recycled such that indices=c(1,2) would also return a RasterBrick with two layers (one based on the odd layers (1,3,5), the other based on the even layers (2,4,6)).

See calc if you want to use a more efficient function that returns multiple layers based on _all_ layers in the Raster* object.

Usage

stackApply(x, indices, fun, filename='', na.rm=TRUE, ...)

Arguments

x Raster* object

indices integer. Vector of length nlayers(x) (shorter vectors are recycled) containing all integer values between 1 and the number of layers of the output Raster*

fun function that returns a single value, e.g. mean or min, and that takes a na.rm argument (or can pass through arguments via ...)

na.rm logical. If TRUE, NA cells are removed from calculations

filename character. Optional output filename

... additional arguments as for writeRaster
Value

A new Raster* object, and in some cases the side effect of a new file on disk.

See Also

calc, stackSelect

Examples

```r
r <- raster(ncol=10, nrow=10)
r[] = r:ncell(r)
s <- brick(r,r,r,r,r)
s <- s * 1:6
b1 <- stackApply(s, indices=c(1,1,2,2,2), fun=sum)
b1
b2 <- stackApply(s, indices=c(1,2,3,1,2,3), fun=sum)
```

```
stackSave Save or open a RasterStack file

Description

A RasterStack is a collection of RasterLayers with the same spatial extent and resolution. They can be created from RasterLayer objects, or from file names. These two functions allow you to save the references to raster files and recreate a rasterStack object later. They only work if the RasterStack points to layers that have their values on disk. The values are not saved, only the references to the files.

Usage

```
stackOpen(stackfile)
stackSave(x, filename)
```

Arguments

```
stackfile Filename for the RasterStack (to save it on disk)
x RasterStack object
filename File name
```

Details

When a RasterStack is saved to a file, only pointers (filenames) to raster datasets are saved, not the data. If the name or location of a raster file changes, the RasterStack becomes invalid.

Value

RasterStack object
stackSelect

Select cell values from a multi-layer Raster* object

Description

Use a Raster* object to select cell values from different layers in a multi-layer Raster* object. The object to select values \(y \) should have cell values between 1 and \(n\text{layers}(x) \). The values of \(y \) are rounded.

See extract for extraction of values by cell, point, or otherwise.

Usage

```r
## S4 method for signature 'RasterStackBrick,Raster'
stackSelect(x, y, recycle=FALSE, type='index', filename='', ...)```

Arguments

- **x**: RasterStack or RasterBrick object
- **y**: Raster* object
- **recycle**: Logical. Recursively select values (default = FALSE. Only relevant if \( y \) has multiple layers. E.g. if \( x \) has 12 layers, and \( y \) has 4 layers, the indices of the \( y \) layers are used three times.
- **type**: Character. Only relevant when recycle=TRUE. Can be 'index' or 'truefalse'. If it is 'index', the cell values of \( y \) should represent layer numbers. If it is 'truefalse' layer numbers are indicated by 0 (not used, NA returned) and 1 (used)
- **filename**: Character. Output filename (optional)
- **...**: Additional arguments as for writeRaster

Value

Raster* object
See Also

stackApply, extract

Examples

```r
r <- raster(ncol=10, nrow=10)
r[] <- 1
s <- stack(r, r+2, r+5)
r[] <- round((runif(ncell(r)))*3)
x <- stackSelect(s, r)
```

---

**Description**

Linear strech of values in a Raster object

**Usage**

```r
stretch(x, minv=0, maxv=255, minq=0, maxq=1, filename='', ...)
```

**Arguments**

- `x`: Raster* object
- `minv`: numeric >= 0 and smaller than maxv. lower bound of streched value
- `maxv`: numeric <= 255 and larger than maxv. upper bound of streched value
- `minq`: numeric >= 0 and smaller than maxq. lower quitile bound of original value
- `maxq`: numeric <= 1 and larger than minq. upper quitile bound of original value
- `filename`: character. Filename for the output Raster object (optional)
- `...`: additional arguments as for `writeRaster`

**Value**

Raster* object

**See Also**

stretch argument in `plotRGB`

**Examples**

```r
r <- raster(nc=10, nr=10)
r[] <- 1:100 * 10
stretch(r)
s <- stack(r, r*2)
stretch(s)
```
**Description**

Extract a set of layers from a RasterStack or RasterBrick object.

**Usage**

```r
S4 method for signature 'Raster'
subset(x, subset, drop=TRUE, filename='', ...)

S4 method for signature 'RasterStack'
subset(x, subset, drop=TRUE, filename='', ...)
```

**Arguments**

- `x`: RasterBrick or RasterStack object
- `subset`: integer or character. Should indicate the layers (represented as integer or by their name)
- `drop`: If TRUE, a selection of a single layer will be returned as a RasterLayer
- `filename`: character. Output filename (optional)
- `...`: additional arguments as for `writeRaster`

**Value**

Raster* object

**See Also**

`dropLayer`

**Examples**

```r
s <- stack(system.file("external/rlogo.grd", package="raster"))
sel <- subset(s, 2:3)

Note that this is equivalent to
sel2 <- s[[2:3]]

and in this particular case:
.sel3 <- dropLayer(s, 1)

nlayers(s)
nlayers(sel)
```
substitute

Substitute values in a Raster* object

Description

Substitute (replace) values in a Raster* object with values in a data.frame. The data.frame should have a column to identify the key (ID) to match with the cell values of the Raster* object, and one or more columns with replacement values. By default these are the first and second column but you can specify other columns with arguments by and which. It is possible to match one table to multiple layers, or to use multiple layers as a single key, but not both.

Usage

## S4 method for signature 'Raster,data.frame'
subs(x, y, by=1, which=2, subsWithNA=TRUE, filename='', ...)  

Arguments

x Raster* object  
y data.frame  
by column number(s) or name(s) identifying the key (ID) to match rows in data.frame y to values of the Raster object  
which column number or name that has the new (replacement) values  
subsWithNA logical. If TRUE values that are not matched become NA. If FALSE, they retain their original value (which could also be NA). This latter option is handy when you want to replace only one or a few values. It cannot be used when x has multiple layers  
filename character. Optional output filename  
... additional arguments as for writeRaster

Details

You could obtain the same result with reclassify, but subs is more efficient for simple replacement. Use reclassify if you want to replace ranges of values with new values.  
You can also replace values using a fitted model. E.g. fit a model to glm or loess and then call predict

Value

Raster object
Summary

See Also

reclassify, cut

Examples

```r
r <- raster(ncol=10, nrow=10)
r[] <- round(runif(ncell(r)) * 10)
df <- data.frame(id=2:8, v=c(10,10,11,11,12:14))
x <- subs(r, df)
x2 <- subs(r, df, subsWithNA=FALSE)

df$v2 <- df$v * 10
x3 <- subs(r, df, which=2:3)

s <- stack(r, r*3)
names(s) <- c('first', 'second')
x4 <- subs(s, df)
x5 <- subs(s, df, which=2:3)
```

Description

Summarize a Raster* object. A sample is used for very large files.

Usage

```r
S4 method for signature 'RasterLayer'
summary(object, maxsamp=100000, ...)
```

Arguments

- `object` Raster* object
- `maxsamp` positive integer. Sample size used for large datasets
- `...` additional arguments. None implemented

Value

matrix with (an estimate of) the median, minimum and maximum values, the first and third quartiles, and the number of cells with NA values

See Also

cellStats, link[raster]{quantile}
Description

The following summary methods are available for Raster* objects:

- mean, max, min, range, prod, sum, any, all

All methods take `na.rm` as an additional logical argument. Default is `na.rm=FALSE`. If TRUE, NA values are removed from calculations. These methods compute a summary statistic based on cell values of RasterLayers and the result of these methods is always a single RasterLayer (except for range, which returns a RasterBrick with two layers). See `calc` for functions not included here (e.g. median) or any other custom functions.

You can mix RasterLayer, RasterStack and RasterBrick objects with single numeric or logical values. However, because generic functions are used, the method applied is chosen based on the first argument: `x`. This means that if `r` is a RasterLayer object, `mean(r, 5)` will work, but `mean(5, r)` will not work.

To summarize all cells within a single RasterLayer, see `cellStats` and `maxValue` and `minValue`.

Value

- a RasterLayer

See Also

- `calc`

Examples

```r
r1 <- raster(nrow=10, ncol=10)
r1 <- setValues(r1, runif(ncell(r1)))
r2 <- setValues(r1, runif(ncell(r1)))
r3 <- setValues(r1, runif(ncell(r1)))
r <- max(r1, r2, r3)
r <- range(r1, r2, r3, 1.2)
s <- stack(r1, r2, r3)
r <- mean(s, 2)
```
symdif

Symmetrical difference of SpatialPolygons* objects

Usage

```r
S4 method for signature 'SpatialPolygons,SpatialPolygons'
symdif(x, y, ...)
```

Arguments

- `x`: SpatialPolygons* object
- `y`: SpatialPolygons* object
- `...`: Additional SpatialPolygons* object(s)

Value

SpatialPolygons*

Author(s)

Robert J. Hijmans

See Also

`erase`

Examples

```r
SpatialPolygons
if (require(rgdal) & require(rgeos)) {
 p <- shapefile(system.file("external/lux.shp", package="raster"))
 b <- as(extent(6, 6.4, 49.75, 50), 'SpatialPolygons')
 projection(b) <- projection(p)
 sd <- symdif(p, b)
 plot(sd, col='red')
}
```
terrain

Terrain characteristics

Description

Compute slope, aspect and other terrain characteristics from a raster with elevation data. The elevation data should be in map units (typically meter) for projected (planar) raster data. They should be in meters when the coordinate reference system (CRS) is longitude/latitude.

Usage

terrain(x, opt='slope', unit='radians', neighbors=8, filename='', ...)

Arguments

x
RasterLayer object with elevation values. Values should have the same unit as the map units, or in meters when the crs is longitude/latitude

opt
Character vector containing one or more of these options: slope, aspect, TPI, TRI, roughness, flowdir (see Details)

unit
Character. 'degrees', 'radians' or 'tangent'. Only relevant for slope and aspect. If 'tangent' is selected that is used for slope, but for aspect 'degrees' is used (as 'tangent' has no meaning for aspect)

neighbors
Integer. Indicating how many neighboring cells to use to compute slope for any cell. Either 8 (queen case) or 4 (rook case). Only used for slope and aspect, see Details

filename
Character. Output filename (optional)

... Standard additional arguments for writing Raster* objects to file

Details

When neighbors=4, slope and aspect are computed according to Fleming and Hoffer (1979) and Ritter (1987). When neighbors=8, slope and aspect are computed according to Horn (1981). The Horn algorithm may be best for rough surfaces, and the Fleming and Hoffer algorithm may be better for smoother surfaces (Jones, 1997; Burrough and McDonnell, 1998). If slope = 0, aspect is set to 0.5*pi radians (or 90 degrees if unit='degrees'). When computing slope or aspect, the CRS (projection) of the RasterLayer x must be known (may not be NA), to be able to safely differentiate between planar and longitude/latitude data.

flowdir returns the 'flow direction' (of water), i.e. the direction of the greatest drop in elevation (or the smallest rise if all neighbors are higher). They are encoded as powers of 2 (0 to 7). The cell to the right of the focal cell 'x' is 1, the one below that is 2, and so on:

<table>
<thead>
<tr>
<th>32</th>
<th>64</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
If two cells have the same drop in elevation, a random cell is picked. That is not ideal as it may prevent the creation of connected flow networks. ArcGIS implements the approach of Greenlee (1987) and I might adopt that in the future.

The terrain indices are according to Wilson et al. (2007), as in gdaldem. TRI (Terrain Ruggedness Index) is the mean of the absolute differences between the value of a cell and the value of its 8 surrounding cells. TPI (Topographic Position Index) is the difference between the value of a cell and the mean value of its 8 surrounding cells. Roughness is the difference between the maximum and the minimum value of a cell and its 8 surrounding cells.

Such measures can also be computed with the focal function:

\[
f <- \text{matrix}(1, nrow=3, ncol=3)
\]

\[
\text{TRI} <- \text{focal}(x, w=f, \text{fun} = \text{function}(x, ...) \text{sum}(\text{abs}(x[-5]-x[5]))/8, \text{pad}=\text{TRUE}, \text{padValue}=\text{NA})
\]

\[
\text{TPI} <- \text{focal}(x, w=f, \text{fun} = \text{function}(x, ...) \text{x}[5] - \text{mean}(x[-5]), \text{pad}=\text{TRUE}, \text{padValue}=\text{NA})
\]

\[
\text{rough} <- \text{focal}(x, w=f, \text{fun} = \text{function}(x, ...) \text{max}(x) - \text{min}(x), \text{pad}=\text{TRUE}, \text{padValue}=\text{NA}, \text{na.rm}=\text{TRUE})
\]

References


See Also

hillshade

Examples

```r
Not run:
elevation <- getData('alt', country='CHE')
x <- terrain(elevation, opt=c('slope', 'aspect'), unit='degrees')
plot(x)

TPI for different neighborhood size:
tpiw <- function(x, w=5) {
```
Add labels to a map

Description

Plots labels, that is a textual (rather than color) representation of values, on top an existing plot (map).

Usage

## S4 method for signature 'RasterLayer'
text(x, labels, digits=0, fun=NULL, halo=FALSE, ...)

## S4 method for signature 'RasterStackBrick'
text(x, labels, digits=0, fun=NULL, halo=FALSE, ...)

## S4 method for signature 'SpatialPolygons'
text(x, labels, halo=FALSE, ...)

## S4 method for signature 'SpatialPoints'
text(x, labels, halo=FALSE, ...)

Arguments

x Raster*, SpatialPoints* or SpatialPolygons* object

labels character. Optional. Vector of labels with length(x) or a variable name from names(x)

digits integer. how many digits should be used?

fun function to subset the values plotted (as in rasterToPoints)

halo logical. If TRUE a 'halo' is printed around the text. If TRUE, additional arguments  
hc='white' and hw=0.1 can be modified to set the colour and width of the halo  
... additional arguments to pass to graphics function text

See Also

text, plot
**transpose**

**Description**

Transpose a Raster* object

**Usage**

t(x)

**Arguments**

x a Raster* object

**Value**

RasterLayer or RasterBrick

**See Also**

transpose: flip, rotate

**Examples**

```r
r <- raster(nrow=18, ncol=36)
r[] <- 1:ncell(r)
rt <- t(r)
```
Description

Trim (shrink) a Raster* object by removing outer rows and columns that all have the same value (e.g. NA).
Or remove the whitespace before or after a string of characters (or a matrix, or the character values in a data.frame).

Usage

```r
S4 method for signature 'Raster'
trim(x, padding=0, values=NA, filename='', ...)
S4 method for signature 'character'
trim(x, internal=FALSE, ...)
```

Arguments

- `x` Raster* object or a character string
- `values` numeric. Value(s) based on which a Raster* should be trimmed
- `padding` integer. Number of outer rows/columns to keep
- `filename` character. Optional output filename
- `internal` logical. If TRUE, sequential internal spaces are replaced by a single space
- `...` If x is a Raster* object: additional arguments as for `writeRaster`

Value

A RasterLayer or RasterBrick object (if x is a Raster* object) or a character string (if x is a character string).

Author(s)

Robert J. Hijmans and Jacob van Etten

Examples

```r
r <- raster(ncol=18,nrow=18)
r[39:49] <- 1
r[113:155] <- 2
r[200] <- 6
s <- trim(r)

trim(" hi folks ! ")
```
union

Union Extent or SpatialPolygons* objects

Description

Extent objects: Objects are combined into their union. See crop and extend to union a Raster object with an Extent object.

Two SpatialPolygons* objects. Overlapping polygons (between layers, not within layers) are intersected, other spatial objects are appended. Tabular attributes are joined.

Single SpatialPolygons* object. Overlapping polygons are intersected. Original attributes are lost. New attributes allow for determining how many, and which, polygons overlapped.

Usage

## S4 method for signature 'Extent,Extent'
union(x, y)

## S4 method for signature 'SpatialPolygons,SpatialPolygons'
union(x, y)

## S4 method for signature 'SpatialPolygons,missing'
union(x, y)

Arguments

x       Extent or SpatialPolygons* object
y       Same as x or missing

Value

Extent or SpatialPolygons object

See Also

intersect, extent, setExtent
merge for merging a data.frame with attributes of Spatial objects and +,SpatialPolygons,SpatialPolygons-method for an algebraic notation

Examples

e1 <- extent(-10, 10, -20, 20)
e2 <- extent(0, 20, -40, 5)
union(e1, e2)

#SpatialPolygons
if (require(rgdal) & require(rgos)) {
p <- shapefile(system.file("external/lux.shp", package="raster"))
unique

Unique values

Description

This function returns the unique values in a RasterLayer, or the unique combinations of values in a multi-layer raster object.

Usage

```r
S4 method for signature 'RasterLayer,missing'
unique(x, incomparables=FALSE, ...)

S4 method for signature 'RasterStackBrick,missing'
unique(x, incomparables=FALSE, ...)
```

Arguments

- `x` Raster object
- `incomparables` ignored. Must be missing
- `...` additional arguments. One implemented: `progress`, as in `writeRaster`

Value

vector or matrix

See Also

unique

Examples

```r
r <- raster(ncol=10, nrow=10)
r[] <- round(runif(ncell(r))*10)
unique(r)
unique(stack(r, round(r/2)))
```
unstack

Unstack

Description

Create a list of RasterLayer objects from a RasterStack or RasterBrick

Usage

unstack(x, ...)

Arguments

x     a RasterStack object
...
... not used. further arguments passed to or from other methods

Value

A list of RasterLayer objects

See Also

stack

Examples

file <- system.file("external/test.grd", package="raster")
s <- stack(file, file)
list1 <- unstack(s)
b <- brick(s)
list2 <- unstack(b)

update

Update raster cells of files (on disk)

Description

Update cell values of a file (i.e., cell values on disk) associated with a RasterLayer or RasterBrick.

User beware: this function _will_ make changes to your file (first make a copy if you are not sure what you are doing).

Writing starts at a cell number cell. You can write a vector of values (in cell order), or a matrix. You can also provide a vector of cell numbers (of the same length as vector v) to update individual cells.

See writeFormats for supported formats.
Usage

```r
S4 method for signature 'RasterLayer'
update(object, v, cell, ...)
```

```r
S4 method for signature 'RasterBrick'
update(object, v, cell, band, ...)
```

Arguments

- **object**: RasterLayer or RasterBrick that is associated with a file
- **v**: vector or matrix with new values
- **cell**: cell from where to start writing. Or a vector of cell numbers if `v` is a vector of the same length.
- **band**: band (layer) to update (for RasterBrick objects).
- **...**: additional arguments. None implemented

Value

RasterLayer or RasterBrick

Examples

```r
setting up an example RasterLayer with file
r <- raster(nrow=5, ncol=10)
r[] = 0
r <- writeRaster(r, 'test', overwrite=TRUE, datatype='INT2S')
as.matrix(r)

update with a vector starting a cell
r <- update(r, v=rep(1, 5), cell=6)
99.99 gets rounded because this is an integer file
r <- update(r, v=9.99, cell=50)
as.matrix(r)

update with a vector of values and matching vector of cell numbers
r <- update(r, v=5:1, cell=c(5,15,25,35,45))
as.matrix(r)

updating with a matrix, anchored at a cell number
m = matrix(1:10, ncol=2)
r <- update(r, v=m, cell=2)
as.matrix(r)
```
validCell

Validity of a cell, column or row number

Description

Simple helper functions to determine if a row, column or cell number is valid for a certain Raster* object.

Usage

validCell(object, cell)
validCol(object, colnr)
validRow(object, rownr)

Arguments

object Raster* object (or a SpatialPixels* or SpatialGrid* object)
cell cell number(s)
colnr column number; or vector of column numbers
rownr row number; or vector of row numbers

Value

logical value

Examples

# using a new default raster (1 degree global)
r <- raster()
validCell(r, c(-1, 0, 1))
validRow(r, c(-1, 1, 100, 10000))

validNames

Create valid names

Description

Create a set of valid names (trimmed, no duplicates, not starting with a number).

Usage

validNames(x, prefix='layer')
weighted.mean

Arguments

  x           character
  prefix      character string used if x is empty

Value

  character

See Also

  make.names

Examples

  validNames(c('a', 'a', '', '1', NA, 'b', 'a'))

---

weighted.mean  Weighted mean of rasters

Description

Computes the weighted mean for each cell of a number or raster layers. The weights can be spatially variable or not.

Usage

  ## S4 method for signature 'RasterStackBrick,vector'
  weighted.mean(x, w, na.rm=FALSE, filename='', ...)

  ## S4 method for signature 'RasterStackBrick,RasterStackBrick'
  weighted.mean(x, w, na.rm=FALSE, filename='', ...)

Arguments

  x           RasterStack or RasterBrick
  w           A vector of weights (one number for each layer), or for spatially variable weights, a RasterStack or RasterBrick with weights (should have the same extent, resolution and number of layers as x)
  na.rm       Logical. Should missing values be removed?
  filename    Character. Output filename (optional)
  ...         Additional arguments as for writeRaster

Value

  RasterLayer
which

See Also
Summary-methods, weighted.mean

Examples

b <- brick(system.file("external/rlogo.grd", package="raster"))

# give least weight to first layer, most to last layer
wm1 <- weighted.mean(b, w=1:3)

# spatially varying weights
# weigh by column number
w1 <- init(b, v='col')

# weigh by row number
w2 <- init(b, v='row')

w <- stack(w1, w2, w2)

wm2 <- weighted.mean(b, w=w)

which

Which cells are TRUE?

Description

which returns a RasterLayer with TRUE or FALSE setting cells that are NA to FALSE (unless na.rm=FALSE). If the RasterLayer has numbers, all values that are 0 become FALSE and all other values become TRUE. The function can also return the cell numbers that are TRUE.

Usage

## S4 method for signature 'RasterLayer'
Which(x, cells=FALSE, na.rm=TRUE, ...)

Arguments

x RasterLayer
cells logical. If TRUE, cell numbers are returned, otherwise a RasterLayer is returned
na.rm logical. If TRUE, NA values are treated as FALSE, otherwise they remain NA (only when cells=FALSE)
...
Additional arguments (none implemented)

Value

RasterLayer
which.min

See Also

which.max, which.min

Examples

```r
r <- raster(ncol=10, nrow=10)
set.seed(0)
r[] <- runif(ncell(r))
r[r < 0.2] <- 0
r[r > 0.8] <- 1
r[r > 0 & r < 1] <- 0.5
Which(r, cells=TRUE)
Which(r > 0.5, cells=TRUE)

s1 <- r > 0.5
s2 <- Which(r > 0.5)
s1[1:15]
s2[1:15]

this expression
x1 <- Which(r, na.rm=FALSE)
is the inverse of
x2 <- r==0
```

which.min

Where is the min or max value?

Description

Which cells have the minumum / maximum value (for a RasterLayer), or which layer has the minimum/maximum value (for a RasterStack or RasterBrick)?

which.min and which.max return the index of the first layer that has the min or max value for a cell. This can be problematic if there are ties.

In you want the index of all the layers that have the min or max value, use whiches.min or whiches.max (only for objects with less than 10 layers).

Usage

```
which.min(x)
which.max(x)
whiches.min(x, ...)
whiches.max(x, ...)
```

Arguments

```
x Raster* object
...

additional arguments (none implemented)
```
**Value**

(which.*): vector of cell numbers (if `x` is a RasterLayer). If `x` is a RasterStack or RasterBrick, a RasterLayer giving the number of the first layer with the minimum or maximum value for a cell. (whiches.*) An integer in which each digit represents a layer. For example, 35 means "layers 3 and 5".

**Note**

There is a limit to accurate integer number representation. Therefore, do not use `whiches.*` with more than 15 layers.

**See Also**

`Which`

**Examples**

```r
b <- brick(system.file("external/rlogo.grd", package="raster"))

r <- which.min(b)
i <- which.min(b[[3]])
xy <- xyFromCell(b, i)
plot(b[[3]])
points(xy)

x <- whiches.min(b)
freq(x)
```

---

**writeFormats**

*File types for writing*

**Description**

List supported file types for writing RasterLayer values to disk. When a function writes a file to disk, the file format is determined by the 'format=' argument if supplied, or else by the file extension (if the extension is known). If other cases the default format is used. The 'factory-fresh' default format is 'raster', but this can be changed using `rasterOptions`.

**Usage**

```r
writeFormats()
```

**Details**

`writeFormats` returns a matrix of the file formats (the "drivers") that are supported. Supported formats include:
### File type

<table>
<thead>
<tr>
<th>File type</th>
<th>Long name</th>
<th>default extension</th>
<th>Multiband support</th>
</tr>
</thead>
<tbody>
<tr>
<td>raster</td>
<td>'Native' raster package format</td>
<td>.grd</td>
<td>Yes</td>
</tr>
<tr>
<td>ascii</td>
<td>ESRI Ascii</td>
<td>.asc</td>
<td>No</td>
</tr>
<tr>
<td>SAGA</td>
<td>SAGA GIS</td>
<td>.sdat</td>
<td>No</td>
</tr>
<tr>
<td>IDRISI</td>
<td>IDRISI</td>
<td>.rst</td>
<td>No</td>
</tr>
<tr>
<td>CDF</td>
<td>netCDF (requires ncdf4)</td>
<td>.nc</td>
<td>Yes</td>
</tr>
<tr>
<td>GTiff</td>
<td>GeoTiff (requires rgdal)</td>
<td>.tif</td>
<td>Yes</td>
</tr>
<tr>
<td>ENVI</td>
<td>ENVI .hdr Labelled</td>
<td>.envi</td>
<td>Yes</td>
</tr>
<tr>
<td>EHdr</td>
<td>ESRI .hdr Labelled</td>
<td>.bil</td>
<td>Yes</td>
</tr>
<tr>
<td>HFA</td>
<td>Erdas Imagine Images (.img)</td>
<td>.img</td>
<td>Yes</td>
</tr>
</tbody>
</table>

### See Also

[GDALDriver-class](#)

### Examples

```r
class(c('writeRaster'))
writeRaster()
```

### Description

Write an entire Raster* object to a file, using one of the many supported formats. See `writeValues` for writing in chunks (e.g. by row).

When writing a file to disk, the file format is determined by the 'format=' argument if supplied, or else by the file extension (if the extension is known). If other cases the default format is used. The default format is 'raster', but this setting can be changed (see `rasterOptions`).

### Usage

```r
S4 method for signature 'RasterLayer,character'
writeRaster(x, filename, format, ...)

S4 method for signature 'RasterStackBrick,character'
writeRaster(x, filename, format, bylayer, suffix='numbers', ...)
```

### Arguments

- `x` : Raster* object
- `filename` : Output filename
- `format` : Character. Output file type. See `writeFormats`. If this argument is not provided, it is attempted to infer it from the filename extension. If that fails, the default format is used. The default format is 'raster', but this can be changed using `rasterOptions`
writeRaster

... Additional arguments:

datatype: Character. Output data type (e.g. 'INT2S' or 'FLT4S'). See datatype.
If no datatype is specified, 'FLT4S' is used, unless this default value was changed with rasterOptions.

overwrite: Logical. If TRUE, "filename" will be overwritten if it exists.

progress: Character. Set a value to show a progress bar. Valid values are "text" and "window".

NAflag: Numeric. To overwrite the default value used to represent NA in a file.

bandorder: Character. 'BIL', 'BIP', or 'BSQ'. For 'native' file formats only.
For some other formats you can use the 'options' argument (see below).

options: Character. File format specific GDAL options. E.g., when writing a geotiff file you can use: options=c("COMPRESS=NONE", "TFW=YES")
You can use options=c("PROFILE=BASELINE") to create a plain tif with no GeoTIFF tags. This can be useful when writing files to be read by applications intolerant of unrecognised tags. (see http://www.gdal.org/frmt_gtiff.html)

NetCDF files have the following additional, optional, arguments: varname, varunit, longname, xname, yname, zname, zunit

prj: Logical. If TRUE, the crs is written to a .prj file. This can be useful when writing to an ascii file or another file type that does not store the crs.

bylayer: if TRUE, write a separate file for each layer. You can provide a vector of filenames that matches the number of layers. Or you can provide a single filename that will get a unique suffix (see below).

suffix: 'numbers' or 'names' to determine the suffix that each file gets when bylayer=TRUE; either a number between 1 and nlayers(x) or names(x).

Details

See writeFormats for supported file types ("formats", "drivers").

The rgdal package is needed, except for these file formats: 'raster', 'BIL', 'BIP', 'BSQ', 'SAGA', 'ascii', 'IDRISI', and 'CDF'. Some of these formats can be used with or without rgdal (idrisi, SAGA, ascii). You need the 'ncdf4' library for the 'CDF' format.

In multi-layer files (i.e. files saved from RasterStack or RasterBrick objects), in the native 'raster' format, the band-order can be set to BIL ('Bands Interleaved by Line'), BIP ('Bands Interleaved by Pixels') or BSQ ('Bands SeQuential'). Note that bandorder is not the same as filetype here.

Supported file types include:

<table>
<thead>
<tr>
<th>File type</th>
<th>Long name</th>
<th>default extension</th>
<th>Multiband support</th>
</tr>
</thead>
<tbody>
<tr>
<td>raster</td>
<td>'Native' raster package format</td>
<td>.grd</td>
<td>Yes</td>
</tr>
<tr>
<td>ascii</td>
<td>ESRI Ascii</td>
<td>.asc</td>
<td>No</td>
</tr>
<tr>
<td>SAGA</td>
<td>SAGA GIS</td>
<td>.sdat</td>
<td>No</td>
</tr>
<tr>
<td>IDRISI</td>
<td>IDRISI</td>
<td>.rst</td>
<td>No</td>
</tr>
<tr>
<td>CDF</td>
<td>netCDF (requires ncdf4)</td>
<td>.nc</td>
<td>Yes</td>
</tr>
<tr>
<td>GTiff</td>
<td>GeoTiff (requires rgdal)</td>
<td>.tif</td>
<td>Yes</td>
</tr>
<tr>
<td>ENVI</td>
<td>ENVI .hdr Labelled</td>
<td>.envi</td>
<td>Yes</td>
</tr>
<tr>
<td>EHdr</td>
<td>ESRI .hdr Labelled</td>
<td>.bil</td>
<td>Yes</td>
</tr>
<tr>
<td>HFA</td>
<td>Erdas Imagine Images (.img)</td>
<td>.img</td>
<td>Yes</td>
</tr>
</tbody>
</table>
writeValues

Write values to a file

Value

This function is used for the side-effect of writing values to a file.

See Also

writeFormats, writeValues

Examples

```r
r <- raster(system.file("external/test.grd", package="raster"))

take a small part
r <- crop(r, extent(179880, 180880, 329880, 330840))

write to an integer binary file
rf <- writeRaster(r, filename="allint.grd", datatype='INT4S', overwrite=TRUE)

make a brick and save multi-layer file
b <- brick(r, sqrt(r))
bf <- writeRaster(b, filename="multi.grd", bandorder='BIL', overwrite=TRUE)

write to a new geotiff file (depends on rgdal)
if (require(rgdal)) {
 rf <- writeRaster(r, filename="test.tif", format="GTiff", overwrite=TRUE)
 bf <- writeRaster(b, filename="multi.tif", options="INTERLEAVE=BAND", overwrite=TRUE)
}

write to netcdf
if (require(ncdf4)) {
 rnc <- writeRaster(r, filename='netCDF.nc', format="CDF", overwrite=TRUE)
}
```

Description

Functions for writing blocks (>= 1 row(s)) of values to files. Writing has to start at the first cell of a row (identified with argument start) and the values written must represent 1 or more entire rows. Begin by opening a file with writeStart, then write values to it in chunks. When writing is done close the file with writeStop.

If you want to write all values of a Raster* object at once, you can also use writeRaster which is easier to use but more limited. The functions described here allow writing values to file using chunks of different sizes (e.g. 1 or 10 rows). Function blockSize can be used to suggest a chunk size to use.
writeValues

Usage

writeStart(x, filename, ...)
writeValues(x, v, start)
writeStop(x)

Arguments

x Raster* object
filename character. Output file name
... additional arguments as for writeRaster
v vector (RasterLayer) or matrix (RasterBrick) of values
start Integer. Row number (counting starts at 1) from where to start writing v

Value

RasterLayer or RasterBrick

See Also

writeRaster, blockSize, update

Examples

r <- raster(system.file("external/test.grd", package="raster"))
# write to a new binary file in chunks
s <- raster(r)
#
tr <- blockSize(r)
tr
s <- writeStart(s, filename='test.grd', overwrite=TRUE)
for (i in 1:tr$n) {
  v <- getValuesBlock(r, row=tr$row[i], nrows=tr$nrows[i])
  s <- writeValues(s, v, tr$row[i])
}
s <- writeStop(s)

if(require(rgdal)){
s2 <- writeStart(s, filename='test2.tif', format='GTiff', overwrite=TRUE)
  # writing last row first
  for (i in tr$n-1) {
    v <- getValuesBlock(r, row=tr$row[i], nrows=tr$nrows[i])
    s2 <- writeValues(s2, v, tr$row[i])
  }
  # row number 5 once more
  v <- getValuesBlock(r, row=5, nrows=1)
  writeValues(s2, v, 5)
s2 <- writeStop(s2)
}
## xyFromCell

### Coordinates from a row, column or cell number

**Description**

These functions get coordinates of the center of raster cells for a row, column, or cell number of a Raster* object.

**Usage**

```r
xFromCol(object, col=1:ncol(object))
yFromRow(object, row=1:nrow(object))
xyFromCell(object, cell, spatial=FALSE)
```

**Arguments**

- **object**: Raster* object (or a SpatialPixels* or SpatialGrid* object)
- **cell**: cell number(s)
- **col**: column number; or vector of column numbers
- **row**: row number; or vector of row numbers
- **spatial**: return a SpatialPoints object (sp package) instead of a matrix

**Details**

Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top to bottom. The last cell number equals the number of cells of the Raster* object.
z-values

Value

xFromCol, yFromCol, xFromCell, yFromCell: vector of x or y coordinates
xyFromCell: matrix(x,y) with coordinate pairs

See Also

cellFromXY

Examples

# using a new default raster (1 degree global)
r <- raster()
xFromCol(r, c(1, 120, 180))
yFromRow(r, 90)
xyFromCell(r, 10000)
xyFromCell(r, c(0, 1, 32581, ncell(r), ncell(r)+1))

# using a file from disk
r <- raster(system.file("external/test.grd", package="raster"))

r
cellFromXY(r, c(180000, 330000))

# xy for corners of a raster:
xyFromCell(r, c(1, ncol(r), ncell(r)-ncol(r)+1, ncell(r)))

---

z-values

Get or set z-values

Description

Initial functions for a somewhat more formal approach to get or set z values (e.g. time) associated with layers of Raster* objects. In development.

Usage

setZ(x, z, name='time')
getZ(x)

Arguments

x Raster* object
z vector of z values of any type (e.g. of class 'Date')
name character label

Value

setZ: Raster* object
getz: vector
Examples

```r
r <- raster(ncol=10, nrow=10)
s <- stack(lapply(1:3, function(x) setValues(r, runif(ncell(r)))))
s <- setZ(s, as.Date('2000-1-1') + 0:2)
s
getZ(s)
```

Description

Experimental function to apply a function over a (time) series of layers of a Raster object

Usage

```r
zApply(x, by, fun=mean, name='', ...)```

Arguments

- `x` Raster* object
- `by` aggregation indices or function
- `fun` function to compute aggregated values
- `name` character label of the new time series
- `...` additional arguments

Value

Raster* object

Author(s)

Oscar Perpinan Lamigueiro & Robert J. Hijmans

Examples

```r
# 12 values of irradiation, 1 for each month
G00dm=c(2.766,3.491,4.494,5.912,6.989,7.742,7.919,7.027,5.369,3.562,2.814,2.179)*1000;
# RasterBrick with 12 layers based on G00dm + noise
r <- raster(nc=10, nr=10)
s <- brick(lapply(1:12, function(x) setValues(r, G00dm[x]+100*rnorm(ncell(r)))))

# time
tm <- seq(as.Date('2010-01-15'), as.Date('2010-12-15'), 'month')
s <- setZ(s, tm, 'months')

# library(zoo)
# x <- zApply(s, by=as.yearqtr, fun=mean, name='quarters')
```
zonal

Zonal statistics

Description

Compute zonal statistics, that is summarized values of a Raster* object for each "zone" defined by a RasterLayer.

If `stat` is a true function, `zonal` will fail (gracefully) for very large Raster objects, but it will in most cases work for functions that can be defined as by a character argument ('mean', 'sd', 'min', 'max', or 'sum'). In addition you can use 'count' to count the number of cells in each zone (only useful with `na.rm=TRUE`, otherwise `freq(z)` would be more direct.

If a function is used, it should accept a `na.rm` argument (or at least a `...` argument)

Usage

```r
## S4 method for signature 'RasterLayer,RasterLayer'
zonal(x, z, fun='mean', digits=0, na.rm=TRUE, ...)
## S4 method for signature 'RasterStackBrick,RasterLayer'
zonal(x, z, fun='mean', digits=0, na.rm=TRUE, ...)
```

Arguments

- `x` Raster* object
- `z` RasterLayer with codes representing zones
- `fun` function to be applied to summarize the values by zone. Either as character: 'mean', 'sd', 'min', 'max', 'sum'; or, for relatively small Raster* objects, a proper function
- `digits` integer. Number of digits to maintain in 'zones'. By default averaged to an integer (zero digits)
- `na.rm` logical. If TRUE, NA values in `x` are ignored
- `...` additional arguments. One implemented: `progress`, as in `writeRaster`

Value

A matrix with a value for each zone (unique value in zones)

See Also

See `cellStats` for 'global' statistics (i.e., all of `x` is considered a single zone), and `extract` for summarizing values for polygons
Examples

```r
r <- raster(ncols=10, nrows=10)
r[] <- runif(ncell(r)) * 1:ncell(r)
z <- r
z[] <- rep(1:5, each=20)
# for big files, use a character value rather than a function
zonal(r, z, 'sum')

# for smaller files you can also provide a function
## Not run:
zonal(r, z, mean)
zonal(r, z, min)

## End(Not run)

# multiple layers
zonal(stack(r, r*10), z, 'sum')
```

Description

Zoom in on a map (plot) by providing a new extent, by default this is done by clicking twice on the map.

Usage

```r
zoom(x, ...)
## S4 method for signature 'Raster'
zoom(x, ext=drawExtent(), maxpixels=100000, layer=1, new=TRUE, useRaster=TRUE, ...)

## S4 method for signature 'Spatial'
zoom(x, ext=drawExtent(), new=TRUE, ...)

## S4 method for signature 'missing'
zoom(x, ext=drawExtent(), new=TRUE, ...)
```

Arguments

- `x` Raster* or Spatial* (vector type) object
- `ext` Extent object, or other object from which an extent can be extracted
- `maxpixels` Maximum number of pixels used for the map
- `layer` Positive integer to select the layer to be used if x is a multilayer Raster object
- `new` Logical. If TRUE, the zoomed in map will appear on a new device (window)
- `useRaster` Logical. If TRUE, a bitmap raster is used to plot the image instead of polygons
- `...` additional parameters for `plot`
zoom

Value
Extent object (invisibly)

See Also
drawExtent, plot
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>!=</code>, Raster-method (Logic-methods)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td><code>!=</code>, BasicRaster, BasicRaster-method (Compare-methods)</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Topic</td>
<td>classes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extent-class</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>Raster-class</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>readAll</td>
<td>171</td>
</tr>
<tr>
<td>Topic</td>
<td>file</td>
<td></td>
</tr>
<tr>
<td></td>
<td>extension</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>inifile</td>
<td>108</td>
</tr>
<tr>
<td>Topic</td>
<td>math</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Arith-methods</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>atan2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Compare-methods</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>cv</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Logic-methods</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Math-methods</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>modal</td>
<td>126</td>
</tr>
<tr>
<td>Topic</td>
<td>methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aggregate</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>animate</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>area</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Arith-methods</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>as.data.frame</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>as.list</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>as.logical</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>as.matrix</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>as.raster</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>atan2</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>barplot</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>bind</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>blockSize</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>boundaries</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>brick</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>calc</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>clearValues</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Compare-methods</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>contour</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>corLocal</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>cover</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>crosstab</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>erase</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>extract</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Extract by index</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>factors</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>filledContour</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Gain and offset</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>geom</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>getValues</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>getValuesBlock</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>getValuesFocal</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>head</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>hist</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>image</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>interpolate</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>intersect</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>localFun</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Logic-methods</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>mask</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>match</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Math-methods</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>merge</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>mosaic</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>overlay</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>persp</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>plot</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>plotRGB</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>predict</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>quantile</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>raster</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>rasterFromXYZ</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>rasterize</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>replacement</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>RGB</td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>setMinMax</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>setValues</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>spplot</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>stack</td>
<td>196</td>
</tr>
</tbody>
</table>

230
INDEX

stackApply, 197
stackSelect, 199
substitute, 202
Summary, 203
Summary-methods, 204
symdif, 205
text, 208
union, 211
unstack, 213
update, 213
writeRaster, 220
writeValues, 222

*Topic package
raster-package, 6

*Topic spatial
addLayer, 13
adjacent, 14
aggregate, 16
alignExtent, 18
animate, 19
approxNA, 20
area, 21
Arith-methods, 23
as.data.frame, 24
as.list, 25
as.logical, 26
as.matrix, 27
as.raster, 28
autocorrelation, 29
bands, 30
barplot, 31
bind, 32
blockSize, 33
boundaries, 34
boxplot, 35
brick, 36
buffer, 38
calc, 39
cellFrom, 42
cellsFromExtent, 44
cellStats, 45
clamp, 46
clearValues, 47
click, 47
clump, 49
cluster, 50
colortable, 52
compareCRS, 54
compareRaster, 55
contour, 56
corLocal, 57
cover, 58
crop, 59
crosstab, 61
cut, 62
datasource, 63
dataType, 64
density, 66
dim, 66
direction, 67
disaggregate, 68
distance, 69
distanceFromPoints, 70
draw, 72
drawExtent, 72
erase, 73
extent, 74
extent, 76
Extent math, 77
Extent-class, 78
extract, 79
Extract by index, 83
Extreme coordinates, 84
extremeValues, 85
factors, 86
filename, 88
filledContour, 88
flip, 89
flowPath, 90
focal, 91
focalWeight, 93
freq, 94
Gain and offset, 95
gem, 96
getData, 97
getValues, 98
getValuesBlock, 99
getValuesFocal, 100
gridDistance, 101
hdr, 103
head, 104
hillShade, 104
hist, 106
image, 107
initialize, 108
interpolate, 109
intersect, 112
isLonLat, 114
KML, 115
layerize, 116
localFun, 118
mask, 121
match, 122
Math-methods, 123
merge, 124
metadata, 125
mosaic, 127
movingFun, 128
names, 129
NAValue, 130
ncell, 131
nlayers, 132
Options, 133
origin, 135
overlay, 135
pairs, 138
persp, 139
plot, 140
plotRGB, 143
pointDistance, 144
predict, 146
Programming, 150
projection, 151
projectRaster, 152
properties, 154
quantile, 155
raster, 156
Raster-class, 159
raster-package, 6
rasterFromCells, 161
rasterFromXYZ, 162
rasterize, 163
rasterTmpFile, 167
rasterToContour, 168
rasterToPoints, 169
rasterToPolygons, 170
readAll, 171
reclassify, 171
rectify, 172
replacement, 173
resample, 174
resolution, 175
RGB, 176
rotate, 177
rotated, 178
round, 178
rowFromCell, 179
rowSums, 180
SampleInt, 181
sampleRandom, 182
sampleRegular, 183
sampleStratified, 184
scale, 185
scalebar, 186
select, 187
setExtent, 188
setMinMax, 189
setValues, 190
shapefile, 191
shift, 192
Slope and aspect, 193
sp, 194
spplot, 195
estack, 196
estackApply, 197
estackSave, 198
estackSelect, 199
stretch, 200
subset, 201
substitute, 202
Summary, 203
Summary-methods, 204
symdiff, 205
terrain, 206
text, 208
transpose, 209
trim, 210
union, 211
unique, 212
unstack, 213
update, 213
validCell, 215
which, 217
which.min, 218
writeFormats, 219
writeRaster, 220
writeValues, 222
xyFromCell, 224
z-values, 225
zApply, 226
zonal, 227
zoom, 228
INDEX

*Topic *univar
 - cellStats, 45
 - cv, 63
 - freq, 94
 - modal, 126

*, SpatialPolygons, SpatialPolygons-method
 (Arith-methods), 23

+, SpatialLines, SpatialLines-method
 (Arith-methods), 23

+, SpatialPoints, SpatialPoints-method
 (Arith-methods), 23

-, SpatialPolygons, SpatialPolygons-method
 (Arith-methods), 23

==, BasicRaster, BasicRaster-method
 (Compare-methods), 53

[, Extent, missing, missing-method
 (Extract by index), 83

[, Extent, numeric, missing-method
 (Extract by index), 83

[, Raster, Extent, missing-method
 (Extract by index), 83

[, Raster, RasterLayer, missing-method
 (Extract by index), 83

[, Raster, Spatial, missing-method
 (Extract by index), 83

[, Raster, logical, missing-method
 (Extract by index), 83

[, Raster, matrix, missing-method
 (Extract by index), 83

[, Raster, missing, missing-method
 (Extract by index), 83

[, Raster, missing, numeric-method
 (Extract by index), 83

[, Raster, numeric, missing-method
 (Extract by index), 83

[, Raster, numeric, numeric-method
 (Extract by index), 83

[<-, Extent, numeric, missing-method
 (replacement), 173

[<-, Raster, missing, numeric-method
 (replacement), 173

[<-, Raster, numeric, missing-method
 (replacement), 173

[<-, Raster, numeric, numeric-method
 (replacement), 173

[<-, RasterLayer, RasterLayer, missing-method
 (replacement), 173

[<-, RasterLayer, missing, missing-method
 (replacement), 173

[<-, RasterStackBrick, Raster, missing-method
 (replacement), 173

[<-, RasterStackBrick, missing, missing-method
 (replacement), 173

[[., Raster, ANY, ANY-method (Extract by index), 83

[[<-, RasterBrick, numeric, missing-method
 (replacement), 173

[[<-, RasterStack, numeric, missing-method
 (replacement), 173

[[<-, RasterStackBrick, character, missing-method
 (replacement), 173

$, Raster-method (replacement), 173

$<-, Raster-method (replacement), 173

%in% (match), 122

%in%, Raster-method (match), 122

addLayer, 7, 13, 197, 199

addLayer, Raster-method (addLayer), 13

adjacent, 8, 14, 43

aggregate, 7, 12, 16, 69, 116, 174

aggregate, Raster-method (aggregate), 16

aggregate, SpatialLines-method
 (aggregate), 16

aggregate, SpatialPolygons-method
 (aggregate), 16

alignExtent, 12, 18, 60

all.equal, 55, 124, 127

all.equal, Raster, Raster-method
 (compareRaster), 55

animate, 19

animate, RasterStackBrick-method
 (animate), 19

approx, 20

approxNA, 20

approxNA, RasterStackBrick-method
 (approxNA), 20

area, 8, 21
area,RasterLayer-method (area), 21
area,RasterStackBrick-method (area), 21
area,SpatialPolygons-method (area), 21
Arith-methods, 7, 23, 41
as.array, 9
as.array (as.matrix), 27
as.array,RasterLayer-method (as.matrix), 27
as.array,RasterStackBrick-method (as.matrix), 27
as.character,CRS-method (projection), 151
as.data.frame, 12, 24
as.data.frame,Raster-method (as.data.frame), 24
as.data.frame,SpatialLines-method (as.data.frame), 24
as.data.frame,SpatialPolygons-method (as.data.frame), 24
as.factor (factors), 86
as.factor,RasterLayer-method (factors), 86
as.integer, 26
as.integer,Raster-method (as.logical), 26
as.list, 25
as.list,Raster-method (as.list), 25
as.logical, 26, 26
as.logical,Raster-method (as.logical), 26
as.matrix, 9, 27
as.matrix,Extent-method (as.matrix), 27
as.matrix,RasterLayer-method (as.matrix), 27
as.matrix,RasterStackBrick-method (as.matrix), 27
as.raster, 28, 28
as.raster,RasterLayer-method (as.raster), 28
as.vector (as.matrix), 27
as.vector,Extent-method (as.matrix), 27
as.vector,Raster-method (as.matrix), 27
asFactor (factors), 86
asFactor,RasterLayer-method (factors), 86
atan2, 28, 123
atan2,Raster,Raster-method (atan2), 28
autocorrelation, 29
band, 10
bandnr (bands), 30
bandnr,RasterLayer-method (bands), 30
bands, 30, 130
barplot, 10, 31, 32, 141
barplot,RasterLayer-method (barplot), 31
BasicRaster-class (Raster-class), 159
bbox,Extent-method (extent), 76
bbox,Raster-method (extent), 76
beginCluster (cluster), 50
bind, 12, 23, 32
bind, data.frame, data.frame-method (bind), 32
bind, data.frame,missing-method (bind), 32
bind, matrix, matrix-method (bind), 32
bind, matrix,missing-method (bind), 32
bind, SpatialLines,SpatialLines-method (bind), 32
bind, SpatialPoints,SpatialLines-method (bind), 32
bind, SpatialPoints,SpatialPoints-method (bind), 32
bind, SpatialPolygons,SpatialPolygons-method (bind), 32
blockSize, 11, 33, 222, 223
boundaries, 8, 34, 39, 68, 70
boundaries,RasterLayer-method (boundaries), 34
boxplot, 10, 32, 35, 35, 106, 138
boxplot,RasterLayer-method (boxplot), 35
boxplot,RasterStackBrick-method (boxplot), 35
bpy.colors, 140, 176
brick, 6, 36, 158, 160, 197
brick, array-method (brick), 36
brick, big.matrix-method (brick), 36
brick, character-method (brick), 36
brick, Extent-method (brick), 36
brick, grf-method (brick), 36
brick, kasc-method (brick), 36
brick, list-method (brick), 36
brick, missing-method (brick), 36
brick, RasterBrick-method (brick), 36
brick, RasterLayer-method (brick), 36
brick, RasterStack-method (brick), 36
brick, SpatialGrid-method (brick), 36
brick, SpatialPixels-method (brick), 36
buffer, 38, 113
buffer,RasterLayer-method (buffer), 38
buffer, Spatial-method (buffer), 38

calc, 7, 23, 39, 50, 62, 120, 123, 136, 137, 155, 160, 172, 173, 197, 198, 204
calc, Raster, function-method (calc), 39
canProcessInMemory, 13, 134
canProcessInMemory (Programming), 150
codes (getData), 97
ceiling, Extent-method (Extent math), 77
ceiling, RasterLayer-method (round), 178
cellFrom, 42, 180
cellFromCol (cellFrom), 42
cellFromLine (cellFrom), 42
cellFromPolygon (cellFrom), 42
cellFromRow (cellFrom), 42
cellFromRowCol, 11
cellFromRowCol (cellFrom), 42
cellFromRowColCombine (cellFrom), 42
cellFromXY, 11, 44, 225
cellFromXY (cellFrom), 42
cellsFromExtent, 11, 43, 44
cellStats, 9, 45, 117, 118, 156, 180, 203, 204, 227
cellStats, RasterLayer-method (cellStats), 45
cellStats, RasterStackBrick-method (cellStats), 45
class, 46
class, numeric-method (class), 46
class, Raster-method (class), 46
clearValues, 47
click, 10, 12, 47, 187
click, missing-method (click), 47
click, Raster-method (click), 47
click, SpatialGrid-method (click), 47
click, SpatialLines-method (click), 47
click, SpatialPixels-method (click), 47
click, SpatialPoints-method (click), 47
click, SpatialPolygons-method (click), 47
clump, 8, 35, 49
clump, RasterLayer-method (clump), 49
cluster, 50
clusterR (cluster), 50
colFromCell (rowFromCell), 179
colFromX, 11
colFromX (cellFrom), 42
colorRampPalette, 140, 176
colorTable, 52
colorTable<- (colorTable), 52
colSums (rowSums), 180
colSums, Raster-method (rowSums), 180
Compare-methods, 7, 53
compareCRS, 54
compareRaster, 11, 55
contour, 10, 56, 56, 107, 139, 141
contour, RasterLayer-method (contour), 56
contourLines, 168
coordinates, 11, 96
cor, 57, 138
cor.test, 57
corLocal, 57, 119
corLocal, RasterLayer, RasterLayer-method (corLocal), 57
corLocal, RasterStackBrick, RasterStackBrick-method (corLocal), 57
couldBeLonLat (isLonLat), 114
cov, 7, 12, 58
cov, RasterLayer, RasterLayer-method (cov), 58
cov, RasterStackBrick, Raster-method (cov), 58
cov, SpatialPolygons, SpatialPolygons-method (cov), 58
crop, 7, 12, 59, 74, 75, 83, 112, 114, 122, 139, 140, 174, 187, 211
crop, Raster-method (crop), 59
crop, Spatial-method (crop), 59
crosstab, 9, 61, 94
crosstab, Raster, Raster-method (crosstab), 61
crosstab, RasterStackBrick, missing-method (crosstab), 61
CRS, 151
crs, 54, 71
crs (projection), 151
crs, ANY-method (projection), 151
crs<- (projection), 151
cut, 7, 31, 62, 62, 171, 172, 203
cut, Raster-method (cut), 62
cv, 12, 63
cv, ANY-method (cv), 63
cv, Raster-method (cv), 63
dataSigned (properties), 154
dataSize (properties), 154
datasource, 63
dataType, 60, 64, 133, 147, 221
dataType <- (dataType), 64
density, 10, 66, 138, 156
density, Raster-method (density), 66
deratify (factors), 86
dim, 66, 132
dim, BasicRaster-method (dim), 66
dim, RasterStackBrick-method (dim), 66
dim<-, BasicRaster-method (dim), 66
dim<-, RasterBrick-method (dim), 66
dim<-, RasterLayer-method (dim), 66
dimensions, 84
direction, 8, 67
direction, RasterLayer-method (direction), 67
disaggregate, 7, 12, 17, 68, 174
disaggregate, Raster-method (disaggregate), 68
distance, 8, 39, 68, 69, 71, 102, 145
distance, RasterLayer, missing-method (distance), 69
distance, RasterLayer, RasterLayer-method (distance), 69
distance, Spatial, Spatial-method (distance), 69
distanceFromPoints, 8, 70, 70, 145
draw, 72
drawExtent, 10, 12, 19, 48, 60, 72, 77, 139, 140, 143, 176, 229
drawLine, 10
drawLine (draw), 72
drawPoly, 10
drawPoly (draw), 72
dropLayer, 7, 197, 201
dropLayer (addLayer), 13
dropLayer, RasterBrick-method (addLayer), 13
dropLayer, RasterStack-method (addLayer), 13
dropLayer (cluster), 50
erase, 12, 23, 73, 205
erase, SpatialLines, SpatialPolygons-method (erase), 73
erase, SpatialPolygons, SpatialPolygons-method (erase), 73
extend, 7, 59, 60, 74, 128, 174, 211
extend, Extent-method (extend), 74
extend, Raster-method (extend), 74
extension, 12, 75
extension <- (extension), 75
Extent, 72, 79, 143, 176
Extent (Extent-class), 78
extent, 10, 12, 19, 44, 60, 67, 76, 77, 78, 84, 114, 132, 135, 175, 188, 211
Extent math, 77
extent, BasicRaster-method (extent), 76
extent, Extent-method (extent), 76
extent, GridTopology-method (extent), 76
extent, list-method (extent), 76
extent, matrix-method (extent), 76
extent, numeric-method (extent), 76
extent, sf-method (extent), 76
extent, Spatial-method (extent), 76
Extent-class, 78
extent <- (setExtent), 188
extentFromCells (cellsFromExtent), 44
extract, 9, 12, 50, 79, 83, 137, 156, 165, 171, 199, 200, 227
Extract by index, 82
extract, Raster, data.frame-method (extract), 79
extract, Raster, Extent-method (extract), 79
extract, Raster, matrix-method (extract), 79
extract, Raster, sf-method (extract), 79
extract, Raster, SpatialLines-method (extract), 79
extract, Raster, SpatialPoints-method (extract), 79
extract, Raster, SpatialPolygons-method (extract), 79
extract, Raster, vector-method (extract), 79
extract, SpatialPolygons, data.frame-method (extract), 79
extract, SpatialPolygons, matrix-method (extract), 79
extract, SpatialPolygons, SpatialPoints-method (extract), 79
Extreme coordinates, 84
extremeValues, 85
factors, 86
factorValues (factors), 86
filename, 10, 88, 155
filledContour, 88, 89
filledContour, 10, 56, 88
flip, 7, 17, 89, 177, 193, 209
flip, RasterLayer-method (flip), 89
flip, RasterStackBrick-method (flip), 89
floor, Extent-method (Extent math), 77
floor, RasterLayer-method (round), 178
flowPath, 90
focal, 8, 20, 21, 29, 35, 91, 93, 94, 101, 207
focal, RasterLayer-method (focal), 91
focalWeight, 92, 93
fourCellsFromXY (cellFrom), 42
freq, 9, 45, 61, 94
datasource, 13
freq, RasterLayer-method (freq), 94
freq, RasterStackBrick-method (freq), 94
fromDisk, 13
getvalues (datasource), 63
gain (Gain and offset), 95
Gain and offset, 95
gain<- (Gain and offset), 95
Geary (autocorrelation), 29
GearyLocal (autocorrelation), 29
gain (Gain and offset), 95
gain<- (Gain and offset), 95
Geom (SpatialLines-method (geom)), 96
geom, 96
geom, SpatialPoints-method (geom), 96
geom, SpatialPolygons-method (geom), 96
geometry, 96
getCluster, 51
getCluster (Programming), 150
getData (Datasource), 63
getValues, 9, 24, 27, 81, 83, 98, 100, 101, 156, 171, 189
getValues, RasterBrick, missing, missing-method
 (getValues), 98
getValues, RasterBrick, numeric, missing-method
 (getValues), 98
getValues, RasterBrick, numeric, numeric-method
 (getValues), 98
getValues, RasterLayer, missing, missing-method
 (getValues), 98
getValues, RasterLayer, numeric, missing-method
 (getValues), 98
getValues, RasterLayer, numeric, numeric-method
 (getValues), 98
getValues, RasterLayerSparse, missing, missing-method
 (getValues), 98
getValues, RasterLayerSparse, numeric, missing-method
 (getValues), 98
getValues, RasterLayerSparse, numeric, numeric-method
 (getValues), 98
getValues, RasterStack, missing, missing-method
 (getValues), 98
getValues, RasterStack, numeric, missing-method
 (getValues), 98
getValues, RasterStack, numeric, numeric-method
 (getValues), 98
getValuesBlock, 9, 24, 27, 99, 104, 171
getValuesBlock, RasterBrick-method (getValuesBlock), 99
getValuesBlock, RasterLayer-method
 (getValuesBlock), 99
getValuesBlock, RasterLayerSparse-method
 (getValuesBlock), 99
getValuesBlock, RasterStack-method
 (getValuesBlock), 99
getValuesFocal, 9, 81, 99, 100
getValuesFocal, Raster, missing, missing-method
 (getValuesFocal), 100
getValuesFocal, Raster, numeric, numeric-method
 (getValuesFocal), 100
getValuesFocal, RasterLayer-method
 (getValuesFocal), 100
getZ, 20
getZ (z-values), 225
gIntersection, 113
gDistance, 8, 39, 68, 70, 71, 101, 145
gridDistance, RasterBrick-method
 (gridDistance), 101
hasValues (Datasource), 63
hist, 12, 103, 134
hist, 12, 103, 134
head, 104
head, RasterLayer-method (head), 104
head, RasterStackBrick-method (head), 104
head, Spatial-method (head), 104
heat.colors, 140, 176
hillShade, 104, 207
hist, 10, 32, 35, 106, 106, 138, 141
hist, Raster-method (hist), 106
image, 9, 107, 107, 115
image, RasterLayer-method (image), 107
image, RasterStackBrick-method (image), 107
image.plot, 141
method, 108
method, initialize, 108
method, initialize, 108
method, initialize, 108
INDEX

inMemory, 13
inMemory (datasource), 63
interpolate, 8, 109, 147
interpolate, Raster-method (interpolate), 109
intersect, 12, 23, 44, 73, 112, 211
intersect, Extent, ANY-method (intersect), 112
intersect, Raster, ANY-method (intersect), 112
intersect, SpatialLines, SpatialLines-method (intersect), 112
intersect, SpatialPoints, ANY-method (intersect), 112
intersect, SpatialPolygons, ANY-method (intersect), 112
is.factor (factors), 86
is.factor, Raster-method (factors), 86
is.factor, RasterStack-method (factors), 86
is.finite, Raster-method (Logic-methods), 120
is.infinite, Raster-method (Logic-methods), 120
is.na, CRS-method (projection), 151
is.na, Raster-method (Logic-methods), 120
is.nan, Raster-method (Logic-methods), 120
isLonLat, 10, 114
isLonLat, ANY-method (isLonLat), 114
isLonLat, BasicRaster-method (isLonLat), 114
isLonLat, character-method (isLonLat), 114
isLonLat, CRS-method (isLonLat), 114
isLonLat, Spatial-method (isLonLat), 114
KML, 11, 115
KML, RasterLayer-method (KML), 115
KML, RasterStackBrick-method (KML), 115
KML, Spatial-method (KML), 115
labels, Raster-method (names), 129
layerize, 116
layerize, RasterLayer, missing-method (layerize), 116
layerize, RasterLayer, RasterLayer-method (layerize), 116
layerStats, 45, 117
length, BasicRaster-method (ncell), 131
levelplot, 195
levels, factors, 86
levels, Raster-method (factors), 86
levels, RasterStack-method (factors), 86
levels<-, Raster-method (factors), 86
log, Raster-method (Math-methods), 123
make.names, 134, 216
mask, 7, 60, 73, 121
mask, Raster, sf-method (mask), 121
mask, Raster, Spatial-method (mask), 121
mask, RasterLayer, RasterLayer-method (mask), 121
mask, RasterLayer, RasterStackBrick-method (mask), 121
mask, RasterStackBrick, RasterLayer-method (mask), 121
mask, RasterStackBrick, RasterStackBrick-method (mask), 121
match, 122, 123
match, Raster-method (match), 122
Math-methods, 7, 47, 123
maxValue, 9, 45, 204
maxValue, extremeValues, 85
maxValue, RasterBrick-method (extremeValues), 85
maxValue, RasterLayer-method (extremeValues), 85
maxValue, RasterStack-method (extremeValues), 85
mean, Raster-method (Summary-methods), 204
merge, 7, 12, 33, 60, 75, 124, 127, 128, 174, 211
merge, Extent, ANY-method (merge), 124
merge, Raster, Raster-method (merge), 124
merge, RasterStackBrick, missing-method (merge), 124
metadata, 125
metadata<- (metadata), 125
minValue, 9, 45, 204
minValue (extremeValues), 85
minValue, RasterBrick-method (extremeValues), 85
minValue, RasterLayer-method (extremeValues), 85
minValue, RasterStack-method (extremeValues), 85
modal, 12, 126
modal, ANY-method (modal), 126
modal, Raster-method (modal), 126
Moran, 8
Moran (autocorrelation), 29
MoranLocal (autocorrelation), 29
mosaic, 7, 124, 127
mosaic, Raster, Raster-method (mosaic), 127
movingFun, 128
names, 10, 106, 129, 132, 134, 146
names, Raster-method (names), 129
names, RasterStack-method (names), 129
names<- (names), 129
names<- , Raster-method (names), 129
NAvalue, 11, 130
NAvalue<- (NAvalue), 130
nbands, 11
nbands (bands), 30
ncell, 10, 67, 131, 175
ncell, ANY-method (ncell), 131
ncell, BasicRaster-method (ncell), 131
ncol, 10
ncol (ncell), 131
ncol, BasicRaster-method (ncell), 131
ncol<- (ncell), 131
nlayers, 10, 30, 31, 130, 132
nlayers, BasicRaster-method (nlayers), 132
nlayers, Raster-method (nlayers), 132
nlayers, RasterBrick-method (nlayers), 132
nlayers, RasterStack-method (nlayers), 132
nlayers, Spatial-method (nlayers), 132
nrow, 10
nrow (ncell), 131
nrow, BasicRaster-method (ncell), 131
nrow<- (ncell), 131
offs (Gain and offset), 95
offs<- (Gain and offset), 95
Options, 133
options, 23, 134
origin, 10, 135
origin, BasicRaster-method (origin), 135
origin<- (origin), 135
origin<- , BasicRaster-method (origin), 135
over, 12
overlay, 7, 23, 39, 41, 50, 120, 123, 135
overlay, Raster, missing-method (overlay), 135
overlay, Raster, Raster-method (overlay), 135
pairs, 10, 35, 106, 138, 138, 141
pairs, RasterStackBrick-method (pairs), 138
pbClose, 13
pbClose (Programming), 150
pbCreate, 13
pbCreate (Programming), 150
pbStep, 13
pbStep (Programming), 150
persp, 9, 56, 89, 139, 140, 141
persp, RasterLayer-method (persp), 139
persp, RasterStackBrick-method (persp), 139
plot, 9, 10, 19, 20, 66, 89, 107, 139, 140, 141, 144, 186, 195, 208, 228, 229
plot, Extent, missing-method (plot), 140
plot, Raster, ANY-method (plot), 140
plot, Raster, Raster-method (plot), 140
plot3D, 139
plotRGB, 9, 20, 53, 141, 143, 176, 195, 200
plotRGB, RasterStackBrick-method (plotRGB), 143
pointDistance, 12, 29, 70, 71, 144
predict, Raster-method (predict), 146
predict.gstat, 110
pretty, 141
print, Raster-method (Raster-class), 159
print, Spatial-method (Raster-class), 159
Programming, 149
proj4string (projection), 151
proj4string<- (projection), 151
projectExtent (projectRaster), 152
projection, \textit{10, 54, 151, 206}
projection<- (projection), 151
projectRaster, \textit{7, 10, 50, 152, 152, 174}
projInfo, \textit{152, 153}
properties, 154
quantile, \textit{45, 155, 155}
quantile, Raster-method (quantile), 155
rainbow, \textit{31, 140, 176}
raster, \textit{6, 8, 38, 156, 160, 196, 197}
raster.asc-method (raster), 156
raster, BasicRaster-method (raster), 156
raster, big.matrix-method (raster), 156
raster, character-method (raster), 156
raster, Extent-method (raster), 156
raster, grf-method (raster), 156
raster, GridTopology-method (raster), 156
raster, im-method (raster), 156
raster, kasc-method (raster), 156
raster, kde-method (raster), 156
raster, list-method (raster), 156
raster, matrix-method (raster), 156
raster, missing-method (raster), 156
raster, RasterBrick-method (raster), 156
raster, RasterLayer-method (raster), 156
raster, RasterLayerSparse-method (raster), 156
raster, RasterStack-method (raster), 156
raster, Spatial-method (raster), 156
raster, SpatialGrid-method (raster), 156
raster, SpatialPixels-method (raster), 156
Raster-class, \textit{6, 159}
raster-package, 6
RasterBrick-class (Raster-class), 159
rasterFromCells, 9, 161
rasterFromXYZ, 8, 162
rasterImage, \textit{28, 107, 141, 144}
rasterize, \textit{8, 83, 122, 137, 163, 163, 173}
rasterize, data.frame, Raster-method (rasterize), 163
rasterize, Extent, Raster-method (rasterize), 163
rasterize, matrix, Raster-method (rasterize), 163
rasterize, sf, Raster-method (rasterize), 163
rasterize, SpatialLines, Raster-method (rasterize), 163
rasterize, SpatialPoints, Raster-method (rasterize), 163
rasterize, SpatialPolygons, Raster-method (rasterize), 163
RasterLayer-class (Raster-class), 159
RasterLayerSparse-class (Raster-class), 159
rasterOptions, \textit{12, 55, 167, 168, 219–221}
rasterOptions (Options), 133
RasterStack-class (Raster-class), 159
RasterStackBrick-class (Raster-class), 159
rasterTmpFile, \textit{13, 133, 134, 167}
rasterToContour, \textit{8, 56, 168}
rasterToPoints, \textit{8, 169, 208}
rasterToPolygons, \textit{8, 170}
ratify (factors), 86
readAll, 171
readAll, RasterBrick-method (readAll), 171
readAll, RasterLayer-method (readAll), 171
readAll, RasterStack-method (readAll), 171
readGDAL, \textit{37, 157}
readIniFile, \textit{12}
readIniFile (iniFile), 108
readStart, \textit{13}
readStart (Programming), 150
readStart, Raster-method (Programming), 150
readStart, RasterStack-method (Programming), 150
readStop, \textit{13}
readStop (Programming), 150
readStop, Raster-method (Programming), 150
INDEX

readStop, RasterStack-method (Programming), 150
reclassify, 8, 41, 46, 62, 171, 202, 203
reclassify, Raster-method (reclassify), 171
rectify, 172, 178
removeTmpFiles, 13
removeTmpFiles (rasterTmpFile), 167
replacement, 47, 156, 173, 191
res, 10, 67, 132, 157
res (resolution), 175
res, BasicRaster-method (resolution), 175
res ~ (resolution), 175
resample, 7, 17, 18, 50, 68, 69, 153, 172, 174
resample, Raster, Raster-method (resample), 174
reshape, 25
resolution, 175
returnCluster, 51
returnCluster (Programming), 150
RGB, 176
rgb, 52
RGB, RasterLayer-method (RGB), 176
rotate, 7, 89, 177, 193, 209
rotate, Raster-method (rotate), 177
rotated, 178
round, 12, 31, 94, 178, 179
round, RasterLayer-method (round), 178
rowColFromCell, 11, 43
rowColFromCell (rowFromCell), 179
rowFromCell, 162, 179
rowFromY, 11
rowFromY (cellFrom), 42
rowSums, 180
rowSums, Raster-method (rowSums), 180
runif, 108
sample, 181
SampleInt, 181
sampleInt, 13
sampleInt (SampleInt), 181
sampleRandom, 9, 182, 183, 184
sampleRandom, Raster-method (sampleRandom), 182
sampleRegular, 9, 24, 45, 182, 183, 184
sampleRegular, Raster-method (sampleRegular), 183
sampleStratified, 182, 183, 184
sampleStratified, RasterLayer-method (sampleStratified), 184
scale, 185, 185
scale, Raster-method (scale), 185
scalebar, 186
select, 10, 12, 48, 187
select, Raster-method (select), 187
select, Spatial-method (select), 187
set.seed, 167
setExtent, 78, 188, 211
setMinMax, 9, 45, 85, 189
setMinMax, RasterBrick-method (setMinMax), 189
setMinMax, RasterLayer-method (setMinMax), 189
setMinMax, RasterStack-method (setMinMax), 189
setValues, 11, 83, 99, 156, 157, 190
setValues, RasterBrick-method (setValues), 190
setValues, RasterLayer-method (setValues), 190
setValues, RasterLayerSparse-method (setValues), 190
setValues, RasterStack-method (setValues), 190
setZ (z-values), 225
shapefile, 191
shapefile, character-method (shapefile), 191
shapefile, Spatial-method (shapefile), 191
shift, 7, 192
shift, Raster-method (shift), 192
shift, SpatialLines-method (shift), 192
shift, SpatialPoints-method (shift), 192
shift, SpatialPolygons-method (shift), 192
show, BasicRaster-method (Raster-class), 159
show, Extent-method (Extent-class), 78
show, RasterBrick-method (Raster-class), 159
show, RasterLayer-method (Raster-class), 159
show, RasterStack-method (Raster-class), 159
showTmpFiles, 13
showTmpFiles (rasterTmpFile), 167
Slope and aspect, 193
tslopeAspect (Slope and aspect), 193
sp, 194
SpatialLines, 79
SpatialPoints, 79
SpatialPolygons, 79
SpatialVector-class (Raster-class), 159
spDistSn1, 145
spLines (sp), 194
spplot, 9, 20, 141, 195, 195
spplot, Raster-method (spplot), 195
spplot, SpatialPoints-method (spplot), 195
spPolygons (sp), 194
spTransform, 153
stack, 6, 36, 158, 160, 196, 199, 213
stack, character-method (stack), 196
stack, kasc-method (stack), 196
stack, list-method (stack), 196
stack, missing-method (stack), 196
stack, Raster-method (stack), 196
stack, SpatialGridDataFrame-method (stack), 196
stack, SpatialPixelsDataFrame-method (stack), 196
stackApply, 8, 197, 200
stackOpen (stackSave), 198
stackSave, 198
stackSelect, 8, 198, 199
stackSelect, RasterStackBrick, Raster-method (stackSelect), 199
stretch, 200
subs, 7, 62, 124, 171, 172
subs (substitute), 202
subs, Raster, data.frame-method (substitute), 202
subset, 7, 14, 201
subset, Raster-method (subset), 201
subset, RasterStack-method (subset), 201
substitute, 202
Summary, 203
summary, 9
summary, RasterLayer-method (Summary), 203
summary, RasterStackBrick-method (Summary), 203
Summary-methods, 7, 204
symdif, 12, 205
symdif, SpatialPolygons, SpatialPolygons-method (symdif), 205
Sys.getpid, 167
t, 7, 89
t (transpose), 209
t, RasterLayer-method (transpose), 209
t, RasterStackBrick-method (transpose), 209
table, 94
tail (head), 104
tail, RasterLayer-method (head), 104
tail, RasterStackBrick-method (head), 104
tail, Spatial-method (head), 104
tempfile, 168
terrain, 8, 90, 104, 105, 193, 206
text, 10, 141, 208, 208
text, RasterLayer-method (text), 208
text, RasterStackBrick-method (text), 208
text, SpatialPoints-method (text), 208
text, SpatialPolygons-method (text), 208
tmpDir (Options), 133
tolower, 108
topo.colors, 140, 176
toupper, 108
Tps, 110
transpose, 209
Trig, 28
trim, 7, 12, 210
trim, character-method (trim), 210
trim, data.frame-method (trim), 210
trim, matrix-method (trim), 210
trim, Raster-method (trim), 210
trunc, RasterLayer-method (round), 178
txtProgressBar, 150
union, 12, 23, 114, 211
union, Extent, Extent-method (union), 211
union, SpatialPolygons, missing-method (union), 211
union, SpatialPolygons, SpatialPolygons-method (union), 211
unique, 9, 212, 212
unique, RasterLayer, missing-method (unique), 212
unique, RasterStackBrick, missing-method (unique), 212
unstack, 7, 213
unstack, RasterBrick-method (unstack), 213
unstack, RasterStack-method (unstack), 213
update, 11, 213, 223
update, RasterBrick-method (update), 213
update, RasterLayer-method (update), 213
validCell, 11, 215
validCol, 11
validCol (validCell), 215
validNames, 215
validRow, 11
validRow (validCell), 215
values, 47
values (getValues), 98
values, Raster-method (getValues), 98
values <- (setValues), 190
values <-, RasterBrick-method (setValues), 190
values <-, RasterLayer-method (setValues), 190
values <-, RasterLayerSparse-method (setValues), 190
values <-, RasterStack-method (setValues), 190
VectorLayer-class (Raster-class), 159
weighted.mean, 118, 216, 217
weighted.mean, RasterStackBrick, RasterStackBrick-method (weighted.mean), 216
weighted.mean, RasterStackBrick, vector-method (weighted.mean), 216
Which, 219
Which (which), 217
which, 217
Which, RasterLayer-method (which), 217
which.max, 218
which.max (which.min), 218
which.max, RasterLayer-method (which.min), 218
which.max, RasterStackBrick-method (which.min), 218
which.min, 218, 218
which.min, RasterLayer-method (which.min), 218
which.min, RasterStackBrick-method (which.min), 218
whiches.max, RasterStackBrick-method (which.min), 218
whiches.min (which.min), 218
whiches.min, RasterStackBrick-method (which.min), 218
writeFormats, 133, 213, 219, 220, 222
writeGDAL, 103
writeRaster, RasterLayer, character-method (writeRaster), 220
writeRaster, RasterStackBrick, character-method (writeRaster), 220
writeStart, 11
writeStart (writeValues), 222
writeStart, RasterBrick, character-method (writeValues), 222
writeStart, RasterLayer, character-method (writeValues), 222
writeStop, 11
writeStop (writeValues), 222
writeStop, RasterBrick-method (writeValues), 222
writeStop, RasterLayer-method (writeValues), 222
writeValues, 11, 33, 34, 220, 222, 222
writeValues, RasterBrick, matrix-method (writeValues), 222
writeValues, RasterLayer, vector-method (writeValues), 222
xFromCell, 11
xFromCell (xyFromCell), 224
xFromCol, 11
xFromCol (xyFromCell), 224
xmax, 10
xmax (Extreme coordinates), 84
xmax, BasicRaster-method (Extreme coordinates), 84
xmax, Extent-method (Extreme coordinates), 84
xmax, Spatial-method (Extreme coordinates), 84
xmax <- (Extreme coordinates), 84
xmin, 10
xmin (Extreme coordinates), 84
xmin, BasicRaster-method (Extreme coordinates), 84
xmin, Extent-method (Extreme coordinates), 84
xmin, Spatial-method (Extreme coordinates), 84
xmin<-(Extreme coordinates), 84
xres, 10
xres (resolution), 175
xres, BasicRaster-method (resolution), 175
xyFromCell, 11, 43, 224
yFromCell, 11
yFromCell (xyFromCell), 224
yFromRow, 11
yFromRow (xyFromCell), 224
ymax, 10
ymax (Extreme coordinates), 84
ymax, BasicRaster-method (Extreme coordinates), 84
ymax, Extent-method (Extreme coordinates), 84
ymax, Spatial-method (Extreme coordinates), 84
ymax<-(Extreme coordinates), 84
ymin, 10
ymin (Extreme coordinates), 84
ymin, BasicRaster-method (Extreme coordinates), 84
ymin, Extent-method (Extreme coordinates), 84
ymin, Spatial-method (Extreme coordinates), 84
ymin<-(Extreme coordinates), 84
yres, 10
yres (resolution), 175
yres, BasicRaster-method (resolution), 175
z-values, 225
zApply, 226
zonal, 9, 61, 94, 227
zonal, RasterLayer, RasterLayer-method (zonal), 227
zonal, RasterStackBrick, RasterLayer-method (zonal), 227