Package ‘rasterDT’

March 4, 2020

Type Package
Title Fast Raster Summary and Manipulation
Version 0.3.1
Date 2020-02-26
Author Joshua O'Brien
Maintainer Joshua O'Brien <joshmobrien@gmail.com>
Description Fast alternatives to several relatively slow 'raster' package functions. For large rasters, the functions run from 5 to approximately 100 times faster than the 'raster' package functions they replace. The 'fasterize' package, on which one function in this package depends, includes an implementation of the scan line algorithm attributed to Wylie et al. (1967) <doi:10.1145/1465611.1465619>.
License GPL (>= 2)
URL https://github.com/JoshOBrien/rasterDT/
BugReports https://github.com/JoshOBrien/rasterDT/issues/
Depends methods, raster, data.table
Imports fasterize, sf
Suggests rasterVis, rgdal
LazyData true
Encoding UTF-8
RoxygenNote 7.0.2
NeedsCompilation no
Repository CRAN
Date/Publication 2020-03-04 16:30:02 UTC
Description

Fast alternatives to several relatively slow 'raster' package functions. For large rasters, the functions run from 5 to approximately 100 times faster than the 'raster' package functions they replace. The 'fasterize' package, on which one function in this package depends, includes an implementation of the scan line algorithm attributed to Wylie et al. (1967) <doi:10.1145/1465611.1465619>.

Details

The DESCRIPTION file:

```r
Package: rasterDT
Type: Package
Title: Fast Raster Summary and Manipulation
Version: 0.3.1
Date: 2020-02-26
Author: Joshua O’Brien
Maintainer: Joshua O’Brien <joshmobrien@gmail.com>
Description: Fast alternatives to several relatively slow 'raster' package functions. For large rasters, the functions run from 5 to approximately 100 times faster than the 'raster' package functions they replace. The 'fasterize' package, on which one function in this package depends, includes an implementation of the scan line algorithm attributed to Wylie et al. (1967) <doi:10.1145/1465611.1465619>.
License: GPL (>= 2)
URL: https://github.com/JoshOBrien/rasterDT/
BugReports: https://github.com/JoshOBrien/rasterDT/issues/
Depends: methods, raster, data.table
Imports: fasterize, sf
Suggests: rasterVis, rgdal
LazyData: true
Encoding: UTF-8
RoxygenNote: 7.0.2
```

Index of help topics:

```
cat_to_val              Convert a Categorical Raster to a Value Raster
```
Fast alternatives to several relatively slow raster package functions. For large rasters, the functions run from 5 to approximately 100 times faster than the raster package functions they replace.

Author(s)

Joshua O’Brien

Maintainer: Joshua O’Brien <joshmobrien@gmail.com>

cat_to_val

Convert a Categorical Raster to a Value Raster

Description

Use a categorical raster’s RAT to convert it to a continuous raster

Usage

```r
cat_to_val(r, which = 2)
```

Arguments

- `r` A categorical raster with a RAT (returned by `levels(r)[[1]]`), whose first column contain an entry for every factor level present in the raster. At least one of the subsequent columns should contain numeric values to which each level should be converted.

- `which` An integer or character string giving the index or name of the column in r’s RAT with the numerical values to which each value in r should be mapped. Default value is 2.

Value

A continuous raster with each category level in r replaced by its corresponding value.

Author(s)

Joshua O’Brien
Examples

```r
c_cat <- raster(matrix(c(2, 2, 2, 1), ncol = 2))
levels(r_cat) <- data.frame(ID = c(1, 2),
                          VAL1 = c(0.1, 200),
                          VAL2 = c(33, 44))

## Second column of RAT is used by default
r_con1 <- cat_to_val(r_cat)
as.matrix(r_con1)

## Use 'which=' argument for conversion to another RAT column
r_con2 <- cat_to_val(r_cat, which = "VAL2")
as.matrix(r_con2)
```

crosstabDT Speedy Raster Cross-tabulation

Description

A fast data.table-based alternative to `raster::crosstab()`.

Usage

```r
crosstabDT(x, y, digits = 0, long = FALSE, useNA = FALSE)
```

Arguments

- `x`: A Raster* object
- `y`: If `x` has just one layer, a RasterLayer object. Otherwise, if `x` is a multi-layered RasterStack or RasterBrick, this argument (if any) is unused.
- `digits`: Integer. The number of digits for rounding the values before cross-tabulation. Default is 0.
- `long`: Logical. If TRUE, the results are returned in a 'long' format data.table instead of as a table. Default is FALSE.
- `useNA`: Logical. Should the returned table or data.table include counts of NA values? Default is FALSE.

Value

Either a table or a data.table recording the frequency of each combination of raster values.

Author(s)

Joshua O’Brien
Examples

```r
r <- raster(nc = 5, nr = 5)
r[] <- runif(ncell(r)) * 2
s <- setValues(r, runif(ncell(r)) * 3)
crosstabDT(r, s)

rs <- r/s
r[1:5] <- NA
s[20:25] <- NA
x <- stack(r, s, rs)
crosstabDT(x, useNA = TRUE, long = TRUE)
```

Description

A front end for `fasterize::fasterize()`, fixing several of its infelicities.

Usage

```r
fasterizeDT(
  x,
  raster,
  field = NULL,
  fun = "last",
  background = NA_real_,
  by = NULL
)
```

Arguments

- **x**: Either an `sf::sf()` object with a geometry column of POLYGON and/or MULTIPOLYGON objects or a `sp::SpatialPolygonsDataFrame` object.
- **raster**: A `RasterLayer` object to be used as a template for the raster output.
- **field**: Character. The name of a column in `x`, providing a value for each of the polygons rasterized. If `NULL` (the default), all polygons will be given a value of 1.
- **fun**: Character. The name of a function by which to combine overlapping polygons. Currently takes "sum", "first", "last", "min", "max", "count", or "any". For more details, see `?fasterize::fasterize`.
- **background**: Value to put in the cells that are not covered by any of the features of `x`. Default is `NA`.
- **by**: Character string giving the name of a column in `x` by which to aggregate layers. If set, `fasterizeDT` will return a `RasterBrick` with as many layers as unique values of the `by` column.
Details

Unlike other functions in this package, fasterizeDT() does not use data.table to speed up its computations. Instead, it is a wrapper for fasterize::fasterize(), intended to address several of that function’s limitations.

Most importantly, fasterizeDT() takes care to properly handle rasterization operations in which either the template RasterLayer or the selected polygon feature field is a factor. Specifically, it always returns a raster whose type (numeric or factor) and levels (if a factor) match that of the spatial polygon attribute indicated by its field argument. Second, when field specifies an attribute of class “character”, fasterizeDT() automatically converts it to a factor and returns a factor raster. In this, it is unlike both fasterize::fasterize() and raster::rasterize(). Finally, unlike fasterize::fasterize(), fasterizeDT() accepts as inputs either sf::sf() objects or sp::SpatialPolygonsDataFrame objects.

Value

A raster of the same size, extent, resolution and projection as the supplied raster template. Unlike fasterize::fasterize(), fasterizeDT returns a raster of the same type as the data in the column of x selected by the field argument.

Author(s)

Joshua O’Brien

Examples

```r
## Load example polygons and prepare a template raster
SPDF <- rgdal::readOGR(system.file("external", package = "raster"), "lux")
llratio <- 1/cos(pi * mean(coordinates(SPDF)[, 2])/180)
rr <- raster(extent(SPDF),
             resolution = c(llratio * 0.01, 0.01),
             crs = proj4string(SPDF))

## An integer-valued field produces a numeric raster
rInt <- fasterizeDT(SPDF, rr, field = "ID_2")
plot(rInt, col = colorRampPalette(blues9)(12))

## A character-valued field returns a factor raster
rFac <- fasterizeDT(SPDF, rr, field = "NAME_2")
if (require(rasterVis)) {
  levelplot(rFac)
}
```

freqDT

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A fast data.table-based alternative to raster::freq().</td>
</tr>
</tbody>
</table>
freqDT

Usage

freqDT(x, ...)

S4 method for signature 'RasterLayer'
freqDT(x, digits = 0, value = NULL, useNA = c("ifany", "no", "always"), ...)

S4 method for signature 'RasterStackBrick'
freqDT(
 x,
 digits = 0,
 value = NULL,
 useNA = c("ifany", "no", "always"),
 merge = FALSE,
 ...
)

Arguments

x
A RasterLayer, RasterStack, or RasterBrick object field class.

... Additional arguments as for raster::writeRaster(), on which this function relies.

digits Integer for rounding the cell values. Argument is passed to round

value A single numeric, logical, or NA value. If supplied, freqDT() will only count the number of cells with that value.

useNA Character (one of "no", "ifany", or "always"). What to do with NA values? See table for details.

merge Logical. If TRUE the list will be merged into a single data.table.

Author(s)

Joshua O'Brien

Examples

r <- raster(nrow = 18, ncol = 36)
r[] <- runif(ncell(r))
r[1:5] <- NA
r <- r * r * r * 5
freqDT(r)

freqDT(r, value = 2)

s <- stack(r, r*2, r*3)
freqDT(s, merge = TRUE)
Description

A fast data.table-based alternative to \code{raster::subs()}.

Usage

\function{subsDT(x, dict, by = 1, which = 2, subsWithNA = TRUE, filename = "", ...)}

Arguments

- \code{x}: Categorical \code{RasterLayer} with integer values giving field class.
- \code{dict}: A \code{data.frame} or \code{data.table} with one (or possibly more) columns corresponding to the values of cells in \code{x} and one (or possibly more) columns giving the value to which each value in \code{x} should be mapped.
- \code{by}: Vector of one or possibly more integers or character strings giving the indices or names of the column in \code{dict} containing the categorical values in \code{x}.
- \code{which}: Vector of one or possibly more integers or character strings giving the indices or names of the column in \code{dict} with the numerical values to which each value in \code{by} should be mapped.
- \code{subsWithNA}: Logical. If \code{TRUE} values that are not matched become NA. If \code{FALSE}, they retain their original value (which could also be NA). This latter option is handy when you want to replace only one or a few values. It cannot be used when \code{x} has multiple layers.
- \code{filename}: Character string giving (optional) file name to which the resultant raster should be written.
- \code{...}: Additional arguments as for \code{raster::writeRaster()}, on which this function relies.

Value

A \code{RasterLayer} object.

Author(s)

Joshua O'Brien

Examples

\begin{verbatim}
 r <- raster(ncol = 10, nrow = 10)
 r[] <- round(runif(ncell(r)) * 10)
 df <- data.frame(id = 2:8, v = c(10, 10, 11, 11, 12:14))
 x <- subsDT(r, df)
 x2 <- subsDT(r, df, subsWithNA = FALSE)
\end{verbatim}
df$v2 <- df$v * 10
x3 <- subsDT(r, df, which = 2:3)

s <- stack(r, r*3)
names(s) <- c("first", "second")
x4 <- subsDT(s, df)
x5 <- subsDT(s, df, which = 2:3)

zonalDT

Speedy Zonal Statistics

Description

A fast data.table-based alternative to raster::zonal().

Usage

zonalDT(x, z, fun = sum, na.rm = TRUE)

Arguments

x A Raster* to the totality of whose values fun should be applied within each zone.
z A categorical RasterLayer with codes representing zones.
fun A name or character string giving the function to be applied to summarize the values by zone. It needs to return a single (or at least a length-one vector). If x might contain any NA values, it should be equipped to handle them. For large rasters, this function needs to be one, like sum() whose value is the same even if carried out in a two-stage application (i.e. first to data subsets and then to the results of those subset applications).
na.rm Logical. If TRUE, NA values in x are ignored.

Value

A data.table with a summary value for each zone.

Author(s)

Joshua O’Brien
Examples

```r
r <- raster(ncols = 10, nrows = 10)
r[] <- runif(ncell(r)) * 1:ncell(r)
z <- r
z[] <- rep(1:5, each = 20)
## for big files, use a character value rather than a function
zonalDT(r, z, "sum")

## for smaller files you can also provide a function
zonalDT(r, z, mean)
zonalDT(r, z, min)

## multiple layers
zonalDT(stack(r, r*10), z, "sum")
```
Index

*Topic package
 rasterDT-package, 2
 ?fasterize::fasterize, 5

cat_to_val, 3
crosstabDT, 4

fasterize::fasterize(), 5, 6
fasterizeDT, 5
freqDT, 6
freqDT,RasterLayer-method (freqDT), 6
freqDT,RasterStackBrick-method
 (freqDT), 6
raster::crosstab(), 4
raster::freq(), 6
raster::subs(), 8
raster::writeRaster(), 7, 8
raster::zonal(), 9
rasterDT (rasterDT-package), 2
rasterDT-package, 2
round, 7

subsDT, 8

table, 7

zonalDT, 9