Package ‘rationalfun’

October 14, 2022

Version 0.1-1
Date 2022-03-05
Title Manipulation of Rational Functions
Description Functions to manipulate rational functions, including basic
 arithmetic operators, derivatives, and integrals with EXPLICIT forms.
Author Yixuan Qiu <yixuan.qiu@cos.name>
Maintainer Yixuan Qiu <yixuan.qiu@cos.name>
Depends polynom
Imports stats
URL https://github.com/yixuan/rationalfun
BugReports https://github.com/yixuan/rationalfun/issues
License GPL
Collate 'internals.R' 'rf_base.R' 'rf_deriv_integral.R'
 'rf_operators.R'
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-05 15:50:04 UTC

R topics documented:

 as.character.rationalfun .. 2
 as.function.rationalfun 2
 deriv.rationalfun ... 3
 int2fun ... 4
 integral.rationalfun ... 5
 Ops.rationalfun ... 6
 predict.rationalfun .. 6
 print.rationalfun ... 7
 rationalfun .. 8
 simplify ... 9

Index 11
as.character.rationalfun

Convert object to character

Description

This function converts an object of class "rationalfun" to a character string.

Usage

S3 method for class 'rationalfun'
as.character(x, ...)

Arguments

x an object of class "rationalfun"
...
not used in this function

Value

A character string representing the rational function.

See Also

as.character.polynomial

Examples

r <- rationalfun(c(1, 1), c(3, 2, 1))
as.character(r)

as.function.rationalfun

Convert object to function

Description

This function converts an object of class "rationalfun" to a function.

Usage

S3 method for class 'rationalfun'
as.function(x, ...)

Arguments

x an object of class "rationalfun"
...

Value

A function with one argument which could be a real or complex vector.

See Also

as.function.polynomial

Examples

```r
r <- rationalfun(c(1, 1), c(3, 2, 1))
r
f <- as.function(r)
f
f(1:10)
f(1:10 + (0+2i))
```

deriv.rationalfun
Differentiate a rational function

Description

Calculate the derivative of a rational function. The returned value result is still an object of class "rationalfun".

Usage

```r
## S3 method for class 'rationalfun'
deriv(expr, ...)
```

Arguments

expr an object of class "rationalfun"
...

Value

An object of class "rationalfun" representing the derivative of the original rational function.

See Also

deriv.polynomial, deriv
Examples

\(\frac{x + 1}{x^2 + x + 1} \)

\[r \leftarrow \text{rationalfun}(c(1, 1), c(1, 1, 1)) \]

\[\text{deriv}(r) \]

int2fun : *Convert a call to a function*

Description

Convert a function call to a function in R. In this package, the function is typically used to convert the result of `integral.rationalfun()` to a function with one argument.

Usage

```r
int2fun(expr)
```

Arguments

- `expr` : a function call, typically returned by `integral.rationalfun()`.

Value

A function with one argument which could be a real or complex vector.

See Also

- `integral.polynomial`

Examples

```r
x <- rationalfun(c(-6, -1, -8, 15, -1, 8, -9, 2),
                 c(8, 12, 16, 4, 4))
int <- integral(x)
fun <- int2fun(int)
fun(c(0, 1))
```
integral.rationalfun

Integrate a rational function

Description

Calculate the integral of a rational function. See "Details".

Usage

S3 method for class 'rationalfun'
integral(expr, ...)

Arguments

expr an object of class "rationalfun"
... not used in this function

Details

The returned value is a function call with argument named "x". That is, the integral is an expression
in R with an explicit form, which could be evaluated directly by calling eval(), or indirectly using
the int2fun() function.

The algorithm is based on the Hermite-Ostrogradski formula which is discussed in the reference.
See the article for more details.

Value

A function call representing the explicit form of the integral.

References

T. N. Subramaniam, and Donald E. G. Malm, How to Integrate Rational Functions, The American

See Also

integral.polynomial

Examples

(x + 1) / (x^2 + x + 1)
r <- rationalfun(c(1, 1), c(1, 1, 1))
expr <- integral(r)
Evaluate the call directly
eval(expr, list(x = 2))
Use int2fun()
f <- int2fun(expr)
f(2)
Ops.rationalfun Operators for rational functions

Description

Basic arithmetic operators for rational functions.

Usage

S3 method for class 'rationalfun'
Ops(e1, e2)

Arguments

e1 an object of class "rationalfun"
e2 for "^", a positive integer; in other cases, an object of class "rationalfun"

Value

A new object of "rationalfun" class.

Examples

r1 <- rationalfun(c(1, 2), c(1, 2, 1))
r2 <- rationalfun(c(1, 1), c(1, -2, 1))
r1 + r2
r1 * r2
r1^2

predict.rationalfun Evaluate a rational function

Description

Evaluate a rational function at a real or complex vector.

Usage

S3 method for class 'rationalfun'
predict(object, newdata, ...)

Arguments

object an object of class "rationalfun"
newdata a vector at which evaluation is requested.
... not used in this function Both real and complex vectors are accepted.
print.rationalfun

Value
A vector of evaluated results.

See Also
predict.polynomial

Examples
r <- rationalfun(c(1, 1), c(3, 2, 1))
predict(r, 1:10)

print.rationalfun

Print a rational function

Description
Print a rational function in a fraction form.

Usage
S3 method for class 'rationalfun'
print(x, ...)

Arguments
x an object of class "rationalfun"
... not used in this function

Value
Invisible, the object itself.

See Also
print.polynomial

Examples
r <- rationalfun(c(1, 1), c(3, 2, 1))
print(r)
rationalfun

Construction of rational functions

Description

Construction of rational functions.

Usage

rationalfun(numer = c(0, 1), denom = c(1, 1, 1))

rfun(numer = c(0, 1), denom = c(1, 1, 1))

rationalfun.poly(numer = polynomial(c(0, 1)), denom = polynomial(c(1, 1, 1)))

rfun.poly(numer = polynomial(c(0, 1)), denom = polynomial(c(1, 1, 1)))

Arguments

numer in rationalfun(), the coefficient vector of the numerator; in rationalfun.poly(), an object of class "polynom" in polynom package representing the numerator

denom similar to numer, but for the denominator

Details

A rational function object could be constructed either by calling rationalfun() or by calling rationalfun.poly().

rationalfun() constructs a rational function from the coefficient vectors of the numerator and the denominator. For example, consider a rational function \(R(x) = \frac{P(x)}{Q(x)} \) where

\[
P(x) = p_1 + p_2 x + p_3 x^2 + \ldots + p_k x^{k-1}
\]

and

\[
Q(x) = q_1 + q_2 x + q_3 x^2 + \ldots + q_m x^{m-1}
\]

, you may call rationalfun(p[1:k], q[1:m]) to build the object.

For rationalfun.poly(), it receives two objects of class "polynomial" from the polynom package, representing the polynomials of the numerator and the denominator respectively. Use this function if you already have objects of "polynomial" class, typically by calling polynomial(), poly.calc() or poly.orth().

rfun() and rfun.poly() are aliases of rationalfun() and rationalfun.poly() in order to type fewer letters.

The value returned by rationalfun() and rationalfun.poly() is an object of class "rationalfun". You can coerce the object to a function, by calling as.function.rationalfun(), or to a character string, by calling as.character.rationalfun().
Objects of "ratioanlfun" class support basic operators including "+", ",", "+", "/" and "^". To evaluate a rational function at a given vector, use `predict.rationalfun()`. To compute the derivative and integral in explicit form, call `deriv.rationalfun()` and `integral.rationalfun()` respectively.

Value

An object of class "rationalfun".

See Also

`polynomial`, `poly.calc`, `poly.orth`

Examples

```r
# (x + 1) / (x^2 + 2 * x + 3)
r1 <- rationalfun(c(1, 1), c(3, 2, 1))
print(r1)
# Construct from objects of 'polynomial' class
if (require(polynom)) {
  p1 <- poly.calc(c(1, 2))
  p2 <- polynomial(rep(1, 5))
  r2 <- rfun.poly(p1, p2)
  print(r2)
}
```

simplify

Simplify a rational function

Description

Simplify a rational function by dropping terms whose coefficients are close to zero, and then reducing it to an irreducible form.

Usage

`simplify(x, ...)`

Arguments

- `x` an object of class "rationalfun"
- `...` currently not used in this function

Value

A new object of class "rationalfun" representing the simplified rational function.
Examples

(x + 1) / (x^2 + 2 * x + 1) ==> 1 / (x + 1)
r <- rationalfun(c(1, 1), c(1, 2, 1))
simplify(r)
Index

* symbolmath
 as.character.rationalfun, 2
 as.function.rationalfun, 2
 deriv.rationalfun, 3
 int2fun, 4
 integral.rationalfun, 5
 Ops.rationalfun, 6
 predict.rationalfun, 6
 print.rationalfun, 7
 simplify, 9

as.character.polynomial, 2
as.character.rationalfun, 2, 8
as.function.polynomial, 3
as.function.rationalfun, 2, 8

deriv, 3
deriv.polynomial, 3
deriv.rationalfun, 3, 9

eval, 5

int2fun, 4, 5
integral.polynomial, 4, 5
integral.rationalfun, 4, 5, 9

Ops.rationalfun, 6

poly.calc, 8, 9
poly.orth, 8, 9
polynomial, 8, 9
predict.polynomial, 7
predict.rationalfun, 6, 9
print.polynomial, 7
print.rationalfun, 7

rationalfun, 8
rfun(rationalfun), 8

simplify, 9