ravetools: Signal Processing Toolbox for Analyzing 'Electrophysiology' Data

Implemented fast and memory-efficient 'Notch'-filter, 'Welch-periodogram', and discrete wavelet transform algorithm for hours of high-resolution signals; providing fundamental toolbox for 'iEEG' preprocess pipelines. Documentation and examples about 'RAVE' project are provided at <https://openwetware.org/wiki/RAVE>, and the paper by John F. Magnotti, Zhengjia Wang, Michael S. Beauchamp (2020) <doi:10.1016/j.neuroimage.2020.117341>; see 'citation("ravetools")' for details.

Version: 0.0.3
Depends: R (≥ 4.0.0)
Imports: graphics, stats, filearray (≥ 0.1.3), Rcpp (≥ 1.0.8), waveslim (≥ 1.8.2), signal (≥ 0.7.7), digest (≥ 0.6.29)
LinkingTo: Rcpp
Suggests: fftwtools, pracma, microbenchmark, testthat (≥ 3.0.0)
Published: 2022-02-16
Author: Zhengjia Wang [aut, cre, cph], Beauchamp lab [cph], Karim Rahim [cph] (R package fftwtools), Prerau Lab [cph] (Multitaper Spectrogram Code), RcppParallel Authors [cph] (TinyParallel Code comes from RcppParallel), Marcus Geelnard [cph] (TinyThread library)
Maintainer: Zhengjia Wang <dipterix.wang at gmail.com>
BugReports: https://github.com/dipterix/ravetools/issues
License: GPL-3
URL: http://dipterix.org/ravetools/
NeedsCompilation: yes
SystemRequirements: fftw3 (libfftw3-dev (deb), or fftw-devel (rpm))
Language: en-US
Citation: ravetools citation info
Materials: README NEWS
CRAN checks: ravetools results


Reference manual: ravetools.pdf


Package source: ravetools_0.0.3.tar.gz
Windows binaries: r-devel: ravetools_0.0.3.zip, r-release: ravetools_0.0.3.zip, r-oldrel: ravetools_0.0.3.zip
macOS binaries: r-release (arm64): ravetools_0.0.3.tgz, r-oldrel (arm64): ravetools_0.0.3.tgz, r-release (x86_64): ravetools_0.0.3.tgz, r-oldrel (x86_64): ravetools_0.0.3.tgz
Old sources: ravetools archive


Please use the canonical form https://CRAN.R-project.org/package=ravetools to link to this page.