Package ‘rbiom’

October 14, 2022

Type Package

Title Read/Write, Transform, and Summarize 'BIOM' Data

Version 1.0.3

Maintainer Daniel P. Smith <dansmith@orst.edu>

Description A toolkit for working with Biological Observation Matrix ('BIOM') files. Features include reading/writing all 'BIOM' formats, rarefaction, alpha diversity, beta diversity (including 'UniFrac'), summarizing counts by taxonomic level, and sample subsetting. Standalone functions for reading, writing, and subsetting phylogenetic trees are also provided. All CPU intensive operations are encoded in C with multi-thread support.

BugReports https://github.com/cmmr/rbiom/issues

License AGPL-3

Encoding UTF-8

Depends R (>= 3.5.0)

LinkingTo Rcpp, RcppParallel

biocViews

Imports magrittr, methods, plyr, Rcpp, RcppParallel, rlang, R.utils, slam, openxlsx

Suggests ape, reshape2, rhdf5, testthat

RoxygenNote 7.1.0

NeedsCompilation yes

Author Daniel P. Smith [aut, cre, cph]
 (<https://orcid.org/0000-0002-479-2044>)

Repository CRAN

Date/Publication 2021-11-05 05:50:02 UTC
R topics documented:

alpha.div .. 2
beta.div .. 3
counts .. 4
info ... 5
metadata .. 6
nsamples .. 7
ntaxa ... 7
phylogeny .. 8
print ... 9
rarefy ... 10
rbiom ... 11
read.biom .. 11
read.fasta .. 13
read.tree .. 13
sample.names .. 14
select .. 15
sequences ... 16
subset ... 17
subtree ... 17
taxa.names ... 18
taxa.ranks ... 19
taxa.rollup ... 20
taxonomy .. 21
tips ... 22
unifrac .. 22
write.biom .. 23
write.fasta .. 24
write.tree ... 25
write.xlsx ... 25

Index 27

alpha.div

Estimate the diversity of each sample.

Description

Estimate the diversity of each sample.

Usage

alpha.div(biom, rarefy = FALSE)
beta.div

Make a distance matrix of samples vs samples.

Description
Make a distance matrix of samples vs samples.

Usage
beta.div(biom, method, weighted = TRUE, tree = NULL)
counts

Arguments

biom A matrix, simple_triplet_matrix, or BIOM object, as returned from read.biom. For matrices, the rows and columns are assumed to be the taxa and samples, respectively.

method The distance algorithm to use. Options are: “manhattan”, “euclidean”, “bray-curtis”, “jaccard”, and “unifrac”. Non-ambiguous abbreviations of the method names are also accepted. A phylogenetic tree must be present in biom or explicitly provided via tree= to use the UniFrac methods.

weighted Take relative abundances into account. When weighted=FALSE, only presence/absence is considered.

tree A phylo object representing the phylogenetic relationships of the taxa in biom. Will be taken from the tree embedded in the biom object if not explicitly specified. Only required for computing UniFrac distance matrices.

Value

A distance matrix.

Examples

library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)
biom <- select(biom, 1:10)

dm <- beta.div(biom, "unifrac")

as.matrix(dm)[1:4,1:4]
plot(hclust(dm))

counts Get the abundance counts.

Description

Get the abundance counts.

Usage

counts(biom)

Arguments

biom A BIOM object, as returned from read.biom.
Value

A numeric matrix of the sample abundance counts in \texttt{biom}.

See Also

Other accessor functions: \texttt{info()}, \texttt{metadata()}, \texttt{nsamples()}, \texttt{ntaxa()}, \texttt{phylogeny()}, \texttt{sample.names()}, \texttt{sequences()}, \texttt{taxa.names()}, \texttt{taxa.ranks()}, \texttt{taxonomy()}

Examples

\begin{verbatim}
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

counts(biom)[1:4,1:5]
\end{verbatim}

\begin{center}
\begin{tabular}{l}
\texttt{info} \\
Get biom's misc information.
\end{tabular}
\end{center}

Description

Get biom's misc information.

Usage

\begin{verbatim}
info(biom)
\end{verbatim}

Arguments

\begin{verbatim}
biom A BIOM object, as returned from \texttt{read.biom}.
\end{verbatim}

Value

A data frame of the metadata in \texttt{biom}.

See Also

Other accessor functions: \texttt{counts()}, \texttt{metadata()}, \texttt{nsamples()}, \texttt{ntaxa()}, \texttt{phylogeny()}, \texttt{sample.names()}, \texttt{sequences()}, \texttt{taxa.names()}, \texttt{taxa.ranks()}, \texttt{taxonomy()}

Examples

```r
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

info(biom)
```

metadata

Get the sample metadata.

Description

Get the sample metadata.

Usage

```r
metadata(biom)
```

Arguments

- `biom` A BIOM object, as returned from `read.biom`.

Value

A data frame of the metadata in `biom`.

See Also

Other accessor functions: `counts()`, `info()`, `nsamples()`, `ntaxa()`, `phylogeny()`, `sample.names()`, `sequences()`, `taxa.names()`, `taxa.ranks()`, `taxonomy()`

Examples

```r
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

metadata(biom)[1:4,1:3]
```
nsamples

Number of samples in a BIOM.

Description

Number of samples in a BIOM.

Usage

```r
defnsamples(biom)
```

Arguments

- `biom`: A BIOM object, as returned from `read.biom`.

Value

The number of samples present.

See Also

Other accessor functions: `counts()`, `info()`, `metadata()`, `ntaxa()`, `phylogeny()`, `sample.names()`, `sequences()`, `taxa.names()`, `taxa.ranks()`, `taxonomy()`

Examples

```r
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)
nsamples(biom)
```

ntaxa

Number of taxa in a BIOM.

Description

Number of taxa in a BIOM.

Usage

```r
defntaxa(biom)
```
phylogeny

Arguments

biom A BIOM object, as returned from read.biom.

Value

The number of taxa present.

See Also

Other accessor functions: counts(), info(), metadata(), nsamples(), phylogeny(), sample.names(), sequences(), taxa.names(), taxa.ranks(), taxonomy()

Examples

library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

ntaxa(biom)

phylogeny Get the phylogenetic tree.

Description

Get the phylogenetic tree.

Usage

phylogeny(biom)

Arguments

biom A BIOM object, as returned from read.biom.

Value

A phylo class object of the tree in biom.

See Also

Other accessor functions: counts(), info(), metadata(), nsamples(), ntaxa(), sample.names(), sequences(), taxa.names(), taxa.ranks(), taxonomy()
print

Examples

library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

summary(phylogeny(biom))

print（Summarize the contents of a BIOM object）

Description

Summarize the contents of a BIOM object

Usage

S3 method for class 'BIOM'
print(x, ...)

Arguments

x A BIOM object, as returned from read.biom.
...

Value

NULL (invisibly)

Examples

library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

print(biom)
rarefy

Subset counts so that all samples have the same number of observations.

Description

Subset counts so that all samples have the same number of observations.

Usage

rarefy(biom, depth = NULL, seed = 0)

Arguments

biom A matrix, simple_triplet_matrix, or BIOM object, as returned from read.biom. For matrices, the rows and columns are assumed to be the taxa and samples, respectively.
depth The number of observations to keep, per sample. If set to NULL, a depth will be automatically selected. Samples that have fewer than this number of observations will be dropped. If called on data with non-integer abundances, values will be re-scaled to integers between 1 and depth such that they sum to depth.
seed An integer to use for seeding the random number generator. If you need to create different random rarefactions of the same BIOM object, set this seed value to a different number each time.

Value

A matrix, simple_triplet_matrix, or BIOM object, depending on the input object type. The type of object provided is the same type that is returned. The retained observations are randomly selected, based on a seed value derived from the BIOM object. Therefore, rarefying the same biom to the same depth will always produce the same resultant rarification.

Examples

library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
b biom <- read.biom(infile)
range(slam::col_sums(biom$counts))

biom <- rarefy(biom, depth=1000)
range(slam::col_sums(biom$counts))
Description

A toolkit for working with Biological Observation Matrix (BIOM) files. Features include reading/writing all BIOM formats, rarefaction, alpha diversity, beta diversity (including UniFrac), summarizing counts by taxonomic level, and sample subsetting. Standalone functions for reading, writing, and subsetting phylogenetic trees are also provided. All CPU intensive operations are encoded in C with multi-thread support.

Multithreading

Many rbiom functions support multithreading:

The default behavior of these functions is to run on as many cores as are available in the local compute environment. If you wish to limit the number of simultaneous threads, set RcppParallel’s numThreads option. For instance:

```r
RcppParallel::setThreadOptions(numThreads = 4)
```

read.biom

Extracts counts, metadata, taxonomy, and phylogeny from a biom file.

Description

Extracts counts, metadata, taxonomy, and phylogeny from a biom file.

Usage

```r
read.biom(src, tree = "auto", prune = FALSE)
```

Arguments

- **src**: Input data as either a file path, URL, or JSON string. read.biom can read BIOM files formatted according to both the version 1.0 (JSON) and 2.1 (HDF5) specifications as well as classical tabular format. URLs must begin with http://, https://, ftp://, or ftps://. JSON files must have `{` as their first non-whitespace character. Compressed (gzip or bzip2) BIOM files are also supported. NOTE: to read HDF5 formatted BIOM files, the BioConductor R package rhdf5 must be installed.

- **tree**: The default value of auto will read the tree from the BIOM file specified in src, if present. The value TRUE will do the same, but will generate an error message if a tree is not present. Setting tree=FALSE will return a BIOM object without any tree data. You may also provide a file path, URL, or Newick string to load that tree data into the final BIOM object.

- **prune**: Should samples and taxa with zero observations be discarded?
Value

A BIOM class object containing the parsed data. This object can be treated as a list with the following named elements:

- **counts** A numeric slam sparse matrix of observation counts. Taxa (OTUs) as rows and samples as columns.
- **metadata** A data frame containing any embedded metadata. Row names are sample IDs.
- **taxonomy** Character matrix of taxonomic names, if given. Row names are taxa (OTU) IDs. Column rows are named Kingdom, Phylum, Class, Order, Family, Genus, Species, and Strain, or TaxLvl.1, TaxLvl.2, ..., TaxLvl.N when more than 8 levels of taxonomy are encoded in the biom file.
- **phylogeny** An object of class phylo defining the phylogenetic relationships between the taxa. Although the official specification for BIOM only includes phylogenetic trees in BIOM version 2.1, if a BIOM version 1.0 file includes a phylogeny entry with newick data, then it will be loaded here as well. The ape package has additional functions for working with phylo objects.
- **sequences** A named character vector, where the names are taxonomic identifiers and the values are the sequences they represent. These values are not part of the official BIOM specification, but will be read and written when defined.
- **info** A list of other attributes defined in the BIOM file, such as id, type, format, format_url, generated_by, date, matrix_type, matrix_element_type, Comment, and shape

metadata, taxonomy, and phylogeny are optional components of the BIOM file specification and therefore will be empty in the returned object when they are not provided by the BIOM file.

Examples

```r
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

summary(biom)

# Taxa Abundances
as.matrix(biom$counts[1:4,1:4])

top5 <- names(head(rev(sort(slam::row_sums(biom$counts)))), 5))
biom$taxonomy[top5,c('Family', 'Genus')]

as.matrix(biom$counts[top5,1:6])

# Metadata
table(biom$metadata$Sex, biom$metadata$Body Site)
sprintf("Mean age: %.1f", mean(biom$metadata$Age))

# Phylogenetic tree
tree <- biom$phylogeny
top5.tree <- rbiom::subtree(tree, top5)
ap::plot.phylo(top5.tree)
```
read.fasta

Parse a fasta file into a named character vector.

Description

Parse a fasta file into a named character vector.

Usage

```r
read.fasta(file, ids = NULL)
```

Arguments

- `file`: A file with fasta-formatted sequences. Can optionally be compressed with gzip, bzip2, xz, or lzma.
- `ids`: Character vector of IDs to retrieve. The default, `NULL`, will retrieve everything.

Value

A named character vector in which names are the fasta headers and values are the sequences.

read.tree

Read a newick formatted phylogenetic tree.

Description

A phylogenetic tree is required for computing UniFrac distance matrices. You can load a tree either from a file or by providing the tree string directly. This tree must be in Newick format, also known as parenthetic format and New Hampshire format.

Usage

```r
read.tree(src)
```

Arguments

- `src`: Input data as either a file path, URL, or Newick string. URLs must begin with `http://`, `https://`, `ftp://`, or `ftps://`. Newick strings must have `(` as their first non-whitespace character. Compressed (gzip or bzip2) Newick files are also supported.

Value

A `phylo` class object representing the tree.
Examples

```r
library(rbiom)

infile <- system.file("extdata", "newick.tre", package = "rbiom")
tree <- read.tree(infile)

tree <- read.tree("(t9:0.99,((t5:0.87,t2:0.89):0.51,(((t10:0.16,(t7:0.83,t4:0.96):
:0.94):0.69,(t6:0.92,(t3:0.62,t1:0.85):0.54):0.23):0.74,t8:0.1
2):0.43):0.67);")
```

sample.names

Get the sample names.

Description

Get the sample names.

Usage

```r
sample.names(biom)
```

Arguments

- `biom` A BIOM object, as returned from `read.biom`.

Value

A character vector of the sample IDs / names in `biom`.

See Also

Other accessor functions: `counts()`, `info()`, `metadata()` , `nsamples()`, `ntaxa()`, `phylogeny()`, `sequences()`, `taxa.names()`, `taxa.ranks()`, `taxonomy()`

Examples

```r
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)
sample.names(biom)
```
select

Reduce samples to a specific list

Description

Reduce samples to a specific list

Usage

```r
select(biom, samples = NULL, nTop = NULL, nRandom = NULL, seed = 0)
```

Arguments

- `biom`: A BIOM object, as returned from `read.biom`.
- `samples`: Sample names, indices, or a logical vector identifying the samples to keep. The latter two should be based on the order of sample names given by `colnames(biom$counts)`.
- `nTop`: Selects this number of samples, taking the sample with the most observations first, then the sample with the second-most observations, etc. If `nTop` is higher than the number of samples in the dataset, the entire dataset will be returned. See note.
- `nRandom`: Randomly selects this number of samples. If higher than the number of samples in the dataset, the entire dataset will be returned. See note.
- `seed`: Random seed, used when selecting `nRandom` samples.

Note: Generally, you will specify only one of the filters: `samples`, `nTop`, or `nRandom`. However, specifying multiple filters is allowed; they will be applied in the order listed above.

Value

A BIOM object.

See Also

`subset`

Examples

```r
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

ex1 <- select(biom, c('HMP14', 'HMP22', 'HMP03'))
ex2 <- select(biom, c(32, 11, 28, 16, 46, 5))
ex3 <- select(biom, 1:50 %% 6 == 0)
ex4 <- select(biom, nRandom = 10)
ex5 <- select(biom, nTop = 5)
```
\texttt{ex6 <- select(biom, samples = 10:40, nTop = 20, nRandom = 10)}

\begin{tabular}{ll}
\textbf{sequences} & \textit{DNA sequence associated with each taxonomic identifier.} \\
\end{tabular}

Description

DNA sequence associated with each taxonomic identifier.

Usage

\texttt{sequences(biom)}

Arguments

\begin{itemize}
\item \texttt{biom} \\
\end{itemize}

A BIOM object, as returned from \texttt{read.biom}.

Value

A named character vector of sequences in \texttt{biom}. If this data is not present, then returns \texttt{NULL}.

See Also

Other accessor functions: \texttt{counts()}, \texttt{info()}, \texttt{metadata()}, \texttt{nsamples()}, \texttt{ntaxa()}, \texttt{phylogeny()}, \texttt{sample.names()}, \texttt{taxa.names()}, \texttt{taxa.ranks()}, \texttt{taxonomy()}

Examples

\begin{verbatim}
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

sequences(biom)[1:4]

Write to a compressed fasta file in the temporary directory:
seqs <- sequences(biom)
conn <- bzfile(file.path(tempdir(), "Sequences.fa.bz2"), "w")
cat(sprintf(">%s
%s", names(seqs), seqs), file=conn, sep="\n")
close(conn)

You can also use the write.fasta function for this task:
write.fasta(biom, file.path(tempdir(), "Sequences.fa.gz"))
\end{verbatim}
subset

Subset samples using the BIOM object’s metadata

Description
Subset samples using the BIOM object’s metadata

Usage
S3 method for class 'BIOM'
subset(x, ...)

Arguments
x A BIOM object, as returned from read.biom.
... Test to run on the metadata to identify samples to retain.

Value
A BIOM object.

See Also
select

Examples
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

ex1 <- subset(biom, Age > 30)
ex2 <- subset(biom, `Body Site` %in% c("Saliva", "Stool"))
ex3 <- subset(biom, Age < 25 & BMI > 22)

subtree

Create a subtree by specifying tips to keep.

Description
Create a subtree by specifying tips to keep.

Usage
subtree(tree, tips)
Arguments

- `tree`: A phylo object, as returned from `read.tree`.
- `tips`: A character, numeric, or logical vector of tips to keep.

Value

A phylo object for the subtree.

Examples

```r
library(rbiom)
infile <- system.file("extdata", "newick.tre", package = "rbiom")
tree <- read.tree(infile)

leafs <- tips(tree)
subtree <- subtree(tree, head(leafs))
```

taxa.names

Get the taxa names.

Description

Get the taxa names.

Usage

`taxa.names(biom)`

Arguments

- `biom`: A BIOM object, as returned from `read.biom`.

Value

A character vector of the taxa IDs / names in `biom`.

See Also

Other accessor functions: `counts()`, `info()`, `metadata()`, `nsamples()`, `ntaxa()`, `phylogeny()`, `sample.names()`, `sequences()`, `taxa.ranks()`, `taxonomy()`
taxa.ranks

Examples

```r
taxa.ranks(biom)
```

Description

Get the taxa ranks.

Usage

```r
taxa.ranks(biom)
```

Arguments

- `biom`: A BIOM object, as returned from `read.biom`.

Value

A character vector of the taxa ranks in `biom`.

See Also

Other accessor functions: `counts()`, `info()`, `metadata()`, `nsamples()`, `ntaxa()`, `phylogeny()`, `sample.names()`, `sequences()`, `taxa.names()`, `taxonomy()`

Examples

```r
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)
taxa.ranks(biom)
```
taxa.rollup

Generate a matrix of samples by taxa, at the specified taxonomic rank.

Description

Generate a matrix of samples by taxa, at the specified taxonomic rank.

Usage

```
taxa.rollup(biom, rank = "OTU", map = NULL, lineage = FALSE, sparse = FALSE)
```

Arguments

- `biom` A matrix, `simple_triplet_matrix`, or `BIOM` object, as returned from `read.biom`. For matrices, the rows and columns are assumed to be the taxa and samples, respectively.
- `rank` The taxonomic rank. E.g. “OTU”, “Phylum”, etc. May also be given numerically: 0 for OTU, 1 for the highest level (i.e. Kingdom), and extending to the number of taxonomic ranks encoded in the original biom file. See example below to fetch the names of all available ranks.
- `map` A character matrix defining the value that each taxa IDs is assigned for each taxonomic rank. If `map=NULL` and `biom` is a `BIOM` class object, the map will be automatically loaded from `biom$taxonomy`. `map` must not be null when `biom` is a matrix or `simple_triplet_matrix`. See the example below for an example of `map`'s structure.
- `lineage` Include all ranks in the name of the taxa. For instance, setting to TRUE will produce Bacteria; Actinobacteria; Coriobacteriia; Coriobacteriales. Whereas setting to FALSE (the default) will return simply Coriobacteriales. You want to set this to TRUE if you have genus names (such as *Incertae_Sedis*) that map to multiple higher level ranks.
- `sparse` If true, returns a sparse matrix as described by `slam::simple_triplet_matrix`, otherwise returns a normal R matrix object. Sparse matrices will likely be considerably more memory efficient in this scenario.

Value

A numeric matrix with samples as column names, and taxonomic identifiers as row names.

Examples

```
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)

colnames(biom$taxonomy)
```
phyla <- taxa.rollup(biom, 'Phylum')
phyla[1:4,1:6]

Custom matrices should be formatted like so:
counts <- as.matrix(biom$counts)
map <- biom$taxonomy

counts[1:3,1:6]
map[1:3,1:4]

phyla <- taxa.rollup(counts, 'Phylum', map=map)
phyla[1:3,1:6]

taxonomy

Get the taxonomy table.

Description
Get the taxonomy table.

Usage
taxonomy(biom)

Arguments
biom A BIOM object, as returned from read.biom.

Value
A character matrix of the named taxonomies in biom.

See Also
Other accessor functions: counts(), info(), metadata(), nsamples(), ntaxa(), phylogeny(), sample.names(), sequences(), taxa.names(), taxa.ranks()

Examples
library(rbiom)

infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
biom <- read.biom(infile)
taxonomy(biom)[1:4,]

tips

Names of a phylogenetic tree’s tips/leafs.

Description

Names of a phylogenetic tree’s tips/leafs.

Usage

```r
tips(x)
```

Arguments

- `x`: A phylo object, as returned from `read.tree`.

Value

A character vector with the leaf names.

Examples

```r
library(rbiom)

infile <- system.file("extdata", "newick.tre", package = "rbiom")
tree <- read.tree(infile)

leafs <- tips(tree)
subtree <- subtree(tree, head(leafs))
```

unifrac

Compute Weighted and Unweighted UniFrac distance matrices.

Description

This is the function called internally by `beta.div`, but is made visible here so you can use it with matrices and trees without having to first convert them to BIOM objects.

Usage

```r
unifrac(biom, weighted = TRUE, tree = NULL)
```
write.biom

Arguments

 biom A matrix, simple_triplet_matrix, or BIOM object, as returned from read.biom. For matrices, the rows and columns are assumed to be the taxa and samples, respectively.
 weighted Use weighted UniFrac, which takes abundance into account rather than simply presence/absence.
 tree A phylo object providing a phylogenetic tree for the taxa names in biom. If tree=NULL, then the tree will be loaded from biom, if encoded there.

Value

 A distance matrix of class dist.

Examples

 library(rbiom)

 infile <- system.file("extdata", "hmp50.bz2", package = "rbiom")
 biom <- read.biom(infile)
 biom <- select(biom, 1:10)

 dm <- unifrac(biom)
 plot(hclust(dm), cex=.8)
 as.matrix(dm)[1:4,1:4]

 # Using a custom matrix and tree
 mtx <- matrix(sample.int(12*20), ncol=20)
 dimnames(mtx) <- list(LETTERS[1:12], letters[1:20])
 tree <- ape::as.phylo(hclust(dist(mtx)))

 dm <- unifrac(mtx, tree=tree)
 as.matrix(dm)[1:4,1:4]
write.fasta

Arguments

biom The BIOM object to save to the file.
file Path to the output file.
format Options are “tab”, “json”, and “hdf5”, corresponding to classic tabular format, biom format version 1.0 and biom version 2.1, respectively. Abbreviations are also accepted. See http://biom-format.org/documentation/ for details. NOTE: to write HDF5 formatted BIOM files, the BioConductor R package rhdf5 must be installed.

Value

On success, returns NULL invisibly.

write.fasta Write sequences from a BIOM object to a file in fasta format.

Description

Write sequences from a BIOM object to a file in fasta format.

Usage

write.fasta(seqs, outfile)

Arguments

seqs A named character vector where names are sequence names and values are the sequences. Also accepts a BIOM object which contains sequences.
outfile Path to the output fasta file. Files ending in .gz or .bz2 will be compressed accordingly.

Value

On success, returns NULL invisibly.
write.tree
Write a newick formatted phylogenetic tree.

Description

Write a newick formatted phylogenetic tree.

Usage

```r
write.tree(tree = NULL, file = NULL)
```

Arguments

- `tree`: A `phylo` object, as returned from `read.tree`. Also accepts a BIOM object if it has a phylogenetic tree.
- `file`: Filename or connection to write the newick file to (optional).

Value

If `file` is NULL, the newick string as a character vector. Otherwise, the return value from `writeChar`, typically `invisible(NULL)`.

Examples

```r
library(rbiom)
infile <- system.file("extdata", "newick.tre", package = "rbiom")
tree <- read.tree(infile)
newick <- write.tree(tree)
```

write.xlsx
Write data and summary information to a Microsoft Excel-compatible workbook.

Description

Write data and summary information to a Microsoft Excel-compatible workbook.

Usage

```r
write.xlsx(biom, outfile, depth = NULL, seed = 0)
```
Arguments

- **biom**: The BIOM object to save to the file.
- **outfile**: Path to the output xlsx file.
- **depth**: Depth to rarefy to. See `rarefy` function for details. Only use `depth` with BIOM files of type 'OTU table' and integer count values.
- **seed**: Random seed to use in rarefying. See `rarefy` function for details.

Value

On success, returns `NULL` invisibly.

Note

Any data frame attributes on `biom` will be included as separate worksheets. An attribute named 'Reads Per Step' is treated specially and merged with the usual 'Reads Per Sample' tab - if provided, its row names should match those in `biom` exactly.
Index

* accessor functions
 counts, 4
 info, 5
 metadata, 6
 nsamples, 7
 ntaxa, 7
 phylogeny, 8
 sample.names, 14
 sequences, 16
 taxa.names, 18
 taxa.ranks, 19
 taxonomy, 21

taxa.ranks, 5–8, 14, 16, 18, 19, 21
 taxonomy, 5–8, 14, 16, 18, 19, 21
 tips, 22
 unifrac, 22
 write.biom, 23
 write.fasta, 24
 write.tree, 25
 write.xlsx, 25

alpha.div, 2
beta.div, 3, 22

counts, 4, 5–8, 14, 16, 18, 19, 21
info, 5, 5, 6–8, 14, 16, 18, 19, 21
metadata, 5, 6, 7, 8, 14, 16, 18, 19, 21
nsamples, 5, 6, 7, 8, 14, 16, 18, 19, 21
ntaxa, 5–7, 7, 8, 14, 16, 18, 19, 21
phylogeny, 5–8, 8, 14, 16, 18, 19, 21
print, 9
rarefy, 10
rbiom, 11
read.biom, 3–10, 11, 14–21, 23
read.fasta, 13
read.tree, 13, 18, 22, 25

sample.names, 5–8, 14, 16, 18, 19, 21
select, 15, 17
sequences, 5–8, 14, 16, 18, 19, 21
subset, 15, 17
subtree, 17

 taxa.names, 5–8, 14, 16, 18, 19, 21