Package ‘rbmi’

November 14, 2022

Title Reference Based Multiple Imputation

Version 1.2.3

Description Implements reference based multiple imputation allowing for the imputation of longitudinal datasets using predefined strategies.

Encoding UTF-8

LazyData true

URL https://insightsengineering.github.io/rbmi/,
https://github.com/insightsengineering/rbmi

BugReports https://github.com/insightsengineering/rbmi/issues

RoxygenNote 7.2.1

Suggests dplyr, tidyr, nlme, testthat, emmeans, tibble, mvtnorm,
knitr, rmarkdown, bookdown, lubridate, purrr, ggplot2, R.rsp

Biarch true

Config/testthat/edition 3

Imports mnmm, pkgload, Matrix, methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1), rstan (>= 2.18.1), rstantools (>= 2.1.1), R6, assertthat

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
RcppParallel (>= 5.0.1), rstan (>= 2.18.1), StanHeaders (>= 2.18.0)

SystemRequirements GNU make

Depends R (>= 3.4.0)

License Apache License (>= 2)

VignetteBuilder R.rsp

NeedsCompilation yes

Author Craig Gower-Page [aut, cre],
Alessandro Noci [aut],
Marcel Wolbers [ctb],
Roche [cph, fnd]
R topics documented:

add_class .. 5
adjust_trajectories ... 5
adjust_trajectories_single .. 6
analyse ... 7
ancova ... 9
ancova_single ... 11
antidepressant_data .. 12
apply_delta .. 13
assert_variables_exist .. 13
as_analysis .. 14
as_ascii_table ... 14
as_class ... 15
as_cropped_char .. 15
as_dataframe ... 16
as_draws ... 16
as_imputation ... 17
as_indices ... 18
as_mmrm_df .. 18
as_mmrm_formula ... 19
as_model_df .. 19
as_simple_formula .. 20
as_stan_array ... 20
as_strata ... 21
char2fct ... 21
check_ESS .. 22
check_hmc_diagn .. 22
check_mcmc .. 23
compute_sigma ... 24
convert_to_imputation_list_df 24
delta_template ... 26
do_not_run ... 29
draws ... 29
d_lagscale .. 33
encap_get_mmrm_sample .. 34
eval_mmrm .. 34
expand ... 35
extract_covariates .. 37
extract_data_nmar_as_na ... 37
extract_draws ... 38
extract_imputed_df .. 39
extract_imputed_dfs ... 39
R topics documented:

extract_params .. 40
fit_mcmc ... 41
fit_mmrm ... 42
generate_data_single .. 43
getStrategies ... 44
get_bootstrap_stack .. 45
get_cluster ... 45
get_conditional_parameters ... 46
get_delta_template ... 46
get_draws_mle ... 47
get_ESS ... 48
get_estimates_bmlmi .. 49
get_example_data .. 50
get_jackknife_stack ... 51
get_mmrm_sample .. 51
get_pattern_groups .. 52
get_pattern_groups_unique ... 52
get_pool_components .. 53
get_visit_distribution_parameters 53
has_class ... 54
ife ... 54
imputation_df .. 55
imputation_list_df ... 55
imputation_list_single .. 55
imputation_single ... 55
impute ... 56
impute_data_individual ... 59
impute_internal .. 60
impute_outcome .. 61
invert ... 62
invert_indexes ... 62
is_absent ... 63
is_char_fact .. 63
is_char_one ... 63
is_in_rbm_development .. 64
is_num_char_fact ... 64
locf ... 65
longDataConstructor ... 65
lsmeans ... 70
ls_design ... 71
method ... 71
parametric_ci .. 74
pool ... 74
pool_bootstrap_normal .. 76
pool_bootstrap_percentile ... 76
pool_internal .. 77
prepare_stan_data ... 78
print.analysis .. 79
<table>
<thead>
<tr>
<th>R topics documented:</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>print.draws</td>
<td>79</td>
</tr>
<tr>
<td>print.imputation</td>
<td>80</td>
</tr>
<tr>
<td>progressLogger</td>
<td>80</td>
</tr>
<tr>
<td>pval_percentile</td>
<td>81</td>
</tr>
<tr>
<td>QR_decomp</td>
<td>82</td>
</tr>
<tr>
<td>random_effects_expr</td>
<td>82</td>
</tr>
<tr>
<td>record</td>
<td>83</td>
</tr>
<tr>
<td>recursive_reduce</td>
<td>84</td>
</tr>
<tr>
<td>remove_if_all_missing</td>
<td>84</td>
</tr>
<tr>
<td>rubin_df</td>
<td>85</td>
</tr>
<tr>
<td>rubin_rules</td>
<td>85</td>
</tr>
<tr>
<td>sample_ids</td>
<td>86</td>
</tr>
<tr>
<td>sample_list</td>
<td>87</td>
</tr>
<tr>
<td>sample_mvnorm</td>
<td>87</td>
</tr>
<tr>
<td>sample_single</td>
<td>88</td>
</tr>
<tr>
<td>scalerConstructor</td>
<td>89</td>
</tr>
<tr>
<td>set_simul_pars</td>
<td>90</td>
</tr>
<tr>
<td>set_vars</td>
<td>92</td>
</tr>
<tr>
<td>simulate_data</td>
<td>93</td>
</tr>
<tr>
<td>simulate_dropout</td>
<td>95</td>
</tr>
<tr>
<td>simulate_ice</td>
<td>96</td>
</tr>
<tr>
<td>simulate_test_data</td>
<td>97</td>
</tr>
<tr>
<td>sort_by</td>
<td>98</td>
</tr>
<tr>
<td>split_dim</td>
<td>99</td>
</tr>
<tr>
<td>split_imputations</td>
<td>100</td>
</tr>
<tr>
<td>Stack</td>
<td>101</td>
</tr>
<tr>
<td>strategies</td>
<td>102</td>
</tr>
<tr>
<td>string_pad</td>
<td>103</td>
</tr>
<tr>
<td>str_contains</td>
<td>103</td>
</tr>
<tr>
<td>transpose_imputations</td>
<td>104</td>
</tr>
<tr>
<td>transpose_results</td>
<td>104</td>
</tr>
<tr>
<td>transpose_samples</td>
<td>105</td>
</tr>
<tr>
<td>validate</td>
<td>106</td>
</tr>
<tr>
<td>validate.analysis</td>
<td>106</td>
</tr>
<tr>
<td>validate.draws</td>
<td>107</td>
</tr>
<tr>
<td>validate.is_mar</td>
<td>107</td>
</tr>
<tr>
<td>validate.ivars</td>
<td>108</td>
</tr>
<tr>
<td>validate.references</td>
<td>108</td>
</tr>
<tr>
<td>validate.sample_list</td>
<td>109</td>
</tr>
<tr>
<td>validate.sample_single</td>
<td>109</td>
</tr>
<tr>
<td>validate.simul_pars</td>
<td>110</td>
</tr>
<tr>
<td>validate.stan_data</td>
<td>110</td>
</tr>
<tr>
<td>validate_analyse_pars</td>
<td>111</td>
</tr>
<tr>
<td>validate_datalong</td>
<td>111</td>
</tr>
<tr>
<td>validate_strategies</td>
<td>112</td>
</tr>
</tbody>
</table>

Index 113
add_class

Add a class

Description

Utility function to add a class to an object. Adds the new class after any existing classes.

Usage

```r
add_class(x, cls)
```

Arguments

- `x` object to add a class to.
- `cls` the class to be added.

adjust_trajectories

Adjust trajectories due to the intercurrent event (ICE)

Description

Adjust trajectories due to the intercurrent event (ICE)

Usage

```r
adjust_trajectories(
  distr_pars_group,
  outcome,
  ids,
  ind_ice,
  strategy_fun,
  distr_pars_ref = NULL
)
```

Arguments

- `distr_pars_group` Named list containing the simulation parameters of the multivariate normal distribution assumed for the given treatment group. It contains the following elements:
 - `mu`: Numeric vector indicating the mean outcome trajectory. It should include the outcome at baseline.
 - `sigma`: Covariance matrix of the outcome trajectory.
- `outcome` Numeric variable that specifies the longitudinal outcome.
adjust_trajectories_single

ids Factor variable that specifies the id of each subject.
ind_ice A binary variable that takes value 1 if the corresponding outcome is affected by the ICE and 0 otherwise.
strategy_fun Function implementing trajectories after the intercurrent event (ICE). Must be one of `getStrategies()`. See `getStrategies()` for details.
distr_pars_ref Optional. Named list containing the simulation parameters of the reference arm. It contains the following elements:
 • `mu`: Numeric vector indicating the mean outcome trajectory assuming no ICEs. It should include the outcome at baseline.
 • `sigma`: Covariance matrix of the outcome trajectory assuming no ICEs.

Value
A numeric vector containing the adjusted trajectories.

See Also

adjust_trajectories_single().

Description

Adjust trajectory of a subject’s outcome due to the intercurrent event (ICE)

Usage

```r
adjust_trajectories_single(  
distr_pars_group,  
outcome,  
strategy_fun,  
distr_pars_ref = NULL  
)
```

Arguments

- **distr_pars_group**
 Named list containing the simulation parameters of the multivariate normal distribution assumed for the given treatment group. It contains the following elements:
 • `mu`: Numeric vector indicating the mean outcome trajectory. It should include the outcome at baseline.
 • `sigma`: Covariance matrix of the outcome trajectory.
analyse

outcome Numeric variable that specifies the longitudinal outcome.
strategy_fun Function implementing trajectories after the intercurrent event (ICE). Must be one of `getStrategies()`. See `getStrategies()` for details.
distr_pars_ref Optional. Named list containing the simulation parameters of the reference arm. It contains the following elements:
 - mu: Numeric vector indicating the mean outcome trajectory assuming no ICES. It should include the outcome at baseline.
 - sigma Covariance matrix of the outcome trajectory assuming no ICES.

Details

outcome should be specified such that all-and-only the post-ICE observations (i.e. the observations to be adjusted) are set to NA.

Value

A numeric vector containing the adjusted trajectory for a single subject.

analyse Analyse Multiple Imputed Datasets

Description

This function takes multiple imputed datasets (as generated by the `impute()` function) and runs an analysis function on each of them.

Usage

`analyse(imputations, fun = ancova, delta = NULL, ...)`

Arguments

- `imputations` An imputations object as created by `impute()`.
- `fun` An analysis function to be applied to each imputed dataset. See details.
- `delta` A `data.frame` containing the delta transformation to be applied to the imputed datasets prior to running `fun`. See details.
- `...` Additional arguments passed onto `fun`.

Details

This function works by performing the following steps:

1. Extract a dataset from the `imputations` object.
2. Apply any delta adjustments as specified by the `delta` argument.
3. Run the analysis function `fun` on the dataset.
4. Repeat steps 1-3 across all of the datasets inside the imputations object.
5. Collect and return all of the analysis results.

The analysis function fun must take a data.frame as its first argument. All other options to analyse() are passed onto fun via fun must return a named list with each element itself being a list containing a single numeric element called est (or additionally se and df if you had originally specified method_bayes() or method_approxbayes()) i.e.:

```r
myfun <- function(dat, ...) {
  mod_1 <- lm(data = dat, outcome ~ group)
  mod_2 <- lm(data = dat, outcome ~ group + covar)
  x <- list(
    trt_1 = list(
      est = coef(mod_1)[[group]],
      se = sqrt(vcov(mod_1)[group, group]),
      df = df.residual(mod_1)
    ),
    trt_2 = list(
      est = coef(mod_2)[[group]],
      se = sqrt(vcov(mod_2)[group, group]),
      df = df.residual(mod_2)
    )
  )
  return(x)
}
```

Please note that the vars$subjid column (as defined in the original call to draws()) will be scrambled in the data.frames that are provided to fun. This is to say they will not contain the original subject values and as such any hard coding of subject ids is strictly to be avoided.

By default fun is the ancova() function. Please note that this function requires that a vars object, as created by set_vars(), is provided via the vars argument e.g. analyse(imputeObj, vars = set_vars(...)). Please see the documentation for ancova() for full details. Please also note that the theoretical justification for the conditional mean imputation method (method = method_condmean() in draws()) relies on the fact that ANCOVA is a linear transformation of the outcomes. Thus care is required when applying alternative analysis functions in this setting.

The delta argument can be used to specify offsets to be applied to the outcome variable in the imputed datasets prior to the analysis. This is typically used for sensitivity or tipping point analyses. The delta dataset must contain columns vars$subjid, vars$visit (as specified in the original call to draws()) and delta. Essentially this data.frame is merged onto the imputed dataset by vars$subjid and vars$visit and then the outcome variable is modified by:

```r
imputed_data[[vars$outcome]] <- imputed_data[[vars$outcome]] + imputed_data["delta"]
```

Please note that in order to provide maximum flexibility, the delta argument can be used to modify any/all outcome values including those that were not imputed. Care must be taken when defining offsets. It is recommend that you use the helper function delta_template() to define the delta datasets as this provides utility variables such as is_missing which can be used to identify exactly which visits have been imputed.
See Also

- `extract_imputed_dfs()` for manually extracting imputed datasets.
- `delta_template()` for creating delta data.frames.
- `ancova()` for the default analysis function.

Examples

```r
## Not run:
vars <- set_vars(
  subjid = "subjid",
  visit = "visit",
  outcome = "outcome",
  group = "group",
  covariates = c("sex", "age", "sex*age")
)

analyse(
  imputations = imputeObj,
  vars = vars
)

deltadf <- data.frame(
  subjid = c("Pt1", "Pt1", "Pt2"),
  visit = c("Visit_1", "Visit_2", "Visit_2"),
  delta = c(5, 9, -10)
)

analyse(
  imputations = imputeObj,
  delta = deltaxdf,
  vars = vars
)
## End(Not run)
```

ancova

Analysis of Covariance

Description

Performs an analysis of covariance between two groups returning the estimated "treatment effect" (i.e. the contrast between the two treatment groups) and the least square means estimates in each group.

Usage

```r
ancova(data, vars, visits = NULL, weights = c("proportional", "equal"))
```
Arguments

data A data.frame containing the data to be used in the model.
vars A vars object as generated by `set_vars()`. Only the group, visit, outcome and covariates elements are required. See details.
visits An optional character vector specifying which visits to fit the ancova model at. If NULL, a separate ancova model will be fit to the outcomes for each visit (as determined by `unique(data[[vars$visit]])`). See details.
weights Character, either "proportional" (default) or "equal". Specifies the weighting strategy to be used for categorical covariates when calculating the lsmeans. See details.

Details

The function works as follows:

1. Select the first value from `visits`.
2. Subset the data to only the observations that occurred on this visit.
3. Fit a linear model as `vars$outcome ~ vars$group + vars$covariates`.
4. Extract the "treatment effect" & least square means for each treatment group.
5. Repeat points 2-3 for all other values in `visits`.

If no value for `visits` is provided then it will be set to `unique(data[[vars$visit]])`.

In order to meet the formatting standards set by `analyse()` the results will be collapsed into a single list suffixed by the visit name, e.g.:

```r
data = list(
    trt_visit_1 = list(est = ...),
    lsm_ref_visit_1 = list(est = ...),
    lsm_alt_visit_1 = list(est = ...),
    trt_visit_2 = list(est = ...),
    lsm_ref_visit_2 = list(est = ...),
    lsm_alt_visit_2 = list(est = ...),
    ...
)
```

Please note that "ref" refers to the first factor level of `vars$group` which does not necessarily coincide with the control arm. Analogously, "alt" refers to the second factor level of `vars$group`. "trt" refers to the model contrast translating the mean difference between the second level and first level.

If you want to include interaction terms in your model this can be done by providing them to the `covariates` argument of `set_vars()` e.g. `set_vars(covariates = c("sex*age"))`.

Weighting:

"proportional" is the default scheme that is used. This is equivalent to standardization, i.e. the lsmeans in each group are equal to the predicted mean outcome from the ancova model for that group based on baseline characteristics of all subjects regardless of their assigned group.
The alternative weighting scheme, "equal", creates hypothetical patients by expanding out all combinations of the models categorical covariates. The lsmeans are then calculated as the average of the predicted mean outcome for these hypothetical patients assuming they come from each group in turn.

In short:

- "proportional" weights categorical covariates based upon their frequency of occurrence in the data.
- "equal" weights categorical covariates equally across all theoretical combinations.

See Also

`analyse()`
`stats::lm()`
`set_vars()`

ancova_single

 Implements an Analysis of Covariance (ANCOVA)

Description

Performance analysis of covariance. See `ancova()` for full details.

Usage

```r
ancova_single(
  data,
  outcome,
  group,
  covariates,
  weights = c("proportional", "equal")
)
```

Arguments

- **data**: The `data.frame` containing all of the data required for the model.
- **outcome**: Character, the name of the outcome variable in `data`.
- **group**: Character, the name of the group variable in `data`.
- **covariates**: Character vector containing the name of any additional covariates to be included in the model as well as any interaction terms.
- **weights**: Character, specifies whether to use "proportional" or "equal" weighting for each categorical covariate combination when calculating the lsmeans.

Details

- group must be a factor variable with only 2 levels.
- outcome must be a continuous numeric variable.
antidepressant_data

See Also

ancova()

Examples

```r
## Not run:
iris2 <- iris[ iris$Species %in% c("versicolor", "virginica"), ]
iris2$Species <- factor(iris2$Species)
ancova_single(iris2, "Sepal.Length", "Species", c("Petal.Length * Petal.Width"))
## End(Not run)
```

antidepressant_data Antidepressant trial data

Description

A dataset containing data from a publicly available example data set from an antidepressant clinical trial. The dataset is available on the website of the Drug Information Association Scientific Working Group on Estimands and Missing Data. As per that website, the original data are from an antidepressant clinical trial with four treatments; two doses of an experimental medication, a positive control, and placebo and was published in Goldstein et al (2004). To mask the real data, week 8 observations were removed and two arms were created: the original placebo arm and a "drug arm" created by randomly selecting patients from the three non-placebo arms.

Usage

antidepressant_data

Format

A data.frame with 608 rows and 11 variables:

- **PATIENT**: patients IDs.
- **HAMATOTL**: total score Hamilton Anxiety Rating Scale.
- **PGIIMP**: patient’s Global Impression of Improvement Rating Scale.
- **RELDAYS**: number of days between visit and baseline.
- **VISIT**: post-baseline visit. Has levels 4,5,6,7.
- **THERAPY**: the treatment group variable. It is equal to PLACEBO for observations from the placebo arm, or DRUG for observations from the active arm.
- **GENDER**: patient’s gender.
- **POOLINV**: pooled investigator.
- **BASVAL**: baseline outcome value.
- **HAMDTL17**: Hamilton 17-item rating scale value.
- **CHANGE**: change from baseline in the Hamilton 17-item rating scale.
Details

The relevant endpoint is the Hamilton 17-item rating scale for depression (HAMD17) for which baseline and weeks 1, 2, 4, and 6 assessments are included. Study drug discontinuation occurred in 24% subjects from the active drug and 26% from placebo. All data after study drug discontinuation are missing and there is a single additional intermittent missing observation.

References

apply_delta

Applies delta adjustment

Description

Takes a delta dataset and adjusts the outcome variable by adding the corresponding delta.

Usage

```
apply_delta(data, delta = NULL, group = NULL, outcome = NULL)
```

Arguments

- **data**: data.frame which will have its outcome column adjusted.
- **delta**: data.frame (must contain a column called `delta`).
- **group**: character vector of variables in both data and delta that will be used to merge the 2 data.frames together by.
- **outcome**: character, name of the outcome variable in data.

assert_variables_exist

Assert that all variables exist within a dataset

Description

Performs an assertion check to ensure that a vector of variable exists within a data.frame as expected.

Usage

```
assert_variables_exist(data, vars)
```

Arguments

- **data**: a data.frame
- **vars**: a character vector of variable names
as_analysis

Construct an analysis object

Description

Creates an analysis object ensuring that all components are correctly defined.

Usage

as_analysis(results, method, delta = NULL, fun = NULL, fun_name = NULL)

Arguments

results A list of lists contain the analysis results for each imputation See `analyse()` for details on what this object should look like.
method The method object as specified in `draws()`.
delta The delta dataset used. See `analyse()` for details on how this should be specified.
fun The analysis function that was used.
fun_name The character name of the analysis function (used for printing) purposes.

as_ascii_table

Description

This function takes a data.frame and attempts to convert it into a simple ascii format suitable for printing to the screen. It is assumed all variable values have a as.character() method in order to cast them to character.

Usage

as_ascii_table(dat, line_prefix = " ", pcol = NULL)

Arguments

dat Input dataset to convert into a ascii table
line_prefix Symbols to prefix infront of every line of the table
pcol name of column to be handled as a p-value. Sets the value to <0.001 if the value is 0 after rounding
as_class

Set Class

Description

Utility function to set an objects class.

Usage

```
as_class(x, cls)
```

Arguments

- `x`: object to set the class of.
- `cls`: the class to be set.

--

as_cropped_char

as_cropped_char

Description

Makes any character string above x chars Reduce down to a x char string with ...

Usage

```
as_cropped_char(inval, crop_at = 30, ndp = 3)
```

Arguments

- `inval`: a single element value
- `crop_at`: character limit
- `ndp`: Number of decimal places to display
as_dataframe
Convert object to dataframe

Description
Convert object to dataframe

Usage
as_dataframe(x)

Arguments
x
a data.frame like object
Utility function to convert a "data.frame-like" object to an actual data.frame to avoid issues with inconsistency on methods (such as [] and dplyr's grouped dataframes)

as_draws
Creates a draws object

Description
Creates a draws object which is the final output of a call to draws().

Usage

as_draws(method, samples, data, formula, n_failures = NULL, fit = NULL)

Arguments

- **method**
a method object as generated by either method_bayes(), method_approxbayes(), method_condmean() or method_bmlmi().

- **samples**
A list of sample_single objects. See sample_single().

- **data**
R6 longdata object containing all relevant input data information.

- **formula**
Fixed effects formula object used for the model specification.

- **n_failures**
Absolute number of failures of the model fit.

- **fit**
If method_bayes() is chosen, returns the MCMC Stan fit object. Otherwise NULL.
as_imputation

Description

This function creates the object that is returned from `impute()`. Essentially it is a glorified wrapper around `list()` ensuring that the required elements have been set and that the class is added as expected.

Usage

as_imputation(imputations, data, method, references)

Arguments

- **imputations**: A list of `imputations_list's as created by `imputation_df()`
- **data**: A `longdata` object as created by `longDataConstructor()`
- **method**: A method object as created by `method_condmean()`, `method_bayes()` or `method_approxbayes()`
- **references**: A named vector. Identifies the references to be used when generating the imputed values. Should be of the form `c("Group" = "Reference", "Group" = "Reference")`.

Value

A draws object which is a named list containing the following:

- **data**: R6 `longdata` object containing all relevant input data information.
- **method**: A method object as generated by either `method_bayes()`, `method_approxbayes()` or `method_condmean()`.
- **samples**: list containing the estimated parameters of interest. Each element of `samples` is a named list containing the following:
 - **ids**: vector of characters containing the ids of the subjects included in the original dataset.
 - **beta**: numeric vector of estimated regression coefficients.
 - **sigma**: list of estimated covariance matrices (one for each level of `vars$group`).
 - **theta**: numeric vector of transformed covariances.
 - **failed**: Logical. TRUE if the model fit failed.
 - **ids_samp**: vector of characters containing the ids of the subjects included in the given sample.
- **fit**: if `method_bayes()` is chosen, returns the MCMC Stan fit object. Otherwise NULL.
- **n_failures**: absolute number of failures of the model fit. Relevant only for `method_condmean(type = "bootstrap")`, `method_approxbayes()` and `method_bmlmi()`.
- **formula**: fixed effects formula object used for the model specification.
as_indices Convert indicator to index

Description
Converting a string of 0's and 1's into index positions of the 1's padding the results by 0's so they are all the same length.

Usage
as_indices(x)

Arguments
x a character vector whose values are all either "0" or "1". All elements of the vector must be the same length.

Details
i.e.

patmap(c("1101", "0001")) -> list(c(1,2,4,999), c(4,999, 999, 999))

as_mmmr_df Creates a "MMRM" ready dataset

Description
Converts a design matrix + key variables into a common format. In particular this function does the following:

- Renames all covariates as V1, V2, etc to avoid issues of special characters in variable names.
- Ensures all key variables are of the right type.
- Inserts the outcome, visit and subjid variables into the data.frame naming them as outcome, visit and subjid.
- If provided will also insert the group variable into the data.frame named as group.

Usage
as_mmmr_df(designmat, outcome, visit, subjid, group = NULL)
Arguments

- **designmat**: a data.frame or matrix containing the covariates to use in the MMRM model. Dummy variables must already be expanded out, i.e. via `stats::model.matrix()`. Cannot contain any missing values.
- **outcome**: a numeric vector. The outcome value to be regressed on in the MMRM model.
- **visit**: a character / factor vector. Indicates which visit the outcome value occurred on.
- **subjid**: a character / factor vector. The subject identifier used to link separate visits that belong to the same subject.
- **group**: a character / factor vector. Indicates which treatment group the patient belongs to.

as_mmrn_formula
Create MMRM formula

Description

Derives the MMRM model formula from the structure of mmrm_df. returns a formula object of the form:

\[\text{outcome} \sim 0 + V1 + V2 + V4 + \ldots + \text{us(visit | group / subjid)} \]

Usage

```
as_mmrn_formula(mmrm_df, cov_struct)
```

Arguments

- **mmrm_df**: an mmrm data.frame as created by `as_mmrn_df()`
- **cov_struct**: Character - The covariance structure to be used, must be one of "us", "toep", "cs", "ar1"

Details

```
outcome ~ 0 + V1 + V2 + V4 + ... + us(visit | group / subjid)
```

as_model_df
Expand data.frame into a design matrix

Description

Expands out a data.frame using a formula to create a design matrix. Key details are that it will always place the outcome variable into the first column of the return object.

Usage

```
as_model_df(dat, frm)
```
Arguments

- `dat`: a data.frame
- `frm`: a formula

Details

The outcome column may contain NA's but none of the other variables listed in the formula should contain missing values.

as_simple_formula

Description

Converts a string list of variables into a formula object

Usage

```r
as_simple_formula(outcome, covars)
```

Arguments

- `outcome`: character (length 1 vector). Name of the outcome variable
- `covars`: character (vector). Name of covariates

Value

A formula

as_stan_array

Description

Converts a numeric value of length 1 into a 1 dimension array. This is to avoid type errors that are thrown by stan when length 1 numeric vectors are provided by R for stan::vector inputs

Usage

```r
as_stan_array(x)
```

Arguments

- `x`: a numeric vector
as_strata

Create vector of Stratas

Description
Collapse multiple categorical variables into distinct unique categories. e.g.

\[
as_strata(1, 1, 2, 2, 2, 1), \ c(5, 6, 5, 5, 6, 5)\]

would return

\[c(1, 2, 3, 3, 4, 1)\]

Usage

as_strata(...)

Arguments

... numeric/character/factor vectors of the same length

Examples

Not run:
as_strata(c(1, 1, 2, 2, 2, 1), \ c(5, 6, 5, 5, 6, 5))

End(Not run)

char2fct

Convert character variables to factor

Description
Provided a vector of variable names this function converts any character variables into factors. Has no affect on numeric or existing factor variables

Usage

char2fct(data, vars = NULL)

Arguments

data A data.frame
vars a character vector of variables in data
check_ESS

Diagnostics of the MCMC based on ESS

Description

Check the quality of the MCMC draws from the posterior distribution by checking whether the relative ESS is sufficiently large.

Usage

```r
check_ESS(stan_fit, n_draws, threshold_lowESS = 0.4)
```

Arguments

- `stan_fit`: A `stanfit` object.
- `n_draws`: Number of MCMC draws.
- `threshold_lowESS`: A number in `[0,1]` indicating the minimum acceptable value of the relative ESS. See details.

Details

`check_ESS()` works as follows:

1. Extract the ESS from `stan_fit` for each parameter of the model.
2. Compute the relative ESS (i.e. the ESS divided by the number of draws).
3. Check whether for any of the parameter the ESS is lower than `threshold`. If for at least one parameter the relative ESS is below the threshold, a warning is thrown.

Value

A warning message in case of detected problems.

check_hmc_diagn

Diagnostics of the MCMC based on HMC-related measures

Description

Check that:

1. There are no divergent iterations.
2. The Bayesian Fraction of Missing Information (BFMI) is sufficiently low.
3. The number of iterations that saturated the max treedepth is zero.

Please see `rstan::check_hmc_diagnostics()` for details.
Usage

check_hmc_diagn(stan_fit)

Arguments

stan_fit A stanfit object.

Value

A warning message in case of detected problems.

check_mcmc

Diagnostics of the MCMC

Usage

check_mcmc(stan_fit, n_draws, threshold_lowESS = 0.4)

Arguments

stan_fit A stanfit object.
n_draws Number of MCMC draws.
threshold_lowESS A number in \([0,1]\) indicating the minimum acceptable value of the relative ESS. See details.

Details

Performs checks of the quality of the MCMC. See check_ESS() and check_hmc_diagn() for details.

Value

A warning message in case of detected problems.
compute_sigma

Compute covariance matrix for some reference-based methods (JR, CIR)

Description

Adapt covariance matrix in reference-based methods. Used for Copy Increments in Reference (CIR) and Jump To Reference (JTR) methods, to adapt the covariance matrix to different pre-deviation and post deviation covariance structures. See Carpenter et al. (2013)

Usage

compute_sigma(sigma_group, sigma_ref, index_mar)

Arguments

sigma_group the covariance matrix with dimensions equal to index_mar for the subjects original group
sigma_ref the covariance matrix with dimensions equal to index_mar for the subjects reference group
index_mar A logical vector indicating which visits meet the MAR assumption for the subject. I.e. this identifies the observations that after a non-MAR intercurrent event (ICE).

References

convert_to_imputation_list_df

Convert list of imputation_list_single() objects to an imputation_list_df() object (i.e. a list of imputation_df() objects's)

Description

Convert list of imputation_list_single() objects to an imputation_list_df() object (i.e. a list of imputation_df() objects's)

Usage

convert_to_imputation_list_df(imputes, sample_ids)
convert_to_imputation_list_df

Arguments

- **imputes**: a list of `imputation_list_single()` objects
- **sample_ids**: A list with 1 element per required imputation_df. Each element must contain a vector of "ID"'s which correspond to the `imputation_single()` ID's that are required for that dataset. The total number of ID's must by equal to the total number of rows within all of imputes$imputations

To accommodate for `method_bmlmi()` the `impute_data_individual()` function returns a list of `imputation_list_single()` objects with 1 object per each subject.

`imputation_list_single()` stores the subjects imputations as a matrix where the columns of the matrix correspond to the D of `method_bmlmi()`. Note that all other methods (i.e. methods_*()) are a special case of this with D = 1. The number of rows in the matrix varies for each subject and is equal to the number of times the patient was selected for imputation (for non-conditional mean methods this should be 1 per subject per imputed dataset).

This function is best illustrated by an example:

```r
imputes = list(
  imputation_list_single(
    id = "Tom",
    imputations = matrix(
      imputation_single_t_1_1, imputation_single_t_1_2,
      imputation_single_t_2_1, imputation_single_t_2_2,
      imputation_single_t_3_1, imputation_single_t_3_2
    )
  ),
  imputation_list_single(
    id = "Tom",
    imputations = matrix(
      imputation_single_h_1_1, imputation_single_h_1_2,
    )
  )
)

sample_ids <- list(
  c("Tom", "Harry", "Tom"),
  c("Tom")
)

Then `convert_to_imputation_df(imputes, sample_ids) would result in:

```r
imputation_list_df(
 imputation_df(
 imputation_single_t_1_1,
 imputation_single_h_1_1,
 imputation_single_t_2_1
),
 imputation_df(
```
Create a delta data.frame template

Description

Creates a data.frame in the format required by `analyse()` for the use of applying a delta adjustment.

Usage

```r
delta_template(imputations, delta = NULL, dlag = NULL, missing_only = TRUE)
```

Arguments

- `imputations`: an imputation object as created by `impute()`.
- `delta`: NULL or a numeric vector. Determines the baseline amount of delta to be applied to each visit. See details. If a numeric vector it must have the same length as the number of unique visits in the original dataset.
- `dlag`: NULL or a numeric vector. Determines the scaling to be applied to `delta` based upon which visit the ICE occurred on. See details. If a numeric vector it must have the same length as the number of unique visits in the original dataset.
- `missing_only`: Logical, if TRUE then non-missing post-ICE data will have a delta value of 0 assigned. Note that the calculation (as described in the details section) is performed first and then overwritten with 0’s at the end (i.e. the delta values for missing post-ICE visits will stay the same regardless of this option).

Details

To apply a delta adjustment the `analyse()` function expects a delta data.frame with 3 variables: `vars$subjid`, `vars$visit` and `delta` (where `vars` is the object supplied in the original call to `draws()` as created by the `set_vars()` function).
This function will return a data.frame with the aforementioned variables with one row per subject per visit. If the delta argument to this function is NULL then the delta column in the returned data.frame will be 0 for all observations. If the delta argument is not NULL then delta will be calculated separately for each subject as the accumulative sum of delta multiplied by the scaling coefficient dlag based upon how many visits after the subject’s intercurrent event (ICE) the visit in question is. This is best illustrated with an example:
Let delta = c(5,6,7,8) and dlag=c(1,2,3,4) (i.e. assuming there are 4 visits) and lets say that the subject had an ICE on visit 2. The calculation would then be as follows:

```
v1 v2 v3 v4

5 6 7 8 # delta assigned to each visit
0 1 2 3 # lagged scaling starting from the first visit after the subjects ICE

0 6 14 24 # delta * lagged scaling

0 6 20 44 # accumulative sum of delta to be applied to each visit
```
That is to say the subject would have a delta offset of 0 applied for visit-1, 6 for visit-2, 20 for visit-3 and 44 for visit-4. As a comparison, lets say that the subject instead had their ICE on visit 3, the calculation would then be as follows:

```
v1 v2 v3 v4

5 6 7 8 # delta assigned to each visit
0 0 1 2 # lagged scaling starting from the first visit after the subjects ICE

0 0 7 16 # delta * lagged scaling

0 0 7 23 # accumulative sum of delta to be applied to each visit
```
In terms of practical usage, lets say that you wanted a delta of 5 to be used for all post ICE visits regardless of their proximity to the ICE visit. This can be achieved by setting delta = c(5,5,5,5) and dlag = c(1,0,0,0). For example lets say a subject had their ICE on visit-1, then the calculation would be as follows:

```
v1 v2 v3 v4

5 5 5 5 # delta assigned to each visit
1 0 0 0 # lagged scaling starting from the first visit after the subjects ICE

5 0 0 0 # delta * lagged scaling

5 5 5 5 # accumulative sum of delta to be applied to each visit
```
Another way of using these arguments is to set delta to be the difference in time between visits and dlag to be the amount of delta per unit of time. For example lets say that we have a visit on weeks 1, 5, 6 & 9 and that we want a delta of 3 to be applied for each week after an ICE. This can
be achieved by setting \( \text{delta} = c(0, 4, 1, 3) \) (the difference in weeks between each visit) and \( \text{dlag} = c(3, 3, 3, 3) \). For example let's say we have a subject who had their ICE on week-5 (i.e. visit-2) then the calculation would be:

\[
\begin{array}{cccc}
v1 & v2 & v3 & v4 \\
0 & 4 & 1 & 3 \# \text{delta assigned to each visit} \\
0 & 0 & 3 & 3 \# \text{lagged scaling starting from the first visit after the subjects ICE} \\
0 & 0 & 3 & 9 \# \text{delta \times lagged scaling} \\
0 & 0 & 3 & 12 \# \text{accumulative sum of delta to be applied to each visit}
\end{array}
\]

i.e. on week-6 (1 week after the ICE) they have a delta of 3 and on week-9 (4 weeks after the ICE) they have a delta of 12.

Please note that this function also returns several utility variables so that the user can create their own custom logic for defining what \( \text{delta} \) should be set to. These additional variables include:

- **is_mar** - If the observation was missing would it be regarded as MAR? This variable is set to FALSE for observations that occurred after a non-MAR ICE, otherwise it is set to TRUE.
- **is_missing** - Is the outcome variable for this observation missing.
- **is_post_ice** - Does the observation occur after the patient's ICE as defined by the \text{data_ice} dataset supplied to \text{draws()}.
- **strategy** - What imputation strategy was assigned to for this subject.

The design and implementation of this function is largely based upon the same functionality as implemented in the so called "five marcos" by James Roger. See Roger (2021).

References


See Also

\text{analyse()}

Examples

```r
Not run:
delta_template(imputeObj)
delta_template(imputeObj, delta = c(5, 6, 7, 8), dlag = c(1, 2, 3, 4))
End(Not run)
```
do_not_run

Do not run this function

Description
This function only exists to suppress the false positive from R CMD Check about unused libraries

Usage
do_not_run()

Details
Both rstantools and RcppParallel are required but are only used at installation time. In the case of RcppParallel it is used in the src/Makevars file which is created on the fly during installation by rstantools. rstantools is used in the configure file.

draws

Fit the base imputation model and get parameter estimates

Description
draws fits the base imputation model to the observed outcome data according to the given multiple imputation methodology. According to the user’s method specification, it returns either draws from the posterior distribution of the model parameters as required for Bayesian multiple imputation or frequentist parameter estimates from the original data and bootstrapped or leave-one-out datasets as required for conditional mean imputation. The purpose of the imputation model is to estimate model parameters in the absence of intercurrent events (ICEs) handled using reference-based imputation methods. For this reason, any observed outcome data after ICEs, for which reference-based imputation methods are specified, are removed and considered as missing for the purpose of estimating the imputation model, and for this purpose only. The imputation model is a mixed model for repeated measures (MMRM) that is valid under a missing-at-random (MAR) assumption. It can be fit using maximum likelihood (ML) or restricted ML (REML) estimation, a Bayesian approach, or an approximate Bayesian approach according to the user’s method specification. The ML/REML approaches and the approximate Bayesian approach support several possible covariance structures, while the Bayesian approach based on MCMC sampling supports only an unstructured covariance structure. In any case the covariance matrix can be assumed to be the same or different across each group.

Usage
draws(data, data_ice = NULL, vars, method, ncores = 1, quiet = FALSE)

## S3 method for class 'approxbayes'
draws(data, data_ice = NULL, vars, method, ncores = 1, quiet = FALSE)
## S3 method for class 'condmean'
draws(data, data_ice = NULL, vars, method, ncores = 1, quiet = FALSE)

## S3 method for class 'bmlmi'
draws(data, data_ice = NULL, vars, method, ncores = 1, quiet = FALSE)

## S3 method for class 'bayes'
draws(data, data_ice = NULL, vars, method, ncores = 1, quiet = FALSE)

### Arguments

- **data**: A data.frame containing the data to be used in the model. See details.
- **data_ice**: A data.frame that specifies the information related to the ICEs and the imputation strategies. See details.
- **vars**: A vars object as generated by `set_vars()`. See details.
- **method**: A method object as generated by either `method_bayes()`, `method_approxbayes()`, `method_condmean()` or `method_bmlmi()`. It specifies the multiple imputation methodology to be used. See details.
- **ncores**: A single numeric specifying the number of cores to use in creating the draws object. Note that this parameter is ignored for `method_bayes()` (Default = 1).
- **quiet**: Logical, if `TRUE` will suppress printing of progress information that is printed to the console.

### Details

draws performs the first step of the multiple imputation (MI) procedure: fitting the base imputation model. The goal is to estimate the parameters of interest needed for the imputation phase (i.e. the regression coefficients and the covariance matrices from a MMRM model).

The function distinguishes between the following methods:

- **Bayesian MI based on MCMC sampling**: draws returns the draws from the posterior distribution of the parameters using a Bayesian approach based on MCMC sampling. This method can be specified by using `method = method_bayes()`.

- **Approximate Bayesian MI based on bootstrapping**: draws returns the draws from the posterior distribution of the parameters using an approximate Bayesian approach, where the sampling from the posterior distribution is simulated by fitting the MMRM model on bootstrap samples of the original dataset. This method can be specified by using `method = method_approxbayes()`.

- **Conditional mean imputation with bootstrap re-sampling**: draws returns the MMRM parameter estimates from the original dataset and from `n_samples` bootstrap samples. This method can be specified by using `method = method_condmean()` with argument type = "bootstrap".

- **Conditional mean imputation with jackknife re-sampling**: draws returns the MMRM parameter estimates from the original dataset and from each leave-one-subject-out sample. This method can be specified by using `method = method_condmean()` with argument type = "jackknife".

- **Bootstrapped Maximum Likelihood MI**: draws returns the MMRM parameter estimates from a given number of bootstrap samples needed to perform random imputations of the bootstrapped samples. This method can be specified by using `method = method_bmlmi()`.

The argument data contains the longitudinal data. It must have at least the following variables:

- **subjid**: a factor vector containing the subject ids.
- **visit**: a factor vector containing the visit the outcome was observed on.
- **group**: a factor vector containing the group that the subject belongs to.
- **outcome**: a numeric vector containing the outcome variable. It might contain missing values.

Additional baseline or time-varying covariates must be included in `data`.

`data` must have one row per visit per subject. This means that incomplete outcome data must be set as `NA` instead of having the related row missing. Missing values in the covariates are not allowed. If `data` is incomplete then the `expand_locf()` helper function can be used to insert any missing rows using Last Observation Carried Forward (LOCF) imputation to impute the covariates values. Note that LOCF is generally not a principled imputation method and should only be used when appropriate for the specific covariate.

Please note that there is no special provisioning for the baseline outcome values. If you do not want baseline observations to be included in the model as part of the response variable then these should be removed in advance from the outcome variable in `data`. At the same time if you want to include the baseline outcome as covariate in the model, then this should be included as a separate column of `data` (as any other covariate).

Character covariates will be explicitly cast to factors. If you use a custom analysis function that requires specific reference levels for the character covariates (for example in the computation of the least square means computation) then you are advised to manually cast your character covariates to factor in advance of running `draws()`.

The argument `data_ice` contains information about the occurrence of ICEs. It is a data.frame with 3 columns:

- **Subject ID**: a character vector containing the ids of the subjects that experienced the ICE. This column must be named as specified in `vars$subjid`.
- **Visit**: a character vector containing the first visit after the occurrence of the ICE (i.e. the first visit affected by the ICE). The visits must be equal to one of the levels of `data[[vars$visit]]`. If multiple ICEs happen for the same subject, then only the first non-MAR visit should be used. This column must be named as specified in `vars$visit`.
- **Strategy**: a character vector specifying the imputation strategy to address the ICE for this subject. This column must be named as specified in `vars$strategy`. Possible imputation strategies are:
  - "MAR": Missing At Random.
  - "CIR": Copy Increments in Reference.
  - "CR": Copy Reference.
  - "JR": Jump to Reference.
  - "LMCF": Last Mean Carried Forward. For explanations of these imputation strategies, see Carpenter, Roger, and Kenward (2013), Cro et al (2021), and Wolbers et al (2022). Please note that user-defined imputation strategies can also be set.
The data_ice argument is necessary at this stage since (as explained in Wolbers et al (2022)), the model is fitted after removing the observations which are incompatible with the imputation model, i.e. any observed data on or after data_ice[[vars$visit]] that are addressed with an imputation strategy different from MAR are excluded for the model fit. However such observations will not be discarded from the data in the imputation phase (performed with the function impute()). To summarize, at this stage only pre-ICE data and post-ICE data that is after ICEs for which MAR imputation is specified are used.

If the data_ice argument is omitted, or if a subject doesn’t have a record within data_ice, then it is assumed that all of the relevant subject’s data is pre-ICE and as such all missing visits will be imputed under the MAR assumption and all observed data will be used to fit the base imputation model. Please note that the ICE visit cannot be updated via the update_strategy argument in impute(): this means that subjects who didn’t have a record in data_ice will always have their missing data imputed under the MAR assumption even if their strategy is updated.

The vars argument is a named list that specifies the names of key variables within data and data_ice. This list is created by set_vars() and contains the following named elements:

- subjid: name of the column in data and data_ice which contains the subject ids variable.
- visit: name of the column in data and data_ice which contains the visit variable.
- group: name of the column in data which contains the group variable.
- outcome: name of the column in data which contains the outcome variable.
- covariates: vector of characters which contains the covariates to be included in the model (including interactions which are specified as "covariateName1*covariateName2"~`). If no covariates are provided, outcome ~ 1 + visit + group will be used. Please note that the group*visit interaction is not included in the model by default.
- strata: covariates used as stratification variables in the bootstrap sampling. By default only the vars$group is set as stratification variable. Needed only for method_condmean(type = "bootstrap") and method_approxbayes().
- strategy: name of the column in data_ice which contains the subject-specific imputation strategy.

Value

A draws object which is a named list containing the following:

- data: R6 longdata object containing all relevant input data information.
- method: A method object as generated by either method_bayes(), method_approxbayes() or method_condmean().
- samples: list containing the estimated parameters of interest. Each element of samples is a named list containing the following:
  - ids: vector of characters containing the ids of the subjects included in the original dataset.
  - beta: numeric vector of estimated regression coefficients.
  - sigma: list of estimated covariance matrices (one for each level of vars$group).
  - theta: numeric vector of transformed covariances.
  - failed: Logical. TRUE if the model fit failed.
  - ids_samp: vector of characters containing the ids of the subjects included in the given sample.
• fit: if method_bayes() is chosen, returns the MCMC Stan fit object. Otherwise NULL.
• n_failures: absolute number of failures of the model fit. Relevant only for method_condmean(type = "bootstrap"), method_approxbayes() and method_bmlmi().
• formula: fixed effects formula object used for the model specification.

References

See Also
method_bayes(), method_approxbayes(), method_condmean(), method_bmlmi() for setting method.
set_vars() for setting vars.
expand_locf() for expanding data in case of missing rows.
For more details see the quickstart vignette: vignette("quickstart", package = "rbmi").

---

**d_lagscale**

*Calculate delta from a lagged scale coefficient*

**Description**

Calculates a delta value based upon a baseline delta value and a post ICE scaling coefficient.

**Usage**

d_lagscale(delta, dlag, is_post_ice)

**Arguments**

- **delta**: a numeric vector. Determines the baseline amount of delta to be applied to each visit.
- **dlag**: a numeric vector. Determines the scaling to be applied to delta based upon with visit the ICE occurred on. Must be the same length as delta.
- **is_post_ice**: logical vector. Indicates whether a visit is "post-ICE" or not.
encap_get_mmrm_sample  Encapsulate get_mmrm_sample

Description

Function creates a new wrapper function around get_mmrm_sample() so that the arguments of get_mmrm_sample() are enclosed within the new function. This makes running parallel and single process calls to the function smoother. In particular this function takes care of exporting the arguments if required to parallel process in a cluster

Usage

encap_get_mmrm_sample(cl, longdata, method)

Arguments

cl  Either a cluster from get_cluster() or NULL
longdata  A longdata object from longDataConstructor$new()
method  A method object

See Also

get_cluster() for more documentation on the function inputs

eval_mmrm  Evaluate a call to mmrm

Description

This is a utility function that attempts to evaluate a call to mmrm managing any warnings or errors that are thrown. In particular this function attempts to catch any warnings or errors and instead of surfacing them it will simply add an additional element failed with a value of TRUE. This allows for multiple calls to be made without the program exiting.

Usage

eval_mmrm(expr)

Arguments

expr  An expression to be evaluated. Should be a call to mmrm::mmrm().
Details
This function was originally developed for use with glmmTMB which needed more hand-holding and dropping of false-positive warnings. It is not as important now but is kept around encase we need to catch false-positive warnings again in the future.

See Also
record()

Examples
## Not run:
## Not run:
eval_mmrms(
    mmrm::mmrm(formula, data)
)
## End(Not run)

expand expand and fill in missing data.frame rows

Description
These functions are essentially wrappers around base::expand.grid() to ensure that missing combinations of data are inserted into a data.frame with imputation/fill methods for updating covariate values of newly created rows.

Usage
expand(data, ...)

fill_locf(data, vars, group = NULL, order = NULL)
expend_locf(data, ..., vars, group, order)

Arguments
data dataset to expand or fill in.
... variables and the levels that should be expanded out (note that duplicate entries of levels will result in multiple rows for that level).
vars character vector containing the names of variables that need to be filled in.
group character vector containing the names of variables to group by when performing LOCF imputation of var.
order character vector containing the names of additional variables to sort the data.frame by before performing LOCF.
Details

The `draws()` function makes the assumption that all subjects and visits are present in the `data.frame` and that all covariate values are non missing; `expand()` and `expand_locf()` are utility functions to support users in ensuring that their `data.frame`'s conform to these assumptions.

`expand()` takes vectors for expected levels in a `data.frame` and expands out all combinations inserting any missing rows into the `data.frame`. Note that all "expanded" variables are cast as factors.

`fill_locf()` applies LOCF imputation to named covariates to fill in any NAs created by the insertion of new rows by `expand()` (though do note that no distinction is made between existing NAs and newly created NAs). Note that the `data.frame` is sorted by `c(group, order)` before performing the LOCF imputation; the `data.frame` will be returned in the original sort order however.

`expand_locf()` a simple composition function of `fill_locf()` and `expand()` i.e. `fill_locf(expand(...))`.

Missing First Values:

The `fill_locf()` function performs last observation carried forward imputation. A natural consequence of this is that it is unable to impute missing observations if the observation is the first value for a given subject/grouping. These values are deliberately not imputed as doing so risks silent errors in the case of time varying covariates. One solution is to first use `expand_locf()` on just the visit variable and time varying covariates and then merge on the baseline covariates afterwards i.e.

```r
library(dplyr)

dat_expanded <- expand(
 data = dat,
 subject = c("pt1", "pt2", "pt3", "pt4"),
 visit = c("vis1", "vis2", "vis3")
)

dat_filled <- dat_expanded %>%
 left_join(baseline_covariates, by = "subject")
```

Examples

```r
Not run:
dat_expanded <- expand(
 data = dat,
 subject = c("pt1", "pt2", "pt3", "pt4"),
 visit = c("vis1", "vis2", "vis3")
)

dat_filled <- fill_locf(
 data = dat_expanded,
 vars = c("Sex", "Age"),
 group = "subject",
 order = "visit"
)

Or
```
```r
dat_filled <- expand_locf(
 data = dat,
 subject = c("pt1", "pt2", "pt3", "pt4"),
 visit = c("vis1", "vis2", "vis3"),
 vars = c("Sex", "Age"),
 group = "subject",
 order = "visit"
)
End(Not run)
```

---

**extract_covariates**

*Extract Variables from string vector*

**Description**

Takes a string including potentially model terms like * and : and extracts out the individual variables

**Usage**

```r
extract_covariates(x)
```

**Arguments**

- `x` string of variable names potentially including interaction terms

**Details**

i.e. `c("v1", "v2", "v2*v3", "v1:v2")` becomes `c("v1", "v2", "v3")`

---

**extract_data_nmar_as_na**

*Set to NA outcome values that would be MNAR if they were missing (i.e. which occur after an ICE handled using a reference-based imputation strategy)*

**Description**

Set to NA outcome values that would be MNAR if they were missing (i.e. which occur after an ICE handled using a reference-based imputation strategy)

**Usage**

```r
extract_data_nmar_as_na(longdata)
```
extract_draws

Arguments

longdata R6 longdata object containing all relevant input data information.

Value

A data.frame containing longdata$get_data(longdata$ids), but MNAR outcome values are set to NA.

extract_draws Extract draws from a stanfit object

Description

Extract draws from a stanfit object and convert them into lists.

The function rstan::extract() returns the draws for a given parameter as an array. This function calls rstan::extract() to extract the draws from a stanfit object and then convert the arrays into lists.

Usage

extract_draws(stan_fit)

Arguments

stan_fit A stanfit object.

Value

A named list of length 2 containing:

- beta: a list of length equal to the number of draws containing the draws from the posterior distribution of the regression coefficients.

- sigma: a list of length equal to the number of draws containing the draws from the posterior distribution of the covariance matrices. Each element of the list is a list with length equal to 1 if same_cov = TRUE or equal to the number of groups if same_cov = FALSE.
**extract_imputed_df**  
*Extract imputed dataset*

**Description**

Takes an imputation object as generated by `imputation_df()` and uses this to extract a completed dataset from a `longdata` object as created by `longDataConstructor()`. Also applies a delta transformation if a `data.frame` is provided to the `delta` argument. See `analyse()` for details on the structure of this `data.frame`.

Subject IDs in the returned `data.frame` are scrambled i.e. are not the original values.

**Usage**

```r
extract_imputed_df(imputation, ld, delta = NULL, idmap = FALSE)
```

**Arguments**

- `imputation`: An imputation object as generated by `imputation_df()`.
- `ld`: A `longdata` object as generated by `longDataConstructor()`.
- `delta`: Either `NULL` or a `data.frame`. Is used to offset outcome values in the imputed dataset.
- `idmap`: Logical. If `TRUE` an attribute called "idmap" is attached to the return object which contains a list that maps the old subject ids the new subject ids.

**Value**

A `data.frame`.

**extract_imputed_dfs**  
*Extract imputed datasets*

**Description**

Extracts the imputed datasets contained within an `imputations` object generated by `impute()`.

**Usage**

```r
extract_imputed_dfs(
 imputations,
 index = seq_along(imputations$imputations),
 delta = NULL,
 idmap = FALSE
)
```
extract_params

Arguments

imputations  An imputations object as created by `impute()`.  
index  The indexes of the imputed datasets to return. By default, all datasets within the imputations object will be returned.  
delta  A data.frame containing the delta transformation to be applied to the imputed dataset. See `analyse()` for details on the format and specification of this data.frame.  
idmap  Logical. The subject IDs in the imputed data.frame’s are replaced with new IDs to ensure they are unique. Setting this argument to TRUE attaches an attribute, called idmap, to the returned data.frame’s that will provide a map from the new subject IDs to the old subject IDs.

Value

A list of data.frames equal in length to the index argument.

See Also

delta_template() for creating delta data.frames.  
analyse().

Examples

```r
Not run:
extract_imputed_dfs(imputeObj)
extract_imputed_dfs(imputeObj, c(1:3))
End(Not run)
```

extract_params  Extract parameters from an MMRM model

Description

Extracts the beta and sigma coefficients from an MMRM model created by `mmrm::mmrm()`.

Usage

`extract_params(fit)`

Arguments

fit  an object created by `mmrm::mmrm()`
**Description**

`fit_mcmc()` fits the base imputation model using a Bayesian approach. This is done through a MCMC method that is implemented in stan and is run by using the function `rstan::sampling()`. The function returns the draws from the posterior distribution of the model parameters and the `stanfit` object. Additionally, it performs multiple diagnostics checks of the chain and returns warnings in case of any detected issues.

**Usage**

```r
fit_mcmc(designmat, outcome, group, subjid, visit, method, quiet = FALSE)
```

**Arguments**

- `designmat`: The design matrix of the fixed effects.
- `outcome`: The response variable. Must be numeric.
- `group`: Character vector containing the group variable.
- `subjid`: Character vector containing the subjects IDs.
- `visit`: Character vector containing the visit variable.
- `method`: A `method` object as generated by `method_bayes()`.
- `quiet`: Specify whether the stan sampling log should be printed to the console.

**Details**

The Bayesian model assumes a multivariate normal likelihood function and weakly-informative priors for the model parameters: in particular, uniform priors are assumed for the regression coefficients and inverse-Wishart priors for the covariance matrices. The chain is initialized using the REML parameter estimates from MMRM as starting values.

The function performs the following steps:

1. Fit MMRM using a REML approach.
2. Prepare the input data for the MCMC fit as described in the `data()` block of the Stan file. See `prepare_stan_data()` for details.
3. Run the MCMC according the input arguments and using as starting values the REML parameter estimates estimated at point 1.
4. Performs diagnostics checks of the MCMC. See `check_mcmc()` for details.
5. Extract the draws from the model fit.

The chains perform `method$n_samples` draws by keeping one every `method$burn_between` iterations. Additionally, the first `method$burn_in` iterations are discarded. The total number of iterations will then be `method$burn_in + method$burn_between * method$n_samples`. The purpose of `method$burn_in` is to ensure that the samples are drawn from the stationary distribution of the Markov Chain. The `method$burn_between` aims to keep the draws uncorrelated each from other.
Value

A named list composed by the following:

- samples: a named list containing the draws for each parameter. It corresponds to the output of `extract_draws()`.
- fit: a stanfit object.

---

**fit_mmrn**  
*Fit a MMRM model*

Description

Fits a MMRM model allowing for different covariance structures using `mrm::mmrm()`. Returns a list of key model parameters `beta`, `sigma` and an additional element `failed` indicating whether or not the fit failed to converge. If the fit did fail to converge `beta` and `sigma` will not be present.

Usage

```r
fit_mmrn(
 designmat,
 outcome,
 subjid,
 visit,
 group,
 cov_struct = c("us", "toep", "cs", "ar1"),
 REML = TRUE,
 same_cov = TRUE
)
```

Arguments

defesignmat a data.frame or matrix containing the covariates to use in the MMRM model. Dummy variables must already be expanded out, i.e. via `stats::model.matrix()`. Cannot contain any missing values

outcome a numeric vector. The outcome value to be regressed on in the MMRM model.

subjid a character / factor vector. The subject identifier used to link separate visits that belong to the same subject.

visit a character / factor vector. Indicates which visit the outcome value occurred on.

group a character / factor vector. Indicates which treatment group the patient belongs to.

cov_struct a character value. Specifies which covariance structure to use. Must be one of "us", "toep", "cs" or "ar1"

REML logical. Specifies whether restricted maximum likelihood should be used

same_cov logical. Used to specify if a shared or individual covariance matrix should be used per group
generate_data_single

Generate data for a single group

Description
Generate data for a single group

Usage
generate_data_single(pars_group, strategy_fun = NULL, distr_pars_ref = NULL)

Arguments
pars_group A simul_pars object as generated by set_simul_pars(). It specifies the simulation parameters of the given group.
strategy_fun Function implementing trajectories after the intercurrent event (ICE). Must be one of getStrategies(). See getStrategies() for details. If NULL then post-ICE outcomes are untouched.
distr_pars_ref Optional. Named list containing the simulation parameters of the reference arm. It contains the following elements:
• mu: Numeric vector indicating the mean outcome trajectory assuming no ICES. It should include the outcome at baseline.
• sigma: Covariance matrix of the outcome trajectory assuming no ICES. If NULL, then these parameters are inherited from pars_group.

Value
A data.frame containing the simulated data. It includes the following variables:
• id: Factor variable that specifies the id of each subject.
• visit: Factor variable that specifies the visit of each assessment. Visit 0 denotes the baseline visit.
• group: Factor variable that specifies which treatment group each subject belongs to.
• outcome_bl: Numeric variable that specifies the baseline outcome.
• outcome_noICE: Numeric variable that specifies the longitudinal outcome assuming no ICES.
• ind_ice1: Binary variable that takes value 1 if the corresponding visit is affected by ICE1 and 0 otherwise.
• dropout_ice1: Binary variable that takes value 1 if the corresponding visit is affected by the drop-out following ICE1 and 0 otherwise.
• ind_ice2: Binary variable that takes value 1 if the corresponding visit is affected by ICE2.
• outcome: Numeric variable that specifies the longitudinal outcome including ICE1, ICE2 and the intermittent missing values.

See Also
simulate_data().
getStrategies  

Get imputation strategies

Description

Returns a list defining the imputation strategies to be used to create the multivariate normal distribution parameters by merging those of the source group and reference group per patient.

Usage

getStrategies(...)

Arguments

...  
User defined methods to be added to the return list. Input must be a function.

Details

By default Jump to Reference (JR), Copy Reference (CR), Copy Increments in Reference (CIR), Last Mean Carried Forward (LMCF) and Missing at Random (MAR) are defined.

The user can define their own strategy functions (or overwrite the pre-defined ones) by specifying a named input to the function i.e. NEW = function(...) .... Only exception is MAR which cannot be overwritten.

All user defined functions must take 3 inputs: pars_group, pars_ref and index_mar. pars_group and pars_ref are both lists with elements mu and sigma representing the multivariate normal distribution parameters for the subject’s current group and reference group respectively. index_mar will be a logical vector specifying which visits the subject met the MAR assumption at. The function must return a list with elements mu and sigma. See the implementation of strategy_JR() for an example.

Examples

```r
Not run:
getStrategies()
getStrategies(
 NEW = function(pars_group, pars_ref, index_mar) code ,
 JR = function(pars_group, pars_ref, index_mar) more_code
)

End(Not run)
```
**get_bootstrap_stack**  
*Creates a stack object populated with bootstrapped samples*

**Description**

Function creates a `Stack()` object and populated the stack with bootstrap samples based upon `method$n_samples`

**Usage**

```r
get_bootstrap_stack(longdata, method, stack = Stack$new())
```

**Arguments**

- `longdata`  
  A `longDataConstructor()` object
- `method`  
  A method object
- `stack`  
  A `Stack()` object (this is only exposed for unit testing purposes)

---

**get_cluster**  
*Create cluster*

**Description**

Create cluster

**Usage**

```r
get_cluster(ncores = 1)
```

**Arguments**

- `ncores`  
  Number of parallel processes to use
  If `ncores` is 1 this function will return NULL This function spawns a PSOCK cluster. Ensures that `rbmi` and `assert_that` have been loaded on the sub-processes
**get_conditional_parameters**

*Derive conditional multivariate normal parameters*

**Description**

Takes parameters for a multivariate normal distribution and observed values to calculate the conditional distribution for the unobserved values.

**Usage**

```r
get_conditional_parameters(pars, values)
```

**Arguments**

- `pars` a list with elements `mu` and `sigma` defining the mean vector and covariance matrix respectively.
- `values` a vector of observed values to condition on, must be same length as `pars$mu`. Missing values must be represented by an `NA`.

**Value**

A list with the conditional distribution parameters:

- `mu` - The conditional mean vector.
- `sigma` - The conditional covariance matrix.

---

**get_delta_template**

*Get delta utility variables*

**Description**

This function creates the default delta template (1 row per subject per visit) and extracts all the utility information that users need to define their own logic for defining delta. See `delta_template()` for full details.

**Usage**

```r
get_delta_template(imputations)
```

**Arguments**

- `imputations` an imputations object created by `impute()`.
**get_draws_mle**

*Fit the base imputation model on bootstrap samples*

**Description**

Fit the base imputation model using a ML/REML approach on a given number of bootstrap samples as specified by `method$n_samples`. Returns the parameter estimates from the model fit.

**Usage**

```r
get_draws_mle(
 longdata, # R6 longdata object containing all relevant input data information.
 method, # A method object as generated by either method_approxbayes() or method_condmean() with argument type = "bootstrap".
 sample_stack, # A stack object containing the subject ids to be used on each mmrm iteration.
 n_target_samples, # Number of samples needed to be created
 first_sample_orig, # Logical. If TRUE the function returns method$n_samples + 1 samples where the first sample contains the parameter estimates from the original dataset and method$n_samples samples contain the parameter estimates from bootstrap samples. If FALSE the function returns method$n_samples samples containing the parameter estimates from bootstrap samples.
 use_samp_ids, # Logical. If TRUE, the sampled subject ids are returned. Otherwise the subject ids from the original dataset are returned. These values are used to tell impute() what subjects should be used to derive the imputed dataset.
 failure_limit, # Number of failed samples that are allowed before throwing an error
 ncores, # Number of processes to parallelise the job over
 quiet) # Logical, If TRUE will suppress printing of progress information that is printed to the console.
```

**Arguments**

- `longdata`: R6 longdata object containing all relevant input data information.
- `method`: A method object as generated by either `method_approxbayes()` or `method_condmean()` with argument type = "bootstrap".
- `sample_stack`: A stack object containing the subject ids to be used on each mmrm iteration.
- `n_target_samples`: Number of samples needed to be created.
- `first_sample_orig`: Logical. If TRUE the function returns `method$n_samples + 1` samples where the first sample contains the parameter estimates from the original dataset and `method$n_samples` samples contain the parameter estimates from bootstrap samples. If FALSE the function returns `method$n_samples` samples containing the parameter estimates from bootstrap samples.
- `use_samp_ids`: Logical. If TRUE, the sampled subject ids are returned. Otherwise the subject ids from the original dataset are returned. These values are used to tell `impute()` what subjects should be used to derive the imputed dataset.
- `failure_limit`: Number of failed samples that are allowed before throwing an error.
- `ncores`: Number of processes to parallelise the job over.
- `quiet`: Logical, If TRUE will suppress printing of progress information that is printed to the console.
get_ESS

Details

This function takes a Stack object which contains multiple lists of patient ids. The function takes this Stack and pulls a set ids and then constructs a dataset just consisting of these patients (i.e. potentially a bootstrap or a jackknife sample).

The function then fits a MMRM model to this dataset to create a sample object. The function repeats this process until n_target_samples have been reached. If more than failure_limit samples fail to converge then the function throws an error.

After reaching the desired number of samples the function generates and returns a draws object.

Value

A draws object which is a named list containing the following:

- data: R6 longdata object containing all relevant input data information.
- method: A method object as generated by either method_bayes(), method_approxbayes() or method_condmean().
- samples: list containing the estimated parameters of interest. Each element of samples is a named list containing the following:
  - ids: vector of characters containing the ids of the subjects included in the original dataset.
  - beta: numeric vector of estimated regression coefficients.
  - sigma: list of estimated covariance matrices (one for each level of vars$group).
  - theta: numeric vector of transformed covariances.
  - failed: Logical. TRUE if the model fit failed.
  - ids_samp: vector of characters containing the ids of the subjects included in the given sample.
- fit: if method_bayes() is chosen, returns the MCMC Stan fit object. Otherwise NULL.
- n_failures: absolute number of failures of the model fit. Relevant only for method_condmean(type = "bootstrap"), method_approxbayes() and method_bmlmi().
- formula: fixed effects formula object used for the model specification.

get_ESS

Extract the Effective Sample Size (ESS) from a stanfit object

Description

Extract the Effective Sample Size (ESS) from a stanfit object

Usage

get_ESS(stan_fit)

Arguments

stan_fit A stanfit object.
**get_est_bmlmi**

**Value**

A named vector containing the ESS for each parameter of the model.

---

**get_est_bmlmi**

*Von Hippel and Bartlett pooling of BMLMI method*

**Description**

Compute pooled point estimates, standard error and degrees of freedom according to the Von Hippel and Bartlett formula for Bootstrapped Maximum Likelihood Multiple Imputation (BMLMI).

**Usage**

```
get_est_bmlmi(est, D)
```

**Arguments**

- `est`: numeric vector containing estimates from the analysis of the imputed datasets.
- `D`: numeric representing the number of imputations between each bootstrap sample in the BMLMI method.

**Details**

`est` must be provided in the following order: the firsts `D` elements are related to analyses from random imputation of one bootstrap sample. The second set of `D` elements (i.e. from `D+1` to `2*D`) are related to the second bootstrap sample and so on.

**Value**

A list containing point estimate, standard error and degrees of freedom.

**References**

get_example_data

Simulate a realistic example dataset

Description

Simulate a realistic example dataset using `simulate_data()` with hard-coded values of all the input arguments.

Usage

`get_example_data()`

Details

`get_example_data()` simulates a 1:1 randomized trial of an active drug (intervention) versus placebo (control) with 100 subjects per group and 6 post-baseline assessments (bi-monthly visits until 12 months). One intercurrent event corresponding to treatment discontinuation is also simulated. Specifically, data are simulated under the following assumptions:

- The mean outcome trajectory in the placebo group increases linearly from 50 at baseline (visit 0) to 60 at visit 6, i.e. the slope is 10 points/year.
- The mean outcome trajectory in the intervention group is identical to the placebo group up to visit 2. From visit 2 onward, the slope decreases by 50% to 5 points/year.
- The covariance structure of the baseline and follow-up values in both groups is implied by a random intercept and slope model with a standard deviation of 5 for both the intercept and the slope, and a correlation of 0.25. In addition, an independent residual error with standard deviation 2.5 is added to each assessment.
- The probability of study drug discontinuation after each visit is calculated according to a logistic model which depends on the observed outcome at that visit. Specifically, a visit-wise discontinuation probability of 2% and 3% in the control and intervention group, respectively, is specified in case the observed outcome is equal to 50 (the mean value at baseline). The odds of a discontinuation is simulated to increase by +10% for each +1 point increase of the observed outcome.
- Study drug discontinuation is simulated to have no effect on the mean trajectory in the placebo group. In the intervention group, subjects who discontinue follow the slope of the mean trajectory from the placebo group from that time point onward. This is compatible with a copy increments in reference (CIR) assumption.
- Study drop-out at the study drug discontinuation visit occurs with a probability of 50% leading to missing outcome data from that time point onward.

See Also

`simulate_data()`, `set_simul_pars()`
get_jackknife_stack  
Creates a stack object populated with jackknife samples

Description
Function creates a Stack() object and populated the stack with jackknife samples based upon

Usage
get_jackknife_stack(longdata, method, stack = Stack$new())

Arguments
longdata  
A longDataConstructor() object
method  
A method object
stack  
A Stack() object (this is only exposed for unit testing purposes)

get_mmrm_sample  
Fit MMRM and returns parameter estimates

Description
get_mmrm_sample fits the base imputation model using a ML/REML approach. Returns the parameter estimates from the fit.

Usage
get_mmrm_sample(ids, longdata, method)

Arguments
ids  
vector of characters containing the ids of the subjects.
longdata  
R6 longdata object containing all relevant input data information.
method  
A method object as generated by either method_approxbayes() or method_condmean().

Value
A named list of class sample_single. It contains the following:
• id vector of characters containing the ids of the subjects included in the original dataset.
• beta numeric vector of estimated regression coefficients.
• sigma list of estimated covariance matrices (one for each level of vars$group).
• theta numeric vector of transformed covariances.
• failed logical. TRUE if the model fit failed.
• ids_samp vector of characters containing the ids of the subjects included in the given sample.
get_pattern_groups  
*Determine patients missingness group*

**Description**

Takes a design matrix with multiple rows per subject and returns a dataset with 1 row per subject with a new column `pgroup` indicating which group the patient belongs to (based upon their missingness pattern and treatment group).

**Usage**

```r
get_pattern_groups(ddat)
```

**Arguments**

ddat  
a data.frame with columns `subjID`, `visit`, `group`, `is_avail`

**Details**

- The column `is_avail` must be a character or numeric 0 or 1

get_pattern_groups_unique  
*Get Pattern Summary*

**Description**

Takes a dataset of pattern information and creates a summary dataset of it with just 1 row per pattern

**Usage**

```r
get_pattern_groups_unique(patterns)
```

**Arguments**

data  
a data.frame with the columns `pgroup`, `pattern` and `group`

**Details**

- The column `pgroup` must be a numeric vector indicating which pattern group the patient belongs to
- The column `pattern` must be a character string of 0’s or 1’s. It must be identical for all rows within the same pgroup
- The column `group` must be a character / numeric vector indicating which covariance group the observation belongs to. It must be identical within the same pgroup
**get_pool_components**

*Expected Pool Components*

**Description**

Returns the elements expected to be contained in the analyse object depending on what analysis method was specified.

**Usage**

`get_pool_components(x)`

**Arguments**

- `x` Character name of the analysis method, must one of either "rubin", "jackknife", "bootstrap" or "bmlmi".

**get_visit_distribution_parameters**

*Derive visit distribution parameters*

**Description**

Takes patient level data and beta coefficients and expands them to get a patient specific estimate for the visit distribution parameters mu and sigma. Returns the values in a specific format which is expected by downstream functions in the imputation process (namely `list(list(mu = ..., sigma = ...), list(mu = ..., sigma = ...))`).

**Usage**

`get_visit_distribution_parameters(dat, beta, sigma)`

**Arguments**

- `dat` Patient level dataset, must be 1 row per visit. Column order must be in the same order as beta. The number of columns must match the length of beta
- `beta` List of model beta coefficients. There should be 1 element for each sample e.g. if there were 3 samples and the models each had 4 beta coefficients then this argument should be of the form `list(c(1,2,3,4), c(5,6,7,8), c(9,10,11,12))`. All elements of beta must be the same length and must be the same length and order as dat.
- `sigma` List of sigma. Must have the same number of entries as beta.
**has_class**

*Does object have a class?*

**Description**

Utility function to see if an object has a particular class. Useful when we don’t know how many other classes the object may have.

**Usage**

```r
has_class(x, cls)
```

**Arguments**

- `x`: the object we want to check the class of.
- `cls`: the class we want to know if it has or not.

**Value**

- `TRUE` if the object has the class.
- `FALSE` if the object does not have the class.

---

**ife**

*if else*

**Description**

A wrapper around `if() else()` to prevent unexpected interactions between `ifelse()` and factor variables.

**Usage**

```r
ife(x, a, b)
```

**Arguments**

- `x`: True / False
- `a`: value to return if True
- `b`: value to return if False

**Details**

By default `ifelse()` will convert factor variables to their numeric values which is often undesirable. This connivance function avoids that problem.
**imputation_df**

Create a valid imputation_df object

**Description**

Create a valid imputation_df object

**Usage**

`imputation_df(...)`

**Arguments**

`...` a list of imputation_single.

---

**imputation_list_df**

List of imputations_df

**Description**

A container for multiple imputation_df’s

**Usage**

`imputation_list_df(...)`

**Arguments**

`...` objects of class imputation_df

---

**imputation_list_single**

A collection of imputation_singles() grouped by a single subjid ID

**Description**

A collection of imputation_singles() grouped by a single subjid ID

**Usage**

`imputation_list_single(imputations, D = 1)`
Arguments

imputations a list of \texttt{imputation\_single()} objects ordered so that repetitions are grouped sequentially

D the number of repetitions that were performed which determines how many columns the imputation matrix should have

This is a constructor function to create a \texttt{imputation\_list\_single} object which contains a matrix of \texttt{imputation\_single()} objects grouped by a single id. The matrix is split so that it has D columns (i.e. for non-bmlmi methods this will always be 1)

The \texttt{id} attribute is determined by extracting the \texttt{id} attribute from the contributing \texttt{imputation\_single()} objects. An error is throw if multiple \texttt{id} are detected

\begin{verbatim}
imputation\_single Create a valid \texttt{imputation\_single} object
\end{verbatim}

Description

Create a valid \texttt{imputation\_single} object

Usage

\texttt{imputation\_single(id, values)}

Arguments

\begin{itemize}
\item \texttt{id} a character string specifying the subject \texttt{id}.
\item \texttt{values} a numeric vector indicating the imputed values.
\end{itemize}

\begin{verbatim}
impute Create imputed datasets
\end{verbatim}

Description

\texttt{impute()} creates imputed datasets based upon the data and options specified in the call to \texttt{draws()}. One imputed dataset is created per each "sample" created by \texttt{draws()}.
Usage

```r
impute(
 draws,
 references = NULL,
 update_strategy = NULL,
 strategies = getStrategies()
)
```

```r
S3 method for class 'random'
impute(
 draws,
 references = NULL,
 update_strategy = NULL,
 strategies = getStrategies()
)
```

```r
S3 method for class 'condmean'
impute(
 draws,
 references = NULL,
 update_strategy = NULL,
 strategies = getStrategies()
)
```

Arguments

draws A `draws` object created by `draws()`.

references A named vector. Identifies the references to be used for reference-based imputation methods. Should be of the form `c("Group1" = "Reference1", "Group2" = "Reference2")`. If `NULL` (default), the references are assumed to be of the form `c("Group1" = "Group1", "Group2" = "Group2")`. This argument cannot be `NULL` if an imputation strategy (as defined by `data_ice[[vars$strategy]]` in the call to `draws`) other than MAR is set.

update_strategy An optional `data.frame`. Updates the imputation method that was originally set via the `data_ice` option in `draws()`. See the details section for more information.

strategies A named list of functions. Defines the imputation functions to be used. The names of the list should mirror the values specified in strategy column of `data_ice`. Default = `getStrategies()`. See `getStrategies()` for more details.

Details

`impute()` uses the imputation model parameter estimates, as generated by `draws()`, to first calculate the marginal (multivariate normal) distribution of a subject’s longitudinal outcome variable depending on their covariate values. For subjects with intercurrent events (ICEs) handled using non-MAR methods, this marginal distribution is then updated depending on the time of the first visit.
affected by the ICE, the chosen imputation strategy and the chosen reference group as described in Carpenter, Roger, and Kenward (2013). The subject’s imputation distribution used for imputing missing values is then defined as their marginal distribution conditional on their observed outcome values. One dataset is being generated per set of parameter estimates provided by `draws()`.

The exact manner in how missing values are imputed from this conditional imputation distribution depends on the method object that was provided to `draws()`, in particular:

- Bayes & Approximate Bayes: each imputed dataset contains 1 row per subject & visit from the original dataset with missing values imputed by taking a single random sample from the conditional imputation distribution.

- Conditional Mean: each imputed dataset contains 1 row per subject & visit from the bootstrapped or jackknife dataset that was used to generate the corresponding parameter estimates in `draws()`. Missing values are imputed by using the mean of the conditional imputation distribution. Please note that the first imputed dataset refers to the conditional mean imputation on the original dataset whereas all subsequent imputed datasets refer to conditional mean imputations for bootstrap or jackknife samples, respectively, of the original data.

- Bootstrapped Maximum Likelihood MI (BMLMI): it performs $D$ random imputations of each bootstrapped dataset that was used to generate the corresponding parameter estimates in `draws()`. A total number of $B \times D$ imputed datasets is provided, where $B$ is the number of bootstrapped datasets. Missing values are imputed by taking a random sample from the conditional imputation distribution.

The `update_strategy` argument can be used to update the imputation strategy that was originally set via the `data_ice` option in `draws()`. This avoids having to re-run the `draws()` function when changing the imputation strategy in certain circumstances (as detailed below). The data.frame provided to `update_strategy` argument must contain two columns, one for the subject ID and another for the imputation strategy, whose names are the same as those defined in the `vars` argument as specified in the call to `draws()`. Please note that this argument only allows you to update the imputation strategy and not other arguments such as the time of the first visit affected by the ICE. A key limitation of this functionality is that one can only switch between a MAR and a non-MAR strategy (or vice versa) for subjects without observed post-ICE data. The reason for this is that such a change would affect whether the post-ICE data is included in the base imputation model or not (as explained in the help to `draws()`). As an example, if a subject had their ICE on "Visit 2" but had observed/known values for "Visit 3" then the function will throw an error if one tries to switch the strategy from MAR to a non-MAR strategy. In contrast, switching from a non-MAR to a MAR strategy, whilst valid, will raise a warning as not all usable data will have been utilised in the imputation model.

References


Examples

```r
Not run:
impute()
```
**impute_data_individual**

Impute data for a single subject

Description

This function performs the imputation for a single subject at a time implementing the process as detailed in `impute()`.

Usage

```r
impute_data_individual(
 id,
 index,
 beta,
 sigma,
 data,
 references,
 strategies,
 condmean,
 n_imputations = 1
)
```

Arguments

- **id**  Character string identifying the subject.
- **index**  The sample indexes which the subject belongs to e.g. `c(1,1,1,2,2,4)`.
- **beta**  A list of beta coefficients for each sample, i.e. `beta[[1]]` is the set of beta coefficients for the first sample.
**impute_internal**

Create imputed datasets

**Description**

This is the work horse function that implements most of the functionality of impute. See the user level function `impute()` for further details.

**Usage**

```r
impute_internal(
 draws,
 references = NULL,
 update_strategy,
 strategies,
 condmean
)
```
**Arguments**

- **draws**: A draws object created by `draws()`.
- **references**: A named vector. Identifies the references to be used for reference-based imputation methods. Should be of the form `c("Group1" = "Reference1", "Group2" = "Reference2")`. If NULL (default), the references are assumed to be of the form `c("Group1" = "Group1", "Group2" = "Group2")`. This argument cannot be NULL if an imputation strategy (as defined by `data_ice[[vars$strategy]]` in the call to `draws`) other than MAR is set.
- **update_strategy**: An optional data.frame. Updates the imputation method that was originally set via the `data_ice` option in `draws()`. See the details section for more information.
- **strategies**: A named list of functions. Defines the imputation functions to be used. The names of the list should mirror the values specified in `strategy` column of `data_ice`. Default = `getStrategies()`. See `getStrategies()` for more details.
- **condmean**: logical. If TRUE will impute using the conditional mean values, if values will impute by taking a random draw from the multivariate normal distribution.

---

**impute_outcome**

*Sample outcome value*

**Description**

Draws a random sample from a multivariate normal distribution.

**Usage**

```r
impute_outcome(conditional_parameters, n_imputations = 1, condmean = FALSE)
```

**Arguments**

- **conditional_parameters**: a list with elements `mu` and `sigma` which contain the mean vector and covariance matrix to sample from.
- **n_imputations**: numeric representing the number of random samples from the multivariate normal distribution to be performed. Default is 1.
- **condmean**: should conditional mean imputation be performed (as opposed to random sampling)
invert

Description
Utility function used to replicated purrr::transpose. Turns a list inside out.

Usage
invert(x)

Arguments
x  list

invert_indexes

Description
Takes a list of elements and creates a new list containing 1 entry per unique element value containing
the indexes of which original elements it occurred in.

Usage
invert_indexes(x)

Arguments
x  list of elements to invert and calculate index from (see details).

Details
This functions purpose is best illustrated by an example:
input:
list( c("A", "B", "C"), c("A", "A", "B"))

becomes:
list( "A" = c(1,2,2), "B" = c(1,2), "C" = 1 )
is_absent

Description
Returns true if a value is either NULL, NA or "". In the case of a vector all values must be
NULL/NA/"" for x to be regarded as absent.

Usage
is_absent(x, na = TRUE, blank = TRUE)

Arguments

x a value to check if it is absent or not
na do NAs count as absent
blank do blanks i.e. "" count as absent

is_char_fact

Description
returns true if x is character or factor vector

Usage
is_char_fact(x)

Arguments

x a character or factor vector

is_char_one

Description
returns true if x is a length 1 character vector

Usage
is_char_one(x)

Arguments

x a character vector
is_in_rbmi_development

Is package in development mode?

Description

Returns TRUE if the package is being developed i.e. you have a local copy of the source code which you are actively editing. Returns FALSE otherwise.

Usage

is_in_rbmi_development()

Details

Main use of this function is in parallel processing to indicate whether the sub-processes need to load the current development version of the code or whether they should load the main installed package on the system.

is_num_char_fact

Is character, factor or numeric

Description

returns true if x is a character, numeric or factor vector.

Usage

is_num_char_fact(x)

Arguments

x a character, numeric or factor vector
**locf**  
*Last Observation Carried Forward*

Description

Returns a vector after applied last observation carried forward imputation.

Usage

`locf(x)`

Arguments

- `x`: a vector.

Examples

```r
Not run:
locf(c(NA, 1, 2, 3, NA, 4)) # Returns c(NA, 1, 2, 3, 3, 4)
End(Not run)
```

---

**longDataConstructor**  
*R6 Class for Storing / Accessing & Sampling Longitudinal Data*

Description

A `longdata` object allows for efficient storage and recall of longitudinal datasets for use in bootstrap sampling. The object works by de-constructing the data into lists based upon subject id thus enabling efficient lookup.

Details

The object also handles multiple other operations specific to rbmi such as defining whether an outcome value is MAR / Missing or not as well as tracking which imputation strategy is assigned to each subject. It is recognised that this objects functionality is fairly overloaded and is hoped that this can be split out into more area specific objects / functions in the future. Further additions of functionality to this object should be avoided if possible.
Public fields

- **data** The original dataset passed to the constructor (sorted by id and visit)
- **vars** The vars object (list of key variables) passed to the constructor
- **visits** A character vector containing the distinct visit levels
- **ids** A character vector containing the unique ids of each subject in self$data
- **formula** A formula expressing how the design matrix for the data should be constructed
- **strata** A numeric vector indicating which strata each corresponding value of self$ids belongs to. If no stratification variable is defined this will default to 1 for all subjects (i.e. same group). This field is only used as part of the self$sample_ids() function to enable stratified bootstrap sampling
- **ice_visit_index** A list indexed by subject storing the index number of the first visit affected by the ICE. If there is no ICE then it is set equal to the number of visits plus 1.
- **values** A list indexed by subject storing a numeric vector of the original (unimputed) outcome values
- **group** A list indexed by subject storing a single character indicating which imputation group the subject belongs to as defined by self$data[id, self$ivars$group] It is used to determine what reference group should be used when imputing the subjects data.
- **is_mar** A list indexed by subject storing logical values indicating if the subjects outcome values are MAR or not. This list is defaulted to TRUE for all subjects & outcomes and is then modified by calls to self$set_strategies(). Note that this does not indicate which values are missing, this variable is True for outcome values that either occurred before the ICE visit or are post the ICE visit and have an imputation strategy of MAR
- **strategies** A list indexed by subject storing a single character value indicating the imputation strategy assigned to that subject. This list is defaulted to "MAR" for all subjects and is then modified by calls to either self$set_strategies() or self$update_strategies()
- **strategy_lock** A list indexed by subject storing a single logical value indicating whether a patients imputation strategy is locked or not. If a strategy is locked it means that it can’t change from MAR to non-MAR. Strategies can be changed from non-MAR to MAR though this will trigger a warning. Strategies are locked if the patient is assigned a MAR strategy and has non-missing after their ICE date. This list is populated by a call to self$set_strategies().
- **indexes** A list indexed by subject storing a numeric vector of indexes which specify which rows in the original dataset belong to this subject i.e. to recover the full data for subject "pt3" you can use self$data[self$indexes[["pt3"]],]. This may seem redundant over filtering the data directly however it enables efficient bootstrap sampling of the data i.e.

```r
indexes <- unlist(self$indexes[c("pt3", "pt3")])
self$data[indexes,]
```

This list is populated during the object initialisation.

- **is_missing** A list indexed by subject storing a logical vector indicating whether the corresponding outcome of a subject is missing. This list is populated during the object initialisation.
- **is_post_ice** A list indexed by subject storing a logical vector indicating whether the corresponding outcome of a subject is post the date of their ICE. If no ICE data has been provided this defaults to False for all observations. This list is populated by a call to self$set_strategies()
Methods

Public methods:

• `longDataConstructor$get_data()`
• `longDataConstructor$add_subject()`
• `longDataConstructor$validate_ids()`
• `longDataConstructor$sample_ids()`
• `longDataConstructor$extract_by_id()`
• `longDataConstructor$update_strategies()`
• `longDataConstructor$set_strategies()`
• `longDataConstructor$check_has_data_at_each_visit()`
• `longDataConstructor$set_strata()`
• `longDataConstructor$new()`
• `longDataConstructor$clone()`

Method `get_data()`: Returns a data.frame based upon required subject IDs. Replaces missing values with new ones if provided.

Usage:
`longDataConstructor$get_data(`
  `obj = NULL,`
  `nmar.rm = FALSE,`
  `na.rm = FALSE,`
  `idmap = FALSE`
`)`

Arguments:
- `obj` Either `NULL`, a character vector of subjects IDs or a imputation list object. See details.
- `nmar.rm` Logical value. If `TRUE` will remove observations that are not regarded as MAR (as determined from `self$is_mar`).
- `na.rm` Logical value. If `TRUE` will remove outcome values that are missing (as determined from `self$is_missing`).
- `idmap` Logical value. If `TRUE` will add an attribute `idmap` which contains a mapping from the new subject ids to the old subject ids. See details.

Details: If `obj` is `NULL` then the full original dataset is returned.
If `obj` is a character vector then a new dataset consisting of just those subjects is returned; if the character vector contains duplicate entries then that subject will be returned multiple times.
If `obj` is an `imputation_df` object (as created by `imputation_df()`) then the subject ids specified in the object will be returned and missing values will be filled in by those specified in the imputation list object. i.e.

```
obj <- imputation_df(`
 imputation_single(id = "pt1", values = c(1,2,3)),
 imputation_single(id = "pt1", values = c(4,5,6)),
 imputation_single(id = "pt3", values = c(7,8))
`)
```

`longDataConstructor$set_strata()`

```
Will return a data.frame consisting of all observations for pt1 twice and all of the observations for pt3 once. The first set of observations for pt1 will have missing values filled in with c(1,2,3) and the second set will be filled in by c(4,5,6). The length of the values must be equal to sum(self$is_missing[[id]]).

If obj is not NULL then all subject IDs will be scrambled in order to ensure that they are unique i.e. If the pt2 is requested twice then this process guarantees that each set of observations be have a unique subject ID number. The idmap attribute (if requested) can be used to map from the new ids back to the old ids.

Returns: A data.frame.

Method `add_subject()`: This function decomposes a patient data from self$data and populates all the corresponding lists i.e. self$is_missing, self$values, self$group, etc. This function is only called upon the objects initialization.

Usage:

```r
longDataConstructor$add_subject(id)
```

Arguments:

- `id` Character subject id that exists within self$data.

Method `validate_ids()`: Throws an error if any element of ids is not within the source data self$data.

Usage:

```r
longDataConstructor$validate_ids(ids)
```

Arguments:

- `ids` A character vector of ids.

Returns: TRUE

Method `sample_ids()`: Performs random stratified sampling of patient ids (with replacement) Each patient has an equal weight of being picked within their strata (i.e is not dependent on how many non-missing visits they had).

Usage:

```r
longDataConstructor$sample_ids()
```

Returns: Character vector of ids.

Method `extract_by_id()`: Returns a list of key information for a given subject. Is a convenience wrapper to save having to manually grab each element.

Usage:

```r
longDataConstructor$extract_by_id(id)
```

Arguments:

- `id` Character subject id that exists within self$data.

Method `update_strategies()`: Convenience function to run self$set_strategies(dat_ice, update=TRUE) kept for legacy reasons.

Usage:

```r
longDataConstructor$update_strategies(dat_ice)
```
Arguments:

dat_ice A data.frame containing ICE information see `impute()` for the format of this dataframe.

Method `set_strategies()`: Updates the `self$strategies, self$is_mar, self$is_post_ice` variables based upon the provided ICE information.

Usage:

`longDataConstructor$set_strategies(dat_ice = NULL, update = FALSE)`

Arguments:

dat_ice a data.frame containing ICE information. See details.
update Logical, indicates that the ICE data should be used as an update. See details.

Details: See `draws()` for the specification of `dat_ice` if `update=FALSE`. See `impute()` for the format of `dat_ice` if `update=TRUE`. If `update=TRUE` this function ensures that MAR strategies cannot be changed to non-MAR in the presence of post-ICE observations.

Method `check_has_data_at_each_visit()`: Ensures that all visits have at least 1 observed "MAR" observation. Throws an error if this criteria is not met. This is to ensure that the initial MMRM can be resolved.

Usage:

`longDataConstructor$check_has_data_at_each_visit()`

Method `set_strata()`: Populates the `self$strata` variable. If the user has specified stratification variables The first visit is used to determine the value of those variables. If no stratification variables have been specified then everyone is defined as being in strata 1.

Usage:

`longDataConstructor$set_strata()`

Method `new()`: Constructor function.

Usage:

`longDataConstructor$new(data, vars)`

Arguments:

data longitudinal dataset.
vars an ivars object created by `set_vars()`.

Method `clone()`: The objects of this class are cloneable with this method.

Usage:

`longDataConstructor$clone(deep = FALSE)`

Arguments:

deep Whether to make a deep clone.
lsmeans

Least Square Means

Description

Estimates the least square means from a linear model. This is done by generating a prediction from the model using an hypothetical observation that is constructed by averaging the data. See details for more information.

Usage

```r
lsmeans(model, ..., .weights = c("proportional", "equal"))
```

Arguments

- **model**: A model created by `lm`.
- **...**: Fixes specific variables to specific values i.e. `trt = 1` or `age = 50`. The name of the argument must be the name of the variable within the dataset.
- **.weights**: Character, specifies whether to use "proportional" or "equal" weighting for each categorical covariate combination when calculating the lsmeans.

Details

The lsmeans are obtained by calculating hypothetical patients and predicting their expected values. These hypothetical patients are constructed by expanding out all possible combinations of each categorical covariate and by setting any numerical covariates equal to the mean.

A final lsmean value is calculating by averaging these hypothetical patients. If `.weights` equals "proportional" then the values are weighted by the frequency in which they occur in the full dataset. If `.weights` equals "equal" then each hypothetical patient is given an equal weight regardless of what actually occurs in the dataset.

Use the ... argument to fix specific variables to specific values.

See the references for identical implementations as done in SAS and in R via the emmeans package. This function attempts to re-implement the emmeans derivation for standard linear models but without having to include all of it’s dependencies.

References

- https://CRAN.R-project.org/package=emmeans
Examples

```r
## Not run:
mod <- lm(Sepal.Length ~ Species + Petal.Length, data = iris)
lsmeans(mod)
lsmeans(mod, Species = "virginica")
lsmeans(mod, Species = "versicolor")
lsmeans(mod, Species = "versicolor", Petal.Length = 1)
## End(Not run)
```

ls设计

Calculate design vector for the lsmeans

Description

Calculates the design vector as required to generate the lsmean and standard error. `ls_design_equal` calculates it by applying an equal weight per covariate combination whilst `ls_design_proportional` applies weighting proportional to the frequency in which the covariate combination occurred in the actual dataset.

Usage

```r
ls_design_equal(data, frm, covars, fix)
ls_design_proportional(data, frm, covars, fix)
```

Arguments

- **data**: A data.frame
- **frm**: Formula used to fit the original model
- **covars**: A character vector of variables names that exist in `data` which should be extracted (`ls_design_equal` only)
- **fix**: A named list of variables with fixed values

Description

These functions determine what methods `rbmi` should use when creating the imputation models, generating imputed values and pooling the results.
Usage

method_bayes(
 burn_in = 200,
 burn_between = 50,
 same_cov = TRUE,
 n_samples = 20,
 seed = sample.int(.Machine$integer.max, 1)
)

method_approxbayes(
 covariance = c("us", "toep", "cs", "ar1"),
 threshold = 0.01,
 same_cov = TRUE,
 REML = TRUE,
 n_samples = 20
)

method_condmean(
 covariance = c("us", "toep", "cs", "ar1"),
 threshold = 0.01,
 same_cov = TRUE,
 REML = TRUE,
 n_samples = NULL,
 type = c("bootstrap", "jackknife")
)

method_bmlmi(
 covariance = c("us", "toep", "cs", "ar1"),
 threshold = 0.01,
 same_cov = TRUE,
 REML = TRUE,
 B = 20,
 D = 2
)

Arguments

burn_in a numeric that specifies how many observations should be discarded prior to extracting actual samples. Note that the sampler is initialized at the maximum likelihood estimates and a weakly informative prior is used thus in theory this value should not need to be that high.

burn_between a numeric that specifies the "thinning" rate i.e. how many observations should be discarded between each sample. This is used to prevent issues associated with autocorrelation between the samples.

same_cov a logical, if TRUE the imputation model will be fitted using a single shared covariance matrix for all observations. If FALSE a separate covariance matrix will be fit for each group as determined by the group argument of set_vars().
n_samples a numeric that determines how many imputed datasets are generated. In the case of \texttt{method.condmean(type = "jackknife")} this argument must be set to \texttt{NULL}. See details.

seed a numeric that specifies the seed to be used in the call to Stan. This argument is passed onto the seed argument of \texttt{rstan::sampling()}. Note that this is only required for \texttt{method.bayes()}, for all other methods you can achieve reproducible results by setting the seed via \texttt{set.seed()}. See details.

covariance a character string that specifies the structure of the covariance matrix to be used in the imputation model. Must be one of "us" (default), "toep", "cs" or "ar1". See details.

threshold a numeric between 0 and 1, specifies the proportion of bootstrap datasets that can fail to produce valid samples before an error is thrown. See details.

REML a logical indicating whether to use REML estimation rather than maximum likelihood.

type a character string that specifies the resampling method used to perform inference when a conditional mean imputation approach (set via \texttt{method.condmean()}) is used. Must be one of "bootstrap" or "jackknife".

B a numeric that determines the number of bootstrap samples for \texttt{method.bmlmi()}. Needed for \texttt{method.bmlmi()}.

D a numeric that determines the number of random imputations for each bootstrap sample.

Details

In the case of \texttt{method.condmean(type = "bootstrap")} there will be \texttt{n_samples + 1} imputation models and datasets generated as the first sample will be based on the original dataset whilst the other \texttt{n_samples} samples will be bootstrapped datasets. Likewise, for \texttt{method.condmean(type = "jackknife")} there will be \texttt{length(unique(data$subjid)) + 1} imputation models and datasets generated. In both cases this is represented by \texttt{n + 1} being displayed in the print message.

The user is able to specify different covariance structures using the the \texttt{covariance} argument. Currently supported structures include:

- Unstructured ("us")
- Toeplitz ("toep")
- Compound Symmetry ("cs")
- Autoregression-1 ("ar1")

Note that at present Bayesian methods only support unstructured.

In the case of \texttt{method.condmean(type = "bootstrap"), method.approxbayes()} and \texttt{method.bmlmi()} repeated bootstrap samples of the original dataset are taken with an MMRM fitted to each sample. Due to the randomness of these sampled datasets, as well as limitations in the optimisers used to fit the models, it is not uncommon that estimates for a particular dataset can’t be generated. In these instances \texttt{rbmi} is designed to throw out that bootstrapped dataset and try again with another. However to ensure that these errors are due to chance and not due to some underlying misspecification in the data and/or model a tolerance limit is set on how many samples can be discarded. Once the tolerance limit has been reached an error will be thrown and the process aborted. The tolerance limit is defined as \texttt{ceiling(threshold * n_samples)}. Note that for the jackknife method estimates need
to be generated for all leave-one-out datasets and as such an error will be thrown if any of them fail to fit.

Please note that at the time of writing (September 2021) Stan is unable to produce reproducible samples across different operating systems even when the same seed is used. As such care must be taken when using Stan across different machines. For more information on this limitation please consult the Stan documentation https://mc-stan.org/docs/2_27/reference-manual/reproducibility-chapter.html

parametric_ci

Calculate parametric confidence intervals

Description

Calculates confidence intervals based upon a parametric distribution.

Usage

```r
parametric_ci(point, se, alpha, alternative, qfun, pfun, ...)
```

Arguments

- `point` The point estimate.
- `se` The standard error of the point estimate. If using a non-"normal" distribution this should be set to 1.
- `alpha` The type 1 error rate, should be a value between 0 and 1.
- `alternative` a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".
- `qfun` The quantile function for the assumed distribution i.e. `qnorm`.
- `pfun` The CDF function for the assumed distribution i.e. `pnorm`.
- `...` additional arguments passed on `qfun` and `pfun` i.e. `df = 102`.

pool

Pool analysis results obtained from the imputed datasets

Description

Pool analysis results obtained from the imputed datasets
Usage

```r
pool(
    results,
    conf.level = 0.95,
    alternative = c("two.sided", "less", "greater"),
    type = c("percentile", "normal")
)
```

S3 method for class 'pool'

```r
as.data.frame(x, ...)
```

S3 method for class 'pool'

```r
print(x, ...)
```

Arguments

- `results`: an analysis object created by `analyse()`.
- `conf.level`: confidence level of the returned confidence interval. Must be a single number between 0 and 1. Default is 0.95.
- `alternative`: a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".
- `type`: a character string of either "percentile" (default) or "normal". Determines what method should be used to calculate the bootstrap confidence intervals. See details. Only used if `method_condmean(type = "bootstrap")` was specified in the original call to `draws()`.
- `x`: a `pool` object generated by `pool()`.
- `...`: not used.

Details

The calculation used to generate the point estimate, standard errors and confidence interval depends upon the method specified in the original call to `draws()`: In particular:

- `method_approxbayes()` & `method_bayes()` both use Rubin’s rules to pool estimates and variances across multiple imputed datasets, and the Barnard-Rubin rule to pool degree’s of freedom; see Little & Rubin (2002).
- `method_condmean(type = "bootstrap")` uses percentile or normal approximation; see Efron & Tibshirani (1994). Note that for the percentile bootstrap, no standard error is calculated, i.e. the standard errors will be NA in the object / `data.frame`.
- `method_condmean(type = "jackknife")` uses the standard jackknife variance formula; see Efron & Tibshirani (1994).
References

pool_bootstrap_normal
Bootstrap Pooling via normal approximation

Description

Get point estimate, confidence interval and p-value using the normal approximation.

Usage

```
pool_bootstrap_normal(est, conf.level, alternative)
```

Arguments

- `est`
a numeric vector of point estimates from each bootstrap sample.
- `conf.level`
confidence level of the returned confidence interval. Must be a single number between 0 and 1. Default is 0.95.
- `alternative`
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

Details

The point estimate is taken to be the first element of `est`. The remaining n-1 values of `est` are then used to generate the confidence intervals.

pool_bootstrap_percentile
Bootstrap Pooling via Percentiles

Description

Get point estimate, confidence interval and p-value using percentiles. Note that quantile "type=6" is used, see `stats::quantile()` for details.

Usage

```
pool_bootstrap_percentile(est, conf.level, alternative)
```

Arguments

est a numeric vector of point estimates from each bootstrap sample.
conf.level confidence level of the returned confidence interval. Must be a single number between 0 and 1. Default is 0.95.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

Details

The point estimate is taken to be the first element of est. The remaining n-1 values of est are then used to generate the confidence intervals.

Description

Dispatches pool methods based upon results object class. See pool() for details.

Usage

pool_internal(results, conf.level, alternative, type, D)

S3 method for class 'jackknife'
pool_internal(results, conf.level, alternative, type, D)

S3 method for class 'bootstrap'
pool_internal(
 results,
 conf.level,
 alternative,
 type = c("percentile", "normal"),
 D
)

S3 method for class 'bmlmi'
pool_internal(results, conf.level, alternative, type, D)

S3 method for class 'rubin'
pool_internal(results, conf.level, alternative, type, D)

Arguments

results a list of results i.e. the x$results element of an analyse object created by analyse()).
conf.level confidence level of the returned confidence interval. Must be a single number between 0 and 1. Default is 0.95.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

type a character string of either "percentile" (default) or "normal". Determines what method should be used to calculate the bootstrap confidence intervals. See details. Only used if method_condmean(type = "bootstrap") was specified in the original call to draws().

D numeric representing the number of imputations between each bootstrap sample in the BMLMI method.

prepare_stan_data
Prepare input data to run the Stan model

Description

Prepare input data to run the Stan model. Creates / calculates all the required inputs as required by the `data{}` block of the MMRM Stan program.

Usage

```r
prepare_stan_data(ddat, subjid, visit, outcome, group)
```

Arguments

- **ddat** A design matrix
- **subjid** Character vector containing the subjects IDs.
- **visit** Vector containing the visits.
- **outcome** Numeric vector containing the outcome variable.
- **group** Vector containing the group variable.

Details

- The `group` argument determines which covariance matrix group the subject belongs to. If you want all subjects to use a shared covariance matrix then set `group` to "1" for everyone.

Value

A `stan_data` object. A named list as per `data{}` block of the related Stan file. In particular it returns:

- **N** - The number of rows in the design matrix
- **P** - The number of columns in the design matrix
- **G** - The number of distinct covariance matrix groups (i.e. `length(unique(group))`)
- **n_visit** - The number of unique outcome visits
• n_pat - The total number of pattern groups (as defined by missingness patterns & covariance group)
• pat_G - Index for which Sigma each pattern group should use
• pat_n_pt - number of patients within each pattern group
• pat_n_visit - number of non-missing visits in each pattern group
• pat_sigma_index - rows/cols from Sigma to subset on for the pattern group (padded by 0’s)
• y - The outcome variable
• Q - design matrix (after QR decomposition)
• R - R matrix from the QR decomposition of the design matrix

print.analysis *Print analysis object*

Description

Print analysis object

Usage

```r
## S3 method for class 'analysis'
print(x, ...)
```

Arguments

- **x**
 An analysis object generated by `analyse()`.
- **...**
 Not used.

print.draws *Print draws object*

Description

Print draws object

Usage

```r
## S3 method for class 'draws'
print(x, ...)
```

Arguments

- **x**
 A draws object generated by `draws()`.
- **...**
 not used.
print.imputation

Print imputation object

Description

Print imputation object

Usage

```r
## S3 method for class 'imputation'
print(x, ...)
```

Arguments

- `x`: An imputation object generated by `impute()`.
- `...`: Not used.

progressLogger

R6 Class for printing current sampling progress

Description

Object is initialised with total number of iterations that are expected to occur. User can then update the object with the `add` method to indicate how many more iterations have just occurred. Every time `step * 100 %` of iterations have occurred a message is printed to the console. Use the `quiet` argument to prevent the object from printing anything at all.

Public fields

- `step` real, percentage of iterations to allow before printing the progress to the console
- `step_current` integer, the total number of iterations completed since progress was last printed to the console
- `n` integer, the current number of completed iterations
- `n_max` integer, total number of expected iterations to be completed acts as the denominator for calculating progress percentages
- `quiet` logical holds whether or not to print anything
Methods

Public methods:

• `progressLogger$new()`
• `progressLogger$add()`
• `progressLogger$print_progress()`
• `progressLogger$clone()`

Method `new()`: Create `progressLogger` object

Usage:
```
progressLogger$new(n_max, quiet = FALSE, step = 0.1)
```

Arguments:
- `n_max` integer, sets field `n_max`
- `quiet` logical, sets field `quiet`
- `step` real, sets field `step`

Method `add()`: Records that `n` more iterations have been completed this will add that number to the current step count (`step_current`) and will print a progress message to the log if the step limit (`step`) has been reached. This function will do nothing if `quiet` has been set to `TRUE`

Usage:
```
progressLogger$add(n)
```

Arguments:
- `n` the number of successfully complete iterations since `add()` was last called

Method `print_progress()`: method to print the current state of progress

Usage:
```
progressLogger$print_progress()
```

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
```
progressLogger$clone(deep = FALSE)
```

Arguments:
- `deep` Whether to make a deep clone.

<table>
<thead>
<tr>
<th><code>pval_percentile</code></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P-value of percentile bootstrap</td>
<td></td>
</tr>
</tbody>
</table>

Description

Determines the (not necessarily unique) quantile (type=6) of "est" which gives a value of 0. From this, derive the p-value corresponding to the percentile bootstrap via inversion.
Usage
pval_percentile(est)

Arguments
est a numeric vector of point estimates from each bootstrap sample.

Details
The p-value for $H_0: \theta=0$ vs $H_A: \theta>0$ is the value α for which $q_\alpha = 0$. If there is at least one estimate equal to zero it returns the largest α such that $q_\alpha = 0$. If all bootstrap estimates are > 0 it returns 0; if all bootstrap estimates are < 0 it returns 1. Analogous reasoning is applied for the p-value for $H_0: \theta=0$ vs $H_A: \theta<0$.

Value
A named numeric vector of length 2 containing the p-value for $H_0: \theta=0$ vs $H_A: \theta>0$ ("pval_greater") and the p-value for $H_0: \theta=0$ vs $H_A: \theta<0$ ("pval_less").

QR_decomp QR decomposition

Description
QR decomposition as defined in the Stan user's guide (section 1.2).

Usage
QR_decomp(mat)

Arguments
mat A matrix to perform the QR decomposition on.

random_effects_expr Construct random effects formula

Description
Constructs a character representation of the random effects formula for fitting a MMRM for subject by visit in the format required for mmrm::mmrm().
Usage

random_effects_expr(
 cov_struct = c("us", "toep", "cs", "ar1"),
 cov_by_group = FALSE
)

Arguments

cov_struct Character - The covariance structure to be used, must be one of "us", "toep", "cs", "ar1"
cov_by_group Boolean - Whenever or not to use separate covariances per each group level

Details

For example assuming the user specified a covariance structure of "us" and that no groups were provided this will return

us(visit | subjid)

If cov_by_group is set to FALSE then this indicates that separate covariance matrices are required per group and as such the following will be returned:

us(visit | group / subjid)

record Capture all Output

Description

This function silences all warnings, errors & messages and instead returns a list containing the results (if it didn’t error) + the warning and error messages as character vectors.

Usage

record(expr)

Arguments

expr An expression to be executed

Value

A list containing

- **results** - The object returned by expr or list() if an error was thrown
- **warnings** - NULL or a character vector if warnings were thrown
- **errors** - NULL or a string if an error was thrown
- **messages** - NULL or a character vector if messages were produced
Examples

```r
## Not run:
record({
  x <- 1
  y <- 2
  warning("something went wrong")
  message("O nearly done")
  x + y
})

## End(Not run)
```

recursiveReduce

Description

Utility function used to replicated `purrr::reduce`. Recursively applies a function to a list of elements until only 1 element remains

Usage

```r
recursiveReduce(.l, .f)
```

Arguments

- `.l` list of values to apply a function to
- `.f` function to apply to each each element of the list in turn i.e. `.l[[1]] <- .f(.l[[1]], .l[[2]])`; `.l[[1]] <- .f(.l[[1]], .l[[3]])`

remove_if_all_missing

Description

This function takes a `data.frame` with variables `visit`, `outcome` & `subjid`. It then removes all rows for a given `subjid` if they don’t have any non-missing values for `outcome`.

Usage

```r
remove_if_all_missing(dat)
```

Arguments

- `dat` a `data.frame`
rubin_df

Barnard and Rubin degrees of freedom adjustment

Description

Compute degrees of freedom according to the Barnard-Rubin formula.

Usage

\[
\text{rubin_df}(v_{\text{com}}, \text{var}_b, \text{var}_t, M)
\]

Arguments

- **v_com**: Positive number representing the degrees of freedom in the complete-data analysis.
- **var_b**: Between-variance of point estimate across multiply imputed datasets.
- **var_t**: Total-variance of point estimate according to Rubin’s rules.
- **M**: Number of imputations.

Details

The computation takes into account limit cases where there is no missing data (i.e. the between-variance var_b is zero) or where the complete-data degrees of freedom is set to \(\text{Inf}\). Moreover, if v_com is given as \(\text{NA}\), the function returns \(\text{Inf}\).

Value

Degrees of freedom according to Barnard-Rubin formula. See Barnard-Rubin (1999).

References

rubin_rules

Combine estimates using Rubin’s rules

Description

Pool together the results from \(M\) complete-data analyses according to Rubin’s rules. See details.

Usage

\[
\text{rubin_rules}(\text{ests}, \text{ses}, v_{\text{com}})
\]
Arguments

ests Numeric vector containing the point estimates from the complete-data analyses.

ses Numeric vector containing the standard errors from the complete-data analyses.

v_com Positive number representing the degrees of freedom in the complete-data analysis.

Details

rubin_rules applies Rubin’s rules (Rubin, 1987) for pooling together the results from a multiple imputation procedure. The pooled point estimate est_point is the average across the point estimates from the complete-data analyses (given by the input argument ests). The total variance var_t is the sum of two terms representing the within-variance and the between-variance (see Little-Rubin (2002)). The function also returns df, the estimated pooled degrees of freedom according to Barnard-Rubin (1999) that can be used for inference based on the t-distribution.

Value

A list containing:

- est_point: the pooled point estimate according to Little-Rubin (2002).
- var_t: total variance according to Little-Rubin (2002).
- df: degrees of freedom according to Barnard-Rubin (1999).

References

See Also

rubin_df() for the degrees of freedom estimation.

sample_ids Sample Patient Ids

Description

Performs a stratified bootstrap sample of IDS ensuring the return vector is the same length as the input vector

Usage

sample_ids(ids, strata = rep(1, length(ids)))
Arguments

ids vector to sample from
strata strata indicator, ids are sampled within each strata ensuring that the numbers of each strata are maintained

Examples

```r
## Not run:
sample_ids( c("a", "b", "c", "d"), strata = c(1,1,2,2))
## End(Not run)
```

sample_list
Create and validate a sample_list object

Description

Given a list of sample_single objects generate by `sample_single()`, creates a sample_list objects and validate it.

Usage

```r
sample_list(...)  
```

Arguments

... A list of sample_single objects.

sample_mvnorm
Sample random values from the multivariate normal distribution

Description

Sample random values from the multivariate normal distribution

Usage

```r
sample_mvnorm(mu, sigma)  
```

Arguments

mu mean vector
sigma covariance matrix

Samples multivariate normal variables by multiplying univariate random normal variables by the cholesky decomposition of the covariance matrix. If mu is length 1 then just uses rnorm instead.
sample_single

Create object of sample_single class

Description

Creates an object of class sample_single which is a named list containing the input parameters and validate them.

Usage

```r
sample_single(
  ids,
  beta = NA,
  sigma = NA,
  theta = NA,
  failed = any(is.na(beta)),
  ids_samp = ids
)
```

Arguments

- `ids` Vector of characters containing the ids of the subjects included in the original dataset.
- `beta` Numeric vector of estimated regression coefficients.
- `sigma` List of estimated covariance matrices (one for each level of `vars$group`).
- `theta` Numeric vector of transformed covariances.
- `failed` Logical. TRUE if the model fit failed.
- `ids_samp` Vector of characters containing the ids of the subjects included in the given sample.

Value

A named list of class sample_single. It contains the following:

- `ids` vector of characters containing the ids of the subjects included in the original dataset.
- `beta` numeric vector of estimated regression coefficients.
- `sigma` list of estimated covariance matrices (one for each level of `vars$group`).
- `theta` numeric vector of transformed covariances.
- `failed` logical. TRUE if the model fit failed.
- `ids_samp` vector of characters containing the ids of the subjects included in the given sample.
 scalerConstructor

R6 Class for scaling (and un-scaling) design matrices

Description

Scales a design matrix so that all non-categorical columns have a mean of 0 and an standard deviation of 1.

Details

The object initialisation is used to determine the relevant mean and SD’s to scale by and then the scaling (and un-scaling) itself is performed by the relevant object methods.

Un-scaling is done on linear model Beta and Sigma coefficients. For this purpose the first column on the dataset to be scaled is assumed to be the outcome variable with all other variables assumed to be post-transformation predictor variables (i.e. all dummy variables have already been expanded).

Public fields

- centre Vector of column means. The first value is the outcome variable, all other variables are the predictors.
- scales Vector of column standard deviations. The first value is the outcome variable, all other variables are the predictors.

Methods

Public methods:

- scalerConstructor$new()
- scalerConstructor$scale()
- scalerConstructor$unscale_sigma()
- scalerConstructor$unscale_beta()
- scalerConstructor$clone()

Method new(): Uses dat to determine the relevant column means and standard deviations to use when scaling and un-scaling future datasets. Implicitly assumes that new datasets have the same column order as dat.

Usage:

scalerConstructor$new(dat)

Arguments:

dat A data.frame or matrix. All columns must be numeric (i.e dummy variables, must have already been expanded out).

Details: Categorical columns (as determined by those who’s values are entirely 1 or 0) will not be scaled. This is achieved by setting the corresponding values of centre to 0 and scale to 1.

Method scale(): Scales a dataset so that all continuous variables have a mean of 0 and a standard deviation of 1.
Usage:
scalerConstructor$scale(dat)

Arguments:
dat A data.frame or matrix whose columns are all numeric (i.e. dummy variables have all been expanded out) and whose columns are in the same order as the dataset used in the initialization function.

Method unscale_sigma(): Unscales a sigma value (or matrix) as estimated by a linear model using a design matrix scaled by this object. This function only works if the first column of the initialization data.frame was the outcome variable.

Usage:
scalerConstructor$unscale_sigma(sigma)

Arguments:
sigma A numeric value or matrix.

Returns: A numeric value or matrix

Method unscale_beta(): Unscales a beta value (or vector) as estimated by a linear model using a design matrix scaled by this object. This function only works if the first column of the initialization data.frame was the outcome variable.

Usage:
scalerConstructor$unscale_beta(beta)

Arguments:
beta A numeric vector of beta coefficients as estimated from a linear model.

Returns: A numeric vector.

Method clone(): The objects of this class are cloneable with this method.

Usage:
scalerConstructor$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

set_simul_pars
Set simulation parameters of a study group.

Description

This function provides input arguments for each study group needed to simulate data with `simulate_data()`. `simulate_data()` generates data for a two-arms clinical trial with longitudinal continuous outcomes and two intercurrent events (ICEs). ICE1 may be thought of as a discontinuation from study treatment due to study drug or condition related (SDCR) reasons. ICE2 may be thought of as discontinuation from study treatment due to uninformative study drop-out, i.e. due to not study drug or condition related (NSDRC) reasons and outcome data after ICE2 is always missing.
Usage

set_simul_pars(
 mu,
 sigma,
 n,
 prob_ice1 = 0,
 or_outcome_ice1 = 1,
 prob_post_ice1_dropout = 0,
 prob_ice2 = 0,
 prob_miss = 0
)

Arguments

mu Numeric vector describing the mean outcome trajectory at each visit (including baseline) assuming no ICEs.
sigma Covariance matrix of the outcome trajectory assuming no ICEs.
n Number of subjects belonging to the group.
prob_ice1 Numeric vector that specifies the probability of experiencing ICE1 (discontinuation from study treatment due to SDCR reasons) after each visit for a subject with observed outcome at that visit equal to the mean at baseline (mu[1]). If a single numeric is provided, then the same probability is applied to each visit.

or_outcome_ice1 Numeric value that specifies the odds ratio of experiencing ICE1 after each visit corresponding to a +1 higher value of the observed outcome at that visit.

prob_post_ice1_dropout Numeric value that specifies the probability of study drop-out following ICE1. If a subject is simulated to drop-out after ICE1, all outcomes after ICE1 are set to missing.

prob_ice2 Numeric that specifies an additional probability that a post-baseline visit is affected by study drop-out. Outcome data at the subject’s first simulated visit affected by study drop-out and all subsequent visits are set to missing. This generates a second intercurrent event ICE2, which may be thought as treatment discontinuation due to NSDRC reasons with subsequent drop-out. If for a subject, both ICE1 and ICE2 are simulated to occur, then it is assumed that only the earlier of them counts. In case both ICEs are simulated to occur at the same time, it is assumed that ICE1 counts. This means that a single subject can experience either ICE1 or ICE2, but not both of them.

prob_miss Numeric value that specifies an additional probability for a given post-baseline observation to be missing. This can be used to produce "intermittent" missing values which are not associated with any ICE.

Details

For the details, please see simulate_data().
set_vars

Value

A `simul_pars` object which is a named list containing the simulation parameters.

See Also

`simulate_data()`

Description

This function is used to define the names of key variables within the `data.frame`'s that are provided as input arguments to `draws()` and `ancova()`.

Usage

```r
set_vars(
  subjid = "subjid",
  visit = "visit",
  outcome = "outcome",
  group = "group",
  covariates = character(0),
  strata = group,
  strategy = "strategy"
)
```

Arguments

- **subjid**: The name of the "Subject ID" variable. A length 1 character vector.
- **visit**: The name of the "Visit" variable. A length 1 character vector.
- **outcome**: The name of the "Outcome" variable. A length 1 character vector.
- **group**: The name of the "Group" variable. A length 1 character vector.
- **covariates**: The name of any covariates to be used in the context of modeling. See details.
- **strata**: The name of any stratification variable to be used in the context of bootstrap sampling. See details.
- **strategy**: The name of the "strategy" variable. A length 1 character vector.

Details

In both `draws()` and `ancova()` the `covariates` argument can be specified to indicate which variables should be included in the imputation and analysis models respectively. If you wish to include interaction terms these need to be manually specified i.e. `covariates = c("group*visit", "age*sex")`. Please note that the use of the `I()` function to inhibit the interpretation/conversion of objects is not supported.
Currently strata is only used by `draws()` in combination with `method_condmean(type = "bootstrap")` and `method_approxbayes()` in order to allow for the specification of stratified bootstrap sampling. By default strata is set equal to the value of `group` as it is assumed most users will want to preserve the group size between samples. See `draws()` for more details.

Likewise, currently the strategy argument is only used by `draws()` to specify the name of the strategy variable within the `data_ice` data.frame. See `draws()` for more details.

See Also

`draws()`
`ancova()`

Examples

```r
## Not run:

# Using CDISC variable names as an example
set_vars(
  subjid = "usubjid",
  visit = "avist",
  outcome = "aval",
  group = "arm",
  covariates = c("bwt", "bht", "arm * avist"),
  strategy = "strat"
)

## End(Not run)
```

Description

Generate data for a two-arms clinical trial with longitudinal continuous outcome and two intercurrent events (ICEs). ICE1 may be thought of as a discontinuation from study treatment due to study drug or condition related (SDCR) reasons. ICE2 may be thought of as discontinuation from study treatment due to uninformative study drop-out, i.e. due to not study drug or condition related (NSDRC) reasons and outcome data after ICE2 is always missing.

Usage

```r
simulate_data(pars_c, pars_t, post_ice1_traj, strategies = getStrategies())
```
Arguments

- **pars_c**
 A `simul_pars` object as generated by `set_simul_pars()`. It specifies the simulation parameters of the control arm.

- **pars_t**
 A `simul_pars` object as generated by `set_simul_pars()`. It specifies the simulation parameters of the treatment arm.

- **post_ice1_traj**
 A string which specifies how observed outcomes occurring after ICE1 are simulated. Must target a function included in `strategies`. Possible choices are: Missing At Random "MAR", Jump to Reference "JR", Copy Reference "CR", Copy Increments in Reference "CIR", Last Mean Carried Forward "LMCF". User-defined strategies could also be added. See `getStrategies()` for details.

- **strategies**
 A named list of functions. Default equal to `getStrategies()`. See `getStrategies()` for details.

Details

The data generation works as follows:

- Generate outcome data for all visits (including baseline) from a multivariate normal distribution with parameters `pars_c$mu` and `pars_c$sigma` for the control arm and parameters `pars_t$mu` and `pars_t$sigma` for the treatment arm, respectively. Note that for a randomized trial, outcomes have the same distribution at baseline in both treatment groups, i.e. one should set `pars_c$mu[1]=pars_t$mu[1]` and `pars_c$sigma[1,1]=pars_t$sigma[1,1]`.

- Simulate whether ICE1 (study treatment discontinuation due to SDCR reasons) occurs after each visit according to parameters `pars_c$prob_ice1` and `pars_c$or_outcome_ice1` for the control arm and `pars_t$prob_ice1` and `pars_t$or_outcome_ice1` for the treatment arm, respectively.

- Simulate drop-out following ICE1 according to `pars_c$prob_post_ice1_dropout` and `pars_t$prob_post_ice1_dropout`.

- Simulate an additional uninformative study drop-out with probabilities `pars_c$prob_ice2` and `pars_t$prob_ice2` at each visit. This generates a second intercurrent event ICE2, which may be thought as treatment discontinuation due to NSDRC reasons with subsequent drop-out. The simulated time of drop-out is the subject’s first visit which is affected by drop-out and data from this visit and all subsequent visits are consequently set to missing. If for a subject, both ICE1 and ICE2 are simulated to occur, then it is assumed that only the earlier of them counts. In case both ICEs are simulated to occur at the same time, it is assumed that ICE1 counts. This means that a single subject can experience either ICE1 or ICE2, but not both of them.

- Adjust trajectories after ICE1 according to the given assumption expressed with the `post_ice1_traj` argument. Note that only post-ICE1 outcomes in the intervention arm can be adjusted. Post-ICE1 outcomes from the control arm are not adjusted.

- Simulate additional intermittent missing outcome data as per arguments `pars_c$prob_miss` and `pars_t$prob_miss`.

The probability of the ICE after each visit is modeled according to the following logistic regression model:

\[\sim 1 + I(visit = 0) + \ldots + I(visit = n_visits - 1) + I((x - alpha)) \]

- \(n_visits \) is the number of visits (including baseline).
alpha is the baseline outcome mean. The term \(I((x-\alpha))\) specifies the dependency of the probability of the ICE on the current outcome value. The corresponding regression coefficients of the logistic model are defined as follows: The intercept is set to 0, the coefficients corresponding to discontinuation after each visit for a subject with outcome equal to the mean at baseline are set according to parameters \(\text{pars}_c\$\text{prob}_{\text{ice}1}\) (\(\text{pars}_t\$\text{prob}_{\text{ice}1}\)), and the regression coefficient associated with the covariate \(I((x-\alpha))\) is set to \(\log(\text{pars}_c\$\text{or}_{\text{outcome}_{\text{ice}1}})\) (\(\log(\text{pars}_t\$\text{or}_{\text{outcome}_{\text{ice}1}})\)).

Please note that the baseline outcome cannot be missing nor be affected by any ICEs.

Value

A `data.frame` containing the simulated data. It includes the following variables:

- `id`: Factor variable that specifies the id of each subject.
- `visit`: Factor variable that specifies the visit of each assessment. Visit 0 denotes the baseline visit.
- `group`: Factor variable that specifies which treatment group each subject belongs to.
- `outcome_bl`: Numeric variable that specifies the baseline outcome.
- `outcome_noICE`: Numeric variable that specifies the longitudinal outcome assuming no ICEs.
- `ind_ice1`: Binary variable that takes value 1 if the corresponding visit is affected by ICE1 and 0 otherwise.
- `dropout_ice1`: Binary variable that takes value 1 if the corresponding visit is affected by the drop-out following ICE1 and 0 otherwise.
- `ind_ice2`: Binary variable that takes value 1 if the corresponding visit is affected by ICE2.
- `outcome`: Numeric variable that specifies the longitudinal outcome including ICE1, ICE2 and the intermittent missing values.

simulate_dropout

Simulate drop-out

Description

Simulate drop-out

Usage

`simulate_dropout(prob_dropout, ids, subset = rep(1, length(ids)))`

Arguments

- `prob_dropout`: Numeric that specifies the probability that a post-baseline visit is affected by study drop-out.
- `ids`: Factor variable that specifies the id of each subject.
- `subset`: Binary variable that specifies the subset that could be affected by drop-out. I.e. `subset` is a binary vector of length equal to the length of `ids` that takes value 1 if the corresponding visit could be affected by drop-out and 0 otherwise.
Details

subset can be used to specify outcome values that cannot be affected by the drop-out. By default, subset will be set to 1 for all the values except the values corresponding to the baseline outcome, since baseline is supposed to not be affected by drop-out. Even if subset is specified by the user, the values corresponding to the baseline outcome are still hard-coded to be 0.

Value

A binary vector of length equal to the length of ids that takes value 1 if the corresponding outcome is affected by study drop-out.

simulate_ice

Simulate intercurrent event

Description

Simulate intercurrent event

Usage

simulate_ice(outcome, visits, ids, prob_ice, or_outcome_ice, baseline_mean)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>outcome</td>
<td>Numeric variable that specifies the longitudinal outcome for a single group.</td>
</tr>
<tr>
<td>visits</td>
<td>Factor variable that specifies the visit of each assessment.</td>
</tr>
<tr>
<td>ids</td>
<td>Factor variable that specifies the id of each subject.</td>
</tr>
<tr>
<td>prob_ice</td>
<td>Numeric vector that specifies for each visit the probability of experiencing the ICE after the current visit for a subject with outcome equal to the mean at baseline. If a single numeric is provided, then the same probability is applied to each visit.</td>
</tr>
<tr>
<td>or_outcome_ice</td>
<td>Numeric value that specifies the odds ratio of the ICE corresponding to a +1 higher value of the outcome at the visit.</td>
</tr>
<tr>
<td>baseline_mean</td>
<td>Mean outcome value at baseline.</td>
</tr>
</tbody>
</table>

Details

The probability of the ICE after each visit is modeled according to the following logistic regression model: ~ 1 + I(visit == 0) + ... + I(visit == n_visits-1) + I((x-alpha)) where:

- n_visits is the number of visits (including baseline).
- alpha is the baseline outcome mean set via argument baseline_mean. The term I((x-alpha)) specifies the dependency of the probability of the ICE on the current outcome value. The corresponding regression coefficients of the logistic model are defined as follows: The intercept is set to 0, the coefficients corresponding to discontinuation after each visit for a subject with outcome equal to the mean at baseline are set according to parameter or_outcome_ice, and the regression coefficient associated with the covariate I((x-alpha)) is set to log(or_outcome_ice).
Value

A binary variable that takes value 1 if the corresponding outcome is affected by the ICE and 0 otherwise.

simulate_test_data Create simulated datasets

Description

Creates a longitudinal dataset in the format that rbmi was designed to analyse.

Usage

```r
simulate_test_data(
  n = 200,
  sd = c(3, 5, 7),
  cor = c(0.1, 0.7, 0.4),
  mu = list(int = 10, age = 3, sex = 2, trt = c(0, 4, 8), visit = c(0, 1, 2))
)
```

```r
as_vcov(sd, cor)
```

Arguments

- **n**: the number of subjects to sample. Total number of observations returned is thus \(n \times \text{length}(sd) \)
- **sd**: the standard deviations for the outcome at each visit. i.e. the square root of the diagonal of the covariance matrix for the outcome
- **cor**: the correlation coefficients between the outcome values at each visit. See details.
- **mu**: the coefficients to use to construct the mean outcome value at each visit. Must be a named list with elements `int`, `age`, `sex`, `trt` & `visit`. See details.

Details

The number of visits is determined by the size of the variance covariance matrix. i.e. if 3 standard deviation values are provided then 3 visits per patient will be created.

The covariates in the simulated dataset are produced as follows:

- Patients age is sampled at random from a N(0,1) distribution
- Patients sex is sampled at random with a 50/50 split
- Patients group is sampled at random but fixed so that each group has \(n/2 \) patients
- The outcome variable is sampled from a multivariate normal distribution, see below for details

The mean for the outcome variable is derived as:

\[
\text{outcome} = \text{Intercept} + \text{age} + \text{sex} + \text{visit} + \text{treatment}
\]
The coefficients for the intercept, age and sex are taken from \texttt{mu$int}, \texttt{mu$age} and \texttt{mu$sex} respectively, all of which must be a length 1 numeric.

Treatment and visit coefficients are taken from \texttt{mu$trt} and \texttt{mu$visit} respectively and must either be of length 1 (i.e. a constant affect across all visits) or equal to the number of visits (as determined by the length of \texttt{sd}). I.e. if you wanted a treatment slope of 5 and a visit slope of 1 you could specify:

\[
\texttt{mu} = \texttt{list(\ldots, "trt" = c(0,5,10), "visit" = c(0,1,2))}
\]

The correlation matrix is constructed from \texttt{cor} as follows. Let \texttt{cor} = c(a, b, c, d, e, f) then the correlation matrix would be:

\[
\begin{array}{cccccc}
1 & a & b & d \\
a & 1 & c & e \\
b & c & 1 & f \\
d & e & f & 1
\end{array}
\]

sort_by

Description

Sorts a \texttt{data.frame} (ascending by default) based upon variables within the dataset

Usage

\[
\text{sort_by}(\text{df}, \text{vars} = \text{NULL}, \text{decreasing} = \text{FALSE})
\]

Arguments

- \texttt{df} \quad data.frame
- \texttt{vars} \quad character vector of variables
- \texttt{decreasing} \quad logical whether sort order should be in descending or ascending (default) order. Can be either a single logical value (in which case it is applied to all variables) or a vector which is the same length as \texttt{vars}

Examples

```r
## Not run:
sort_by(iris, c("Sepal.Length", "Sepal.Width"), decreasing = c(TRUE, FALSE))

## End(Not run)
```
split_dim

Transform array into list of arrays

Description

Transform an array into list of arrays where the listing is performed on a given dimension.

Usage

`split_dim(a, n)`

Arguments

- `a`: Array with number of dimensions at least 2.
- `n`: Positive integer. Dimension of `a` to be listed.

Details

For example, if `a` is a 3 dimensional array and `n = 1`, `split_dim(a, n)` returns a list of 2 dimensional arrays (i.e. a list of matrices) where each element of the list is `a[i, ,]`, where `i` takes values from 1 to the length of the first dimension of the array.

Example:

inputs: `a <- array(c(1,2,3,4,5,6,7,8,9,10,11,12), dim = c(3,2,2))`, which means that:

<table>
<thead>
<tr>
<th></th>
<th>a[1,]</th>
<th>a[2,]</th>
<th>a[3,]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[,1]</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>[,2]</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>[,1]</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>[,2]</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>[,1]</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>[,2]</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

`n <- 1`

output of `res <- split_dim(a, n)` is a list of 3 elements:

<table>
<thead>
<tr>
<th></th>
<th>res[[1]]</th>
<th>res[[2]]</th>
<th>res[[3]]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[,1]</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>[,2]</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>[,1]</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>[,2]</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>[,1]</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>[,2]</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Value

A list of length `n` of arrays with number of dimensions equal to the number of dimensions of `a` minus 1.
split_imputations

_Split a flat list of imputation_single() into multiple imputation_df()'s by ID_

Description

Split a flat list of `imputation_single()` into multiple `imputation_df()`'s by ID

Usage

`split_imputations(list_of_singles, split_ids)`

Arguments

- `list_of_singles` A list of `imputation_single()`'s
- `split_ids` A list with 1 element per required split. Each element must contain a vector of "ID"'s which correspond to the `imputation_single()` ID's that are required within that sample. The total number of ID’s must by equal to the length of `list_of_singles`

Details

This function converts a list of imputations from being structured per patient to being structured per sample i.e. it converts

```r
obj <- list(
  imputation_single("Ben", numeric(0)),
  imputation_single("Ben", numeric(0)),
  imputation_single("Ben", numeric(0)),
  imputation_single("Harry", c(1, 2)),
  imputation_single("Phil", c(3, 4)),
  imputation_single("Phil", c(5, 6)),
  imputation_single("Tom", c(7, 8, 9))
)

index <- list(
  c("Ben", "Harry", "Phil", "Tom"),
  c("Ben", "Ben", "Phil")
)
```

Into:

```r
output <- list(
  imputation_df(
    imputation_single(id = "Ben", values = numeric(0)),
    imputation_single(id = "Harry", values = c(1, 2)),
  )
)```
imputation_single(id = "Phil", values = c(3, 4)),
imputation_single(id = "Tom", values = c(7, 8, 9))
),
imputation_df(
  imputation_single(id = "Ben", values = numeric(0)),
  imputation_single(id = "Ben", values = numeric(0)),
  imputation_single(id = "Phil", values = c(5, 6))
)
)

---

Description

This is a simple stack object offering add / pop functionality

Public fields

stack  A list containing the current stack

Methods

Public methods:

- Stack$add()
- Stack$pop()
- Stack$clone()

Method add(): Adds content to the end of the stack (must be a list)

Usage:
Stack$add(x)

Arguments:
x  content to add to the stack

Method pop(): Retrieve content from the stack

Usage:
Stack$pop(i)

Arguments:
i  the number of items to retrieve from the stack. If there are less than i items left on the stack
  it will just return everything that is left.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Stack$clone(deep = FALSE)

Arguments:
deep  Whether to make a deep clone.
strategies  Strategies

Description

These functions are used to implement various reference based imputation strategies by combining a subject's own distribution with that of a reference distribution based upon which of their visits failed to meet the Missing-at-Random (MAR) assumption.

Usage

strategy_MAR(pars_group, pars_ref, index_mar)
strategy_JR(pars_group, pars_ref, index_mar)
strategy_CR(pars_group, pars_ref, index_mar)
strategy_CIR(pars_group, pars_ref, index_mar)
strategy_LMCF(pars_group, pars_ref, index_mar)

Arguments

pars_group  A list of parameters for the subject's group. See details.
pars_ref    A list of parameters for the subject's reference group. See details.
index_mar   A logical vector indicating which visits meet the MAR assumption for the subject. i.e. this identifies the observations after a non-MAR intercurrent event (ICE).

Details

pars_group and pars_ref both must be a list containing elements mu and sigma. mu must be a numeric vector and sigma must be a square matrix symmetric covariance matrix with dimensions equal to the length of mu and index_mar. e.g.

```r
list(
 mu = c(1,2,3),
 sigma = matrix(c(4,3,2,3,5,4,2,4,6), nrow = 3, ncol = 3)
)
```

Users can define their own strategy functions and include them via the strategies argument to `impute()` using `getStrategies()`. That being said the following strategies are available "out the box":

- Missing at Random (MAR)
- Jump to Reference (JR)
string_pad

- Copy Reference (CR)
- Copy Increments in Reference (CIR)
- Last Mean Carried Forward (LMCF)

---

**string_pad**

**Description**

Utility function used to replicate str_pad. Adds white space to either end of a string to get it to equal the desired length.

**Usage**

```r
string_pad(x, width)
```

**Arguments**

- `x`: string
- `width`: desired length

---

**str_contains**

**Does a string contain a substring**

**Description**

Returns a vector of TRUE/FALSE for each element of x if it contains any element in subs i.e.

```r
str_contains(c("ben", "tom", "harry"), c("e", "y"))
```

```r
[1] TRUE FALSE TRUE
```

**Usage**

```r
str_contains(x, subs)
```

**Arguments**

- `x`: character vector
- `subs`: a character vector of substrings to look for
transpose_imputations  Transpose imputations

Description
Takes an imputation_df object and transposes it e.g.

```r
list(
 list(id = "a", values = c(1,2,3)),
 list(id = "b", values = c(4,5,6))
)
```

Usage
```r
transpose_imputations(imputations)
```

Arguments
- `imputations`  An imputation_df object created by `imputation_df()`

Details
becomes

```r
list(
 ids = c("a", "b"),
 values = c(1,2,3,4,5,6)
)
```

transpose_results  Transpose results object

Description
Transposes a Results object (as created by `analyse()`) in order to group the same estimates together into vectors.

Usage
```r
transpose_results(results, components)
```

Arguments
- `results`  A list of results.
- `components`  a character vector of components to extract (i.e. "est", "se").
**Details**

Essentially this function takes an object of the format:

```r
x <- list(
 list(
 "trt1" = list(
 est = 1,
 se = 2
),
 "trt2" = list(
 est = 3,
 se = 4
)
),
 list(
 "trt1" = list(
 est = 5,
 se = 6
),
 "trt2" = list(
 est = 7,
 se = 8
)
)
)
```

and produces:

```r
list(
 trt1 = list(
 est = c(1,5),
 se = c(2,6)
),
 trt2 = list(
 est = c(3,7),
 se = c(4,8)
)
)
```

**Description**

Transposes samples generated by `draws()` so that they are grouped by `subj_id` instead of by sample number.
validate.samples samples

Arguments

samples A list of samples generated by `draws()`.

validate Generic validation method

Description

This function is used to perform assertions that an object conforms to its expected structure and no basic assumptions have been violated. Will throw an error if checks do not pass.

Usage

```r
validate(x, ...)
```

Arguments

x object to be validated.

... additional arguments to pass to the specific validation method.

validate.analysis Validate analysis objects

Description

Validates the return object of the `analyse()` function.

Usage

```r
S3 method for class 'analysis'
validate(x, ...)
```

Arguments

x An analysis results object (of class "jackknife", "bootstrap", "rubin").

... Not used.
validate.draws  

**Validate draws object**

### Description

Validate draws object

### Usage

```r
S3 method for class 'draws'
validate(x, ...)
```

### Arguments

- `x`  
  A draws object generated by `as_draws()`.
- `...`  
  Not used.

validate.is_mar  

**Validate is_mar for a given subject**

### Description

Checks that the longitudinal data for a patient is divided in MAR followed by non-MAR data; a non-MAR observation followed by a MAR observation is not allowed.

### Usage

```r
S3 method for class 'is_mar'
validate(x, ...)
```

### Arguments

- `x`  
  Object of class `is_mar`. Logical vector indicating whether observations are MAR.
- `...`  
  Not used.

### Value

Will error if there is an issue otherwise will return `TRUE`. 
validate.ivars    Validate inputs for vars

Description

Checks that the required variable names are defined within vars and are of appropriate datatypes

Usage

```r
S3 method for class 'ivars'
validate(x, ...)
```

Arguments

- `x` named list indicating the names of key variables in the source dataset
- `...` not used

validate.references    Validate user supplied references

Description

Checks to ensure that the user specified references are expect values (i.e. those found within the source data).

Usage

```r
S3 method for class 'references'
validate(x, control, ...)
```

Arguments

- `x` named character vector.
- `control` factor variable (should be the group variable from the source dataset).
- `...` Not used.

Value

Will error if there is an issue otherwise will return TRUE.
validate.sample_list  Validate sample_list object

Description

Validate sample_list object

Usage

```r
S3 method for class 'sample_list'
validate(x, ...)
```

Arguments

- `x` A sample_list object generated by `sample_list()`.  
- `...` Not used.

validate.sample_single

Validate sample_single object

Description

Validate sample_single object

Usage

```r
S3 method for class 'sample_single'
validate(x, ...)
```

Arguments

- `x` A sample_single object generated by `sample_single()`.  
- `...` Not used.
validate.simul_pars  Validate a simul_pars object

Description

Validate a simul_pars object

Usage

## S3 method for class 'simul_pars'
validate(x, ...)

Arguments

x  An simul_pars object as generated by `set_simul_pars()`.
...
Not used.

validate.stan_data  Validate a stan_data object

Description

Validate a stan_data object

Usage

## S3 method for class 'stan_data'
validate(x, ...)

Arguments

x  A stan_data object.
...
Not used.
validate_analyse_pars  Validate analysis results

Description

Validates analysis results generated by \texttt{analyse()}. 

Usage

\begin{verbatim}
validate_analyse_pars(results, pars)
\end{verbatim}

Arguments

- \texttt{results}  
  A list of results generated by the analysis fun used in \texttt{analyse()}. 
- \texttt{pars}  
  A list of expected parameters in each of the analysis. lists i.e. \texttt{c("est", "se", "df")}. 

validate_datalong  Validate a longdata object

Description

Validate a longdata object

Usage

\begin{verbatim}
validate_datalong(data, vars)
validate_datalong_varExists(data, vars)
validate_datalong_types(data, vars)
validate_datalong_notMissing(data, vars)
validate_datalong_complete(data, vars)
validate_datalong_unifromStrata(data, vars)
validate_dataice(data, data_ice, vars, update = FALSE)
\end{verbatim}
validate_strategies

Arguments

- data: a data.frame containing the longitudinal outcome data + covariates for multiple subjects
- vars: a vars object as created by `set_vars()`
- data_ice: a data.frame containing the subjects ICE data. See `draws()` for details.
- update: logical, indicates if the ICE data is being set for the first time or if an update is being applied

Details

These functions are used to validate various different parts of the longdata object to be used in `draws()`, `impute()`, `analyse()` and `pool()`. In particular:

- validate_datalong_varExists - Checks that each variable listed in `vars` actually exists in the data
- validate_datalong_types - Checks that the types of each key variable is as expected i.e. that visit is a factor variable
- validate_datalong_notMissing - Checks that none of the key variables (except the outcome variable) contain any missing values
- validate_datalong_complete - Checks that data is complete i.e. there is 1 row for each subject * visit combination. e.g. `nrow(data) == length(unique(subjects)) * length(unique(visits))`
- validate_datalong_uniformStrata - Checks to make sure that any variables listed as stratification variables do not vary over time. e.g. that subjects don’t switch between stratification groups.

validate_strategies

Validate user specified strategies

Description

Compares the user provided strategies to those that are required (the reference). Will throw an error if not all values of reference have been defined.

Usage

```
validate_strategies(strategies, reference)
```

Arguments

- strategies: named list of strategies.
- reference: list or character vector of strategies that need to be defined.

Value

Will throw an error if there is an issue otherwise will return TRUE.
Index

* datasets
  antidepressant_data, 12
add_class, 5
adjust_trajectories, 5
adjust_trajectories_single, 6
adjust_trajectories_single(), 6
analyse, 7
analyse(), 8, 10, 11, 14, 26, 28, 39, 40, 75, 77, 79, 104, 106, 111, 112
ancova, 9
ancova(), 8, 9, 11, 12, 92, 93
ancova_single, 11
antidepressant_data, 12
apply_delta, 13
as.data.frame.pool(pool), 74
as_analysis, 14
as_ascii_table, 14
as_class, 15
as_cropped_char, 15
as_dataframe, 16
as_draws, 16
as_draws(), 107
as_imputation, 17
as_indices, 18
as_mmrm_df, 18
as_mmrm_df(), 19
as_mmrm_formula, 19
as_model_df, 19
as_simple_formula, 20
as_stan_array, 20
as_strata, 21
as_vcov(simulate_test_data), 97
assert_variables_exist, 13
base::expand.grid(), 35
char2fct, 21
check_ESS, 22
check_ESS(), 23
check_hmc_diagn, 22
check_hmc_diagn(), 23
check_mcmc, 23
check_mcmc(), 41
compute_sigma, 24
convert_to_imputation_list_df, 24
d_lagscale, 33
delta_template, 26
delta_template(), 8, 9, 34, 40, 46
do_not_run, 29
draws, 29, 57, 61
draws(), 8, 14, 16, 26, 28, 31, 36, 56–58, 61, 69, 75, 78, 79, 92, 93, 105, 106, 112
encap_get_mmrn_sample, 34
eval_mmmr, 34
expand, 35
expand_locf(expand), 35
expand_locf(), 31, 33
extract_covariates, 37
extract_data_nmar_as_na, 37
extract_draws, 38
extract_draws(), 42
extract_imputed_df, 39
extract_imputed_dfs, 39
extract_imputed_dfs(), 9
extract_params, 40
fill_locf(expand), 35
fit_mcmc, 41
fit_mmrnm, 42
generate_data_single, 43
get_bootstrap_stack, 45
get_cluster, 45
get_cluster(), 34
get_conditional_parameters, 46
get_delta_template, 46
get_draws_mle, 47
get_ESS, 48
get_estimates_bmlmi, 49
get_example_data, 50
get_example_data(), 50
get_jackknife_stack, 51
get_mmrm_sample, 51
get_mmrm_sample(), 51
get_pattern_groups, 52
get_pattern_groups_unique, 52
get_pool_components, 53
get_visit_distribution_parameters, 53
getStrategies, 44
getStrategies(), 6, 7, 43, 61, 94, 102
has_class, 54
I(), 92
ife, 54
imputation_df, 55, 55
imputation_df(), 17, 24, 39, 67, 100, 104
imputation_list_df, 55
imputation_list_df(), 24
imputation_list_single, 55
imputation_list_single(), 24, 25
imputation_single, 56
imputation_single(), 25, 56, 100
impute, 56
impute(), 7, 17, 26, 32, 39, 40, 46, 47, 59, 60, 69, 80, 102, 112
impute_data_individual, 59
impute_data_individual(), 25
impute_internal, 60
impute_outcome, 61
invert, 62
invert_indexes, 62
is_absent, 63
is_char_fact, 63
is_char_one, 63
is_in_rbmi_development, 64
is_num_char_fact, 64
list(), 17
locf, 65
longDataConstructor, 65
longDataConstructor(), 17, 39, 45, 51, 60
ls_design, 71
ls_design_equal (ls_design), 71
ls_design_proportional (ls_design), 71
lsmeans, 70
method, 71
method_approxbayes (method), 71
method_approxbayes(), 8, 16, 17, 30, 32, 33, 47, 48, 51
method_bayes (method), 71
method_bayes(), 8, 16, 17, 30, 32, 33, 41, 48
method_bmlmi (method), 71
method_bmlmi(), 16, 25, 30, 33
method_condmean (method), 71
method_condmean(), 16, 17, 30, 32, 33, 47, 48, 51
mmrm::mmrm(), 34, 40, 42, 82
parametric_ci, 74
pool, 74
pool(), 75, 77, 112
pool_bootstrap_normal, 76
pool_bootstrap_percentile, 76
pool_internal, 77
prepare_stan_data, 78
prepare_stan_data(), 41
print.analysis, 79
print.draws, 79
print.imputation, 80
print.pool (pool), 74
progressLogger, 80
pval_percentile, 81
QR_decomp, 82
random_effects_expr, 82
record, 83
record(), 85
recursive_reduce, 84
remove_if_all_missing, 84
rstan::check_hmc_diagnostics(), 22
rstan::extract(), 38
rstan::sampling(), 41, 73
rubin_df, 85
rubin_df(), 86
rubin_rules, 85
sample_ids, 86
sample_list, 87
sample_list(), 109
sample_mvn, 87
sample_mvn(), 88
sample_single, 88
sample_single(), 16, 87, 109
scalerConstructor, 89
INDEX

set_simul_pars, 90
set_simul_pars(), 43, 50, 94, 110
set_vars, 92
set_vars(), 8, 10, 11, 26, 30, 32, 33, 69, 112
simulate_data, 93
simulate_data(), 43, 50, 90–92
simulate_dropout, 95
simulate_ice, 96
simulate_test_data, 97
sort_by, 98
split_dim, 99
split_imputations, 100
Stack, 101
Stack(), 45, 51
stats::lm(), 11
stats::model.matrix(), 19, 42
stats::quantile(), 76
str_contains, 103
strategies, 102
strategy_CIR(strategies), 102
strategy_CR(strategies), 102
strategy_JR(strategies), 102
strategy_LMCF(strategies), 102
strategy_MAR(strategies), 102
string_pad, 103
transpose_imputations, 104
transpose_results, 104
transpose_samples, 105
validate, 106
validate.analysis, 106
validate.draws, 107
validate.is_mar, 107
validate.ivars, 108
validate.references, 108
validate.sample_list, 109
validate.sample_single, 109
validate.simul_pars, 110
validate.stan_data, 110
validate_analyse_pars, 111
validate_dataice(validate_datalong), 111
validate_datalong, 111
validate_datalong_complete(validate_datalong), 111
validate_datalong_notMissing(validate_datalong), 111
validate_datalong_varExists(validate_datalong), 111
validate_strategies, 112