Package ‘rcpptimer’

March 20, 2024

Type Package
Title 'Rcpp' Tic-Toc Timer with 'OpenMP' Support
Version 1.1.0
Date 2024-03-20

Description Provides 'Rcpp' bindings for 'cpptimer', a simple tic-toe timer class for benchmarking 'C++' code [https://github.com/BerriJ/cpptimer]. It's not just simple, it's blazing fast! This sleek tic-toe timer class supports overlapping timers as well as 'OpenMP' parallelism [https://www.openmp.org/]. It boasts a microsecond-level time resolution. We did not find any overhead of the timer itself at this resolution. Results (with summary statistics) are automatically passed back to 'R' as a data frame.

URL https://rcpptimer.berrisch.biz
License GPL (>= 3)
Encoding UTF-8
Imports Rcpp
LinkingTo Rcpp
RoxygenNote 7.3.1
Suggests testthat (>= 3.0.0), knitr, rmarkdown
Config/testthat/edition 3
VignetteBuilder knitr
Language en-US
NeedsCompilation yes
Author Jonathan Berrisch [aut, cre] (<https://orcid.org/0000-0002-4944-9074>)
Maintainer Jonathan Berrisch <Jonathan@Berrisch.biz>
Repository CRAN
Date/Publication 2024-03-20 09:20:03 UTC

R topics documented:

fibonacci ... 2
fibonacci_omp .. 2
Description

Time the computation of Fibonacci numbers

Usage

fibonacci(n)

Arguments

n vector giving integers for which to compute the Fibonacci sum

Details

The function being timed is the following:

int fib(int n) { return ((n <= 1) ? n : fib(n - 1) + fib(n - 2)); }

Runtime for computations less than \(n = 15 \) is nearly unmeasurable.

Value

vector of integers giving the Fibonacci sum for each element in \(n \)

Examples

fibonacci(n = rep(10*(1:4), 10))

this function creates a global environment variable "times"
times

Description

Time the multithreaded computation of Fibonacci numbers

Usage

fibonacci_omp(n)
fibonacci_omp

Arguments

n vector giving integers for which to compute the Fibonacci sum

Details

The function being timed is the following:

```c
int fib(int n) { return ((n <= 1) ? n : fib(n - 1) + fib(n - 2)); }
```

Runtime for computations less than $n = 15$ is nearly unmeasurable.

Value

vector of integers giving the Fibonacci sum for each element in n

Examples

```r
fibonacci_omp(n = rep(10*(1:4), 10))
# this function creates a global environment variable "times"
times
```
Index

fibonacci, 2
fibonacci_omp, 2