Package ‘rddapp’

February 13, 2022

Title Regression Discontinuity Design Application

Version 1.3.0

Author Ze Jin [aut],
Wang Liao [aut],
Irena Papst [aut],
Wenyu Zhang [aut],
Kimberly Hochstedler [aut],
Felix Thoemmes [aut, cre]

Maintainer Felix Thoemmes <fjt36@cornell.edu>

Description Estimation of both single- and multiple-assignment Regression Discontinuity Designs (RDDs). Provides both parametric (global) and non-parametric (local) estimation choices for both sharp and fuzzy designs, along with power analysis and assumption checks.

Depends R (>= 3.2.3)

Imports AER (>= 1.2-5), sandwich (>= 2.3-4), lmtest (>= 0.9-35),
Formula (>= 1.2-1), shiny (>= 0.14), R.utils (>= 2.6.0), plot3D (>= 1.1.1), sp (>= 1.3.1), DT (>= 0.2)

Suggests foreign (>= 0.8-67), devtools (>= 1.12.0), testthat (>= 1.0.2), roxygen2 (>= 5.0.1), knitr (>= 1.14), rmarkdown (>= 1.1.9012)

VignetteBuilder knitr

License GPL (>= 2)

LazyData true

RoxygenNote 7.1.2

R topics documented:

rdapp-package .. 3
attr_check .. 4
bw_ik09 .. 4
bw_ik12 .. 5
CARE ... 6
dc_test .. 7
mfrd_est ... 9
mrd_est ... 12
mrd_impute .. 16
mrd_power .. 20
mrd_sens_bw ... 23
mrd_sens_cutoff ... 24
plot.mfrd .. 25
plot.rd .. 26
predict.rd .. 27
print.mfrd ... 28
print.rd .. 29
rd_est ... 29
rd_impute ... 32
rd_power .. 35
rd_sens_bw .. 37
rd_sens_cutoff ... 38
rd_type ... 39
sens_plot .. 40
shiny_run ... 41
summary.mfrd ... 42
summary.mrd .. 43
summary.mrdi .. 44
summary.mrdp ... 45
summary.rd .. 45
summary.rdp .. 46
treat_assign .. 47
var_center .. 47
wt_kern ... 48
wt_kern_bivariate ... 49

Index ... 51
Description

rddapp: A package for regression discontinuity designs (RDDs).

Details

The rddapp package provides a set of functions for the analysis of the regression-discontinuity design (RDD). The three main parts are: estimation of effects of interest, power analysis, and assumption checks.

Estimation

A variety of designs can be estimated in various ways. The single-assignment RDD (both sharp and fuzzy) can be analyzed using both a parametric (global) or non-parametric (local) approach. The multiple-assignment RDD (both sharp and fuzzy) can be analyzed using both parametric and non-parametric estimation. The analysis choices are further to use estimate effects based on univariate scaling, the centering approach, or the frontier approach. The frontier approach can currently only be estimated using parametric regression with bootstrapped standard errors.

Power analysis

Statistical power can be be estimated for both the single- and multiple-assignment RDD, (both sharp and fuzzy), including all parametric and non-parametric estimators mentioned in the estimation section. All power analyses are based on a simulation approach, which means that the user has to provide all necessary parameters for a data-generating model.

Assumption checks

An important part of any RDD are checks of underlying assumptions. The package provides users with the option to estimate McCrappy’s sorting test (to identify violations of assignment rules), checks of discontinuities of other baseline covariates, along with sensitivity checks of the chosen bandwidth parameter for non-parametric models, and so-called placebo tests, that examine the treatment effect at other cut-points along the assignment variable.

Author(s)

Ze Jin <zj58@cornell.edu>, Wang Liao <wl483@cornell.edu>, Irena Papst <ip98@cornell.edu>, Wenyu Zhang <wz258@cornell.edu>, Kimberly Hochstedler <kah343@cornell.edu>, Felix Thoemmes, <fjt36@cornell.edu>
attr_check

Attrition Checks

Description

attr_check reports missing data on treatment variable, assignment variable, and outcome. This is an internal function and is typically not directly invoked by the user. It can be accessed using the triple colon, as in rddapp:::attr_check().

Usage

```r
attr_check(x1, y, t, x2 = NULL)
```

Arguments

- `x1`: A numeric object containing the assignment variable.
- `y`: A numeric object containing the outcome variable, with the same dimensionality as `x1`.
- `t`: A numeric object containing the treatment variable (coded as 0 for untreated and 1 for treated), with the same dimensionality as `x1` and `y`.
- `x2`: A numeric object containing the secondary assignment variable.

Value

attr_check returns a list containing the amount and percentage of missing data for all variables and subgroups, by treatment.

bw_ik09

Imbens-Kalyanaraman 2009 Optimal Bandwidth Calculation

Description

bw_ik09 calculates the Imbens-Kalyanaraman (2009) optimal bandwidth for local linear regression in regression discontinuity designs. It is based on the IKbandwidth function in the "rdd" package. This is an internal function and is typically not directly invoked by the user. It can be accessed using the triple colon, as in rddapp:::bw_ik09().

Usage

```r
bw_ik09(X, Y, cutpoint = NULL, verbose = FALSE, kernel = "triangular")
```
bw_IK12

Arguments

- **X**
 A numeric vector containing the running variable.

- **Y**
 A numeric vector containing the outcome variable.

- **cutpoint**
 A numeric value containing the cutpoint at which assignment to the treatment is determined. The default is 0.

- **verbose**
 A logical value indicating whether to print more information to the terminal. The default is FALSE.

- **kernel**
 A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", and "cosine".

Value

- `ik_bw09` returns a numeric value specifying the optimal bandwidth.

References

bw_ik12
Imbens-Kalyanaraman 2012 Optimal Bandwidth Calculation

Description

`bw_ik12` calculates the Imbens-Kalyanaraman (2012) optimal bandwidth for local linear regression in regression discontinuity designs. It is based on a function in the "rddtools" package. This is an internal function and is typically not directly invoked by the user. It can be accessed using the triple colon, as in rddapp:::bw_ik12().

Usage

`bw_ik12(X, Y, cutpoint = NULL, verbose = FALSE, kernel = "triangular")`

Arguments

- **X**
 A numeric vector containing the running variable.

- **Y**
 A numeric vector containing the outcome variable.

- **cutpoint**
 A numeric value containing the cutpoint at which assignment to the treatment is determined. The default is 0.

- **verbose**
 A logical value indicating whether to print more information to the terminal. The default is FALSE.
kernel

A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", and "cosine".

Value

1k_bw12 returns a numeric value specifying the optimal bandwidth.

References

Description

A dataset containing a subset of children from the CARE trial on early childhood intervention. The randomized controlled trial was subsetted to mimic a regression-discontinuity design in which treatment was assigned only to mothers whose IQ was smaller than 85.

Usage

CARE

Format

A data frame with 81 rows and 5 variables:

SUBJECT Unique ID variable

DC_TRT Day Care (Preschool) Treatment Group, 1 = Treatment, 0 = Control

APGAR5 APGAR ("Appearance, Pulse, Grimace, Activity, and Respiration") score at 5 minutes after birth

MOMWAIS0 Biological mother’s WAIS (Wechsler Adult Intelligence Scale) full-scale score at subject’s birth

SBIQ48 Subject’s Stanford Binet IQ score at 48 months

Source

http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/4091
dc_test

Examples

```r
data("CARE")
head(CARE)
```

Description

dc_test implements the McCrary (2008) sorting test to identify violations of assignment rules. It is based on the DCdensity function in the 'rdd' package.

Usage

```r
dc_test(
  runvar,
  cutpoint,
  bin = NULL,
  bw = NULL,
  verbose = TRUE,
  plot = TRUE,
  ext.out = FALSE,
  htest = FALSE,
  level = 0.95,
  digits = max(3, getOption("digits") - 3),
  timeout = 30
)
```

Arguments

- `runvar` A numeric vector containing the running variable.
- `cutpoint` A numeric value containing the cutpoint at which assignment to the treatment is determined. The default is 0.
- `bin` A numeric value containing the binwidth. The default is `2*sd(runvar)*length(runvar)^(-.5)`.
- `bw` A numeric value containing bandwidth to use. If no bandwidth is supplied, the default uses bandwidth selection calculation from McCrary (2008).
- `verbose` A logical value indicating whether to print diagnostic information to the terminal. The default is `TRUE`.
- `plot` A logical value indicating whether to plot the histogram and density estimations. The default is `TRUE`. The user may wrap this function in additional graphical options to modify the plot.
- `ext.out` A logical value indicating whether to return extended output. The default is `FALSE`. When `FALSE` dc_test will return only the p-value of the test, but will print more information. When `TRUE`, dc_test will return and print the additional information documented below.
A logical value indicating whether to return an "htest" object compatible with base R’s hypothesis test output. The default is FALSE.

A numerical value between 0 and 1 specifying the confidence level for confidence intervals. The default is 0.95.

A non-negative integer specifying the number of digits to display in all output. The default is \(\max(3, \text{getOption("digits") - 3}) \).

A non-negative numerical value specifying the maximum number of seconds that expressions in the function are allowed to run. The default is 30. Specify Inf to run all expressions to completion.

If ext.out is FALSE, dc_test returns a numeric value specifying the p-value of the McCrary (2008) sorting test. Additional output is enabled when ext.out is TRUE. In this case, dc_test returns a list with the following elements:

- **theta**: The estimated log difference in heights of the density curve at the cutpoint.
- **se**: The standard error of theta.
- **z**: The z statistic of the test.
- **p**: The p-value of the test. A p-value below the significance threshold indicates that the user can reject the null hypothesis of no sorting.
- **binsize**: The calculated size of bins for the test.
- **bw**: The calculated bandwidth for the test.
- **cutpoint**: The cutpoint used.
- **data**: A dataframe for the binning of the histogram. Columns are `cellmp` (the midpoints of each cell) and `cellval` (the normalized height of each cell).

References

Examples

```
set.seed(12345)
# No discontinuity
x <- runif(1000, -1, 1)
dc_test(x, 0)

# Discontinuity
x <- runif(1000, -1, 1)
x <- x + 2 * (runif(1000, -1, 1) > 0 & x < 0)
dc_test(x, 0)
```
mfrd_est

Multivariate Frontier Regression Discontinuity Estimation

Description

mfrd_est implements the frontier approach for multivariate regression discontinuity estimation in Wong, Steiner and Cook (2013). It is based on the MFRDD code in Stata from Wong, Steiner, and Cook (2013).

Usage

mfrd_est(
 y,
 x1,
 x2,
 c1,
 c2,
 t.design = NULL,
 local = 0.15,
 front.bw = NA,
 m = 10,
 k = 5,
 kernel = "triangular",
 ngrid = 250,
 margin = 0.03,
 boot = NULL,
 cluster = NULL,
 stop.on.error = TRUE
)

Arguments

y A numeric object containing outcome variable.

x1 A numeric object containing the first assignment variable.

x2 A numeric object containing the second assignment variable.

c1 A numeric value containing the cutpoint at which assignment to the treatment is determined for x1.

c2 A numeric value containing the cutpoint at which assignment to the treatment is determined for x2.

t.design A character vector of length 2 specifying the treatment option according to design. The first entry is for x1 and the second entry is for x2. Options are "g" (treatment is assigned if x1 is greater than its cutoff), "geq" (treatment is assigned if x1 is greater than or equal to its cutoff), "l" (treatment is assigned if x1 is less than its cutoff), and "leq" (treatment is assigned if x1 is less than or equal to its cutoff). The same options are available for x2.
local

A non-negative numeric value specifying the range of neighboring points around the cutoff on the standardized scale, for each assignment variable. The default is 0.15.

front.bw

A non-negative numeric vector of length 3 specifying the bandwidths at which to estimate the RD for each of three effects models (complete model, heterogeneous treatment model, and treatment only model) detailed in Wong, Steiner, and Cook (2013). If NA, front.bw will be determined by cross-validation. The default is NA.

m

A non-negative integer specifying the number of uniformly-at-random samples to draw as search candidates for front.bw, if front.bw is NA. The default is 10.

k

A non-negative integer specifying the number of folds for cross-validation to determine front.bw, if front.bw is NA. The default is 5.

kernel

A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", and "cosine".

ngrid

A non-negative integer specifying the number of non-zero grid points on each assignment variable, which is also the number of zero grid points on each assignment variable. The default is 250. The value used in Wong, Steiner and Cook (2013) is 2500, which may cause long computational time.

margin

A non-negative numeric value specifying the range of grid points beyond the minimum and maximum of sample points on each assignment variable. This grid is used to impute potential outcomes along the frontier, as in Wong, Steiner, and Cook (2013). The default is 0.03.

boot

An optional non-negative integer specifying the number of bootstrap samples to obtain standard error of estimates.

cluster

An optional vector of length n specifying clusters within which the errors are assumed to be correlated. This will result in reporting cluster robust SEs. It is suggested that data with a discrete running variable be clustered by each unique value of the running variable (Lee and Card, 2008).

stop.on.error

A logical value indicating whether to remove bootstraps which cause error in the integrate function. If TRUE, bootstraps which cause error are removed and resampled until the specified number of bootstrap samples are acquired. If FALSE, bootstraps which cause error are not removed. The default is TRUE.

Value

mfrd_est returns an object of class "mfrd". The functions summary and plot are used to obtain and print a summary and plot of the estimated regression discontinuity. The object of class mfrd is a list containing the following components:

w

Numeric vector specifying the weight of frontier 1 and frontier 2, respectively.

est

Numeric matrix of the estimate of the discontinuity in the outcome under a complete model (no prefix), heterogeneous treatment (ht) effects model, and treatment (t) only model, for the parametric case and for each corresponding bandwidth. Estimates with suffix "ev1" and "ev2" correspond to expected values for each frontier, under a given model. Estimates with suffix "ate" correspond to average treatment effects across both frontiers, under a given model.
mfrd_est

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>d</code></td>
<td>Numeric matrix of the effect size (Cohen’s d) for estimate.</td>
</tr>
<tr>
<td><code>se</code></td>
<td>Numeric matrix of the standard error for each corresponding bandwidth and</td>
</tr>
<tr>
<td><code>m_s</code></td>
<td>A list containing estimates for the complete model, under parametric and non-parametric (optimal, half, and double bandwidth) cases. A list of coefficient estimates, residuals, effects, weights (in the non-parametric case), lm output (rank of the fitted linear model, fitted values, assignments for the design matrix, qr for linear fit, residual degrees of freedom, levels of the x value, function call, and terms), and output data frame are returned for each model.</td>
</tr>
<tr>
<td><code>m_h</code></td>
<td>A list containing estimates for the heterogeneous treatments model, under parametric and non-parametric (optimal, half, and double bandwidth) cases. A list of coefficient estimates, residuals, effects, weights (in the non-parametric case), lm output (rank of the fitted linear model, fitted values, assignments for the design matrix, qr for linear fit, residual degrees of freedom, levels of the x value, function call, and terms), and output data frame are returned for each model.</td>
</tr>
<tr>
<td><code>m_t</code></td>
<td>A list containing estimates for the treatment only model, under parametric and non-parametric (optimal, half, and double bandwidth) cases. A list of coefficient estimates, residuals, effects, weights (in the non-parametric case), lm output (rank of the fitted linear model, fitted values, assignments for the design matrix, qr for linear fit, residual degrees of freedom, levels of the x value, function call, and terms), and output data frame are returned for each model.</td>
</tr>
<tr>
<td><code>dat_h</code></td>
<td>A list containing four data frames, one for each case: parametric or non-parametric (optimal, half, and double bandwidth). Each data frame contains functions and densities for each frontier and treatment model.</td>
</tr>
<tr>
<td><code>dat</code></td>
<td>A data frame containing the outcome (y) and each input (x1, x2) for each observation. The data frame also contains indicators of being within the local boundary of the cutpoint for x1 and x2 (x1res, x2res), scaled (zx1, zx2) and centered x1 and x2 values (zcx1, zcx2), and treatment indicators for overall treatment (tr) based on treatment assignment from x1 (tr1), x2 (tr2), and both assignment variables (trb).</td>
</tr>
<tr>
<td><code>obs</code></td>
<td>List of the number of observations used in each model.</td>
</tr>
<tr>
<td><code>impute</code></td>
<td>A logical value indicating whether multiple imputation is used or not.</td>
</tr>
<tr>
<td><code>call</code></td>
<td>The matched call.</td>
</tr>
<tr>
<td><code>front.bw</code></td>
<td>Numeric vector of each bandwidth used to estimate the density at the frontier for the three effects models (complete model, heterogeneous treatment model, and treatment only model) detailed in Wong, Steiner, and Cook (2013).</td>
</tr>
</tbody>
</table>

References

Examples

```r
set.seed(12345)
x1 <- runif(1000, -1, 1)
x2 <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * (x1 >= 0) + 3 * cov + 10 * (x2 >= 0) + rnorm(1000)
mfrd_est(y = y, x1 = x1, x2 = x2, c1 = 0, c2 = 0, t.design = c("geq", "geq"))
```

mrd_est *Multivariate Regression Discontinuity Estimation*

Description

mrd_est estimates treatment effects in a multivariate regression discontinuity design (MRDD) with two assignment variables, including the frontier average treatment effect (\(\tau_{MRD}\)) and frontier-specific effects (\(\tau_R\) and \(\tau_M\)) simultaneously.

Usage

```r
mrd_est(  
  formula,  
  data,  
  subset = NULL,  
  cutpoint = NULL,  
  bw = NULL,  
  front.bw = NA,  
  m = 10,  
  k = 5,  
  kernel = "triangular",  
  se.type = "HC1",  
  cluster = NULL,  
  verbose = FALSE,  
  less = FALSE,  
  est.cov = FALSE,  
  est.itt = FALSE,  
  local = 0.15,  
  ngrid = 250,  
  margin = 0.03,  
  boot = NULL,  
  method = c("center", "univ", "front"),  
  t.design = NULL,  
  stop.on.error = TRUE  
)
```
Arguments

formula The formula of the MRDD; a symbolic description of the model to be fitted. This is supplied in the format of $y \sim x1 + x2$ for a simple sharp MRDD or $y \sim x1 + x2 \mid c1 + c2$ for a sharp MRDD with two covariates. A fuzzy MRDD may be specified as $y \sim x1 + x2 + z$ where $x1$ is the first running variable, $x2$ is the second running variable, and z is the endogenous treatment variable. Covariates are then included in the same manner as in a sharp MRDD.

data An optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula).

subset An optional vector specifying a subset of observations to be used in the fitting process.

cutpoint A numeric vector of length 2 containing the cutpoints at which assignment to the treatment is determined. The default is c(0, 0).

bw A vector specifying the bandwidths at which to estimate the RD for non-parametric models. Possible values are "IK09", "IK12", or a user-specified non-negative numeric vector containing the bandwidths at which to estimate the RD. The default is "IK12". If bw is "IK12", the bandwidth is calculated using the Imbens-Kalyanaraman 2012 method. If bw is "IK09", the bandwidth is calculated using the Imbens-Kalyanaraman 2009 method. Then, the RD is estimated with that bandwidth, half that bandwidth, and twice that bandwidth. If only a single value is passed into the function, the RD will similarly be estimated at that bandwidth, half that bandwidth, and twice that bandwidth.

front.bw A non-negative numeric vector of length 3 specifying the bandwidths at which to estimate the RD for each of three effects models (complete model, heterogeneous treatment model, and treatment only model) detailed in Wong, Steiner, and Cook (2013). If NA, front.bw will be determined by cross-validation. The default is NA.

m A non-negative integer specifying the number of uniformly-at-random samples to draw as search candidates for front.bw, if front.bw is NA. The default is 10.

k A non-negative integer specifying the number of folds for cross-validation to determine front.bw, if front.bw is NA. The default is 5.

kernel A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", and "cosine".

se.type This specifies the robust standard error calculation method to use, from the "sandwich" package. Options are, as in vcovHC, "HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5". The default is "HC1". This option is overridden by cluster.

cluster An optional vector of length n specifying clusters within which the errors are assumed to be correlated. This will result in reporting cluster robust SEs. This option overrides anything specified in se.type. It is suggested that data with a discrete running variable be clustered by each unique value of the running variable (Lee and Card, 2008).

verbose A logical value indicating whether to print additional information to the terminal, including results of instrumental variable regression, and outputs from background regression models. The default is FALSE.
Logical. If TRUE, return the estimates of parametric linear and optimal bandwidth non-parametric models only. If FALSE return the estimates of linear, quadratic, and cubic parametric models and optimal, half and double bandwidths in non-parametric models. The default is FALSE.

Logical. If TRUE, the estimates of covariates will be included. If FALSE, the estimates of covariates will not be included. The default is FALSE. This option is not applicable if method is "front".

Logical. If TRUE, the estimates of intent-to-treat (ITT) will be returned. If FALSE, the estimates of ITT will not be returned. The default is FALSE. This option is not applicable if method is "front".

A non-negative numeric value specifying the range of neighboring points around the cutoff on the standardized scale, for each assignment variable. The default is 0.15.

A non-negative integer specifying the number of non-zero grid points on each assignment variable, which is also the number of zero grid points on each assignment variable. The default is 250. The value used in Wong, Steiner and Cook (2013) is 2500, which may cause long computational time.

A non-negative numeric value specifying the range of grid points beyond the minimum and maximum of sample points on each assignment variable. The default is 0.03.

An optional non-negative integer specifying the number of bootstrap samples to obtain standard error of estimates. This argument is not optional if method is "front".

A string specifying the method to estimate the RD effect. Options are "center", "univ", "front", based on the centering, univariate, and frontier approaches (respectively) from Wong, Steiner, and Cook (2013).

A character vector of length 2 specifying the treatment option according to design. The first entry is for x1 and the second entry is for x2. Options are "g" (treatment is assigned if x1 is greater than its cutoff), "geq" (treatment is assigned if x1 is greater than or equal to its cutoff), "l" (treatment is assigned if x1 is less than its cutoff), and "leq" (treatment is assigned if x1 is less than or equal to its cutoff). The same options are available for x2.

A logical value indicating whether to remove bootstraps which cause error in the integrate function. If TRUE, bootstraps which cause error are removed and resampled until the specified number of bootstrap samples are acquired. If FALSE, bootstraps which cause error are not removed. The default is TRUE.

mrd_est returns an object of class "mrd". The function summary is used to obtain and print a summary of the estimated regression discontinuity. The object of class mrd is a list containing the following components for each estimated treatment effect, tau_MRD or tau_R and tau_M:

type A string denoting either "sharp" or "fuzzy" RDD.
call The matched call.
est Numeric vector of the estimate of the discontinuity in the outcome under a sharp MRDD or the Wald estimator in the fuzzy MRDD, for each corresponding bandwidth, if applicable.

se Numeric vector of the standard error for each corresponding bandwidth, if applicable.

ci The matrix of the 95 for each corresponding bandwidth, if applicable.

bw Numeric vector of each bandwidth used in estimation.

z Numeric vector of the z statistic for each corresponding bandwidth, if applicable.

p Numeric vector of the p-value for each corresponding bandwidth, if applicable.

obs Vector of the number of observations within the corresponding bandwidth, if applicable.

cov The names of covariates.

model For a sharp design, a list of the `lm` objects is returned. For a fuzzy design, a list of lists is returned, each with two elements: `firststage`, the first stage `lm` object, and `iv`, the `ivreg` object. A model is returned for each parametric and non-parametric case and corresponding bandwidth.

frame Returns the model frame used in fitting.

na.action The observations removed from fitting due to missingness.

impute A logical value indicating whether multiple imputation is used or not.

d Numeric vector of the effect size (Cohen’s d) for each estimate.

References

Examples

```r
set.seed(12345)
x1 <- runif(1000, -1, 1)
x2 <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * (x1 >= 0) + 3 * cov + 10 * (x2 >= 0) + rnorm(1000)
# centering
mrd_est(y ~ x1 + x2 | cov, method = "center", t.design = c("geq", "geq"))
# univariate
mrd_est(y ~ x1 + x2 | cov, method = "univ", t.design = c("geq", "geq"))
# frontier
mrd_est(y ~ x1 + x2 | cov, method = "front", t.design = c("geq", "geq"))
```

mrd_impute
Multiple Imputation of Multivariate Regression Discontinuity Estimation

Description

mrd_impute estimates treatment effects in a multivariate regression discontinuity design (MRDD) with imputed missing values.

Usage

```r
mrd_impute(
  formula,
  data,
  subset = NULL,
  cutpoint = NULL,
  bw = NULL,
  front.bw = NA,
  m = 10,
  k = 5,
  kernel = "triangular",
  se.type = "HC1",
  cluster = NULL,
  impute = NULL,
  verbose = FALSE,
  less = FALSE,
  est.cov = FALSE,
  est.itt = FALSE,
  local = 0.15,
  ngrid = 250,
  margin = 0.03,
  boot = NULL,
  method = c("center", "univ", "front"),
  t.design = NULL,
  stop.on.error = TRUE
)
```
Arguments

formula
The formula of the MRDD; a symbolic description of the model to be fitted. This is supplied in the format of \(y \sim x_1 + x_2 \) for a simple sharp MRDD or \(y \sim x_1 + x_2 | c_1 + c_2 \) for a sharp MRDD with two covariates. A fuzzy MRDD may be specified as \(y \sim x_1 + x_2 + z \) where \(x_1 \) is the first running variable, \(x_2 \) is the second running variable, and \(z \) is the endogenous treatment variable. Covariates are then included in the same manner as in a sharp MRDD.

data
An optional data frame containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`.

subset
An optional vector specifying a subset of observations to be used in the fitting process.

cutpoint
A numeric vector of length 2 containing the cutpoints at which assignment to the treatment is determined. The default is \(c(0, 0) \).

bw
A vector specifying the bandwidths at which to estimate the RD. Possible values are "IK09", "IK12", and a user-specified non-negative numeric vector specifying the bandwidths at which to estimate the RD. The default is "IK12". If \(bw \) is "IK12", the bandwidth is calculated using the Imbens-Kalyanaraman 2012 method. If \(bw \) is "IK09", the bandwidth is calculated using the Imbens-Kalyanaraman 2009 method. Then the RD is estimated with that bandwidth, half that bandwidth, and twice that bandwidth. If only a single value is passed into the function, the RD will similarly be estimated at that bandwidth, half that bandwidth, and twice that bandwidth.

front.bw
A non-negative numeric vector of length 3 specifying the bandwidths at which to estimate the RD for each of three effects models (complete model, heterogeneous treatment model, and treatment only model) detailed in Wong, Steiner, and Cook (2013). If \(NA \), \(front.bw \) will be determined by cross-validation. The default is \(NA \).

m
A non-negative integer specifying the number of uniformly-at-random samples to draw as search candidates for \(front.bw \), if \(front.bw \) is \(NA \). The default is 10.

k
A non-negative integer specifying the number of folds for cross-validation to determine \(front.bw \), if \(front.bw \) is \(NA \). The default is 5.

kernel
A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", and "cosine".

se.type
This specifies the robust standard error calculation method to use, from the "sandwich" package. Options are, as in `vcovHC`, "HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5". The default is "HC1". This option is overridden by `cluster`.

cluster
An optional vector of length n specifying clusters within which the errors are assumed to be correlated. This will result in reporting cluster robust SEs. This option overrides anything specified in `se.type`. It is suggested that data with a discrete running variable be clustered by each unique value of the running variable (Lee and Card, 2008).

impute
An optional vector of length n containing a grouping variable that specifies the imputed variables with missing values.
verbose A logical value indicating whether to print additional information to the terminal. The default is FALSE.

less Logical. If TRUE, return the estimates of parametric linear and optimal bandwidth non-parametric models only. If FALSE return the estimates of linear, quadratic, and cubic parametric models and optimal, half and double bandwidths in non-parametric models. The default is FALSE.

est.cov Logical. If TRUE, the estimates of covariates will be included. If FALSE, the estimates of covariates will not be included. The default is FALSE. This option is not applicable if method is "front".

est.itt Logical. If TRUE, the estimates of intent-to-treat (ITT) will be returned. If FALSE, the estimates of ITT will not be returned. The default is FALSE. This option is not applicable if method is "front".

local A non-negative numeric value specifying the range of neighboring points around the cutoff on the standardized scale, for each assignment variable. The default is 0.15.

ngrid A non-negative integer specifying the number of non-zero grid points on each assignment variable, which is also the number of zero grid points on each assignment variable. The default is 250. The value used in Wong, Steiner and Cook (2013) is 2500, which may cause long computational time.

margin A non-negative numeric value specifying the range of grid points beyond the minimum and maximum of sample points on each assignment variable. The default is 0.03.

boot An optional non-negative integer specifying the number of bootstrap samples to obtain standard error of estimates. This argument is not optional if method is "front".

method A string specifying the method to estimate the RD effect. Options are "center", "univ", "front", based on the centering, univariate, and frontier approaches (respectively) from Wong, Steiner, and Cook (2013).

t.design A character vector of length 2 specifying the treatment option according to design. The first entry is for x1 and the second entry is for x2. Options are "g" (treatment is assigned if x1 is greater than its cutoff), "geq" (treatment is assigned if x1 is greater than or equal to its cutoff), "l" (treatment is assigned if x1 is less than its cutoff), and "leq" (treatment is assigned if x1 is less than or equal to its cutoff). The same options are available for x2.

stop.on.error A logical value indicating whether to remove bootstraps which cause error in the integrate function. If TRUE, bootstraps which cause error are removed and resampled until the specified number of bootstrap samples are acquired. If FALSE, bootstraps which cause error are not removed. The default is TRUE.

Value
mrd_impute returns an object of class "mrd" or "mrdi" for "front" method. The function summary is used to obtain and print a summary of the estimated regression discontinuity. The object of class mrd is a list containing the following components for each estimated treatment effect, tau_MRD or tau_R and tau_M:
mrd_impute

call
The matched call.

type
A string denoting either "sharp" or "fuzzy" RDD.

cov
The names of covariates.

bw
Numeric vector of each bandwidth used in estimation.

obs
Vector of the number of observations within the corresponding bandwidth.

model
For a sharp design, a list of the lm objects is returned. For a fuzzy design, a list of lists is returned, each with two elements: firststage, the first stage lm object, and iv, the ivreg object. A model is returned for each parametric and non-parametric case and corresponding bandwidth.

frame
Returns the model frame used in fitting.

na.action
The observations removed from fitting due to missingness.

est
Numeric vector of the estimate of the discontinuity in the outcome under a sharp MRDD or the Wald estimator in the fuzzy MRDD, for each corresponding bandwidth.

d
Numeric vector of the effect size (Cohen’s d) for each estimate.

se
Numeric vector of the standard error for each corresponding bandwidth.

z
Numeric vector of the z statistic for each corresponding bandwidth.

df

p
Numeric vector of the p-value for each corresponding bandwidth.

ci
The matrix of the 95 for each corresponding bandwidth.

impute
A logical value indicating whether multiple imputation is used or not.

References

Examples

```r
set.seed(12345)
x1 <- runif(300, -1, 1)
x2 <- runif(300, -1, 1)
cov <- rnorm(300)
y <- 3 + 2 * (x1 >= 0) + 3 * cov + 10 * (x2 >= 0) + rnorm(300)
imp <- rep(1:3, each = 100)
# all examples below have smaller numbers of m to keep run-time low
```
centering
mrd_impute(y ~ x1 + x2 | cov, impute = imp, method = "center", t.design = c("geq", "geq"), m = 3)
univariate
mrd_impute(y ~ x1 + x2 | cov, impute = imp, method = "univ", t.design = c("geq", "geq"), m = 3)
frontier - don't run due to computation time
Not run: mrd_impute(y ~ x1 + x2 | cov, impute = imp, method = "front",
 boot = 1000, t.design = c("geq", "geq"), m = 3)
End(Not run)

mrd_power

Power Analysis of Multivariate Regression Discontinuity

Description

mrd_power computes the empirical probability that a resulting parameter estimate of the MRD is significant, i.e. the empirical power (1 - beta).

Usage

```r
mrd_power(
    num.rep = 100,
    sample.size = 100,
    x1.dist = "normal",
    x1.para = c(0, 1),
    x2.dist = "normal",
    x2.para = c(0, 1),
    x1.cut = 0,
    x2.cut = 0,
    x1.fuzzy = c(0, 0),
    x2.fuzzy = c(0, 0),
    x1.design = NULL,
    x2.design = NULL,
    coeff = c(0.1, 0.5, 0.5, 1, rep(0.1, 9)),
    etasq = 0.5,
    alphalist = c(0.001, 0.01, 0.05)
)
```

Arguments

- `num.rep`: A non-negative integer specifying the number of repetitions used to calculate the empirical power. The default is 100.
- `sample.size`: A non-negative integer specifying the number of observations in each sample. The default is 100.
- `x1.dist`: A string specifying the distribution of the first assignment variable, x1. Options are "normal" and "uniform". The default is the "normal" distribution.
A numeric vector of length 2 specifying parameters of the distribution of the first assignment variable, \(x_1 \). If \(x_1\.dist \) is "normal", then \(x_1\.para \) includes the mean and standard deviation of the normal distribution. If \(x_1\.dist \) is "uniform", then \(x_1\.para \) includes the upper and lower boundaries of the uniform distribution. The default is \(c(0,1) \).

A string specifying the distribution of the second assignment variable, \(x_2 \). Options are "normal" and "uniform". The default is the "normal" distribution.

A numeric vector of length 2 specifying parameters of the distribution of the second assignment variable, \(x_2 \). If \(x_2\.dist \) is "normal", then \(x_2\.para \) includes the mean and standard deviation of the normal distribution. If \(x_2\.dist \) is "uniform", then \(x_2\.para \) includes the upper and lower boundaries of the uniform distribution. The default is \(c(0,1) \).

A numeric value containing the cutpoint at which assignment to the treatment is determined for the first assignment variable, \(x_1 \). The default is 0.

A numeric value containing the cutpoint at which assignment to the treatment is determined for the second assignment variable, \(x_2 \). The default is 0.

A numeric vector of length 2 specifying the probabilities to be assigned to the control condition, in terms of the first assignment variable, \(x_1 \), for individuals in the treatment based on the cutoff, and to treatment for individuals in the control condition based on the cutoff. For a sharp design, both entries are 0. For a fuzzy design, the first entry is the probability to be assigned to control for individuals above the cutpoint, and the second entry is the probability to be assigned to treatment for individuals below the cutpoint. The default is \(c(0,0) \), indicating a sharp design.

A numeric vector of length 2 specifying the probabilities to be assigned to the control, in terms of the second assignment variable, \(x_2 \), for individuals in the treatment based on the cutoff, and to treatment for individuals in the control based on the cutoff. For a sharp design, both entries are 0. For a fuzzy design, the first entry is the probability to be assigned to control for individuals above the cutpoint, and the second entry is the probability to be assigned to treatment for individuals below the cutpoint. The default is \(c(0,0) \), indicating a sharp design.

A string specifying the treatment option according to design for \(x_1 \). Options are "g" (treatment is assigned if \(x_1 \) is greater than its cutoff), "geq" (treatment is assigned if \(x_1 \) is greater than or equal to its cutoff), "l" (treatment is assigned if \(x_1 \) is less than its cutoff), and "leq" (treatment is assigned if \(x_1 \) is less than or equal to its cutoff).

A string specifying the treatment option according to design for \(x_2 \). Options are "g" (treatment is assigned if \(x_2 \) is greater than its cutoff), "geq" (treatment is assigned if \(x_2 \) is greater than or equal to its cutoff), "l" (treatment is assigned if \(x_2 \) is less than its cutoff), and "leq" (treatment is assigned if \(x_2 \) is less than or equal to its cutoff).

A numeric vector specifying coefficients of variables in the linear model to generate data. Coefficients are in the following order:

- The 1st entry is the intercept.
• The 2nd entry is the slope of treatment 1, i.e. treatment effect 1.
• The 3rd entry is the slope of treatment 2, i.e. treatment effect 2.
• The 4th entry is the slope of treatment, i.e. treatment effect.
• The 5th entry is the slope of assignment 1.
• The 6th entry is the slope of assignment 2.
• The 7th entry is the slope of interaction between assignment 1 and assignment 2.
• The 8th entry is the slope of interaction between treatment 1 and assignment 1.
• The 9th entry is the slope of interaction between treatment 2 and assignment 1.
• The 10th entry is the slope of interaction between treatment 1 and assignment 2.
• The 11th entry is the slope of interaction between treatment 2 and assignment 2.
• The 12th entry is the slope of interaction between treatment 1, assignment 1 and assignment 2.
• The 13th entry is the slope of interaction between treatment 2, assignment 1 and assignment 2.

The default is \(\text{c}(0.1, 0.5, 0.5, 1, \text{rep}(0.1, 9)) \).

\text{eta.sq} \quad \text{A numeric value specifying the expected partial eta-squared of the linear model with respect to the treatment itself. It is used to control the variance of noise in the linear model. The default is 0.50.}

\alpha.list \quad \text{A numeric vector containing significance levels (between 0 and 1) used to calculate the empirical alpha. The default is \text{c}(0.001, 0.01, \text{and} 0.05).}

\textbf{Value}

\textit{mrd_power} returns an object of class "\text{mrdp}" containing the number of successful iterations, mean, variance, and power (with \text{alpha} of 0.001, 0.01, and 0.05) for six estimators. The function \textit{summary} is used to obtain and print a summary of the power analysis. The six estimators are as follows:

• The 1st estimator, \textit{Linear}, provides results of the linear regression estimator of combined RD using the centering approach.
• The 2nd estimator, \textit{Opt}, provides results of the local linear regression estimator of combined RD using the centering approach, with the optimal bandwidth in the Imbens and Kalyanaraman (2012) paper.
• The 3rd estimator, \textit{Linear}, provides results of the linear regression estimator of separate RD in terms of \(x_1 \) using the univariate approach.
• The 4th estimator, \textit{Opt}, provides results of the local linear regression estimator of separate RD in terms of \(x_1 \) using the univariate approach, with the optimal bandwidth in the Imbens and Kalyanaraman (2012) paper.
• The 5th estimator, \textit{Linear}, provides results of the linear regression estimator of separate RD in terms of \(x_2 \) using the univariate approach.
• The 6th estimator, \textit{Opt}, provides results of the local linear regression estimator of separate RD in terms of \(x_2 \) using the univariate approach, with the optimal bandwidth in the Imbens and Kalyanaraman (2012) paper.
mrd_sens_bw

References

Examples

```r
## Not run:
summary(mrd_power(x1.design = "l", x2.design = "l"))
summary(mrd_power(x1.dist = "uniform", x1.cut = 0.5,
                   x1.design = "l", x2.design = "l"))
summary(mrd_power(x1.fuzzy = c(0.1, 0.1), x1.design = "l", x2.design = "l"))
## End(Not run)
```

Description

mrd_sens_bw refits the supplied model with varying bandwidths. All other aspects of the model are held constant.

Usage

```r
mrd_sens_bw(object, approach = c("center", "univ1", "univ2"), bws)
```

Arguments

- **object**: An object returned by `mrd_est` or `mrd_impute`.
- **approach**: A string of the approaches to be refitted, choosing from `c("center", "univ1", "univ2")`.
- **bws**: A positive numeric vector of the bandwidths for refitting an mrd object.

Value

`mrd_sens_bw` returns a dataframe containing the estimate `est` and standard error `se` for each supplied bandwidth and for the Imbens-Kalyanaraman (2012) optimal bandwidth, `bw`, and for each supplied approach, `model`. Approaches are either user specified ("usr") or based on the optimal bandwidth ("origin").

References

Examples

```r
set.seed(12345)
x1 <- runif(10000, -1, 1)
x2 <- rnorm(10000, 10, 2)
cov <- rnorm(10000)
y <- 3 + 2 * x1 + 1 * x2 + 3 * cov + 10 * (x1 >= 0) + 5 * (x2 >= 10) + rnorm(10000)
# front.bw argument was supplied to speed up the example
# users should choose appropriate values for front.bw
mrd <- mrd_est(y ~ x1 + x2 | cov,
                cutpoint = c(0, 10), t.design = c("geq", "geq"), front.bw=c(1,1,1))
mrd_sens_bw(mrd, approach = "univ1", bws = seq(0.1, 1, length.out = 3))
```

mrd_sens_cutoff

Cutoff Sensitivity Simulation for Multivariate Regression Discontinuity

Description

`mrd_sens_cutoff` refits the supplied model with varying cutoff(s). All other aspects of the model, such as the automatically calculated bandwidth, are held constant.

Usage

```r
mrd_sens_cutoff(object, cutoffs)
```

Arguments

- **object**: An object returned by `mrd_est` or `mrd_impute`.
- **cutoffs**: A two-column numeric matrix of paired cutoff values to be used for refitting an `mrd` object. The first column corresponds to cutoffs for `x1` and the second column corresponds to cutoffs for `x2`.

Value

`mrd_sens_cutoff` returns a dataframe containing the estimate `est` and standard error `se` for each pair of cutoffs (`A1` and `A2`) and for each model. `A1` contains varying cutoffs for assignment 1 and `A2` contains varying cutoffs for assignment 2. The `model` column contains the approach (either centering, univariate 1, or univariate 2) for determining the cutoff and the parametric model (linear, quadratic, or cubic) or non-parametric bandwidth setting (Imbens-Kalyanaraman 2012 optimal, half, or double) used for estimation.

References

Examples

```r
set.seed(12345)
x1 <- runif(10000, -1, 1)
x2 <- rnorm(10000, 10, 2)
cov <- rnorm(10000)
y <- 3 + 2 * x1 + 1 * x2 + 3 * cov + 10 * (x1 >= 0) + 5 * (x2 >= 10) + rnorm(10000)
# front.bw arugment was supplied to speed up the example
# users should choose appropriate values for front.bw
mrd <- mrd_est(y ~ x1 + x2 | cov,
               cutpoint = c(0, 10), t.design = c("geq", "geq"), front.bw = c(1,1,1))
mrd_sens_cutoff(mrd, expand.grid(A1 = seq(-.5, .5, length.out = 3), A2 = 10))
```

Description

`plot.mfrd` plots a 3D illustration of the bivariate frontier regression discontinuity design (RDD).

Usage

```r
## S3 method for class 'mfrd'
plot(
  x,  # An mfrd object returned by mfrd_est or contained in the object returned by mrd_est.
  model = c("m_s", "m_h", "m_t"),
  methodname = c("Param", "bw", "Half-bw", "Double-bw"),
  gran = 10,
  raw_data = TRUE,
  color_surface = FALSE,
  ...)
```

Arguments

- `x` An mfrd object returned by mfrd_est or contained in the object returned by mrd_est.
- `model` A string containing the model specification. Options include one of c("m_s", "m_h", "m_t"), which denote the complete model, heterogeneous treatment model, and treatment only model, respectively.
- `methodname` A string containing the method specification. Options include one of c("Param", "bw", "Half-bw", "Double-bw").
- `gran` A non-negative integer specifying the granularity of the surface grid (i.e. the desired number of predicted points before and after the cutoff, along each assignment variable). The default is 10.
- `raw_data` A logical value indicating whether the raw data points are plotted. The default is TRUE.
- `color_surface` A logical value indicating whether the treated surface is colored. The default is FALSE.
- `...` Additional graphic arguments passed to persp.
Examples

```r
set.seed(12345)
x1 <- runif(1000, -1, 1)
x2 <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * (x1 >= 0) + 3 * cov + 10 * (x2 >= 0) + rnorm(1000)
model <- mfrd_est(y = y, x1 = x1, x2 = x2, c1 = 0, c2 = 0, t.design = c("geq", "geq"))
plot(model, "m_s", "Param")
```

Description

plot.rd plots the relationship between the running variable and the outcome. It is based on the plot.RD function in the "rdd" package.

Usage

```r
## S3 method for class 'Var'
plot.RD
plot(  
  x,  
  preds = NULL,  
  fit_line = c("linear", "quadratic", "cubic", "optimal", "half", "double"),  
  fit_ci = c("area", "dot", "hide"),  
  fit_ci_level = 0.95,  
  bin_n = 20,  
  bin_level = 0.95,  
  bin_size = c("shade", "size"),  
  quant_bin = TRUE,  
  xlim = NULL,  
  ylim = NULL,  
  include_rugs = FALSE,  
  ...
)
```

Arguments

- `x`: An rd object, typically the result of `rd_est`.
- `preds`: An optional vector of predictions generated by `predict.rd`. If not supplied, prediction is completed within the `plot.rd` function.
- `fit_line`: A character vector specifying models to be shown as fitted lines. Options are c("linear","quadratic","cubic","optimal","half","double").
- `fit_ci`: A string specifying whether and how to plot prediction confidence intervals around the fitted lines. Options are c("area","dot","hide").
predict.rd

Description

predict.rd makes predictions of means and standard deviations of RDs at different cutoffs.

Usage

S3 method for class 'rd'
predict(object, gran = 50, ...)
Arguments

object An rd object, typically the result of rd_est.

gran A non-negative integer specifying the granularity of the data points (i.e. the desired number of predicted points). The default is 50.

... Additional arguments passed to predict.

Examples

```r
set.seed(12345)
x <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * x + 3 * cov + 10 * (x >= 0) + rnorm(1000)
tr <- as.integer(x >= 0)
rd <- rd_est(y ~ x + tr | cov, cutpoint = 0, t.design = "geq")
predict(rd)
```

print.mfrd

Print the Multivariate Frontier Regression Discontinuity

Description

print.mfrd prints a very basic summary of the multivariate frontier regression discontinuity. It is based on the print.RD function in the "rdd" package.

Usage

```r
## S3 method for class 'mfrd'
print(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

x An mfrd object, typically the result of mfrd_est.

digits A non-negative integer specifying the number of digits to print. The default is max(3,getOption("digits") -3).

... Additional arguments passed to print.

References

print.rd

Description

print.rd prints a basic summary of the regression discontinuity. print.rd is based on the print.RD function in the "rdd" package.

Usage

S3 method for class 'rd'

```r
print(x, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

- `x`: An rd object, typically the result of `rd_est`.
- `digits`: A non-negative integer specifying the number of digits to print. The default is `max(3,getOption("digits") - 3)`.
- `...`: Additional arguments passed to `print`.

References

rd_est

Description

`rd_est` estimates both sharp and fuzzy RDDs using parametric and non-parametric (local linear) models. It is based on the RDestimate function in the "rdd" package. Sharp RDDs (both parametric and non-parametric) are estimated using `lm` in the `stats` package. Fuzzy RDDs (both parametric and non-parametric) are estimated using two-stage least-squares `ivreg` in the `AER` package. For non-parametric models, Imbens-Kalyanaraman optimal bandwidths can be used.

Usage

```r
rd_est(
  formula,
  data,
  subset = NULL,
  cutpoint = NULL,
  bw = NULL,
  kernel = "triangular",
```
se.type = "HC1",
cluster = NULL,
verbose = FALSE,
less = FALSE,
est.cov = FALSE,
est.itt = FALSE,
t.design = NULL
)

Arguments

formula The formula of the RDD; a symbolic description of the model to be fitted. This is supplied in the format of y ~ x for a simple sharp RDD or y ~ x | c1 + c2 for a sharp RDD with two covariates. A fuzzy RDD may be specified as y ~ x + z where x is the running variable, and z is the endogenous treatment variable. Covariates are included in the same manner as in a sharp RDD.

data An optional data frame containing the variables in the model. If not found in data, the variables are taken from environment(formula).

subset An optional vector specifying a subset of observations to be used in the fitting process.

cutpoint A numeric value containing the cutpoint at which assignment to the treatment is determined. The default is 0.

bw A vector specifying the bandwidths at which to estimate the RD. Possible values are "IK09", "IK12", and a user-specified non-negative numeric vector specifying the bandwidths at which to estimate the RD. The default is "IK12". If bw is "IK12", the bandwidth is calculated using the Imbens-Kalyanaraman 2012 method. If bw is "IK09", the bandwidth is calculated using the Imbens-Kalyanaraman 2009 method. Then the RD is estimated with that bandwidth, half that bandwidth, and twice that bandwidth. If only a single value is passed into the function, the RD will similarly be estimated at that bandwidth, half that bandwidth, and twice that bandwidth.

kernel A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", and "cosine".

se.type This specifies the robust standard error calculation method to use, from the "sandwich" package. Options are, as in vcovHC, "HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5". The default is "HC1". This option is overridden by cluster.

cluster An optional vector of length n specifying clusters within which the errors are assumed to be correlated. This will result in reporting cluster robust SEs. This option overrides anything specified in se.type. It is suggested that data with a discrete running variable be clustered by each unique value of the running variable (Lee and Card, 2008).

verbose A logical value indicating whether to print additional information to the terminal. The default is FALSE.
less Logical. If TRUE, return the estimates of linear and optimal. If FALSE return the estimates of linear, quadratic, cubic, optimal, half and double. The default is FALSE.
est.cov Logical. If TRUE, the estimates of covariates will be included. If FALSE, the estimates of covariates will not be included. The default is FALSE. This option is not applicable if method is "front".
est.itt Logical. If TRUE, the estimates of ITT will be returned. The default is FALSE.
t.design A string specifying the treatment option according to design. Options are "g" (treatment is assigned if \(x \) is greater than its cutoff), "geq" (treatment is assigned if \(x \) is greater than or equal to its cutoff), "l" (treatment is assigned if \(x \) is less than its cutoff), and "leq" (treatment is assigned if \(x \) is less than or equal to its cutoff).

Value

rd_est returns an object of class "rd". The functions summary and plot are used to obtain and print a summary and plot of the estimated regression discontinuity. The object of class rd is a list containing the following components:

- **type** A string denoting either "sharp" or "fuzzy" RDD.
- **est** Numeric vector of the estimate of the discontinuity in the outcome under a sharp RDD or the Wald estimator in the fuzzy RDD, for each corresponding bandwidth.
- **se** Numeric vector of the standard error for each corresponding bandwidth.
- **z** Numeric vector of the z statistic for each corresponding bandwidth.
- **p** Numeric vector of the p-value for each corresponding bandwidth.
- **ci** The matrix of the 95 for each corresponding bandwidth.
- **d** Numeric vector of the effect size (Cohen’s d) for each estimate.
- **cov** The names of covariates.
- **bw** Numeric vector of each bandwidth used in estimation.
- **obs** Vector of the number of observations within the corresponding bandwidth.
- **call** The matched call.
- **na.action** The number of observations removed from fitting due to missingness.
- **impute** A logical value indicating whether multiple imputation is used or not.
- **model** For a sharp design, a list of the \(\text{lm} \) objects is returned. For a fuzzy design, a list of lists is returned, each with two elements: \text{firststage}, the first stage \(\text{lm} \) object, and \text{iv}, the \text{ivreg} object. A model is returned for each corresponding bandwidth.
- **frame** Returns the dataframe used in fitting the model.
References

Examples

```r
set.seed(12345)
x <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * x + 3 * cov + 10 * (x >= 0) + rnorm(1000)
rd_est(y ~ x, t.design = "geq")
# Efficiency gains can be made by including covariates (review SEs in "summary" output).
rd_est(y ~ x | cov, t.design = "geq")
```

rd_impute

Multiple Imputation of Regression Discontinuity Estimation

Description

rd_impute estimates treatment effects in an RDD with imputed missing values.

Usage

```r
rd_impute(
  formula,
  data,
  subset = NULL,
  cutpoint = NULL,
  bw = NULL,
  kernel = "triangular",
  se.type = "HC1",
```
Arguments

formula The formula of the RDD; a symbolic description of the model to be fitted. This is supplied in the format of \(y \sim x \) for a simple sharp RDD or \(y \sim x \mid c1 + c2 \) for a sharp RDD with two covariates. A fuzzy RDD may be specified as \(y \sim x + z \) where \(x \) is the running variable, and \(z \) is the endogenous treatment variable. Covariates are included in the same manner as in a sharp RDD.

data An optional data frame containing the variables in the model. If not found in data, the variables are taken from \text{environment(formula)}.

subset An optional vector specifying a subset of observations to be used in the fitting process.

cutpoint A numeric value containing the cutpoint at which assignment to the treatment is determined. The default is 0.

bw A vector specifying the bandwidths at which to estimate the RD. Possible values are "IK09", "IK12", and a user-specified non-negative numeric vector specifying the bandwidths at which to estimate the RD. The default is "IK12". If \(bw \) is "IK12", the bandwidth is calculated using the Imbens-Kalyanaraman 2012 method. If \(bw \) is "IK09", the bandwidth is calculated using the Imbens-Kalyanaraman 2009 method. Then the RD is estimated with that bandwidth, half that bandwidth, and twice that bandwidth. If only a single value is passed into the function, the RD will similarly be estimated at that bandwidth, half that bandwidth, and twice that bandwidth.

kernel A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "tricube", and "cosine".

se.type This specifies the robust standard error calculation method to use, from the "sandwich" package. Options are, as in \text{vcovHC}, "HC3", "const", "HC", "HC0", "HC1", "HC2", "HC4", "HC4m", "HC5". This option is overridden by \text{cluster}.

cluster An optional vector specifying clusters within which the errors are assumed to be correlated. This will result in reporting cluster robust SEs. This option overrides anything specified in \text{se.type}. It is suggested that data with a discrete running variable be clustered by each unique value of the running variable (Lee and Card, 2008).

impute An optional vector of length \(n \), indexing whole imputations.

verbose A logical value indicating whether to print additional information to the terminal. The default is \text{FALSE}.

less Logical. If TRUE, return the estimates of linear and optimal. If FALSE return the estimates of linear, quadratic, cubic, optimal, half and double. The default is FALSE.
est.cov Logical. If TRUE, the estimates of covariates will be included. If FALSE, the estimates of covariates will not be included. The default is FALSE. This option is not applicable if method is "front".
est.itt Logical. If TRUE, the estimates of ITT will be returned. If FALSE, the estimates of ITT will not be returned. The default is FALSE. This option is not applicable if method is "front".
t.design A string specifying the treatment option according to design. Options are "g" (treatment is assigned if x is greater than its cutoff), "geq" (treatment is assigned if x is greater than or equal to its cutoff), "l" (treatment is assigned if x is less than its cutoff), and "leq" (treatment is assigned if x is less than or equal to its cutoff).

Value

rd_impute returns an object of class "rd". The functions summary and plot are used to obtain and print a summary and plot of the estimated regression discontinuity. The object of class rd is a list containing the following components:
call The matched call.
impute A logical value indicating whether multiple imputation is used or not.
type A string denoting either "sharp" or "fuzzy" RDD.
cov The names of covariates.
bw Numeric vector of each bandwidth used in estimation.
obs Vector of the number of observations within the corresponding bandwidth.
model For a sharp design, a list of the lm objects is returned. For a fuzzy design, a list of lists is returned, each with two elements: firststage, the first stage lm object, and iv, the ivreg object. A model is returned for each parametric and non-parametric case and corresponding bandwidth.
frame Returns the model frame used in fitting.
na.action The observations removed from fitting due to missingness.
est Numeric vector of the estimate of the discontinuity in the outcome under a sharp RDD or the Wald estimator in the fuzzy RDD, for each corresponding bandwidth.
d Numeric vector of the effect size (Cohen’s d) for each estimate.
se Numeric vector of the standard error for each corresponding bandwidth.
z Numeric vector of the z statistic for each corresponding bandwidth.
p Numeric vector of the p-value for each corresponding bandwidth.
ci The matrix of the 95 for each corresponding bandwidth.
References

Examples

```r
set.seed(12345)
x <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * x + 3 * cov + 10 * (x < 0) + rnorm(1000)
group <- rep(1:10, each = 100)
rd_impute(y ~ x, impute = group, t.design = "l")
# Efficiency gains can be made by including covariates (review SEs in "summary" output).
rd_impute(y ~ x | cov, impute = group, t.design = "l")
```

rd_power

Power Analysis of Regression Discontinuity

Description

`rd_power` computes the empirical probability that a resulting parameter estimate of the MRD is significant, i.e. the empirical power (1 - beta).

Usage

```r
rd_power(
  num.rep = 100,
  sample.size = 100,
  x.dist = "normal",
  x.para = c(0, 1),
  x.cut = 0,
  x.fuzzy = c(0, 0),
  x.design = NULL,
  coeff = c(0.3, 1, 0.2, 0.3),
  eta.sq = 0.5,
  alpha.list = c(0.001, 0.01, 0.05)
)
```
Arguments

num.rep A non-negative integer specifying the number of repetitions used to calculate the empirical power. The default is 100.

sample.size A non-negative integer specifying the number of observations in each sample. The default is 100.

x.dist A string specifying the distribution of the assignment variable, x. Options are "normal" and "uniform". The default is the "normal" distribution.

x.para A numeric vector of length 2 specifying parameters of the distribution of the first assignment variable, x1. If x.dist is "normal", then x.para includes the mean and standard deviation of the normal distribution. If x.dist is "uniform", then x.para includes the upper and lower boundaries of the uniform distribution. The default is c(0,1).

x.cut A numeric value containing the cutpoint at which assignment to the treatment is determined. The default is 0.

x.fuzzy A numeric vector of length 2 specifying the probabilities to be assigned to the control, in terms of the assignment variable, x, for individuals in the treatment based on the cutoff, and to treatment for individuals in the control based on the cutoff. For a sharp design, both entries are 0. For a fuzzy design, the first entry is the probability to be assigned to control for individuals above the cutpoint, and the second entry is the probability to be assigned to treatment for individuals below the cutpoint. The default is c(0,0), indicating a sharp design.

x.design A string specifying the treatment option according to design. Options are "g" (treatment is assigned if x is greater than its cutoff), "geq" (treatment is assigned if x is greater than or equal to its cutoff), "l" (treatment is assigned if x is less than its cutoff), and "leq" (treatment is assigned if x is less than or equal to its cutoff).

tcoef A numeric vector specifying coefficients of variables in the linear model to generate data. Coefficients are in the following order:
- The 1st entry is the intercept.
- The 2nd entry is the slope of treatment, i.e. treatment effect.
- The 3rd entry is the slope of assignment.
- The 4th entry is the slope of interaction between treatment and assignment.
The default is c(0.3,1,0.2,0.3).

eta.sq A numeric value specifying the expected partial eta-squared of the linear model with respect to the treatment itself. It is used to control the variance of noise in the linear model. The default is 0.50.

alpha.list A numeric vector containing significance levels (between 0 and 1) used to calculate the empirical alpha. The default is c(0.001,0.01,0.05).

Value

rd_power returns an object of class "rdp", including containing the mean, variance, and power (with alpha of 0.001, 0.01, and 0.05) for two estimators. The function summary is used to obtain and print a summary of the power analysis. The two estimators are:
The 1st estimator, Linear, provides results of the linear regression estimator.

The 2nd estimator, Opt, provides results of the local linear regression estimator of RD, with the optimal bandwidth in the Imbens and Kalyanaraman (2012) paper.

References

Examples

```r
## Not run:
summary(rd_power(x.design = "l"))
summary(rd_power(x.dist = "uniform", x.cut = 0.5, x.design = "l"))
summary(rd_power(x.fuzzy = c(0.1, 0.1), x.design = "l"))
## End(Not run)
```

rd_sens_bw

Bandwidth Sensitivity Simulation for Regression Discontinuity

Description

rd_sens_bw refits the supplied model with varying bandwidths. All other aspects of the model are held constant.

Usage

```r
rd_sens_bw(object, bws)
```

Arguments

- `object` An object returned by `rd_est` or `rd_impute`.
- `bws` A positive numeric vector of the bandwidths for refitting an `rd` object.

Value

rd_sens_bw returns a dataframe containing the estimate est and standard error se for each supplied bandwidth and for the Imbens-Kalyanaraman (2012) optimal bandwidth, bw, and for each supplied approach, model. Approaches are either user specified ("usr") or based on the optimal bandwidth ("origin").

References

Examples

```r
set.seed(12345)
x <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * x + 3 * cov + 10 * (x >= 0) + rnorm(1000)
rd <- rd_est(y ~ x | cov, t.design = "geq")
rd_sens_bw(rd, bws = seq(.1, 1, length.out = 5))
```

rd_sens_cutoff

Cutoff Sensitivity Simulation for Regression Discontinuity

Description

`rd_sens_cutoff` refits the supplied model with varying cutoff(s). All other aspects of the model, such as the automatically calculated bandwidth, are held constant.

Usage

`rd_sens_cutoff(object, cutoffs)`

Arguments

- **object**: An object returned by `rd_est` or `rd_impute`.
- **cutoffs**: A numeric vector of cutoff values to be used for refitting an `rd` object.

Value

`rd_sens_cutoff` returns a dataframe containing the estimate `est` and standard error `se` for each cutoff value (`A1`). Column `A1` contains varying cutoffs on the assignment variable. The model column contains the parametric model (linear, quadratic, or cubic) or non-parametric bandwidth setting (Imbens-Kalyanaraman 2012 optimal, half, or double) used for estimation.

References

Examples

```r
set.seed(12345)
x <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * x + 3 * cov + 10 * (x >= 0) + rnorm(1000)
rd <- rd_est(y ~ x | cov, t.design = "geq")
rd_sens_cutoff(rd, seq(-.5, .5, length.out = 10))
```
rd_type

Determine Type of Regression Discontinuity Design

Description

rd_type cross-tabulates observations based on (1) a binary treatment and (2) one or two assignments and their cutoff values. This is an internal function and is typically not directly invoked by the user. It can be accessed using the triple colon, as in rddapp::rd_type().

Usage

rd_type(
 data,
 treat,
 assign_1,
 cutoff_1,
 operator_1 = NULL,
 assign_2 = NULL,
 cutoff_2 = NULL,
 operator_2 = NULL
)

Arguments

data A data.frame, with each row representing an observation.
treat A string specifying the name of the numeric treatment variable (treated = positive values).
assign_1 A string specifying the variable name of the primary assignment.
cutoff_1 A numeric value containing the cutpoint at which assignment to the treatment is determined, for the primary assignment.
operator_1 The operator specifying the treatment option according to design for the primary assignment. Options are "g" (treatment is assigned if \(x_1 \) is greater than its cutoff), "geq" (treatment is assigned if \(x_1 \) is greater than or equal to its cutoff), "l" (treatment is assigned if \(x_1 \) is less than its cutoff), and "leq" (treatment is assigned if \(x_1 \) is less than or equal to its cutoff).
assign_2 An optional string specifying the variable name of the secondary assignment.
cutoff_2 An optional numeric value containing the cutpoint at which assignment to the treatment is determined, for the secondary assignment.
operator_2 The operator specifying the treatment option according to design for the secondary assignment. Options are "g" (treatment is assigned if \(x_2 \) is greater than its cutoff), "geq" (treatment is assigned if \(x_2 \) is greater than or equal to its cutoff), "l" (treatment is assigned if \(x_2 \) is less than its cutoff), and "leq" (treatment is assigned if \(x_2 \) is less than or equal to its cutoff).
Value

rd_type returns a list of two elements:

crosstab The cross-table as a data.frame. Columns in the dataframe include treatment rules, number of observations in the control condition, number of observations in the treatment condition, and the probability of an observation being in treatment or control.

type A string specifying the type of design used, either "SHARP" or "FUZZY".

Examples

```r
set.seed(12345)
x <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * x + 3 * cov + 10 * (x >= 0) + rnorm(1000)
df <- data.frame(cbind(y, x, t = x>=0))
rdapp:::rd_type(df, 't', 'x', 0, 'geq')
```

Description

sens_plot plots the sensitivity analysis for cutpoints or bandwidths.

Usage

```r
sens_plot(
  sim_results,
  level = 0.95,
  x = c("A1", "A2", "bw"),
  plot_models = unique(sim_results$model),
  yrange = NULL
)
```

Arguments

- `sim_results` A data.frame returned by rd_sens_cutoff, rd_sens_bw, mrd_sens_cutoff, or mrd_sens_bw.
- `level` A numeric value between 0 and 1 specifying the confidence level for CIs (assuming a normal sampling distribution). The default is 0.95.
- `x` A string of the column name of the varying parameter in sim_results. This will be used as the x-axis in the plot. Possible values are c("A1", "A2", "bw"), which are column names in sim_results. A1 specifies that the varying cutoffs are for assignment 1 and A2 specifies assignment 2. bw indicates that the varying parameter is bandwidth.
plot_models A character vector specifying the models to be plotted (i.e. models estimated with different approaches). Possible values are unique(sim_results$model).

yrange An optional numeric vector specifying the range of the y-axis.

Examples

set.seed(12345)
x <- runif(1000, -1, 1)
cov <- rnorm(1000)
y <- 3 + 2 * x + 3 * cov + 10 * (x >= 0) + rnorm(1000)
m <- rd_est(y ~ x | cov, t.design = "geq")
sim_cutoff <- rd_sens_cutoff(m, seq(-.5, .5, length.out = 10))
sens_plot(sim_cutoff, x = "A1", plot_models = c("linear", "optimal"))
sim_bw <- rd_sens_bw(m, seq(.1, 1, length.out = 10))
sens_plot(sim_bw, x = "bw")

shiny_run Launch the R Shiny App for "rddapp"

Description

shiny_run launches the R Shiny application for "rddapp".

Usage

shiny_run(app_name = "shinyrdd")

Arguments

app_name A string specifying the name of the R Shiny app. The default is "shinyrdd".

Examples

Not run:
shiny_run()
shiny_run("shinyrdd")

End(Not run)
summarize.mfrd

Summarize the Multivariate Frontier Regression Discontinuity

Description

summarize.mfrd is a summary method for class "mfrd". It is based on the summary.RD function in the "rdd" package.

Usage

S3 method for class 'mfrd'
summary(object, level = 0.95, digits = max(3, getOption("digits") - 3), ...)

Arguments

- **object**: An object of class "mfrd", usually a result of a call to mfrd_est.
- **level**: A numeric value between 0 and 1 specifying the confidence level for confidence intervals. The default is 0.95.
- **digits**: A non-negative integer specifying the number of digits to display. The default is \(\max(3, \text{getOption("digits")} - 3) \).
- **...**: Additional arguments passed to summary.

Value

summarize.mfrd returns a list containing the following components:

- **coefficients**: A matrix containing estimates and confidence intervals (if applicable) for the complete model.
- **ht_coefficients**: A matrix containing estimates and confidence intervals (if applicable) for the heterogeneous treatment model.
- **t_coefficients**: A matrix containing estimates and confidence intervals (if applicable) for the treatment only model.

References

Summary.MRD

Summary

Summary.MRD is a summary method for class "mrd". It is based on **summary.RD** function in the "rdd" package.

Usage

```r
## S3 method for class 'mrd'
summary(object, level = 0.95, digits = max(3, getOption("digits") - 3), ...)
```

Arguments

- `object`: An object of class "mrd", usually a result of a call to **mrd.est**.
- `level`: A numeric value between 0 and 1 specifying the confidence level for confidence intervals. The default is 0.95.
- `digits`: A non-negative integer specifying the number of digits to display. The default is max(3,getOption("digits") - 3).
- `...`: Additional arguments passed to **summary**.

Value

Summary.MRD returns a list which has the following components depending on methods implemented in the "mrd" object:

- **center_coefficients**: A matrix containing bandwidths, number of observations, estimates, SEs, confidence intervals, z-values and p-values for each estimated bandwidth and/or parametric model.
- **univR_coefficients**: A matrix containing bandwidths, number of observations, estimates, SEs, confidence intervals, z-values and p-values for each estimated bandwidth and/or parametric model.
- **univM_coefficients**: A matrix containing bandwidths, number of observations, estimates, SEs, confidence intervals, z-values and p-values for each estimated bandwidth and/or parametric model.
- **front_coefficients**: A matrix containing estimates and confidence intervals (if applicable) for the complete model.
- **front_ht_coefficients**: A matrix containing estimates and confidence intervals (if applicable) for the heterogeneous treatment model.
front_t_coefficients
A matrix containing estimates and confidence intervals (if applicable) for the
treatment only model.

References
project.org/package=rdd

summary.mrdi

Summarize the Multiple Imputation of Multivariate Regression Dis-
continuity

Description
summary.mrdi is a summary method for class "mrdi". It is based on summary.RD function in the "rdd" package.

Usage
S3 method for class 'mrdi'
summary(object, level = 0.95, digits = max(3,getOption("digits") - 3), ...)

Arguments
object An object of class "mrdi", usually a result of a call to mrd_impute with "front" method.
level A numeric value between 0 and 1 specifying the confidence level for confidence intervals. The default is 0.95.
digits A non-negative integer specifying the number of digits to display. The default is max(3,getOption("digits") -3).
... Additional arguments passed to summary.

Value
summary.mrdi returns a list which has the following components:
coefficients A matrix containing estimates and confidence intervals (if applicable) for the complete model.
ht_coefficients A matrix containing estimates and confidence intervals (if applicable) for the heterogeneous treatment model.
t_coefficients A matrix containing estimates and confidence intervals (if applicable) for the treatment only model.

References
project.org/package=rdd
summary.mrdp

summary.mrdp is a summary method for class "mrdp". It is based on summary.RD function in the "rdd" package.

Usage

S3 method for class 'mrdp'
summary(object, digits = max(3,getOption("digits") - 3), ...)

Arguments

doct
 An object of class "mrdp", usually a result of a call to mrd.power.
digits
 A non-negative integer specifying the number of digits to display. The default is max(3,getOption("digits") - 3).
...
 Additional arguments passed to summary.

Value

summary.mrdp returns a list which has the following components:
coefficients
 A matrix containing the mean, variance, and empirical alpha of each estimator.

References

summary.rd

summary.rd is a summary method for class "rd" It is based on summary.RD function in the "rdd" package.

Usage

S3 method for class 'rd'
summary(object, level = 0.95, digits = max(3,getOption("digits") - 3), ...)

References

summary.rdp

Arguments

object An object of class "rd", usually a result of a call to \texttt{rd.est}.
level A numeric value between 0 and 1 specifying the confidence level for confidence intervals. The default is 0.95.
digits A non-negative integer specifying the number of digits to display. The default is \texttt{max(3,getOption("digits") -3)}.
... Additional arguments passed to \texttt{summary}.

Value

\texttt{summary.rdp} returns a list which has the following components:

coefficients A matrix containing bandwidths, number of observations, estimates, SEs, confidence intervals, z-values and p-values for each estimated bandwidth.

References

\begin{verbatim}
summary.rdp Summarize the Power Analysis of Regression Discontinuity
\end{verbatim}

Description

\texttt{summary.rdp} is a \texttt{summary} method for class "rdp". It is based on \texttt{summary.RD} function in the "rdd" package.

Usage

\begin{verbatim}
S3 method for class 'rdp'
summary(object, digits = max(3, getOption("digits") - 3), ...)
\end{verbatim}

Arguments

object An object of class "rdp", usually a result of a call to \texttt{rd.power}.
digits A non-negative integer specifying the number of digits to display. The default is \texttt{max(3,getOption("digits") -3)}.
... Additional arguments passed to \texttt{summary}.

Value

\texttt{summary.rdp} returns a list which has the following components:

coefficients A matrix containing the mean, variance, and empirical alpha of each estimator.
References

treat_assign

Treatment Assignment for Regression Discontinuity

Description

`treat_assign` computes the treatment variable, \(t \), based on the cutoff of assignment variable, \(x \). This is an internal function and is typically not directly invoked by the user. It can be accessed using the triple colon, as in rddapp:::treat_assign().

Usage

```r
treat_assign(x, cut = 0, t.design = "l")
```

Arguments

- **x**: A numeric vector containing the assignment variable, \(x \).
- **cut**: A numeric value containing the cutpoint at which assignment to the treatment is determined. The default is 0.
- **t.design**: A string specifying the treatment option according to design. Options are "g" (treatment is assigned if \(x \) is greater than its cutoff), "geq" (treatment is assigned if \(x \) is greater than or equal to its cutoff), "l" (treatment is assigned if \(x \) is less than its cutoff), and "leq" (treatment is assigned if \(x \) is less than or equal to its cutoff). The default is "l".

Value

`treat_assign` returns the treatment variable as a vector according to the design, where 1 means the treated group and 0 means the control group.

var_center

Assignment Centering for Multivariate Frontier Regression Discontinuity

Description

`var_center` computes the univariate assignment variable, \(x \) based on the cutoffs of two assignment variables: \(x_1 \) and \(x_2 \). This is an internal function and is typically not directly invoked by the user. It can be accessed using the triple colon, as in rddapp:::var_center().
Usage

```r
var_center(x, cut = c(0, 0), t.design = NULL, t.plot = FALSE)
```

Arguments

- **x**: Data frame or matrix of two assignment variables, where the first column is \(x_1 \) and the second column is \(x_2 \).
- **cut**: A numeric vector of length 2 containing the cutpoints at which assignment to the treatment is determined. The default is \(c(0, 0) \).
- **t.design**: A character vector of length 2 specifying the treatment option according to design. The first entry is for \(x_1 \) and the second entry is for \(x_2 \). Options are "g" (treatment is assigned if \(x_1 \) is greater than its cutoff), "geq" (treatment is assigned if \(x_1 \) is greater than or equal to its cutoff), "l" (treatment is assigned if \(x_1 \) is less than its cutoff), and "leq" (treatment is assigned if \(x_1 \) is less than or equal to its cutoff). The same options are available for \(x_2 \).
- **t.plot**: A logical value indicating whether to calculate the univariate treatment variable, \(t \), and make a plot. The default is FALSE.

Value

`var_center` returns the univariate assignment variable as a vector according to the design.

wt_kern

Kernel Weight Calculation

Description

`wt_kern` calculates the appropriate kernel weights for a vector. This is useful when, for instance, one wishes to perform local regression. It is based on the `kernelwts` function in the "rdd" package. This is an internal function and is typically not directly invoked by the user. It can be accessed using the triple colon, as in `rddapp:::wt_kern()`.

Usage

```r
wt_kern(X, center, bw, kernel = "triangular")
```

Arguments

- **X**: A numeric vector containing the the input \(X \) values. This variable represents the axis along which kernel weighting should be performed.
- **center**: A numeric value specifying the point from which distances should be calculated.
- **bw**: A numeric value specifying the bandwidth.
- **kernel**: A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", and "cosine".
wt_kern_bivariate

Value

wt_kern returns a vector of weights with length equal to that of the \(X \) input (one weight per element of \(X \)).

References

wt_kern_bivariate
Bivariate Kernel Weight Calculation

Description

wt_kern_bivariate calculates the appropriate weights for two variables for Multivariate Frontier Regression Discontinuity Estimation with nonparametric implementation. Kernel weights are calculated based on the L1 distance of the two variables from the frontiers. This is an internal function and is typically not directly invoked by the user. It can be accessed using the triple colon, as in rddapp:::wt_kern_bivariate().

Usage

```r
wt_kern_bivariate(
  X1,  
  X2,  
  center1,  
  center2,  
  bw,  
  kernel = "triangular",  
  t.design = NULL
)
```

Arguments

- **X1**
The input \(x_1 \) values for the first vector. This variable represents the axis along which kernel weighting should be performed; the first assignment variable in an MRDD.

- **X2**
The input \(x_2 \) values for the second vector. \(X_2 \) has the same length as \(X_1 \). This variable represents the axis along which kernel weighting should be performed.; the second assignment variable in an MRDD.

- **center1**
A numeric value specifying the point from which distances should be calculated for the first vector, \(X_1 \).

- **center2**
A numeric value specifying the point from which distances should be calculated for the second vector, \(X_2 \).
wt_kern_bivariate

bw
A numeric vector specifying the bandwidths for each of three effects models (complete model, heterogeneous treatment model, and treatment only model) detailed in Wong, Steiner, and Cook (2013).

kernel
A string indicating which kernel to use. Options are "triangular" (default and recommended), "rectangular", "epanechnikov", "quartic", "triweight", "tricube", and "cosine".

t.design
A character vector of length 2 specifying the treatment option according to design. The first entry is for x1 and the second entry is for x2. Options are "g" (treatment is assigned if x1 is greater than its cutoff), "geq" (treatment is assigned if x1 is greater than or equal to its cutoff), "l" (treatment is assigned if x1 is less than its cutoff), and "leq" (treatment is assigned if x1 is less than or equal to its cutoff). The same options are available for x2.

Value

wt_bivariate_kern returns a matrix of weights and distances with length equal to that of the X1 and X2 input. The first and second weights and distances are calculated with respect to all frontiers of different treatments. The third weight and distance are calculated with respect to the overall frontier of treatment versus non-treatment.
Index

* **datasets**
 - CARE, 6
 - attr_check, 4
 - bw_ik09, 4
 - bw_ik12, 5
 - CARE, 6
 - class, 10, 14, 18, 22, 31, 34, 36
 - dc_test, 7
 - mfrd_est, 9, 28, 42
 - mrd_est, 12, 43
 - mrd_impute, 16, 44
 - mrd_power, 20, 45
 - mrd_sens_bw, 23
 - mrd_sens_cutoff, 24
 - plot.mfrd, 25
 - plot.rd, 26
 - predict.rd, 26, 27
 - print.mfrd, 28
 - print.rd, 29
 - rd_est, 26, 28, 29, 29, 46
 - rd_impute, 32
 - rd_power, 35, 46
 - rd_sens_bw, 37
 - rd_sens_cutoff, 38
 - rd_type, 39
 - rddapp (rddapp-package), 3
 - rddapp-package, 3
 - sens_plot, 40
 - shiny_run, 41
 - summary.mfrd, 42
 - summary.mrd, 43
 - summary.mrdi, 44
 - summary.mrdp, 45
 - summary_rd, 45
 - summary_rdp, 46
 - treat_assign, 47
 - var_center, 47
 - vcovHC, 13, 17, 30, 33
 - wt_kern, 48
 - wt_kern_bivariate, 49