Package ‘rdddr’

October 14, 2022

Title Companion Datasets and Functions for Blair, Coppock, and Humphreys (2022) "Research Design: Declare, Diagnose, Redesign"

Version 1.0.0

Description Helper functions to accompany the Blair, Coppock, and Humphreys (2022) "Research Design: Declare, Diagnose, Redesign" <https://book.declaredesign.org>. 'rdddr' includes datasets, helper functions, and plotting components to enable use and replication of the book.

Imports dplyr, rlang (>= 1.0.0), generics, ggplot2, tibble, tidyr, dataverse, readr, prediction, broom, purrr, fabricatr, estimatr, randomizr, DeclareDesign

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.2.0

Suggests testthat (>= 3.0.0), rdrobust, DIDmultiplegt, broom.mixed, grf, CausalQueries, metafor, cjoint, lme4, rstanarm, spdep

 Depends R (>= 2.10)

Config/testthat/edition 3

NeedsCompilation no

Author Graeme Blair [aut, cre] (<https://orcid.org/0000-0001-9164-2102>), Alexander Coppock [aut] (<https://orcid.org/0000-0002-5733-2386>), Macartan Humphreys [aut] (<https://orcid.org/0000-0001-7029-2326>)

Maintainer Graeme Blair <graeme.blair@gmail.com>

Repository CRAN

Date/Publication 2022-07-03 09:20:02 UTC

R topics documented:

add_parens ... 2
best_predictor .. 3
bonilla_tillery .. 3
Add parentheses around standard error estimates

Description

Add parentheses around standard error estimates

Usage

add_parens(x, digits = 3)

Arguments

x Numeric vector
digits Number of digits to retain
Value

A character vector with enclosing parentheses

Examples

```r
std.error <- c(0.12, 0.001, 1.2)
add_parens(std.error)
```

Description

Best predictor function from causal_forest

Usage

```r
best_predictor(data, covariate_names, cuts = 20)
```

Arguments

- `data`: A data.frame of covariates
- `covariate_names`: A character vector of covariates to assess
- `cuts`: Either a numeric vector of two or more unique cut points or a single number (greater than or equal to 2) giving the number of intervals into which each covariate is to be cut.

Value

A data.frame of the best predictors

bonilla_tillery

Replication data for Bonilla and Tillery (2020), American Political Science Review (obtained from Dataverse 10.7910/DVN/IUZDQI)

Description

Replication data for Bonilla and Tillery (2020), American Political Science Review (obtained from Dataverse 10.7910/DVN/IUZDQI)

Usage

```r
bonilla_tillery
```
causal_forest_handler

Format

A data.frame

description

Runs estimates estimation function from interference package and returns tidy data frame output

Usage

causal_forest_handler(data, covariate_names, share_train = 0.5, ...)

Arguments

data A data.frame
covariate_names Names of covariates
share_train Share of units to be used for training
...
Options to causal_forest

details

https://draft.declaredesign.org/complex-designs.html#discovery-using-causal-forests
See ?causal_forest for further details

value

a data.frame of estimates

data

library(DeclareDesign)
library(ggplot2)

dat <- fabricate(
 N = 1000,
 A = rnorm(N),
 B = rnorm(N),
 Z = complete_rs(N),
 Y = A*Z + rnorm(N))

note: remove num.threads = 1 to use more processors
estimates <- causal_forest_handler(data = dat, covariate_names = c("A", "B"), num.threads = 1)

ggplot(data = estimates, aes(A, pred)) + geom_point()

Description

Format

A data.frame

conjoint_assignment
Conjoint experiment assignment handler: conducts complete random assignment of all attribute levels

Description

Usage

conjoint_assignment(data, levels_list)

Arguments

- data: A data.frame
- levels_list: List of conjoint levels to assign

Value

a data.frame with random assignment added
conjoint_inquiries
Conjoint experiment inquiries handler

Description

See https://book.declaredesign.org/experimental-descriptive.html#conjoint-experiments

Usage

```r
conjoint_inquiries(data, levels_list, utility_fn)
```

Arguments

- **data** A data.frame
- **levels_list** List of conjoint levels
- **utility_fn** a function that takes data and returns an additional column called U, which represents the utility of the choice

Value

a data.frame of estimand values

conjoint_measurement
Conjoint experiment assignment handler: conducts complete random assignment of all attribute levels

Description

See https://book.declaredesign.org/experimental-descriptive.html#conjoint-experiments

Usage

```r
conjoint_measurement(data, utility_fn)
```

Arguments

- **data** A data.frame
- **utility_fn** a function that takes data and returns an additional column called U, which represents the utility of the choice

Value

a data.frame
Access color palette used in the book "Research Design: Declare, Diagnose, Redesign" (Blair, Coppock, Humphreys)

Description

Based on Karthik Ram’s wesanderson package (https://github.com/karthik/wesanderson)

Usage

dd_palette(name, n)

Arguments

name Color palette name (character)
n Number of colors

Details

Available color palettes:

color_palette = c("#72B4F3", "#F38672", "#C6227F")
grey_palette = c("#72B4F3", "#F38672", "#C6227F", gray(0.8))
dd_dark_blue = "#3564ED"
dd_light_blue = "#72B4F3"
dd_orange = "#F38672"
dd_purple = "#7E43B6"
dd_gray = gray(0.2)
dd_pink = "#C6227F"
dd_light_gray = gray(0.8)
dd_dark_blue_alpha = "#3564EDA0"
dd_light_blue_alpha = "#72B4F3A0"

Value

character vector of colors
did_multiplegt_tidy Tidy helper function for did_multiplegt

Description

Runs did_multiplegt estimation function and returns tidy data frame output

Usage

did_multiplegt_tidy(data, ...)

Arguments

data a data.frame

... options passed to did_multiplegt

Details

See https://book.declaredesign.org/observational-causal.html#difference-in-differences

Value

a data.frame of estimates

estimator_AS_tidy Tidy helper function for estimator_AS function

Description

Runs estimates estimation function from interference package and returns tidy data frame output

Usage

estimator_AS_tidy(data, permutatation_matrix, adj_matrix)

Arguments

data a data.frame

permutatation_matrix a permutation matrix of random assignments

adj_matrix an adjacency matrix
Details

The estimator_AS_tidy function requires the `interference` package, which is not yet available on CRAN.

To use this function:

1. install the developer version of interference via remotes::install_github('szonszein/interference')
2. install the developer version of rddr via remotes::install_github('DeclareDesign/rddr@remotes')

See https://book.declaredesign.org/experimental-causal.html#experiments-over-networks

Value

a data.frame of estimates

| fairfax | Shapefile of Fairfax County, Virginia, voting precincts |

Description

An sf object containing the boundaries of voting precincts for Fairfax County, Virginia as well as precinct ID, name, district, polling place name, address, city, zip code, area, length, and geometry (polygons)

Usage

`fairfax`

Format

An sf object with 236 rows and 10 variables:

| foos_etal | Replication data for Foos, John, Muller, and Cunningham (2021), Journal of Politics (derived from Dataverse 10.7910/DVN/NDPXND) |

Description

Replication data for Foos, John, Muller, and Cunningham (2021), Journal of Politics (derived from Dataverse 10.7910/DVN/NDPXND)

Usage

`foos_etal`

Format

A data.frame
format_num
Round and pad a number to a specific decimal place

Description
Round and pad a number to a specific decimal place

Usage
`format_num(x, digits = 3)`

Arguments
- `x`
 Numeric vector
- `digits`
 Number of digits to retain

Value
A character vector of formatted numbers

Examples

```r
std.error <- c(0.12, 0.001, 1.2)
format_num(std.error)
```

get_exposure_AS
Helper function to obtain the observed exposure for the Aronow and Samii estimator

Description
See https://book.declaredesign.org/experimental-causal.html#experiments-over-networks

Usage
`get_exposure_AS(obs_exposure)`

Arguments
- `obs_exposure`
 A numeric vector

Value
A data.frame of observed exposure to a treatment created using the interference package
get_rddr_file

Description

Download a replication file from the dataverse archive for Research Design: Declare, Diagnose, Redesign

Usage

```r
get_rddr_file(name)
```

Arguments

- `name` quoted name of the file on the dataverse archive

Value

an r object

Examples

```r
## Not run:
diagnosis_2.1 <- get_rddr_file("diagnosis_2.1")
diagnosis_2.1
## End(Not run)
```

hex_add_alpha

Description

Add alpha transparency to a color defined in hexadecimal

Usage

```r
hex_add_alpha(col, alpha)
```

Arguments

- `col` Original color code in hex
- `alpha` Level of alpha transparency to add
Value

color codes with alpha added

lag_by_group
Generate lags in grouped data

Description

See https://book.declaredesign.org/observational-causal.html#difference-in-differences

Usage

```r
lag_by_group(x, groups, n = 1, order_by, default = NA)
```

Arguments

- `x`: Vector of values
- `groups`: Grouping variable
- `n`: Positive integer of length 1, giving the number of positions to lead or lag by
- `order_by`: Ordering variable within group (e.g., time)
- `default`: Value used for non-existent rows. Defaults to NA.

Value

vector of lagged values

la_voter_file
Voter file sample for Los Angeles County

Description

A dataset containing the party registration, age, census tract number, and voter turnout in 2012 for 1,000 randomly-sampled registered voters in Los Angeles County, California.

Usage

```r
la_voter_file
```

Format

A data frame with 1000 rows and 4 variables:

- **party**: political party registration
- **age**: age of voter in years
- **census_tract**: US Census tract number
- **voted_2012**: voter turnout in 2012 election
make_interval_entry

Source
California Secretary of State.

Description
Format confidence intervals for nice printing

Usage
make_interval_entry(conf.low, conf.high, digits = 2)

Arguments
- conf.low: a numeric vector of lower bounds
- conf.high: a numeric vector of upper bounds
- digits: number of digits to retain

Value
a character vector of intervals

Examples
conf.low <- c(-0.1652, 0.00304, -6.352)
conf.high <- c(0.3052, 0.00696, -1.648)
make_interval_entry(conf.low, conf.high)

make_se_entry

Description
Format estimates and standard errors for nice printing

Usage
make_se_entry(estimate, std.error, digits = 2)
post_stratification_helper

Arguments

- **estimate**: a numeric vector of parameter estimates
- **std.error**: a numeric vector of standard error estimates
- **digits**: number of digits to retain

Value

A character vector of formatted estimates and standard errors

Examples

```r
estimate <- c(0.07, 0.005, -4)
std.error <- c(0.12, 0.001, 1.2)
make_se_entry(estimate, std.error)
```

post_stratification_helper

Post stratification estimator helper

Description

Calculates predicted values from a multilevel regression and the post-stratified state-level estimates

Usage

```r
post_stratification_helper(model_fit, data, group, weights)
```

Arguments

- **model_fit**: a model fit object from, e.g., glmer or lm_robust
- **data**: a data.frame
- **group**: unquoted name of the group variable to construct estimates for
- **weights**: unquoted name of post-stratification weights variable

Details

Value

A data.frame of post-stratified group-level estimates
process_tracing_estimator

Description
Draw conclusions from a model given a query, data, and process tracing strategies

Usage
process_tracing_estimator(causal_model, query, data, strategies)

Arguments
- causal_model: a model generated by CausalQueries
- query: a causal query of interest
- data: a single row dataset with data on nodes in the model
- strategies: a vector describing sets of nodes to be examined e.g. c("X", "X-Y")

Details
See https://book.declaredesign.org/observational-causal.html#process-tracing

Value
a data.frame of estimates

Examples

```r
causal_model = CausalQueries::make_model("X -> Y")
query = "Y[X=1] > Y[X=0]"
data = data.frame(X=1, Y = 1)
strategies = c("X-X")
process_tracing_estimator(causal_model, query, data, strategies)
```

rdddr

rddr package

Description
Companion datasets and functions for the book "Research Design: Declare, Diagnose, Redesign" (book.declaredesign.org)
rdrobust_helper
Helper function for using rdrobust as a model in declare_estimator

Description
Helper function for using rdrobust as a model in declare_estimator

Usage
```r
drobust_helper(data, y, x, subset = NULL, ...)
```

Arguments
- `data` a data.frame
- `y` unquoted name of the outcome variable
- `x` unquoted name of the running variable
- `subset` an optional vector specifying a subset of observations to be used in the fitting process
- `...` Other arguments to rdrobust

Value
rdrobust model fit object

rma_helper
Helper function for rma function in metafor package

Description
See https://book.declaredesign.org/complex-designs.html#meta-analysis

Usage
```r
rma_helper(data, yi, sei, method = "REML", ...)
```

Arguments
- `data` a data.frame
- `yi` unquoted variable name of estimates used in meta-analysis
- `sei` unquoted variable name of standard errors used in meta-analysis
- `method` character string to specify whether a fixed- or a random/mixed-effects model should be fitted. A fixed-effects model (with or without moderators) is fitted when using method = "FE". Random/mixed-effects models are fitted by setting method equal to one of the following: "DL", "HE", "SJ", "ML", "REML", "EB", "HS", "HSk", or "GENQ". Default is "REML".
- `...` Further options to be passed to rma
Details

See ?rma for further details

Value

a data.frame of estimates

rma_mu_tau
Extract mu and tau parameters from rma model fit

Description

See https://book.declaredesign.org/complex-designs.html#meta-analysis

Usage

```r
rma_mu_tau(fit)
```

Arguments

- `fit`
 Fit object from the rma function in the metafor package

Value

a data.frame of estimates

theme_dd
ggplot Theme used in the book "Research Design: Declare, Diagnose, Redesign" (Blair, Coppock, Humphreys)

Description

ggplot Theme used in the book "Research Design: Declare, Diagnose, Redesign" (Blair, Coppock, Humphreys)

Usage

```r
theme_dd()
```

Value

ggplot theme
Tidy estimates from the amce estimator

Description

Runs amce estimation function and returns tidy data frame output

Usage

```r
## S3 method for class 'amce'
tidy(x, alpha = 0.05, ...)
```

Arguments

- `x` an amce fit object from cjoint::amce
- `alpha` Confidence level
- `...` Extra arguments to pass to tidy

Details

Value

a data.frame of estimates

Examples

```r
library(cjoint)
data(immigrationconjoint)
data(immigrationdesign)

# Run AMCE estimator using all attributes in the design
results <- amce(Chosen_Immigrant ~ Gender + Education + 'Language Skills' +
                'Country of Origin' + Job + 'Job Experience' + 'Job Plans' +
                'Reason for Application' + 'Prior Entry', data = immigrationconjoint,
                cluster = TRUE, respondent.id = "CaseID", design = immigrationdesign)

# Print summary
tidy(results)
```
tidy.rdrobust

Tidy helper function for rdrobust function

Description

Runs rdrobust estimation function and returns tidy data frame output

Usage

```r
## S3 method for class 'rdrobust'
tidy(x, ...)
```

Arguments

- `x` Model fit object from rdrobust
- `...` Other arguments (not used)

Details

See https://book.declaredesign.org/observational-causal.html#regression-discontinuity-designs

Value

a data.frame of estimates

tidy_stan

Tidy results from a stanreg regression and exponentiate the estimated coefficient

Description

Note no standard errors or other summary statistics are provided

Usage

```r
tidy_stan(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...)
tidy_stan(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...)
```
tidy_stan

Arguments

- **x**: A stanreg fit from stan_glm
- **conf.int**: Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE.
- **conf.level**: The confidence level to use for the confidence interval if conf.int = TRUE. Must be strictly greater than 0 and less than 1. Defaults to 0.95, which corresponds to a 95 percent confidence interval.
- **exponentiate**: Logical indicating whether or not to exponentiate the coefficient estimates. Defaults to FALSE. Note that standard errors are not included when exponentiate = TRUE.
- **...**: Other arguments to broom.mixed::tidy

Details

See https://book.declaredesign.org/choosing-an-answer-strategy.html#bayesian-formalizations
See https://book.declaredesign.org/choosing-an-answer-strategy.html#bayesian-formalizations

Value

- data.frame of results
- data.frame of results
Index

* datasets
 - bonilla_tillery, 3
 - clinging smith et al., 5
 - fairfax, 9
 - foos et al., 9
 - la voter file, 12

 add_paren, 2
 best predictor, 3
 bonilla_tillery, 3

 causal_forest_handler, 4
 clinging smith et al., 5
 conjoint_assignment, 5
 conjoint_inquiries, 6
 conjoint_measurement, 6

 dd_palette, 7
 did_multiplegt_tidy, 8

 estimator_AS_tidy, 8
 fairfax, 9
 foos et al., 9
 format_num, 10

 get_exposure_AS, 10
 get_rdddr_file, 11

 hex_add_alpha, 11

 la voter file, 12
 lag_by_group, 12

 make_interval_entry, 13
 make_se_entry, 13

 post striction_helper, 14
 process_tracing_estimator, 15

 rdddr, 15

 rd robust_helper, 16
 rma_helper, 16
 rma_mu_tau, 17

 theme_dd, 17
 tidy.amce, 18
 tidy.rdrobust, 19
 tidy.stan, 19