
Package ‘rdecision’
September 9, 2021

Title Decision Analytic Modelling in Health Economics

Version 1.1.0

Description Classes and functions for modelling health care interventions
using decision trees and semi-Markov models. Mechanisms are provided for
associating an uncertainty distribution with each source variable and for
ensuring transparency of the mathematical relationships between variables.
The package terminology follows Briggs ``Decision Modelling for Health
Economic Evaluation'' (2006, ISBN:978-0-19-852662-9).

Depends R (>= 3.1.0)

Imports grid, R6, rlang (>= 0.4.2), stats, utils

Suggests covr, knitr, pander, rmarkdown, testthat (>= 3.0.0), utf8

License GPL-3

Language en-GB

Encoding UTF-8

RoxygenNote 7.1.1

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Andrew Sims [aut, cre] (<https://orcid.org/0000-0002-9553-7278>),
Kim Fairbairn [aut] (<https://orcid.org/0000-0001-5108-6279>)

Maintainer Andrew Sims <andrew.sims@newcastle.ac.uk>

Repository CRAN

Date/Publication 2021-09-08 22:00:02 UTC

R topics documented:
Action . 2
Arborescence . 4
Arrow . 6
BetaDistribution . 8

1

https://orcid.org/0000-0002-9553-7278
https://orcid.org/0000-0001-5108-6279

2 Action

BetaModVar . 10
BriggsEx47 . 11
ChanceNode . 12
ConstModVar . 13
DecisionNode . 14
DecisionTree . 15
Digraph . 22
DiracDistribution . 26
DirichletDistribution . 28
Distribution . 30
Edge . 32
ExprModVar . 34
GammaDistribution . 38
GammaModVar . 40
Graph . 41
LeafNode . 45
LogNormDistribution . 47
LogNormModVar . 50
MarkovState . 51
ModVar . 53
Node . 56
NormalDistribution . 57
NormModVar . 59
rdecision . 60
Reaction . 60
SemiMarkovModel . 62
Stack . 68
Transition . 70

Index 72

Action An action in a decision tree

Description

R6 class representing an action (choice) edge.

Details

A specialism of class Arrow which is used in a decision tree to represent an edge whose source node
is a DecisionNode.

Super classes

rdecision::Edge -> rdecision::Arrow -> Action

Action 3

Methods

Public methods:
• Action$new()

• Action$modvars()

• Action$p()

• Action$cost()

• Action$benefit()

• Action$clone()

Method new(): Create an object of type Action. Optionally, a cost and a benefit may be
associated with traversing the edge. A pay-off (benefit minus cost) is sometimes used in edges of
decision trees; the parametrization used here is more general.

Usage:
Action$new(source, target, label, cost = 0, benefit = 0)

Arguments:
source Decision node from which the arrow leaves.
target Node to which the arrow points.
label Character string containing the arrow label. This must be defined for an action because

the label is used in tabulation of strategies. It is recommended to choose labels that are brief
and not punctuated with spaces, dots or underscores.

cost Cost associated with traversal of this edge.
benefit Benefit associated with traversal of the edge.

Returns: A new Action object.

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with this Action. Includes operands of these ModVars, if they are expressions.

Usage:
Action$modvars()

Returns: A list of ModVars.

Method p(): Return the current value of the edge probability, i.e. the conditional probability of
traversing the edge.

Usage:
Action$p()

Returns: Numeric value equal to 1.

Method cost(): Return the cost associated with traversing the edge.

Usage:
Action$cost()

Returns: Cost.

Method benefit(): Return the benefit associated with traversing the edge.

Usage:

4 Arborescence

Action$benefit()

Returns: Benefit.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Action$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

Arborescence A rooted directed tree

Description

An R6 class representing an arborescence (a rooted directed tree).

Details

Class to encapsulate a directed rooted tree specialization of a digraph. An arborescence is a directed
tree with exactly one root and unique directed paths from the root. Inherits from class Digraph.

Super classes

rdecision::Graph -> rdecision::Digraph -> Arborescence

Methods

Public methods:
• Arborescence$new()

• Arborescence$is_parent()

• Arborescence$is_leaf()

• Arborescence$root()

• Arborescence$siblings()

• Arborescence$root_to_leaf_paths()

• Arborescence$postree()

• Arborescence$clone()

Method new(): Create a new Arborescence object from sets of nodes and edges.

Usage:
Arborescence$new(V, A)

Arborescence 5

Arguments:

V A list of Nodes.
A A list of Arrows.

Returns: An Arborescence object.

Method is_parent(): Test whether the given node is a parent (has child nodes).

Usage:
Arborescence$is_parent(v)

Arguments:

v Node to test

Returns: TRUE if v has one or more child nodes, FALSE otherwise.

Method is_leaf(): Test whether the given node is a leaf. In an arborescence, is_parent()
and is_leaf() are mutually exclusive.

Usage:
Arborescence$is_leaf(v)

Arguments:

v Vertex to test.

Returns: TRUE if v has no child nodes, FALSE otherwise.

Method root(): Find the root vertex of the arborescence.

Usage:
Arborescence$root()

Returns: The root vertex.

Method siblings(): Find the siblings of a vertex in the arborescence.

Usage:
Arborescence$siblings(v)

Arguments:

v Vertex to test.

Returns: A (possibly empty) list of siblings.

Method root_to_leaf_paths(): Find all directed paths from the root of the tree to the leaves.

Usage:
Arborescence$root_to_leaf_paths()

Returns: A list of ordered node lists.

Method postree(): Implements function POSITIONTREE (Walker, 1989) to determine the
coordinates for each node in an arborescence.

Usage:

6 Arrow

Arborescence$postree(
SiblingSeparation = 4,
SubtreeSeparation = 4,
LevelSeparation = 1,
RootOrientation = "SOUTH",
MaxDepth = Inf

)

Arguments:

SiblingSeparation Distance in arbitrary units for the distance between siblings.
SubtreeSeparation Distance in arbitrary units for the distance between neighbouring sub-

trees.
LevelSeparation Distance in arbitrary units for the separation between adjacent levels.
RootOrientation Must be one of "NORTH", "SOUTH", "EAST", "WEST". Defined as per

Walker (1989), but noting that Walker assumed that y increased down the page. Thus the
meaning of NORTH and SOUTH are opposite to his, with the default (SOUTH) having the
child nodes at positive y value and root at zero, as per his example (figure 12).

MaxDepth The maximum depth (number of levels) to be drawn; if the tree exceeds this, an error
will be raised.

Returns: A data frame with one row per node and three columns (n, x and y) where n gives the
node index given by the Graph::vertex_index() function.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Arborescence$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

References

Walker, John Q II. A A node-positioning algorithm for general trees. University of North Carolina
Technical Report TR 89-034, 1989.

Arrow A directed edge in a digraph

Description

An R6 class representing an directed edge in a digraph.

Arrow 7

Details

An arrow is the formal term for an edge between pairs of nodes in a directed graph. Inherits from
class Edge.

Super class

rdecision::Edge -> Arrow

Methods

Public methods:
• Arrow$new()

• Arrow$source()

• Arrow$target()

• Arrow$clone()

Method new(): Create an object of type Arrow.

Usage:
Arrow$new(source, target, label = "")

Arguments:
source Node from which the arrow leaves.
target Node to which the arrow points.
label Character string containing the arrow label.

Returns: A new Arrow object.

Method source(): Access source node.

Usage:
Arrow$source()

Returns: Node from which the arrow leads.

Method target(): Access target node.

Usage:
Arrow$target()

Returns: Node to which the arrow points.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Arrow$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

8 BetaDistribution

BetaDistribution A parametrized Beta Distribution

Description

An R6 class representing a Beta distribution with parameters.

Details

A Beta distribution with hyperparameters for shape (alpha and beta). Inherits from class Distribution.

Super class

rdecision::Distribution -> BetaDistribution

Methods

Public methods:
• BetaDistribution$new()

• BetaDistribution$distribution()

• BetaDistribution$mean()

• BetaDistribution$mode()

• BetaDistribution$SD()

• BetaDistribution$sample()

• BetaDistribution$quantile()

• BetaDistribution$clone()

Method new(): Create an object of class BetaDistribution.

Usage:
BetaDistribution$new(alpha, beta)

Arguments:

alpha parameter of the Beta distribution.
beta parameter of the Beta distribution.

Returns: An object of class BetaDistribution.

Method distribution(): Accessor function for the name of the uncertainty distribution.

Usage:
BetaDistribution$distribution()

Returns: Distribution name as character string.

Method mean(): The expected value of the distribution.

Usage:
BetaDistribution$mean()

BetaDistribution 9

Returns: Expected value as a numeric value.

Method mode(): The mode of the distribution (if alpha, beta > 1)

Usage:

BetaDistribution$mode()

Returns: mode as a numeric value.

Method SD(): The standard deviation of the distribution.

Usage:

BetaDistribution$SD()

Returns: Standard deviation as a numeric value

Method sample(): Draw and hold a random sample from the model variable.

Usage:

BetaDistribution$sample(expected = FALSE)

Arguments:

expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-
tion.

Returns: Updated distribution.

Method quantile(): The quantiles of the Beta distribution.

Usage:

BetaDistribution$quantile(probs)

Arguments:

probs Vector of probabilities, in range [0,1].

Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.

Usage:

BetaDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

10 BetaModVar

BetaModVar A model variable whose uncertainty follows a Beta distribution

Description

An R6 class representing a model variable whose uncertainty is described by a Beta distribution.

Details

A model variable for which the uncertainty in the point estimate can be modelled with a Beta
distribution. The hyperparameters of the distribution are the shape parameters (alpha and beta) of
the uncertainty distribution. Inherits from class ModVar.

Super class

rdecision::ModVar -> BetaModVar

Methods

Public methods:
• BetaModVar$new()

• BetaModVar$is_probabilistic()

• BetaModVar$clone()

Method new(): Create an object of class BetaModVar.
Usage:
BetaModVar$new(description, units, alpha, beta)

Arguments:
description A character string describing the variable.
units Units of the variable, as character string.
alpha parameter of the Beta distribution.
beta parameter of the Beta distribution.
Returns: An object of class BetaModVar.

Method is_probabilistic(): Tests whether the model variable is probabilistic, i.e. a random
variable that follows a distribution, or an expression involving random variables, some of which
follow distributions.

Usage:
BetaModVar$is_probabilistic()

Returns: TRUE if probabilistic

Method clone(): The objects of this class are cloneable with this method.
Usage:
BetaModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

BriggsEx47 11

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

BriggsEx47 Probabilistic results of HIV model

Description

A dataset containing PSA results of Briggs example 2.5.

Usage

data(BriggsEx47)

Format

A data frame with 1000 rows and 7 columns:

Mono.LYs Life years gained with monotherapy

Mono.Cost Incremental cost with monotherapy, in GBP

Comb.LYs Life years gained with combination therapy

Comb.Cost Incremental cost with combination therapy, in GBP

Diff.LYG Difference in life years gained

Diff.incCost Difference in incremental cost, GBP

ICER Incremental cost effectiveness ratio, GBP/QALY

Details

A dataset containing the results of probabilistic sensitivity analysis of Briggs (2006) example 2.5
(HIV model), provided as Example 4.7 in the book. These data were generated from the solution
spreadsheet provided as a companion to the book (Exercise 4.7 solution) via an Excel macro written
to record 1000 runs of the model.

Source

https://www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation/

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

https://www.herc.ox.ac.uk/downloads/decision-modelling-for-health-economic-evaluation/

12 ChanceNode

ChanceNode A chance node in a decision tree

Description

An R6 class representing a chance node in a decision tree.

Details

A chance node is associated with at least two branches to other nodes, each of which has a condi-
tional probability (the probability of following that branch given that the node has been reached).
Inherits from class Node.

Super class

rdecision::Node -> ChanceNode

Methods

Public methods:

• ChanceNode$new()

• ChanceNode$clone()

Method new(): Create a new ChanceNode object

Usage:
ChanceNode$new(label = "")

Arguments:

label An optional label for the chance node.

Returns: A new ChanceNode object

Method clone(): The objects of this class are cloneable with this method.

Usage:
ChanceNode$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

ConstModVar 13

ConstModVar A constant model variable

Description

An R6 class representing a constant in a model.

Details

A ModVar with no uncertainty in its value. Its distribution is treated as a Dirac delta function
δ(x − c) where c is the hyperparameter (value of the constant). The benefit over using a regular
numeric variable in a model is that it will appear in tabulations of the model variables associated
with a model and therefore be explicitly documented as a model input. Inherits from class ModVar.

Super class

rdecision::ModVar -> ConstModVar

Methods

Public methods:
• ConstModVar$new()

• ConstModVar$is_probabilistic()

• ConstModVar$clone()

Method new(): Create a new constant model variable.
Usage:
ConstModVar$new(description, units, const)

Arguments:
description A character string description of the variable and its role in the model. This

description will be used in a tabulation of the variables linked to a model.
units A character string description of the units, e.g. "GBP", "per year".
const The constant numerical value of the object.
Returns: A new ConstModVar object.

Method is_probabilistic(): Tests whether the model variable is probabilistic.
Usage:
ConstModVar$is_probabilistic()

Details: Does the random variable follow a distribution, or is it an expression involving’ ran-
dom variables, some of which follow distributions?
Returns: TRUE if probabilistic

Method clone(): The objects of this class are cloneable with this method.
Usage:
ConstModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

14 DecisionNode

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

DecisionNode A decision node in a decision tree

Description

An R6 class representing a decision node in a decision tree.

Details

A class to represent a decision node in a decision tree. The node is associated with one or more
branches to child nodes. Inherits from class Node.

Super class

rdecision::Node -> DecisionNode

Methods

Public methods:
• DecisionNode$new()

• DecisionNode$clone()

Method new(): Create a new decision node.

Usage:
DecisionNode$new(label)

Arguments:

label A label for the node. Must be defined because the label is used in tabulation of strategies.
The label is automatically converted to a syntactically valid (in R) name to ensure it can be
used as a column name in a data frame.

Returns: A new DecisionNode object

Method clone(): The objects of this class are cloneable with this method.

Usage:
DecisionNode$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

DecisionTree 15

DecisionTree A decision tree

Description

An R6 class to represent a decision tree model.

Details

A class to represent a decision tree. An object contains a tree of decision nodes, chance nodes and
leaf nodes, connected by edges (either actions or reactions). It inherits from class Arborescence
and satisfies the following conditions:

1. Nodes and edges must form a tree with a single root and there must be a unique path from the
root to each node. In graph theory terminology, the directed graph formed by the nodes and
edges must be an arborescence.

2. Each node must inherit from one of DecisionNode, ChanceNode or LeafNode. Formally the
set of vertices must be a disjoint union of sets of decision nodes, chance nodes and leaf nodes.

3. All and only leaf nodes must have no children.

4. Each edge must inherit from either Action or Reaction.

5. All and only edges that have source endpoints joined to decision nodes must inherit from
Action.

6. All and only edges that have source endpoints joined to chance nodes must inherit from
Reaction.

7. The sum of probabilities of each set of reaction edges with a common source endpoint must
be 1.

8. Each DecisionNode must have a label, and the labels of all DecisionNodes must be unique
within the model.

9. Each Action must have a label, and the labels of Actions that share a common source end-
point must be unique.

Super classes

rdecision::Graph -> rdecision::Digraph -> rdecision::Arborescence -> DecisionTree

Methods

Public methods:
• DecisionTree$new()

• DecisionTree$decision_nodes()

• DecisionTree$chance_nodes()

• DecisionTree$leaf_nodes()

• DecisionTree$actions()

• DecisionTree$modvars()

16 DecisionTree

• DecisionTree$modvar_table()

• DecisionTree$draw()

• DecisionTree$is_strategy()

• DecisionTree$strategy_table()

• DecisionTree$strategy_paths()

• DecisionTree$evaluate_walks()

• DecisionTree$evaluate()

• DecisionTree$tornado()

• DecisionTree$threshold()

• DecisionTree$clone()

Method new(): Create a new decision tree. The tree must consist of a set of nodes and a set of
edges which satisfy the conditions given in the details section of this class.

Usage:
DecisionTree$new(V, E)

Arguments:
V A list of nodes.
E A list of edges.

Returns: A DecisionTree object

Method decision_nodes(): Find the decision nodes in the tree.

Usage:
DecisionTree$decision_nodes(what = "node")

Arguments:
what A character string defining what to return. Must be one of "node", "label" or "index".

Returns: A list of DecisionNode objects (for what="node"); a list of character strings (for
what="label"); or a list of integer indexes of the decision nodes (for what="index").

Method chance_nodes(): Find the chance nodes in the tree.

Usage:
DecisionTree$chance_nodes()

Returns: A list of ChanceNode objects.

Method leaf_nodes(): Find the leaf nodes in the tree.

Usage:
DecisionTree$leaf_nodes(what = "node")

Arguments:
what One of "node" (returns Node objects), "label" (returns the leaf node labels) or "index"

(returns the vertex indexes of the leaf nodes).

Returns: A list of LeafNode objects (for what="node"); a list of character strings (for what="label");
or a list of integer indexes of the decision nodes (for what="index").

Method actions(): Return the edges that have the specified decision node as their source.

DecisionTree 17

Usage:
DecisionTree$actions(d)

Arguments:

d A decision node.

Returns: A list of Action edges.

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with the nodes and edges of the tree.

Usage:
DecisionTree$modvars()

Returns: A list of ModVars.

Method modvar_table(): Tabulate the model variables.

Usage:
DecisionTree$modvar_table(expressions = TRUE)

Arguments:

expressions A logical that defines whether expression model variables should be included in
the tabulation.

Returns: Data frame with one row per model variable, as follows:
Description As given at initialization.
Units Units of the variable.
Distribution Either the uncertainty distribution, if it is a regular model variable, or the ex-

pression used to create it, if it is an ExprModVar.
Mean Mean; calculated from means of operands if an expression.
E Expectation; estimated from random sample if expression, mean otherwise.
SD Standard deviation; estimated from random sample if expression, exact value otherwise.
Q2.5 p=0.025 quantile; estimated from random sample if expression, exact value otherwise.
Q97.5 p=0.975 quantile; estimated from random sample if expression, exact value otherwise.
Est TRUE if the quantiles and SD have been estimated by random sampling.

Method draw(): Draw the decision tree to the current graphics output. Uses the algorithm of
Walker (1989) to distribute the nodes compactly (see the Arborescence class help for details).

Usage:
DecisionTree$draw(border = FALSE)

Arguments:

border If TRUE draw a light grey border around the plot area.

Returns: No return value.

Method is_strategy(): Tests whether a strategy (a unanimous prescription of an action in
each decision node, specified as a list of nodes) is a valid strategy for this decision tree.

Usage:
DecisionTree$is_strategy(strategy)

18 DecisionTree

Arguments:

strategy A list of Action edges.

Returns: TRUE if the strategy is valid for this tree. Returns FALSE if the list of Action edges
are not a valid strategy.

Method strategy_table(): Find all potential strategies for the decision tree. A strategy is a
unanimous prescription of the actions at each decision node. If there are decision nodes that are
descendants of other nodes in the tree, the strategies returned will not necessarily be unique.

Usage:
DecisionTree$strategy_table(what = "index", select = NULL)

Arguments:

what A character string defining what to return. Must be one of "label" or "index".
select A single strategy (given as a list of action edges, with one action edge per decision

node). If provided, only that strategy is selected from the returned table. Intended for
tabulating a single strategy into a readable form.

Returns: A data frame where each row is a potential strategy and each column is a Decision
Node. Values are either the index of each action edge, or their label. The row names are the
edge labels of each strategy, concatenated with underscores.

Method strategy_paths(): Find all paths walked in each possible strategy. A strategy is a
unanimous prescription of an action in each decision node. Some paths can be walked in more
than one strategy, if there exist paths that do not pass a decision node.

Usage:
DecisionTree$strategy_paths()

Returns: A data frame, where each row is a path walked in a strategy. The structure is similar
to that returned by strategy_table but includes an extra column, Leaf which gives the leaf
node index of each path, and there is one row for each path in each strategy.

Method evaluate_walks(): Evaluate the components of pay-off associated with a set of walks
in the decision tree. For each walk, probability, cost, benefit and utility are calculated.

Usage:
DecisionTree$evaluate_walks(W)

Arguments:

W A list of root-to-leaf walks. Each walk must start with the root node and end with a leaf node.
Normally this is all the root to leaf paths in a tree.

Details: There is minimal checking of the argument because this function is intended to be
called repeatedly during tree evaluation, including PSA.

Returns: A matrix (pay-off table) with one row per path and columns organized as follows:
Leaf The unique identifier of the path, taken to be the index of the terminal (leaf) node.
Probability The probability of traversing the pathway.
Path.Cost The cost of traversing the pathway.
Path.Benefit The benefit derived from traversing the pathway.
Path.Utility The utility associated with the outcome (leaf node).

DecisionTree 19

Path.QALY The QALYs associated with the outcome (leaf node).
Cost Path.Cost ∗ probability of traversing the pathway.
Benefit Path.Benefit ∗ probability of traversing the pathway.
Utility Path.Utility ∗ probability of traversing the pathway.
QALY Path.QALY ∗ probability of traversing the pathway.

Method evaluate(): Evaluate each strategy. Starting with the root, the function works though
all possible paths to leaf nodes and computes the probability, cost, benefit and utility of each, then
optionally aggregates by strategy or run.

Usage:
DecisionTree$evaluate(setvars = "expected", N = 1, by = "strategy")

Arguments:

setvars One of "expected" (evaluate with each model variable at its mean value), "random"
(sample each variable from its uncertainty distribution and evaluate the model), "q2.5",
"q50", "q97.5" (set each model variable to its 2.5%, 50% or 97.5% quantile, respectively,
and evaluate the model) or "current" (leave each model variable at its current value prior to
calling the function and evaluate the model).

N Number of replicates. Intended for use with PSA (modvars="random"); use with modvars =
"expected" will be repetitive and uninformative.

by One of "path", "strategy", "run". If "path", the table has one row per path walked per strat-
egy, per run, and includes the label of the terminating leaf node to identify each path. If
"strategy" (the default), the table is aggregated by strategy, i.e. there is one row per strategy
per run. If "run", the table has one row per run and uses concatenated strategy names and
one (cost, benefit, utility, QALY) column for each strategy.

Details: The columns of the returned data frame are:
by="path"

Leaf The label of terminating leaf node
<label of first decision node> label of action leaving the node
<label of second decision node (etc.)> label of action
Probability Probability of traversing the path
Cost Cost of traversing the path
Benefit Benefit of traversing the path
Utility Utility of traversing the path
QALY QALY of traversing the path
Run Run number

by="strategy"

<label of first decision node> label of action leaving the node
<label of second decision node (etc) label of action
Run Run number
Probability Σpi for the run (1)
Cost Aggregate cost of the strategy
Benefit Aggregate benefit of the strategy
Utility Aggregate utility of the strategy

20 DecisionTree

QALY Aggregate QALY of the strategy
by="run"

Run Run number
Probability.<S> Probability for strategy S
Cost.<S> Cost for strategy S
Benefit.<S> Benefit for strategy S
Utility.<S> Benefit for strategy S
QALY.<S> QALY for strategy S
where <S> is string composed of the action labels in strategy S concatenated with an under-
score and there will be one probability etc., column for each strategy.

Returns: A data frame whose columns depend on by; see "Details".

Method tornado(): Create a "tornado" diagram to compare two strategies for traversing the
decision tree. A strategy is a unanimous prescription of the actions at each decision node.

Usage:
DecisionTree$tornado(
index,
ref,
outcome = "saving",
exclude = NULL,
draw = TRUE

)

Arguments:

index The index strategy (option) to be evaluated.
ref The reference strategy (option) with which the index strategy will be compared.
outcome One of "saving" or "ICER". For "saving" (e.g. in cost consequence analysis), the

x axis is cost saved (cost of reference minus cost of index), on the presumption that the
new technology will be cost saving at the point estimate. For "ICER" the x axis is ∆C/∆E
and is expected to be positive at the point estimate (i.e. in the NE or SW quadrants of the
cost-effectiveness plane), where ∆C is cost of index minus cost of reference, and ∆E is
utility of index minus utility of reference.

exclude A list of descriptions of model variables to be excluded from the tornado.
draw TRUE if the graph is to be drawn; otherwise return the data frame silently.

Details: The extreme values of each input variable are the upper and lower 95% confidence
limits of the uncertainty distributions of each variable. This ensures that the range of each input
is defensible (Briggs 2012).

Returns: A data frame with one row per input model variable and columns for: minimum value
of the variable, maximum value of the variable, minimum value of the outcome and maximum
value of the outcome. NULL if there are no ModVars.

Method threshold(): Find the threshold value of a model variable at which the cost difference
is zero or the ICER is equal to a threshold, for an index strategy compared with a reference
strategy.

Usage:

DecisionTree 21

DecisionTree$threshold(
index,
ref,
outcome = "saving",
mvd,
a,
b,
tol,
lambda = NULL,
nmax = 1000

)

Arguments:

index The index strategy (option) to be evaluated.

ref The reference strategy (option) with which the index strategy will be compared.

outcome One of "saving" or "ICER". For "saving" (e.g. in cost consequence analysis), the
value of mvd is found at which cost saved is zero (cost saved is cost of reference minus
cost of index, on the presumption that the new technology will be cost saving at the point
estimate). For "ICER" the value of mvd is found for which the incremental cost effectiveness
ratio (ICER) is equal to the threshold lambda. ICER is calculated as ∆C/∆E, which will
normally be positive at the point estimate (i.e. in the NE or SW quadrants of the cost-
effectiveness plane), where ∆C is cost of index minus cost of reference and ∆E is utility
of index minus utility of reference.

mvd The description of the model variable for which the threshold is to be found.

a The lower bound of the range of values of mvd to search for the root (numeric).

b The upper bound of the range of values of mvd to search for the root (numeric).

tol The tolerance to which the threshold should be calculated (numeric).

lambda The ICER threshold (threshold ratio) for outcome="ICER".

nmax Maximum number if iterations allowed to reach convergence.

Details: Uses a rudimentary bisection method method to find the root. In PSA terms, the
algorithm finds the value of the specified model variable for which 50% of runs are cost saving
(or above the ICER threshold) and 50% are cost incurring (below the ICER threshold).

Returns: Value of the model variable of interest at the threshold.

Method clone(): The objects of this class are cloneable with this method.

Usage:

DecisionTree$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

22 Digraph

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ, Paltiel AD. Model Parameter
Estimation and Uncertainty: A Report of the ISPOR-SMDM Modeling Good Research Practices
Task Force-6. Value in Health 2012;15:835–42, doi: 10.1016/j.jval.2012.04.014.

Kaminski B, Jakubczyk M, Szufel P. A framework for sensitivity analysis of decision trees. Central
European Journal of Operational Research 2018;26:135–59, doi: 10.1007/s1010001704796.

Digraph A directed graph

Description

An R6 class representing a digraph (a directed graph).

Details

Encapsulates and provides methods for computation and checking of directed graphs (digraphs).
Inherits from class Graph.

Super class

rdecision::Graph -> Digraph

Methods

Public methods:
• Digraph$new()

• Digraph$digraph_adjacency_matrix()

• Digraph$digraph_incidence_matrix()

• Digraph$topological_sort()

• Digraph$is_connected()

• Digraph$is_weakly_connected()

• Digraph$is_acyclic()

• Digraph$is_tree()

• Digraph$is_polytree()

• Digraph$is_arborescence()

• Digraph$direct_successors()

• Digraph$direct_predecessors()

• Digraph$paths()

• Digraph$walk()

• Digraph$as_DOT()

• Digraph$clone()

https://doi.org/10.1016/j.jval.2012.04.014
https://doi.org/10.1007/s10100-017-0479-6

Digraph 23

Method new(): Create a new Digraph object from sets of nodes and edges.

Usage:
Digraph$new(V, A)

Arguments:
V A list of Nodes.
A A list of Arrows.

Returns: A Digraph object.

Method digraph_adjacency_matrix(): Compute the adjacency matrix for the digraph.

Usage:
Digraph$digraph_adjacency_matrix(boolean = FALSE)

Arguments:
boolean If TRUE, the adjacency matrix is logical, each cell is {FALSE,TRUE}.

Details: Each cell contains the number of edges from the row vertex to the column vertex, with
the convention of self loops being counted once, unless boolean is TRUE when cells are either
FALSE (not adjacent) or TRUE (adjacent).

Returns: A square numeric matrix with the number of rows and columns equal to the order
of the graph. The rows and columns are in the same order as V. If the nodes have defined and
unique labels the dimnames of the matrix are the labels of the nodes.

Method digraph_incidence_matrix(): Compute the incidence matrix for the digraph.

Usage:
Digraph$digraph_incidence_matrix()

Details: Each row is a vertex and each column is an edge. Edges leaving a vertex have value
-1 and edges entering have value +1. By convention self loops have value 0 (1-1). If all vertexes
have defined and unique labels and all edges have defined and unique labels, the dimnames of
the matrix are the labels of the vertexes and edges.

Returns: The incidence matrix.

Method topological_sort(): Topologically sort the vertexes in the digraph.

Usage:
Digraph$topological_sort()

Details: Uses Kahn’s algorithm (Kahn, 1962).

Returns: A list of vertexes, topologically sorted. If the digraph has cycles, the returned ordered
list will not contain all the vertexes in the graph, but no error will be raised.

Method is_connected(): Test whether the graph is connected.

Usage:
Digraph$is_connected()

Details: For digraphs this will always return FALSE because connected is not defined. Function
weakly_connected calculates whether the underlying graph is connected.

Returns: TRUE if connected, FALSE if not.

24 Digraph

Method is_weakly_connected(): Test whether the digraph is weakly connected, i.e. if the
underlying graph is connected.

Usage:
Digraph$is_weakly_connected()

Returns: TRUE if connected, FALSE if not.

Method is_acyclic(): Checks for the presence of a cycle in the graph.

Usage:
Digraph$is_acyclic()

Details: Attempts to do a topological sort. If the sort does not contain all vertexes, the digraph
contains at least one cycle. This method overrides is_acyclic in Graph.

Returns: TRUE if no cycles detected.

Method is_tree(): Is the digraph’s underlying graph a tree?

Usage:
Digraph$is_tree()

Details: It is a tree if it is connected and acyclic.

Returns: TRUE if the underlying graph is a tree; FALSE if not.

Method is_polytree(): Is the digraph’s underlying graph a polytree?

Usage:
Digraph$is_polytree()

Details: It is a polytree if it is directed, connected and acyclic. Because the object is a digraph
(directed), this is synonymous with tree.

Returns: TRUE if the underlying graph is a tree; FALSE if not.

Method is_arborescence(): Is the digraph an arborescence?

Usage:
Digraph$is_arborescence()

Details: An arborescence is a tree with a single root and unique paths from the root.

Returns: TRUE if the digraph is an arborescence; FALSE if not.

Method direct_successors(): Find the direct successors of a node.

Usage:
Digraph$direct_successors(v)

Arguments:
v The index vertex.

Returns: A list of nodes or an empty list if the specified node has no successors.

Method direct_predecessors(): Find the direct predecessors of a node.

Usage:
Digraph$direct_predecessors(v)

Digraph 25

Arguments:
v The index vertex.
Returns: A list of nodes or an empty list if the specified node has no predecessors.

Method paths(): Find all directed simple paths from source to target.
Usage:
Digraph$paths(s, t)

Arguments:
s Source node.
t Target node.
Details: In simple paths all vertexes are unique. Uses a recursive depth-first search algorithm.
Returns: A list of ordered node lists.

Method walk(): Sequence of edges which join the specified path.
Usage:
Digraph$walk(P)

Arguments:
P A list of Nodes
Returns: A list of Edges

Method as_DOT(): Exports the digraph in DOT notation.
Usage:
Digraph$as_DOT()

Details: Writes a representation of the digraph in the graphviz DOT language (http://
graphviz.org/doc/info/lang.html) for drawing with one of the graphviz tools, including
dot (Gansner, 1993).
Returns: A character vector. Intended for passing to writeLines for saving as a text file.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Digraph$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

References

Gansner ER, Koutsofios E, North SC, Vo K-P. A technique for drawing directed graphs. IEEE
Transactions on Software Engineering, 1993;19:214–30, doi: 10.1109/32.221135.

Gross JL, Yellen J, Zhang P. Handbook of Graph Theory. Second edition, Chapman and Hall/CRC.;
2013, doi: 10.1201/b16132.

Kahn AB, Topological Sorting of Large Networks, Communications of the ACM, 1962;5:558-562,
doi: 10.1145/368996.369025.

http://graphviz.org/doc/info/lang.html
http://graphviz.org/doc/info/lang.html
https://doi.org/10.1109/32.221135
https://doi.org/10.1201/b16132
https://doi.org/10.1145/368996.369025

26 DiracDistribution

DiracDistribution A Dirac delta function

Description

An R6 class representing a Dirac Delta function.

Details

A distribution modelled by a Dirac delta function δ(x− c) where c is the hyperparameter (value of
the constant). It has probability 1 that the value will be equal to c and zero otherwise. The mode,
mean, quantiles and random samples are all equal to c. It is acknowledged that there is debate
over whether Dirac delta functions are true distributions, but the assumption makes little practical
difference in this case. Inherits from class Distribution.

Super class

rdecision::Distribution -> DiracDistributon

Methods

Public methods:
• DiracDistribution$new()

• DiracDistribution$distribution()

• DiracDistribution$mode()

• DiracDistribution$mean()

• DiracDistribution$SD()

• DiracDistribution$quantile()

• DiracDistribution$sample()

• DiracDistribution$clone()

Method new(): Create a new Dirac Delta function distribution.

Usage:
DiracDistribution$new(const)

Arguments:
const The value at which the distribution is centred.

Returns: A new DiracDistribution object.

Method distribution(): Accessor function for the name of the distribution.

Usage:
DiracDistribution$distribution()

Returns: Distribution name as character string.

Method mode(): Return the mode of the distribution.

DiracDistribution 27

Usage:
DiracDistribution$mode()

Returns: Numeric Value where the distribution is centred.

Method mean(): Return the expected value of the distribution.

Usage:
DiracDistribution$mean()

Returns: Expected value as a numeric value.

Method SD(): Return the standard deviation of the distribution.

Usage:
DiracDistribution$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Quantiles of the distribution.

Usage:
DiracDistribution$quantile(probs)

Arguments:

probs Numeric vector of probabilities, each in range [0,1].

Details: For a Dirac Delta Function all quantiles are returned as the value at which the distri-
bution is centred.

Returns: Vector of numeric values of the same length as probs.

Method sample(): Draw and hold a random sample from the model variable.

Usage:
DiracDistribution$sample(expected = FALSE)

Arguments:

expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-
tion.

Returns: Updated distribution.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DiracDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

28 DirichletDistribution

DirichletDistribution A parametrized Dirichlet distribution

Description

An R6 class representing a multivariate Dirichlet distribution.

Details

A multivariate Dirichlet distribution. See https://en.wikipedia.org/wiki/Dirichlet_distribution
for details. Inherits from class Distribution.

Super class

rdecision::Distribution -> DirichletDistribution

Methods

Public methods:
• DirichletDistribution$new()

• DirichletDistribution$distribution()

• DirichletDistribution$mean()

• DirichletDistribution$mode()

• DirichletDistribution$quantile()

• DirichletDistribution$varcov()

• DirichletDistribution$sample()

• DirichletDistribution$clone()

Method new(): Create an object of class DirichletDistribution.

Usage:
DirichletDistribution$new(alpha)

Arguments:

alpha Parameters of the distribution; a vector of K numeric values each > 0, with K > 1.

Returns: An object of class DirichletDistribution.

Method distribution(): Accessor function for the name of the distribution.

Usage:
DirichletDistribution$distribution()

Returns: Distribution name as character string.

Method mean(): Mean value of each dimension of the distribution.

Usage:
DirichletDistribution$mean()

https://en.wikipedia.org/wiki/Dirichlet_distribution

DirichletDistribution 29

Returns: A numerical vector of length K.

Method mode(): Return the mode of the distribution.

Usage:
DirichletDistribution$mode()

Details: Undefined if any alpha is ≤ 1.

Returns: Mode as a vector of length K.

Method quantile(): Quantiles of the univariate marginal distributions.

Usage:
DirichletDistribution$quantile(probs)

Arguments:
probs Numeric vector of probabilities, each in range [0,1].

Details: The univariate marginal distributions of a Dirichlet distribution are Beta distributions.
This function returns the quantiles of each marginal. Note that these are not the true quantiles
of the multivariate Dirichlet.

Returns: A matrix of numeric values with the number of rows equal to the length of probs, the
number of columns equal to the order; rows are labelled with quantiles and columns with the
dimension (1, 2, etc).

Method varcov(): Variance-covariance matrix.

Usage:
DirichletDistribution$varcov()

Returns: A positive definite symmetric matrix of size K by K.

Method sample(): Draw and hold a random sample from the distribution.

Usage:
DirichletDistribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Returns: Void; sample is retrieved with call to r().

Method clone(): The objects of this class are cloneable with this method.

Usage:
DirichletDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

30 Distribution

Distribution A probability distribution

Description

An R6 class representing a (possibly multivariate) distribution.

Details

The base class for particular univariate or multivariate distributions.

Methods

Public methods:
• Distribution$new()

• Distribution$order()

• Distribution$distribution()

• Distribution$mean()

• Distribution$mode()

• Distribution$SD()

• Distribution$varcov()

• Distribution$quantile()

• Distribution$sample()

• Distribution$r()

• Distribution$clone()

Method new(): Create an object of class Distribution.

Usage:
Distribution$new(name, K = as.integer(1))

Arguments:
name Name of the distribution ("Beta" etc.)
K Order of the distribution (1=univariate, 2=bivariate etc.). Must be an integer; use as.integer()

to avoid an error.

Returns: An object of class Distribution.

Method order(): Order of the distribution

Usage:
Distribution$order()

Returns: Order (K).

Method distribution(): Description of the uncertainty distribution.

Usage:
Distribution$distribution()

Distribution 31

Details: Includes the distribution name and its parameters.

Returns: Distribution name and parameters as character string.

Method mean(): Mean value of the distribution.

Usage:
Distribution$mean()

Returns: Mean value as a numeric scalar (K=1) or vector of length K.

Method mode(): Return the mode of the distribution.

Usage:
Distribution$mode()

Details: By default returns NA, which will be the case for most because an arbitrary distribution
is not guaranteed to be unimodal.

Returns: Mode as a numeric scalar (K=1) or vector of length K.

Method SD(): Return the standard deviation of a univariate distribution.

Usage:
Distribution$SD()

Details: Only defined for univariate (K=1) distributions; for multivariate distributions, function
varcov returns the variance-covariance matrix.

Returns: Standard deviation as a numeric value.

Method varcov(): Variance-covariance matrix.

Usage:
Distribution$varcov()

Returns: A positive definite symmetric matrix of size K by K, or a scalar for K=1, equal to the
variance.

Method quantile(): Marginal quantiles of the distribution.

Usage:
Distribution$quantile(probs)

Arguments:
probs Numeric vector of probabilities, each in range [0,1].

Details: If they are defined, this function returns the marginal quantiles of the multivariate
distribution; i.e. the quantiles of each univariate marginal distribution of the multivariate distri-
bution. For example, the univariate marginal distributions of a multivariate normal are univariate
normals, and the univariate marginal distributions of a Dirichlet distribution are Beta distribu-
tions. Note that these are not the true quantiles of a multivariate distribution, which are contours
for K=2, surfaces for K=3, etc. Thus, for example, the 2.5% and 97.5% marginal quantiles of a
bivariate normal distribution define a rectangle in x1, x2 space that will include more than 95%
of the distribution, whereas the contour containing 95% of the distribution is an ellipse.

Returns: For K=1 a numeric vector of length equal to the length of probs, with each entry
labelled with the quantile. For K>1 a matrix of numeric values with the number of rows equal to
the length of probs, the number of columns equal to the order; rows are labelled with quantiles
and columns with the dimension (1, 2, etc).

32 Edge

Method sample(): Draw and hold a random sample from the distribution.

Usage:
Distribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Returns: Void

Method r(): Return a random sample drawn from the distribution.

Usage:
Distribution$r()

Details: Returns the sample generated at the last call to sample.

Returns: A vector of length K representing one sample.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Distribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

Edge An edge in a graph

Description

An R6 class representing an edge in a graph.

Details

Edges are the formal term for links between pairs of nodes in a graph. A base class.

Methods

Public methods:
• Edge$new()

• Edge$is_same_edge()

• Edge$endpoints()

• Edge$label()

• Edge$clone()

Edge 33

Method new(): Create an object of type Edge.

Usage:

Edge$new(v1, v2, label = "")

Arguments:

v1 Node at one endpoint of the edge.

v2 Node at the other endpoint of the edge.

label Character string containing the edge label.

Returns: A new Edge object.

Method is_same_edge(): Is this edge the same as the argument?

Usage:

Edge$is_same_edge(e)

Arguments:

e edge to compare with this one

Returns: TRUE if e is also this one.

Method endpoints(): Retrieve the endpoints of the edge.

Usage:

Edge$endpoints()

Returns: List of two nodes to which the edge is connected.

Method label(): Access label.

Usage:

Edge$label()

Returns: Label of the edge; character string.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Edge$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

34 ExprModVar

ExprModVar A model variable constructed from an expression of other variables

Description

An R6 class representing a model variable constructed from an expression involving other variables.

Details

A class to support expressions involving objects of base class ModVar, which itself behaves like a
model variable. For example, if A and B are variables with base class ModVar and c is a variable of
type numeric, then it is not possible to write, for example, x <-42*A/B + c, because R cannot ma-
nipulate class variables using the same operators as regular variables. But such forms of expression
may be desirable in constructing a model and this class provides a mechanism for doing so. Inherits
from class ModVar.

Super class

rdecision::ModVar -> ExprModVar

Methods

Public methods:

• ExprModVar$new()

• ExprModVar$add_method()

• ExprModVar$is_probabilistic()

• ExprModVar$operands()

• ExprModVar$distribution()

• ExprModVar$mean()

• ExprModVar$mode()

• ExprModVar$SD()

• ExprModVar$quantile()

• ExprModVar$mu_hat()

• ExprModVar$sigma_hat()

• ExprModVar$q_hat()

• ExprModVar$set()

• ExprModVar$get()

• ExprModVar$clone()

Method new(): Create a ModVar formed from an expression involving other model variables.

Usage:
ExprModVar$new(description, units, quo)

Arguments:

ExprModVar 35

description Name for the model variable expression. In a complex model it may help to
tabulate how model variables are combined into costs, probabilities and rates.

units Units in which the variable is expressed.
quo A quosure (see package rlang), which contains an expression and its environment. The

usage is quo(x+y) or rlang::quo(x+y).

Returns: An object of type ExprModVar

Method add_method(): Create a new quosure from that supplied in new() but with each ModVar
operand appended with $x where x is the argument to this function.

Usage:
ExprModVar$add_method(method = "mean()")

Arguments:

method A character string with the method, e.g. "mean()".

Details: This method is mostly intended for internal use within the class and will not generally
be needed for normal use of ExprModVar objects. The returned expression is not syntactically
checked or evaluated before it is returned.

Returns: A quosure whose expression is each ModVar v in the expression replaced with
v$method and the same environment as specified in the quosure supplied in new().

Method is_probabilistic(): Tests whether the model variable is probabilistic, i.e. a random
variable that follows a distribution, or an expression involving random variables, at least one of
which follows a distribution.

Usage:
ExprModVar$is_probabilistic()

Returns: TRUE if probabilistic

Method operands(): Return a list of operands that are themselves ModVars given in the expres-
sion.

Usage:
ExprModVar$operands()

Returns: A list of model variables.

Method distribution(): Accessor function for the name of the expression model variable.

Usage:
ExprModVar$distribution()

Returns: Expression as a character string with all control characters having been removed.

Method mean(): Return the value of the expression when its operands take their mean value
(i.e. value returned by call to mean or their value, if numeric). See notes on this class for further
explanation.

Usage:
ExprModVar$mean()

Returns: Mean value as a numeric value.

36 ExprModVar

Method mode(): Return the mode of the variable. By default returns NA, which will be the case
for most ExprModVar variables, because an arbitrary expression is not guaranteed to be unimodal.

Usage:
ExprModVar$mode()

Returns: Mode as a numeric value.

Method SD(): Return the standard deviation of the distribution as NA because the variance is not
available as a closed form for all functions of distributions.

Usage:
ExprModVar$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Find quantiles of the uncertainty distribution. Not available as a closed
form, and returned as NA.

Usage:
ExprModVar$quantile(probs)

Arguments:

probs Numeric vector of probabilities, each in range [0,1].

Returns: Vector of numeric values of the same length as probs.

Method mu_hat(): Return the estimated expected value of the variable.

Usage:
ExprModVar$mu_hat(nest = 1000)

Arguments:

nest Sample size to be used to estimate the mean. Values less than 1000 (default) are unlikely
to return meaningful estimates and will be rejected.

Details: This is computed by numerical simulation because there is, in general, no closed form
expressions for the mean of a function of distributions.

Returns: Expected value as a numeric value.

Method sigma_hat(): Return the estimated standard deviation of the distribution.

Usage:
ExprModVar$sigma_hat(nest = 1000)

Arguments:

nest Sample size to be used to estimate the SD. Values less than 1000 (default) are unlikely to
return meaningful estimates and will be rejected.

Details: This is computed by numerical simulation because there is, in general, no closed form
expressions for the SD of a function of distributions.

Returns: Standard deviation as a numeric value.

Method q_hat(): Return the estimated quantiles by sampling the variable.

Usage:

ExprModVar 37

ExprModVar$q_hat(probs, nest = 1000)

Arguments:
probs Vector of probabilities, in range [0,1].
nest Sample size to be used to estimate the SD. Values less than 1000 (default) are unlikely to

return meaningful estimates and will be rejected.
Details: This is computed by numerical simulation because there is, in general, no closed form
expressions for the quantiles of a function of distributions.
Returns: Vector of quantiles.

Method set(): Sets the value of the ExprModVar that will be returned by subsequent calls to
get() until set() is called again. Because an ExprModVar can be considered as a dependent
variable, this method calls set for each of the operands of this expression.

Usage:
ExprModVar$set(what = "random", val = NULL)

Arguments:
what Character string; one of "random","expected","q2.5","q50", "q97.5","current", "value"
val Numerical value when what="value".
Returns: Updated ExprModVar.

Method get(): Gets the value of the ExprModVar that was set by the most recent call to set()
to each operand of the expression.

Usage:
ExprModVar$get()

Returns: Value determined by last set().

Method clone(): The objects of this class are cloneable with this method.
Usage:
ExprModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Note

For many expressions involving model variables there will be no closed form expressions for the
mean, standard deviation and the quantiles. Therefore they are obtained by simulation, via functions
mu_hat, sigma_hat and q_hat.

For consistency with ModVars which are not expressions, the function mean returns the value of the
expression when all its operands take their mean values. This will, in general, not be the mean of
the expression distribution (which can be obtained via mu_hat), but is the value normally used in
the base case of a model as the point estimate. As Briggs et al note (section 4.1.1) "in all but the
most non-linear models, the difference between the expectation over the output of a probabilistic
model and that model evaluated at the mean values of the input parameters, is likely to be modest."

Functions SD, mode and quantile return NA because they do not necessarily have a closed form.
The standard deviation can be estimated by calling sigma_hat and the quantiles by q_hat. Because
a unimodal distribution is not guaranteed, there is no estimator provided for the mode.

Method distribution returns the string representation of the expression used to create the model
variable.

38 GammaDistribution

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

GammaDistribution A parametrized Gamma distribution

Description

An R6 class representing a Gamma distribution.

Details

An object representing a Gamma distribution with hyperparameters shape (k) and scale (theta).
In econometrics this parametrization is more common but in Bayesian statistics the shape (alpha)
and rate (beta) parametrization is more usual. Note, however, that although Briggs et al (2006)
use the shape, scale formulation, they use alpha, beta as parameter names. Inherits from class
Distribution.

Super class

rdecision::Distribution -> GammaDistribution

Methods

Public methods:
• GammaDistribution$new()

• GammaDistribution$distribution()

• GammaDistribution$mean()

• GammaDistribution$mode()

• GammaDistribution$SD()

• GammaDistribution$sample()

• GammaDistribution$quantile()

• GammaDistribution$clone()

Method new(): Create an object of class GammaDistribution.

Usage:
GammaDistribution$new(shape, scale)

Arguments:
shape shape parameter of the Gamma distribution.
scale scale parameter of the Gamma distribution.

GammaDistribution 39

Returns: An object of class GammaDistribution.

Method distribution(): Accessor function for the name of the distribution.

Usage:
GammaDistribution$distribution()

Returns: Distribution name as character string.

Method mean(): Return the expected value of the distribution.

Usage:
GammaDistribution$mean()

Returns: Expected value as a numeric value.

Method mode(): Return the mode of the distribution (if shape >= 1)

Usage:
GammaDistribution$mode()

Returns: mode as a numeric value.

Method SD(): Return the standard deviation of the distribution.

Usage:
GammaDistribution$SD()

Returns: Standard deviation as a numeric value

Method sample(): Draw and hold a random sample from the distribution.

Usage:
GammaDistribution$sample(expected = FALSE)

Arguments:

expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-
tion.

Returns: Updated distribution.

Method quantile(): Return the quantiles of the Gamma uncertainty distribution.

Usage:
GammaDistribution$quantile(probs)

Arguments:

probs Vector of probabilities, in range [0,1].

Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GammaDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

40 GammaModVar

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

GammaModVar A model variable whose uncertainty follows a Gamma distribution

Description

An R6 class for a model variable with Gamma uncertainty.

Details

A model variable for which the uncertainty in the point estimate can be modelled with a Gamma dis-
tribution. The hyperparameters of the distribution are the shape (k) and the scale (theta). Note that
although Briggs et al (2006) use the shape, scale formulation, they use alpha, beta as parameter
names. Inherits from class ModVar.

Super class

rdecision::ModVar -> GammaModVar

Methods

Public methods:
• GammaModVar$new()

• GammaModVar$is_probabilistic()

• GammaModVar$clone()

Method new(): Create an object of class GammaModVar.

Usage:
GammaModVar$new(description, units, shape, scale)

Arguments:
description A character string describing the variable.
units Units of the variable, as character string.
shape shape parameter of the Gamma distribution.
scale scale parameter of the Gamma distribution.

Returns: An object of class GammaModVar.

Method is_probabilistic(): Tests whether the model variable is probabilistic, i.e. a random
variable that follows a distribution, or an expression involving random variables, some of which
follow distributions.

Graph 41

Usage:

GammaModVar$is_probabilistic()

Returns: TRUE if probabilistic

Method clone(): The objects of this class are cloneable with this method.

Usage:

GammaModVar$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

The Gamma model variable class can be used to model the uncertainty of the mean of a count
quantity which follows a Poisson distribution. The Gamma distribution is the conjugate prior of a
Poisson distribution, and the shape and scale relate directly to the number of intervals from which
the mean count has been estimated. Specifically, the shape (k) is equal to the total count of events
in 1/θ intervals, where θ is the scale. For example, if 200 counts were observed in a sample of 100
intervals, setting shape=200 and scale=1/100 gives a Gamma distribution with a mean of 2 and a
95% confidence interval from 1.73 to 2.29.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

Graph An undirected graph

Description

An R6 class to represent a graph (from discrete mathematics).

Details

Encapsulates and provides methods for computation and checking of undirected graphs. Graphs are
systems of vertices connected in pairs by edges. A base class.

42 Graph

Methods

Public methods:
• Graph$new()

• Graph$vertex_index()

• Graph$has_vertex()

• Graph$edge_index()

• Graph$has_edge()

• Graph$order()

• Graph$size()

• Graph$graph_adjacency_matrix()

• Graph$is_simple()

• Graph$is_connected()

• Graph$is_acyclic()

• Graph$is_tree()

• Graph$degree()

• Graph$neighbours()

• Graph$as_DOT()

• Graph$clone()

Method new(): Create a new Graph object from sets of nodes and edges.

Usage:
Graph$new(V, E)

Arguments:

V A list of Nodes.
E A list of Edges.

Returns: A Graph object.

Method vertex_index(): Find the index of a vertex in the graph.

Usage:
Graph$vertex_index(v)

Arguments:

v Subject vertex

Returns: Index of v. The vertexes are normally stored in the same order they are specified
in new, but this cannot be guaranteed. This’ function returns the same index as used in the
adjacency matrix and NA if the vertex is not in the graph.

Method has_vertex(): Test whether a vertex is an element of the graph.

Usage:
Graph$has_vertex(v)

Arguments:

v Subject vertex.

Graph 43

Returns: TRUE if v is an element of V(G).

Method edge_index(): Find the index of an edge in a graph.

Usage:
Graph$edge_index(e)

Arguments:
e Subject edge.

Returns: Index of e. The edges are normally stored in the same order they are specified in new,
but this cannot be guaranteed. This function returns the same index returned in other functions
and NA if the edge is not in the graph.

Method has_edge(): Test whether an edge is element of the graph.

Usage:
Graph$has_edge(e)

Arguments:
e Subject edge.

Returns: TRUE if e is an element of E(G).

Method order(): Return the order of the graph (number of vertices).

Usage:
Graph$order()

Returns: Order of the graph (integer).

Method size(): Return the size of the graph (number of edges).

Usage:
Graph$size()

Returns: Size of the graph (integer).

Method graph_adjacency_matrix(): Compute the adjacency matrix for the graph.

Usage:
Graph$graph_adjacency_matrix(boolean = FALSE)

Arguments:
boolean If TRUE, the adjacency matrix is logical, each cell is FALSE,TRUE.

Details: Each cell contains the number of edges joining the two vertexes, with the convention
of self loops being counted twice, unless binary is TRUE when cells are either 0 (not adjacent)
or 1 (adjacent).

Returns: A square numeric matrix with the number of rows and columns equal to the order
of the graph. The rows and columns are in the same order as V. If the nodes have defined and
unique labels the dimnames of the matrix are the labels of the nodes.

Method is_simple(): Is this a simple graph?

Usage:
Graph$is_simple()

44 Graph

Details: A simple graph has no self loops or multi-edges.

Returns: TRUE if simple, FALSE if not.

Method is_connected(): Test whether the graph is connected.

Usage:
Graph$is_connected()

Details: Graphs with no vertices are considered unconnected; graphs with 1 vertex are consid-
ered connected. Otherwise a graph is connected if all nodes can be reached from an arbitrary
starting point. Uses a depth first search.

Returns: TRUE if connected, FALSE if not.

Method is_acyclic(): Checks for the presence of a cycle in the graph.

Usage:
Graph$is_acyclic()

Details: Uses a depth-first search from each node to detect the presence of back edges. A back
edge is an edge from the current node joining a previously detected (visited) node, that is not
the parent node of the current one.

Returns: TRUE if no cycles detected.

Method is_tree(): Compute whether the graph is connected and acyclic.

Usage:
Graph$is_tree()

Returns: TRUE if the graph is a tree; FALSE if not.

Method degree(): The degree of a vertex in the graph.

Usage:
Graph$degree(v)

Arguments:

v The subject node.

Details: The number of incident edges.

Returns: Degree of the vertex, integer.

Method neighbours(): Find the neighbours of a node.

Usage:
Graph$neighbours(v)

Arguments:

v The subject node.

Details: A property of the graph, not the node. Does not include self, even in the case of a loop
to self.

Returns: A list of nodes which are joined to the subject.

Method as_DOT(): Export a representation of the graph in DOT format.

LeafNode 45

Usage:

Graph$as_DOT()

Details: Writes the representation in the graphviz DOT language (http://graphviz.org/
doc/info/lang.html) for drawing with one of the graphviz tools including dot (Gansner,
1993).

Returns: A character vector. Intended for passing to writeLines for saving as a text file.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Graph$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

References

Gansner ER, Koutsofios E, North SC, Vo K-P. A technique for drawing directed graphs. IEEE
Transactions on Software Engineering, 1993;19:214–30, doi: 10.1109/32.221135.

Gross JL, Yellen J, Zhang P. Handbook of Graph Theory. Second edition, Chapman and Hall/CRC.;
2013, doi: 10.1201/b16132

LeafNode A leaf node in a decision tree

Description

An R6 class representing a leaf (terminal) node in a decision tree.

Details

Represents a terminal state in a tree, and is associated with an incremental utility. Inherits from
class Node.

Super class

rdecision::Node -> LeafNode

http://graphviz.org/doc/info/lang.html
http://graphviz.org/doc/info/lang.html
https://doi.org/10.1109/32.221135
https://doi.org/10.1201/b16132

46 LeafNode

Methods

Public methods:
• LeafNode$new()

• LeafNode$modvars()

• LeafNode$utility()

• LeafNode$interval()

• LeafNode$QALY()

• LeafNode$clone()

Method new(): Create a new LeafNode object; synonymous with a clinical outcome.

Usage:
LeafNode$new(
label,
utility = 1,
interval = as.difftime(365.25, units = "days")

)

Arguments:
label Character string; a label for the state; must be defined because it is used in tabulations.

The label is automatically converted to a syntactically valid (in R) name to ensure it can be
used as a column name in a data frame.

utility The incremental utility that a user associates with being in the health state (range -Inf
to 1) for the interval. Intended for use with cost benefit analysis.

interval The time interval over which the utility parameter applies, expressed as an R
difftime object; default 1 year.

Returns: A new LeafNode object

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with this LeafNode. Includes operands of these ModVars, if they are expressions.

Usage:
LeafNode$modvars()

Returns: A list of ModVars.

Method utility(): Return the incremental utility associated with being in the state for the
interval.

Usage:
LeafNode$utility()

Returns: Incremental utility (numeric value).

Method interval(): Return the interval associated with being in the state.

Usage:
LeafNode$interval()

Returns: Interval (as a difftime).

Method QALY(): Return the quality adjusted life years associated with being in the state.

LogNormDistribution 47

Usage:
LeafNode$QALY()

Returns: QALY.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LeafNode$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

LogNormDistribution A parametrized log Normal probability distribution

Description

An R6 class representing a log Normal distribution.

Details

A parametrized Log Normal distribution inheriting from class Distribution. Swat (2017) defined
seven parametrizations of the log normal distribution. These are linked, allowing the parameters of
any one to be derived from any other. All 7 parametrizations require two parameters as follows:

LN1 p1 = µ, p2 = σ, where µ and σ are the mean and standard deviation, both on the log scale.

LN2 p1 = µ, p2 = v, where µ and v are the mean and variance, both on the log scale.

LN3 p1 = m, p2 = σ, where m is the median on the natural scale and σ is the standard deviation
on the log scale.

LN4 p1 = m, p2 = cv , where m is the median on the natural scale and cv is the coefficient of
variation on the natural scale.

LN5 p1 = µ, p2 = τ , where µ is the mean on the log scale and τ is the precision on the log scale.

LN6 p1 = m, p2 = σg , wherem is the median on the natural scale and σg is the geometric standard
deviation on the natural scale.

LN7 p1 = µN , p2 = σN , where µN is the mean on the natural scale and σN is the standard
deviation on the natural scale.

Super class

rdecision::Distribution -> LogNormDistribution

48 LogNormDistribution

Methods

Public methods:
• LogNormDistribution$new()

• LogNormDistribution$distribution()

• LogNormDistribution$sample()

• LogNormDistribution$mean()

• LogNormDistribution$mode()

• LogNormDistribution$SD()

• LogNormDistribution$quantile()

• LogNormDistribution$clone()

Method new(): Create a log normal distribution.

Usage:
LogNormDistribution$new(p1, p2, parametrization = "LN1")

Arguments:
p1 First hyperparameter, a measure of location. See Details.
p2 Second hyperparameter, a measure of spread. See Details.
parametrization A character string taking one of the values "LN1" (default) through "LN7"

(see Details).

Returns: A LogNormDistribution object.

Method distribution(): Accessor function for the name of the distribution.

Usage:
LogNormDistribution$distribution()

Returns: Distribution name as character string ("LN1", "LN2" etc.).

Method sample(): Draw a random sample from the model variable.

Usage:
LogNormDistribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.

Returns: Updated LogNormDistribution object.

Method mean(): Return the expected value of the distribution.

Usage:
LogNormDistribution$mean()

Returns: Expected value as a numeric value.

Method mode(): Return the point estimate of the variable.

Usage:
LogNormDistribution$mode()

LogNormDistribution 49

Returns: Point estimate (mode) of the log normal distribution.

Method SD(): Return the standard deviation of the distribution.

Usage:
LogNormDistribution$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Return the quantiles of the log normal distribution.

Usage:
LogNormDistribution$quantile(probs)

Arguments:

probs Vector of probabilities, in range [0,1].

Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.

Usage:
LogNormDistribution$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Note

The log normal distribution may be used to model the uncertainty in an estimate of relative risk
(Briggs 2006, p90). If a relative risk estimate is available with a 95% confidence interval, the
"LN7" parametrization allows the uncertainty distribution to be specified directly. For example,
if RR = 0.67 with 95% confidence interval 0.53 to 0.84 (Leaper, 2016), it can be modelled with
LogNormModVar$new("rr","RR",p1=0.67,p2=(0.84-0.53)/(2*1.96)),"LN7").

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K and Sculpher M. Decision Modelling for Health Economic Evaluation. Oxford
2006, ISBN 978-0-19-852662-9.

Leaper DJ, Edmiston CE and Holy CE. Meta-analysis of the potential economic impact following
introduction of absorbable antimicrobial sutures. British Journal of Surgery 2017;104:e134-e144.

Swat MJ, Grenon P and Wimalaratne S. Ontology and Knowledge Base of Probability Distribu-
tions. EMBL-EBI Technical Report (ProbOnto 2.5), 13 January 2017, https://sites.google.
com/site/probonto/download.

https://sites.google.com/site/probonto/download
https://sites.google.com/site/probonto/download

50 LogNormModVar

LogNormModVar A model variable whose uncertainty follows a log Normal distribution

Description

An R6 class representing a model variable with log Normal uncertainty.

Details

A model variable for which the uncertainty in the point estimate can be modelled with a log Normal
distribution. One of seven parametrizations defined by Swat et al can be used. Inherits from ModVar.

Super class

rdecision::ModVar -> LogNormModVar

Methods

Public methods:
• LogNormModVar$new()

• LogNormModVar$is_probabilistic()

• LogNormModVar$clone()

Method new(): Create a model variable with log normal uncertainty.
Usage:
LogNormModVar$new(description, units, p1, p2, parametrization = "LN1")

Arguments:
description A character string describing the variable.
units Units of the quantity; character string.
p1 First hyperparameter, a measure of location. See Details.
p2 Second hyperparameter, a measure of spread. See Details.
parametrization A character string taking one of the values "LN1" (default) through "LN7"

(see Details).
Returns: A LogNormModVar object.

Method is_probabilistic(): Tests whether the model variable is probabilistic, i.e. a random
variable that follows a distribution, or an expression involving random variables, some of which
follow distributions.

Usage:
LogNormModVar$is_probabilistic()

Returns: TRUE if probabilistic

Method clone(): The objects of this class are cloneable with this method.
Usage:
LogNormModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

MarkovState 51

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

References

Briggs A, Claxton K and Sculpher M. Decision Modelling for Health Economic Evaluation. Oxford
2006, ISBN 978-0-19-852662-9.

Leaper DJ, Edmiston CE and Holy CE. Meta-analysis of the potential economic impact following
introduction of absorbable antimicrobial sutures. British Journal of Surgery 2017;104:e134-e144.

Swat MJ, Grenon P and Wimalaratne S. Ontology and Knowledge Base of Probability Distribu-
tions. EMBL-EBI Technical Report (ProbOnto 2.5), 13 January 2017, https://sites.google.
com/site/probonto/download.

MarkovState A state in a Markov model

Description

An R6 class representing a state in a Markov model.

Details

Represents a single state in a Markov model. A Markov model is a digraph in which states are
nodes and transitions are arrows. Inherits from class Node.

Value

Updated MarkovState object

Super class

rdecision::Node -> MarkovState

Methods

Public methods:
• MarkovState$new()

• MarkovState$name()

• MarkovState$set_cost()

• MarkovState$cost()

• MarkovState$utility()

• MarkovState$modvars()

• MarkovState$clone()

Method new(): Create an object of type MarkovState.

https://sites.google.com/site/probonto/download
https://sites.google.com/site/probonto/download

52 MarkovState

Usage:
MarkovState$new(name, cost = as.numeric(NA), utility = 1)

Arguments:
name The name of the state (character string).
cost The annual cost of state occupancy (numeric or ModVar). Set as NA by default to help

distinguish costs to be set with set_cost in future from those deliberately set to zero.
utility The utility associated with being in the state (numeric or ModVar).

Details: Utility must be in the range [-Inf,1]. If it is of type numeric, the range is checked
on object creation.

Returns: An object of type MarkovState.

Method name(): Accessor function to retrieve the state name.
Usage:
MarkovState$name()

Returns: State name.

Method set_cost(): Set the annual occupancy cost
Usage:
MarkovState$set_cost(cost)

Arguments:
cost The annual cost of state occupancy

Method cost(): Gets the annual cost of state occupancy.
Usage:
MarkovState$cost()

Returns: Annual cost; numeric.

Method utility(): Gets the utility associated with the state.
Usage:
MarkovState$utility()

Details: If the state utility is a ModVar and its sampled value exceeds 1, a warning is issued.

Returns: Utility; numeric.

Method modvars(): Find all the model variables.
Usage:
MarkovState$modvars()

Details: Find variables of type ModVar that have been specified as values associated with this
MarkovState. Includes operands of these ModVars, if they are expressions.

Returns: A list of ModVars.

Method clone(): The objects of this class are cloneable with this method.
Usage:
MarkovState$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

ModVar 53

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

ModVar A model variable incorporating uncertainty

Description

An R6 class for a variable in a health economic model.

Details

Base class for a variable used in a health economic model. The base class wraps a numerical value
which is used in calculations. It provides a framework for creating classes of model variables whose
uncertainties are described by statistical distributions parametrized with hyperparameters.

Methods

Public methods:
• ModVar$new()

• ModVar$is_expression()

• ModVar$is_probabilistic()

• ModVar$description()

• ModVar$units()

• ModVar$distribution()

• ModVar$mean()

• ModVar$mode()

• ModVar$SD()

• ModVar$quantile()

• ModVar$r()

• ModVar$set()

• ModVar$get()

• ModVar$clone()

Method new(): Create an object of type ModVar.

Usage:
ModVar$new(description, units, D = NULL, k = as.integer(1))

Arguments:

description A character string description of the variable and its role in the model. This
description will be used in a tabulation of the variables linked to a model.

units A character string description of the units, e.g. "GBP", "per year".
D The distribution representing the uncertainty in the variable. Should inherit from class Distribution,

or NULL if none is defined.

54 ModVar

k The index of the dimension of the multivariate distribution that applies to this model variable.

Details: A ModVar is associated with an uncertainty distribution (a "has-a" relationship in
object-oriented terminology). There can be a 1-1 mapping of ModVars to Distributions, or
several model variables can be linked to the same distribution in a many-1 mapping, e.g. when
each transition probability from a Markov state is represented as a ModVar and each can be
linked to the k dimensions of a common multivariate Dirichlet distribution.

Returns: A new ModVar object.

Method is_expression(): Is this ModVar an expression?

Usage:
ModVar$is_expression()

Returns: TRUE if it inherits from ExprModVar, FALSE otherwise.

Method is_probabilistic(): Is the model variable probabilistic?

Usage:
ModVar$is_probabilistic()

Details: Tests whether the model variable is probabilistic, i.e. a random variable that follows a
distribution, or an expression involving random variables, some of which follow distributions.

Returns: TRUE if probabilistic

Method description(): Accessor function for the description.

Usage:
ModVar$description()

Returns: Description of model variable as character string.

Method units(): Accessor function for units.

Usage:
ModVar$units()

Returns: Description of units as character string.

Method distribution(): Name and parameters of the uncertainty distribution.

Usage:
ModVar$distribution()

Details: If K > 1 the dimension of the distribution associated with this model variable is ap-
pended, e.g. Dir(2,3)[1] means that the model variable is associated with the first dimension
of a 2D Dirichlet distribution with alpha parameters 2 and 3.

Returns: Distribution name as character string.

Method mean(): Mean value of the model variable.

Usage:
ModVar$mean()

Returns: Mean value as a numeric value.

ModVar 55

Method mode(): The mode of the variable.

Usage:
ModVar$mode()

Details: By default returns NA, which will be the case for most ModVar variables, because
arbitrary distributions are not guaranteed to be unimodal.

Returns: Mode as a numeric value.

Method SD(): Standard deviation of the model variable.

Usage:
ModVar$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Quantiles of the uncertainty distribution.

Usage:
ModVar$quantile(probs)

Arguments:

probs Numeric vector of probabilities, each in range [0,1].

Returns: Vector of numeric values of the same length as probs.

Method r(): Draw a random sample from the model variable.

Usage:
ModVar$r()

Details: The same random sample will be returned until set is called to force a resample.

Returns: A sample drawn at random.

Method set(): Sets the value of the ModVar.

Usage:
ModVar$set(what = "random", val = NULL)

Arguments:

what Character: one of "random" (samples from the uncertainty distribution), "expected"
(mean), "q2.5" (lower 95% confidence limit), "q50" (median), "q97.5" (upper 95% con-
fidence limit), "current" (leaves the value unchanged), "value" (sets the value explicitly).

val A numeric value, only used with what="value", ignored otherwise.

Details: Defines what will be returned by subsequent calls to get() until set() is called again.
The "current" option is provided to support having common functions to set (or leave alone)
sets of model variables, depending on their use case and avoids additional if statements. Option
"value" is not recommended for normal usage because it allows the model variable to be set to
an implausible value, based on its defined uncertainty. An example of where this may be needed
is in threshold finding.

Returns: Updated ModVar.

Method get(): Get the value of the ModVar.

56 Node

Usage:
ModVar$get()

Details: Returns the value defined by the most recent call to set().

Returns: Value determined by last set().

Method clone(): The objects of this class are cloneable with this method.

Usage:
ModVar$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

Node A node in a graph

Description

An R6 class representing a node in a graph.

Details

A base class to represent a single node in a graph.

Methods

Public methods:
• Node$new()

• Node$label()

• Node$type()

• Node$clone()

Method new(): Create new Node object.

Usage:
Node$new(label = "")

Arguments:

label An optional label for the node.

Returns: A new Node object.

Method label(): Return the label of the node.

Usage:

NormalDistribution 57

Node$label()

Returns: Label as a character string.

Method type(): node type

Usage:
Node$type()

Returns: Node class, as character string.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Node$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

NormalDistribution A parametrized Normal distribution

Description

An R6 class representing a parametrized Normal distribution.

Details

A Normal distribution with hyperparameters mean (mu) and standard deviation (sd). Inherits from
class Distribution.

Super class

rdecision::Distribution -> NormalDistribution

Methods

Public methods:
• NormalDistribution$new()

• NormalDistribution$distribution()

• NormalDistribution$sample()

• NormalDistribution$mean()

• NormalDistribution$SD()

• NormalDistribution$quantile()

• NormalDistribution$clone()

58 NormalDistribution

Method new(): Create a parametrized normal distribution.
Usage:
NormalDistribution$new(mu, sigma)

Arguments:
mu Mean of the Normal distribution.
sigma Standard deviation of the Normal distribution.
Returns: A NormalDistribution object.

Method distribution(): Accessor function for the name of the distribution.
Usage:
NormalDistribution$distribution()

Returns: Distribution name as character string.

Method sample(): Draw a random sample from the model variable.
Usage:
NormalDistribution$sample(expected = FALSE)

Arguments:
expected If TRUE, sets the next value retrieved by a call to r() to be the mean of the distribu-

tion.
Returns: A sample drawn at random.

Method mean(): Return the mean value of the distribution.
Usage:
NormalDistribution$mean()

Returns: Expected value as a numeric value.

Method SD(): Return the standard deviation of the distribution.
Usage:
NormalDistribution$SD()

Returns: Standard deviation as a numeric value

Method quantile(): Return the quantiles of the Normal uncertainty distribution.
Usage:
NormalDistribution$quantile(probs)

Arguments:
probs Vector of probabilities, in range [0,1].
Returns: Vector of quantiles.

Method clone(): The objects of this class are cloneable with this method.
Usage:
NormalDistribution$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

NormModVar 59

NormModVar A model variable whose uncertainty follows a Normal distribution

Description

An R6 class representing a model variable with Normal uncertainty.

Details

A model variable for which the uncertainty in its point estimate can be modelled with a Normal
distribution. The hyperparameters of the distribution are the mean (mu) and the standard deviation
(sd) of the uncertainty distribution. The value of mu is the expected value of the variable. Inherits
from class ModVar.

Super class

rdecision::ModVar -> NormModVar

Methods

Public methods:
• NormModVar$new()

• NormModVar$is_probabilistic()

• NormModVar$clone()

Method new(): Create a model variable with normal uncertainty.
Usage:
NormModVar$new(description, units, mu, sigma)

Arguments:
description A character string describing the variable.
units Units of the quantity; character string.
mu Hyperparameter with mean of the Normal distribution for the uncertainty of the variable.
sigma Hyperparameter equal to the standard deviation of the normal distribution for the uncer-

tainty of the variable.
Returns: A NormModVar object.

Method is_probabilistic(): Tests whether the model variable is probabilistic.
Usage:
NormModVar$is_probabilistic()

Returns: TRUE if probabilistic.

Method clone(): The objects of this class are cloneable with this method.
Usage:
NormModVar$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

60 Reaction

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

rdecision rdecision: Decision Analytic Modelling in Health Economics.

Description

The goal of ‘rdecision‘ is to provide methods for assessing health care interventions using cohort
models (decision trees and semi-Markov models) which can be constructed using only a few lines
of R code. Mechanisms are provided for associating an uncertainty distribution with each source
variable and for ensuring transparency of the mathematical relationships between variables. The
package terminology follows Briggs et al "Decision Modelling for Health Economic Evaluation"
(2006, ISBN:978-0-19-852662-9).

Reaction A reaction (chance) edge in a decision tree

Description

An R6 class representing a reaction (chance) edge in a decision tree.

Details

A specialism of class Arrow which is used in a decision tree to represent edges whose source nodes
are ChanceNodes.

Super classes

rdecision::Edge -> rdecision::Arrow -> Reaction

Methods

Public methods:
• Reaction$new()

• Reaction$modvars()

• Reaction$p()

• Reaction$cost()

• Reaction$benefit()

• Reaction$clone()

Method new(): Create an object of type Reaction. A probability must be assigned to the edge.
Optionally, a cost and a benefit may be associated with traversing the edge. A pay-off (benefit-
cost) is sometimes used in edges of decision trees; the parametrization used here is more general.

Reaction 61

Usage:
Reaction$new(source, target, p, cost = 0, benefit = 0, label = "")

Arguments:
source Chance node from which the arrow leaves.
target Node which the arrow enters.
p Probability
cost Cost associated with traversal of this edge.
benefit Benefit associated with traversal of the edge.
label Character string containing the arrow label.

Returns: A new Reaction object.

Method modvars(): Find all the model variables of type ModVar that have been specified as
values associated with this Action. Includes operands of these ModVars, if they are expressions.

Usage:
Reaction$modvars()

Returns: A list of ModVars.

Method p(): Return the current value of the edge probability, i.e. the conditional probability of
traversing the edge.

Usage:
Reaction$p()

Returns: Numeric value in range [0,1].

Method cost(): Return the cost associated with traversing the edge.

Usage:
Reaction$cost()

Returns: Cost.

Method benefit(): Return the benefit associated with traversing the edge.

Usage:
Reaction$benefit()

Returns: Benefit.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Reaction$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

62 SemiMarkovModel

SemiMarkovModel A semi-Markov model for cohort simulation

Description

An R6 class representing a semi-Markov model for cohort simulation.

Details

A class to represent a continuous time semi-Markov chain, modelled using cohort simulation. As
interpreted in rdecision, semi-Markov models may include temporary states and transitions are
defined by per-cycle probabilities. Although used widely in health economic modelling, the differ-
ences between semi-Markov models and Markov processes introduce some caveats for modellers:

• If there are temporary states, the result will depend on cycle length.
• Transitions are specified by their conditional probability, which is a per-cycle probability of

starting a cycle in one state and ending it in another; if the cycle length changes, the probabil-
ities should change, too.

• Probabilities and rates cannot be linked by the Kolmogorov forward equation, where the per-
cycle probabilities are given by the matrix exponential of the transition rate matrix, because
this equation does not apply if there are temporary states. In creating semi-Markov models, it
is the modeller’s task to estimate probabilities from published data on event rates.

• The cycle time cannot be changed during the simulation.

Graph theory

A Markov model is a directed multidigraph permitting loops (a loop multidigraph), optionally la-
belled, or a quiver. It is a multidigraph because there are potentially two edges between each pair of
nodes A,B representing the transition probabilities from A to B and vice versa. It is a directed graph
because the transition probabilities refer to transitions in one direction. Each edge can be option-
ally labelled. It permits self-loops (edges whose source and target are the same node) to represent
patients that remain in the same state between cycles.

Transition rates and probabilities

Why semi-Markov?: Beck and Pauker (1983) and later Sonnenberg and Beck (1993) proposed
the use of Markov processes to model the health economics of medical interventions. Further, they
introduced the additional concept of temporary states, to which patients who transition remain for
exactly one cycle. This breaks the principle that Markov processes are memoryless and thus
the underlying mathematical formalism, first developed by Kolmogorov, is not applicable. For
example, ensuring that all patients leave a temporary state requires its transition rate to be infinite.
Hence, such models are usually labelled as semi-Markov processes.

Rates and probabilities: Miller and Homan (1994) and Fleurence & Hollenbeak (2007) provide
advice on estimating probabilities from rates. Jones (2017) and Welton (2005) describe methods
for estimating probabilities in multi-state, multi-transition models, although those methods may
not apply to semi-Markov models with temporary states. In particular note that the "simple"
equation, p = 1 − e−rt (Briggs 2006) applies only in a two-state, one transition model.

SemiMarkovModel 63

Uncertainty in rates: In semi-Markov models, the conditional probabilities of the transitions
from each state are usually modelled by a Dirichlet distribution. In rdecision, create a Dirichlet
distribution for each state and optionally create model variables for each conditional probability
(ρij) linked to an applicable Dirichlet distribution.

Super classes

rdecision::Graph -> rdecision::Digraph -> SemiMarkovModel

Methods

Public methods:

• SemiMarkovModel$new()

• SemiMarkovModel$set_probabilities()

• SemiMarkovModel$transition_probabilities()

• SemiMarkovModel$transition_cost()

• SemiMarkovModel$get_statenames()

• SemiMarkovModel$reset()

• SemiMarkovModel$get_populations()

• SemiMarkovModel$get_elapsed()

• SemiMarkovModel$tabulate_states()

• SemiMarkovModel$cycle()

• SemiMarkovModel$cycles()

• SemiMarkovModel$modvars()

• SemiMarkovModel$modvar_table()

• SemiMarkovModel$clone()

Method new(): Creates a semi-Markov model for cohort simulation.

Usage:
SemiMarkovModel$new(
V,
E,
tcycle = as.difftime(365.25, units = "days"),
discount.cost = 0,
discount.utility = 0

)

Arguments:

V A list of nodes (MarkovStates).
E A list of edges (Transitions).
tcycle Cycle length, expressed as an R difftime object.
discount.cost Annual discount rate for future costs.
discount.utility Annual discount rate for future incremental utility.

Details: A semi-Markov model must meet the following conditions:
1. It must have at least one node and at least one edge.

64 SemiMarkovModel

2. All nodes must be of class MarkovState;
3. All edges must be of class Transition;
4. The nodes and edges must form a digraph whose underlying graph is connected;
5. Each state must have at least one outgoing transition (which can be a self-loop);
6. For each state the sum of outgoing conditional transition probabilities must be one. For

convenience, one outgoing transition probability from each state may be set to NA when
the probabilitiess are defined. Typically, probabilities for self loops would be set to
NA). Transition probabilities in Pt associated with transitions that are not defined as edges
in the graph are zero. Probabilities can be changed between cycles.

7. No two edges may share the same source and target nodes (i.e. the digraph may not have
multiple edges). This is to ensure that there are no more transitions than cells in the transi-
tion matrix.

8. The node labels must be unique to the graph.

Returns: A SemiMarkovModel object. The population of the first state is set to 1000 and from
each state there is an equal conditional probability of each allowed transition.

Method set_probabilities(): Sets transition probabilities.

Usage:
SemiMarkovModel$set_probabilities(Pt)

Arguments:
Pt Per-cycle transition probability matrix. The row and column labels must be the state names

and each row must sum to one. Non-zero probabilities for undefined transitions are not
allowed. At most one NA may appear in each row.

Returns: Updated SemiMarkovModel object

Method transition_probabilities(): Per-cycle transition probability matrix for the model.

Usage:
SemiMarkovModel$transition_probabilities()

Returns: A square matrix of size equal to the number of states. If all states are labelled, the
dimnames take the names of the states.

Method transition_cost(): Return the per-cycle transition costs for the model.

Usage:
SemiMarkovModel$transition_cost()

Returns: A square matrix of size equal to the number of states. If all states are labelled, the
dimnames take the names of the states.

Method get_statenames(): Returns a character list of state names.

Usage:
SemiMarkovModel$get_statenames()

Returns: List of the names of each state.

Method reset(): Resets the model counters.

Usage:

SemiMarkovModel 65

SemiMarkovModel$reset(
populations = NULL,
icycle = as.integer(0),
elapsed = as.difftime(0, units = "days")

)

Arguments:
populations A named vector of populations for the start of the state. The names should be

the state names. Due to the R implementation of matrix algebra, populations must be a
numeric type and is not restricted to being an integer. If NULL, the population of the first
state is set to 1000 and the others to zero.

icycle Cycle number at which to start/restart.
elapsed Elapsed time since the index (reference) time used for discounting as an R difftime

object.

Details: Resets the state populations, next cycle number and elapsed time of the model. By
default the model is returned to its ground state (1000 people in the first state and zero in the
others; next cycle is labelled zero; elapsed time (years) is zero). Any or all of these can be set
via this function. icycle is simply an integer counter label for each cycle, elapsed sets the
elapsed time in years from the index time from which discounting is assumed to apply.

Returns: Updated SemiMarkovModel object.

Method get_populations(): Gets the occupancy of each state

Usage:
SemiMarkovModel$get_populations()

Returns: A numeric vector of populations, named with state names.

Method get_elapsed(): Gets the current elapsed time.

Usage:
SemiMarkovModel$get_elapsed()

Details: The elapsed time is defined as the difference between the current time in the model
and an index time used as the reference time for applying discounting. By default the elapsed
time starts at zero. It can be set directly by calling reset. It is incremented after each call to
cycle by the cycle duration to the time at the end of the cycle (even if half cycle correction is
used). Thus, via the reset and cycle methods, the time of each cycle relative to the discounting
index and its duration can be controlled arbitrarily.

Returns: Elapsed time as an R difftime object.

Method tabulate_states(): Tabulation of states

Usage:
SemiMarkovModel$tabulate_states()

Details: Creates a data frame summary of each state in the model.

Returns: A data frame with the following columns:
Name State name
Cost Annual cost of occupying the state
Utility Incremental utility associated with being in the state.

66 SemiMarkovModel

Method cycle(): Applies one cycle of the model.

Usage:
SemiMarkovModel$cycle(hcc.pop = TRUE, hcc.cost = TRUE)

Arguments:
hcc.pop Boolean; whether to apply half cycle correction to the population and QALY. If TRUE,

the correction is only applied to the outputs of functions cycle and cycles; the state popula-
tion passed to the next cycle is the end cycle population, obtainable with get_populations.

hcc.cost Boolean; whether to apply half cycle correction to the costs. If true, the occupancy
costs are computed using the population at half cycle; if false they are applied at the end of
the cycle. Applicable only if hcc.pop is TRUE.

Returns: Calculated values, one row per state, as a data frame with the following columns:
State Name of the state.
Cycle The cycle number.
Time Clock time, years.
Population Population of the state at the end of the cycle, or at mid-cycle if half-cycle correc-

tion is applied.
OccCost Cost of the population occupying the state for the cycle. Discount is applied, if the op-

tions are set. The costs are normalized by the model population. The cycle costs are derived
from the annual occupancy costs of the MarkovStates. Applied to the end population, i.e.
unaffected by half cycle correction, as per Briggs et al.

EntryCost Cost of the transitions into the state during the cycle. Discounting is applied, if the
option is set. The result is normalized by the model population. The cycle costs are derived
from Transition costs.

Cost Total cost, normalized by model population.
QALY Quality adjusted life years gained by occupancy of the states during the cycle. Half cycle

correction and discounting are applied, if these options are set. Normalized by the model
population.

Method cycles(): Applies multiple cycles of the model.

Usage:
SemiMarkovModel$cycles(ncycles = 2, hcc.pop = TRUE, hcc.cost = TRUE)

Arguments:
ncycles Number of cycles to run; default is 2.
hcc.pop Boolean; whether to apply half cycle correction to the population and QALY. If TRUE,

the correction is only applied to the outputs of functions cycle and cycles; the state popula-
tion passed to the next cycle is the end cycle population, obtainable with get_populations.

hcc.cost Boolean; whether to apply half cycle correction to the costs. If true, the occupancy
costs are computed using the population at half cycle; if false they are applied at the end of
the cycle. Applicable only if hcc.pop is TRUE.

Details: The starting populations are redistributed through the transition probabilities and the
state occupancy costs are calculated, using function cycle. The end populations are then fed
back into the model for a further cycle and the process is repeated. For each cycle, the state
populations and the aggregated occupancy costs are saved in one row of the returned data frame,
with the cycle number. If the cycle count for the model is zero when called, the first cycle
reported will be cycle zero, i.e. the distribution of patients to starting states.

SemiMarkovModel 67

Returns: Data frame with cycle results. following columns:
Cycle The cycle number.
Time Elapsed time at end of cycle, years
<name> Population of state <name> at the end of the cycle.
Cost Cost associated with occupancy and transitions between states during the cycle.
QALY Quality adjusted life years associated with occupancy of the states in the cycle.

Method modvars(): Find all the model variables in the Markov model.

Usage:
SemiMarkovModel$modvars()

Details: Returns variables of type ModVar that have been specified as values associated with
transition rates and costs and the state occupancy costs and utilities.

Returns: A list of ModVars.

Method modvar_table(): Tabulate the model variables in the Markov model.

Usage:
SemiMarkovModel$modvar_table(expressions = TRUE)

Arguments:

expressions A logical that defines whether expression model variables should be included in
the tabulation.

Returns: Data frame with one row per model variable, as follows:
Description As given at initialization.
Units Units of the variable.
Distribution Either the uncertainty distribution, if it is a regular model variable, or the ex-

pression used to create it, if it is an ExprModVar.
Mean Mean; calculated from means of operands if an expression.
E Expectation; estimated from random sample if expression, mean otherwise.
SD Standard deviation; estimated from random sample if expression, exact value otherwise.
Q2.5 p=0.025 quantile; estimated from random sample if expression, exact value otherwise.
Q97.5 p=0.975 quantile; estimated from random sample if expression, exact value otherwise.
Est TRUE if the quantiles and SD have been estimated by random sampling.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SemiMarkovModel$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

68 Stack

References

Beck JR and Pauker SG. The Markov Process in Medical Prognosis. Med Decision Making,
1983;3:419–458.

Briggs A, Claxton K, Sculpher M. Decision modelling for health economic evaluation. Oxford,
UK: Oxford University Press; 2006.

Fleurence RL and Hollenbeak CS. Rates and probabilities in economic modelling. PharmacoEco-
nomics, 2007;25:3–6.

Jones E, Epstein D and García-Mochón L. A procedure for deriving formulas to convert transition
rates to probabilities for multistate Markov models. Medical Decision Making 2017;37:779–789.

Miller DK and Homan SM. Determining transition probabilities: confusion and suggestions. Med-
ical Decision Making 1994;14:52-58.

Sonnenberg FA, Beck JR. Markov models in medical decision making: a practical guide. Medical
Decision Making, 1993:13:322.

Welton NJ and Ades A. Estimation of Markov chain transition probabilities and rates from fully
and partially observed data: uncertainty propagation, evidence synthesis, and model calibration.
Medical Decision Making, 2005;25:633-645.

Stack A stack

Description

An R6 class representing a stack of objects of any type.

Details

Conventional implementation of a stack. Used extensively in graph algorithms and offered as a sep-
arate class for ease of programming and to ensure that implementations of stacks are optimized. By
intention, there is only minimal checking of method arguments. This is to maximize performance
and because the class is mainly intended for use internally to rdecision.

Methods

Public methods:
• Stack$new()

• Stack$push()

• Stack$pop()

• Stack$size()

• Stack$as_list()

• Stack$clone()

Method new(): Create a stack.

Usage:

Stack 69

Stack$new()

Returns: A new Stack object.

Method push(): Push an item onto the stack.

Usage:

Stack$push(x)

Arguments:

x The item to push onto the top of the stack. It should be of the same class as items previously
pushed on to the stack. It is not checked.

Returns: An updated Stack object

Method pop(): Pop an item from the stack. Stack underflow and raises error.

Usage:

Stack$pop()

Returns: The item previously at the top of the stack.

Method size(): Gets the number of items on the stack.

Usage:

Stack$size()

Returns: Number of items.

Method as_list(): Inspect items in the stack.

Usage:

Stack$as_list()

Returns: A list of items.

Method clone(): The objects of this class are cloneable with this method.

Usage:

Stack$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew Sims <andrew.sims@newcastle.ac.uk>

70 Transition

Transition A transition in a semi-Markov model

Description

An R6 class representing a transition in a semi-Markov model.

Details

A specialism of class Arrow which is used in a semi-Markov model to represent a transition between
two MarkovStates. The transition is optionally associated with a cost. The transition probability is
associated with the model (SemiMarkovModel) rather than the transition.

Super classes

rdecision::Edge -> rdecision::Arrow -> Transition

Methods

Public methods:
• Transition$new()

• Transition$modvars()

• Transition$set_cost()

• Transition$cost()

• Transition$clone()

Method new(): Create an object of type MarkovTransition.

Usage:
Transition$new(source, target, cost = 0, label = "")

Arguments:
source MarkovState from which the transition starts.
target MarkovState to which the transition ends.
cost Cost associated with the transition.
label Character string containing a label for the transition (the name of the event).

Returns: A new Transition object.

Method modvars(): Find all the model variables.

Usage:
Transition$modvars()

Details: Find variables of type ModVar that have been specified as values associated with this
MarkovTransition. Includes operands of these ModVars, if they are expressions.

Returns: A list of ModVars.

Method set_cost(): Set the cost associated with the transition.

Transition 71

Usage:
Transition$set_cost(c = 0)

Arguments:

c Cost associated with the transition.

Returns: Updated Transition object.

Method cost(): Return the cost associated with traversing the edge.

Usage:
Transition$cost()

Returns: Cost.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Transition$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Author(s)

Andrew J. Sims <andrew.sims@newcastle.ac.uk>

Index

∗ datasets
BriggsEx47, 11

Action, 2
Arborescence, 4, 17
Arrow, 6

BetaDistribution, 8
BetaModVar, 10
BriggsEx47, 11

ChanceNode, 12
ConstModVar, 13

DecisionNode, 14
DecisionTree, 15
Digraph, 22
DiracDistribution, 26
DirichletDistribution, 28
Distribution, 30

Edge, 32
ExprModVar, 34

GammaDistribution, 38
GammaModVar, 40
Graph, 41

LeafNode, 45
LogNormDistribution, 47
LogNormModVar, 50

MarkovState, 51
ModVar, 53

Node, 56
NormalDistribution, 57
NormModVar, 59

rdecision, 60
rdecision::Arborescence, 15

rdecision::Arrow, 2, 60, 70
rdecision::Digraph, 4, 15, 63
rdecision::Distribution, 8, 26, 28, 38, 47,

57
rdecision::Edge, 2, 7, 60, 70
rdecision::Graph, 4, 15, 22, 63
rdecision::ModVar, 10, 13, 34, 40, 50, 59
rdecision::Node, 12, 14, 45, 51
Reaction, 60

SemiMarkovModel, 62
Stack, 68

Transition, 70

72

	Action
	Arborescence
	Arrow
	BetaDistribution
	BetaModVar
	BriggsEx47
	ChanceNode
	ConstModVar
	DecisionNode
	DecisionTree
	Digraph
	DiracDistribution
	DirichletDistribution
	Distribution
	Edge
	ExprModVar
	GammaDistribution
	GammaModVar
	Graph
	LeafNode
	LogNormDistribution
	LogNormModVar
	MarkovState
	ModVar
	Node
	NormalDistribution
	NormModVar
	rdecision
	Reaction
	SemiMarkovModel
	Stack
	Transition
	Index

