Package ‘rdlocrand’

October 14, 2022

Title Local Randomization Methods for RD Designs
Version 1.0
Author Matias D. Cattaneo, Rocio Titiunik, Gonzalo Vazquez-Bare
Maintainer Gonzalo Vazquez-Bare <gvazquez@econ.ucsb.edu>

Description
The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. Under the local randomization approach, RD designs can be interpreted as randomized experiments inside a window around the cutoff. This package provides tools to perform randomization inference for RD designs under local randomization: rdrandinf() to perform hypothesis testing using randomization inference, rdwinselect() to select a window around the cutoff in which randomization is likely to hold, rdsensitivity() to assess the sensitivity of the results to different window lengths and null hypotheses and rdrbounds() to construct Rosenbaum bounds for sensitivity to unobserved confounders. See Cattaneo, Titiunik and Vazquez-Bare (2016) <https://rdpackages.github.io/references/Cattaneo-Titiunik-VazquezBare_2016_Stata.pdf> for further methodological details.

Imports AER, sandwich
Depends R (>= 3.1)
License GPL-2
Encoding UTF-8
RoxygenNote 7.2.0
NeedsCompilation no
Repository CRAN
Date/Publication 2022-06-21 23:00:06 UTC

R topics documented:

rdlocrand-package .. 2
rdrandinf .. 2
rdrbounds .. 6
rdsensitivity ... 9
rdwinselect ... 11

Index 14
Description

The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. Under the local randomization approach, RD designs can be interpreted as randomized experiments inside a window around the cutoff. The rdlocrand package provides tools to analyze RD designs under local randomization: rdrandinf to perform hypothesis testing using randomization inference, rdwinselect to select a window around the cutoff in which randomization is likely to hold, rdsensitivity to assess the sensitivity of the results to different window lengths and null hypotheses and rdrbounds to construct Rosenbaum bounds for sensitivity to unobserved confounders. For more details, and related Stata and R packages useful for analysis of RD designs, visit https://rdpackages.github.io/.

Author(s)

Matias Cattaneo, Princeton University. <cattaneo@princeton.edu>
Rocio Titiunik, Princeton University. <titiunik@princeton.edu>
Gonzalo Vazquez-Bare, UC Santa Barbara. <gvazquez@econ.ucsb.edu>

References

rdrandinf

Usage

$rdrandinf($

\hspace{0.5em}Y,$$

\hspace{0.5em}R,$$

\hspace{0.5em}cutoff = 0,$$

\hspace{0.5em}wl = NULL,$$

\hspace{0.5em}wr = NULL,$$

\hspace{0.5em}statistic = "diffmeans","$$

\hspace{0.5em}p = 0,$$

\hspace{0.5em}evall = NULL,$$

\hspace{0.5em}evalr = NULL,$$

\hspace{0.5em}kernel = "uniform","$$

\hspace{0.5em}fuzzy = NULL,$$

\hspace{0.5em}nulltau = 0,$$

\hspace{0.5em}d = NULL,$$

\hspace{0.5em}dscale = NULL,$$

\hspace{0.5em}ci,$$

\hspace{0.5em}interfci = NULL,$$

\hspace{0.5em}bernoulli = NULL,$$

\hspace{0.5em}reps = 1000,$$

\hspace{0.5em}seed = 666,$$

\hspace{0.5em}quietly = FALSE,$$

\hspace{0.5em}covariates,$$

\hspace{0.5em}obsmin = NULL,$$

\hspace{0.5em}wmin = NULL,$$

\hspace{0.5em}wobs = NULL,$$

\hspace{0.5em}wstep = NULL,$$

\hspace{0.5em}wasymmetric = FALSE,$$

\hspace{0.5em}wmasspoints = FALSE,$$

\hspace{0.5em}nwindows = 10,$$

\hspace{0.5em}dropmissing = FALSE,$$

\hspace{0.5em}rdwstat = "diffmeans","$$

\hspace{0.5em}approx = FALSE,$$

\hspace{0.5em}rdwreps = 1000,$$

\hspace{0.5em}level = 0.15,$$

\hspace{0.5em}plot = FALSE,$$

\hspace{0.5em}firststage = FALSE,$$

\hspace{0.5em}obsstep = NULL$

$

)

Arguments

- **Y**: a vector containing the values of the outcome variable.
- **R**: a vector containing the values of the running variable.
- **cutoff**: the RD cutoff (default is 0).
- **wl**: the left limit of the window. The default takes the minimum of the running variable.
the right limit of the window. The default takes the maximum of the running variable.

the statistic to be used in the balance tests. Allowed options are \texttt{diffmeans}
(difference in means statistic), \texttt{ksmirnov} (Kolmogorov-Smirnov statistic) and
\texttt{ranksum} (Wilcoxon-Mann-Whitney standardized statistic). Default option is
\texttt{diffmeans}. The statistic \texttt{ttest} is equivalent to \texttt{diffmeans} and included for
backward compatibility.

the order of the polynomial for outcome transformation model (default is 0).

the point at the left of the cutoff at which to evaluate the transformed outcome
is evaluated. Default is the cutoff value.

specifies the point at the right of the cutoff at which the transformed outcome is
evaluated. Default is the cutoff value.

specifies the type of kernel to use as weighting scheme. Allowed kernel types are
\texttt{uniform} (uniform kernel), \texttt{triangular} (triangular kernel) and \texttt{epan}
(Epanechnikov kernel). Default is \texttt{uniform}.

indicates that the RD design is fuzzy. \texttt{fuzzy} can be specified as the variable
containing the values of the endogenous treatment variable, or as a vector where
the first element is the vector of endogenous treatment values and the second
element is a string containing the name of the statistic to be used. Allowed
statistics are \texttt{itt} (intention-to-treat statistic) and \texttt{tsls} (2SLS statistic). Default
statistic is \texttt{ar}. The \texttt{tsls} statistic relies on large-sample approximation.

the value of the treatment effect under the null hypothesis (default is 0).

the effect size for asymptotic power calculation. Default is $0.5 \times$ standard devi-
ation of outcome variable for the control group.

the fraction of the standard deviation of the outcome variable for the control
group used as alternative hypothesis for asymptotic power calculation. Default
is 0.5.

calculates a confidence interval for the treatment effect by test inversion. \texttt{ci}
can be specified as a scalar or a vector, where the first element indicates the value
of alpha for the confidence interval (typically 0.05 or 0.01) and the remain-
ing elements, if specified, indicate the grid of treatment effects to be evaluated.
This option uses \texttt{rdsensitivity} to calculate the confidence interval. See cor-
responding help for details. Note: the default tlist can be narrow in some cases,
which may truncate the confidence interval. We recommend the user to manu-
ally set a large enough tlist.

the level for Rosenbaum’s confidence interval under arbitrary interference be-
tween units.

the probabilities of treatment for each unit when assignment mechanism is a
Bernoulli trial. This option should be specified as a vector of length equal to the
length of the outcome and running variables.

the number of replications (default is 1000).

the seed to be used for the randomization test.

suppresses the output table.
covariates
the covariates used by rdwinselect to choose the window when wl and wr are not specified. This should be a matrix of size n x k where n is the total sample size and k is the number of covariates.

obsmin
the minimum number of observations above and below the cutoff in the smallest window employed by the companion command rdwinselect. Default is 10.

wmin
the smallest window to be used (if minobs is not specified) by the companion command rdwinselect. Specifying both wmin and obsmin returns an error.

wobs
the number of observations to be added at each side of the cutoff at each step.

wstep
the increment in window length (if obsstep is not specified) by the companion command rdwinselect. Specifying both obsstep and wstep returns an error.

wasymmetric
allows for asymmetric windows around the cutoff when (wobs is specified).

wmasspoints
specifies that the running variable is discrete and each masspoint should be used as a window.

nwindows
the number of windows to be used by the companion command rdwinselect. Default is 10.

dropmissing
drop rows with missing values in covariates when calculating windows.

rdwstat
the statistic to be used by the companion command rdwinselect (see corresponding help for options). Default option is ttest.

approx
forces the companion command rdwinselect to conduct the covariate balance tests using a large-sample approximation instead of finite-sample exact randomization inference methods.

rdwreps
the number of replications to be used by the companion command rdwinselect. Default is 1000.

level
the minimum accepted value of the p-value from the covariate balance tests to be used by the companion command rdwinselect. Default is .15.

plot
draws a scatter plot of the minimum p-value from the covariate balance test against window length implemented by the companion command rdwinselect.

firststage
reports the results from the first step when using tsls.

obsstep
the minimum number of observations to be added on each side of the cutoff for the sequence of fixed-increment nested windows. Default is 2. This option is deprecated and only included for backward compatibility.

Value
sumstats
summary statistics
obs.stat
observed statistic(s)
p.value
randomization p-value(s)
asy.pvalue
asymptotic p-value(s)
window
chosen window
conf
confidence interval (only if ci option is specified)
interf.ci
confidence interval under interference (only if interfci is specified)
Author(s)
Matias Cattaneo, Princeton University. <cattaneo@princeton.edu>
Rocio Titiunik, Princeton University. <titiunik@princeton.edu>
Gonzalo Vazquez-Bare, UC Santa Barbara. <gvazquez@econ.ucsb.edu>

References

Examples

```r
# Toy dataset
X <- array(rnorm(200),dim=c(100,2))
R <- X[,1] + X[,2] + rnorm(100)
Y <- 1 + R -.5*R^2 + .3*R^3 + (R>=0) + rnorm(100)
# Randomization inference in window (-.75,.75)
tmp <- rdrandinf(Y,R,wl=-.75,wr=.75)
# Randomization inference in window (-.75,.75), all statistics
tmp <- rdrandinf(Y,R,wl=-.75,wr=.75,statistic='all')
# Randomization inference with window selection
# Note: low number of replications to speed up process.
# The user should increase the number of replications.
tmp <- rdrandinf(Y,R,statistic='all',covariates=X,wmin=.5,wstep=.125,rdwreps=500)
```

rdrbounds

Rosenbaum bounds for RD designs under local randomization

Description

rdrbounds calculates lower and upper bounds for the randomization p-value under different degrees of departure from a local randomized experiment, as suggested by Rosenbaum (2002).

Usage

```r
rdrbounds(
  Y,
  R,
  cutoff = 0,
  wlist,
  gamma,
  expgamma,
  bound = "both",
  statistic = "ranksum",
```
p = 0,
evalat = "cutoff",
kernel = "uniform",
fuzzy = NULL,
nulltau = 0,
prob,
fmpval = FALSE,
reps = 1000,
seed = 666
)

Arguments

Y a vector containing the values of the outcome variable.
R a vector containing the values of the running variable.
cutoff the RD cutoff (default is 0).
wlist the list of window lengths to be evaluated. By default the program constructs 10 windows around the cutoff, the first one including 10 treated and control observations and adding 5 observations to each group in subsequent windows.
gamma the list of values of gamma to be evaluated.
expgamma the list of values of exp(gamma) to be evaluated. Default is c(1.5,2,2.5,3).
bound specifies which bounds the command calculates. Options are upper for upper bound, lower for lower bound and both for both upper and lower bounds. Default is both.
statistic the statistic to be used in the balance tests. Allowed options are diffmeans (difference in means statistic), ksmirnov (Kolmogorov-Smirnov statistic) and ranksum (Wilcoxon-Mann-Whitney standardized statistic). Default option is diffmeans. The statistic ttest is equivalent to diffmeans and included for backward compatibility.
p the order of the polynomial for outcome adjustment model. Default is 0.
evalat specifies the point at which the adjusted variable is evaluated. Allowed options are cutoff and means. Default is cutoff.
kernel specifies the type of kernel to use as weighting scheme. Allowed kernel types are uniform (uniform kernel), triangular (triangular kernel) and epan (Epanechnikov kernel). Default is uniform.
fuzzy indicates that the RD design is fuzzy. fuzzy can be specified as a vector containing the values of the endogenous treatment variable, or as a list where the first element is the vector of endogenous treatment values and the second element is a string containing the name of the statistic to be used. Allowed statistics are ar (Anderson-Rubin statistic) and ts1s (2SLS statistic). Default statistic is ar. The ts1s statistic relies on large-sample approximation.
nulltau the value of the treatment effect under the null hypothesis. Default is 0.
prob the probabilities of treatment for each unit when assignment mechanism is a Bernoulli trial. This option should be specified as a vector of length equal to the length of the outcome and running variables.
fmpval reports the p-value under fixed margins randomization, in addition to the p-value under Bernoulli trials.

reps number of replications. Default is 1000.

seed the seed to be used for the randomization tests.

Value

- gamma list of gamma values.
- expgamma list of exp(gamma) values.
- wlist window grid.
- p.values p-values for each window (under gamma = 0).
- lower.bound list of lower bound p-values for each window and gamma pair.
- upper.bound list of upper bound p-values for each window and gamma pair.

Author(s)

Matias Cattaneo, Princeton University. <cattaneo@princeton.edu>
Rocio Titiunik, Princeton University. <titiunik@princeton.edu>
Gonzalo Vazquez-Bare, UC Santa Barbara. <gvazquez@econ.ucsb.edu>

References

Examples

```R
# Toy dataset
R <- runif(100, -1, 1)
Y <- 1 + R - .5*R^2 + .3*R^3 + (R>=0) + rnorm(100)
# Rosenbaum bounds
# Note: low number of replications and windows to speed up process.
# The user should increase these values.
rdrbounds(Y, R, expgamma=c(1.5, 2), wlist=c(.3), reps=100)
```
Description

drsensitivity analyze the sensitivity of randomization p-values and confidence intervals to different window lengths.

Usage

drsensitivity(
 Y,
 R,
 cutoff = 0,
 wlist,
 wlist_left,
 tlist,
 statistic = "diffmeans",
 p = 0,
 evalat = "cutoff",
 kernel = "uniform",
 fuzzy = NULL,
 ci = NULL,
 ci_alpha = 0.05,
 reps = 1000,
 seed = 666,
 nodraw = FALSE,
 quietly = FALSE
)

Arguments

Y a vector containing the values of the outcome variable.
R a vector containing the values of the running variable.
cutoff the RD cutoff (default is 0).
wlist the list of windows to the right of the cutoff. By default the program constructs 10 windows around the cutoff with 5 observations each.
wlist_left the list of windows to the left of the cutoff. If not specified, the windows are constructed symmetrically around the cutoff based on the values in wlist.
tlist the list of values of the treatment effect under the null to be evaluated. By default the program employs ten evenly spaced points within the asymptotic confidence interval for a constant treatment effect in the smallest window to be used.
statistic the statistic to be used in the balance tests. Allowed options are diffmeans (difference in means statistic), ksmirnov (Kolmogorov-Smirnov statistic) and ranksum (Wilcoxon-Mann-Whitney standardized statistic). Default option is
diffmeans. The statistic ttest is equivalent to diffmeans and included for backward compatibility.

p the order of the polynomial for outcome adjustment model. Default is 0.

evalat specifies the point at which the adjusted variable is evaluated. Allowed options are cutoff and means. Default is cutoff.

kernel specifies the type of kernel to use as weighting scheme. Allowed kernel types are uniform (uniform kernel), triangular (triangular kernel) and epan (Epanechnikov kernel). Default is uniform.

fuzzy indicates that the RD design is fuzzy. fuzzy can be specified as a vector containing the values of the endogenous treatment variable, or as a list where the first element is the vector of endogenous treatment values and the second element is a string containing the name of the statistic to be used. Allowed statistics are ar (Anderson-Rubin statistic) and tsls (2SLS statistic). Default statistic is ar. The tsls statistic relies on large-sample approximation.

ci returns the confidence interval corresponding to the indicated window length. ci has to be a two-dimensional vector indicating the left and right limits of the window. Default alpha is .05 (95% level CI).

ci_alpha Specifies value of alpha for the confidence interval. Default alpha is .05 (95% level CI).

reps number of replications. Default is 1000.

seed the seed to be used for the randomization tests.

nodraw suppresses contour plot.

quietly suppresses the output table.

Value

tlist treatment effects grid

wlist window grid

results table with corresponding p-values for each window and treatment effect pair.

ci confidence interval (if ci is specified).

Author(s)

Matias Cattaneo, Princeton University. <cattaneo@princeton.edu>

Rocio Titiunik, Princeton University. <titiunik@princeton.edu>

Gonzalo Vazquez-Bare, UC Santa Barbara. <gvazquez@econ.ucsb.edu>

References

Examples

Toy dataset
R <- runif(100,-1,1)
Y <- 1 + R -.5*R^2 + .3*R^3 + (R>=0) + rnorm(100)
Sensitivity analysis
Note: low number of replications to speed up process.
The user should increase the number of replications.
tmp <- rdsensitivity(Y,R,wlist=seq(.75,2,by=.25),tlist=seq(0,5,by=1),reps=500)

rdwinselect Window selection for RD designs under local randomization

Description

rdwinselect implements the window-selection procedure based on balance tests for RD designs under local randomization. Specifically, it constructs a sequence of nested windows around the RD cutoff and reports binomial tests for the running variable runvar and covariate balance tests for covariates covariates (if specified). The recommended window is the largest window around the cutoff such that the minimum p-value of the balance test is larger than a prespecified level for all nested (smaller) windows. By default, the p-values are calculated using randomization inference methods.

Usage

rdwinselect(
 R,
 X,
 cutoff = 0,
 obsmin = NULL,
 wmin = NULL,
 wobs = NULL,
 wstep = NULL,
 wasymmetric = FALSE,
 wmasspoints = FALSE,
 dropmissing = FALSE,
 nwindows = 10,
 statistic = "diffmeans",
 p = 0,
 evalat = "cutoff",
 kernel = "uniform",
 approx = FALSE,
 level = 0.15,
 reps = 1000,
 seed = 666,
 plot = FALSE,
quietly = FALSE,
obsstep = NULL
)

Arguments

R
a vector containing the values of the running variable.

X
the matrix of covariates to be used in the balancing tests. The matrix is optional but the recommended window is only provided when at least one covariate is specified. This should be a matrix of size n x k where n is the total sample size and k is the number of covariates.

cutoff
the RD cutoff (default is 0).

obsmin
the minimum number of observations above and below the cutoff in the smallest window. Default is 10.

wmin
the smallest window to be used.

wobs
the number of observations to be added at each side of the cutoff at each step. Default is 5.

wstep
the increment in window length.

wasymmetric
allows for asymmetric windows around the cutoff when (wobs is specified).

wmasspoints
specifies that the running variable is discrete and each masspoint should be used as a window.

dropmissing
drop rows with missing values in covariates when calculating windows.

nwindows
the number of windows to be used. Default is 10.

statistic
the statistic to be used in the balance tests. Allowed options are diffmeans (difference in means statistic), ksmirnov (Kolmogorov-Smirnov statistic), ranksum (Wilcoxon-Mann-Whitney standardized statistic) and hotelling (Hotelling’s T-squared statistic). Default option is diffmeans. The statistic ttest is equivalent to diffmeans and included for backward compatibility.

p
the order of the polynomial for outcome adjustment model (for covariates). Default is 0.

evalat
specifies the point at which the adjusted variable is evaluated. Allowed options are cutoff and means. Default is cutoff.

kernel
specifies the type of kernel to use as weighting scheme. Allowed kernel types are uniform (uniform kernel), triangular (triangular kernel) and epan (Epanechnikov kernel). Default is uniform.

approx
forces the command to conduct the covariate balance tests using a large-sample approximation instead of finite-sample exact randomization inference methods.

level
the minimum accepted value of the p-value from the covariate balance tests. Default is .15.

reps
number of replications. Default is 1000.

seed
the seed to be used for the randomization tests.

plot
draws a scatter plot of the minimum p-value from the covariate balance test against window length.
quietly: suppress output

obsstep: the minimum number of observations to be added on each side of the cutoff for the sequence of fixed-increment nested windows. This option is deprecated and only included for backward compatibility.

Value

window: recommended window (NA is covariates are not specified)

wlist: list of window lengths

results: table including window lengths, minimum p-value in each window, corresponding number of the variable with minimum p-value (i.e. column of covariate matrix), Binomial test p-value and sample sizes to the left and right of the cutoff in each window.

summary: summary statistics.

Author(s)

Matias Cattaneo, Princeton University. <cattaneo@princeton.edu>

Rocio Titiunik, Princeton University. <titiunik@princeton.edu>

Gonzalo Vazquez-Bare, UC Santa Barbara. <gvazquez@econ.ucsb.edu>

References

Examples

Toy dataset
X <- array(rnorm(200),dim=c(100,2))
R <- X[,1] + X[,2] + rnorm(100)
Window selection adding 5 observations at each step
Note: low number of replications to speed up process.
tmp <- rdwinselect(R,X,obsmin=10,wobs=5,reps=500)
Window selection setting initial window and step
The user should increase the number of replications.
tmp <- rdwinselect(R,X,wmin=.5,wstep=.125,reps=500)
Window selection with approximate (large sample) inference and p-value plot
tmp <- rdwinselect(R,X,wmin=.5,wstep=.125,approx=TRUE,nwin=80,quietly=TRUE,plot=TRUE)
Index

_PACKAGE (rdlocrand-package), 2
rdlocrand-package, 2
rdlocrand_package (rdlocrand-package), 2
rdrandinf, 2, 2
rdrbounds, 2, 6
rdsensitivity, 2, 9
rdwinselect, 2, 11