Package ‘rdlocrand’

March 15, 2018

Title Local Randomization Methods for RD Designs
Version 0.3
Author Matias D. Cattaneo, Rocio Titiunik, Gonzalo Vazquez-Bare
Maintainer Gonzalo Vazquez-Bare <gvazquez@umich.edu>
Description The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. Under the local randomization approach, RD designs can be interpreted as randomized experiments inside a window around the cut-off. This package provides tools to perform randomization inference for RD designs under local randomization: rdrandinf() to perform hypothesis testing using randomization inference, rdwinselect() to select a window around the cutoff in which randomization is likely to hold, rdsensitivity() to assess the sensitivity of the results to different window lengths and null hypotheses and rdrbounds() to construct Rosenbaum bounds for sensitivity to unobserved confounders.

Imports AER, sandwich
Depends R (>= 3.1)
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2018-03-15 21:50:01 UTC

R topics documented:

 rdlocrand-package .. 2
 rdrandinf ... 2
 rdrbounds ... 6
 rdsensitivity .. 8
 rdwinselect ... 10

Index 13
rdlocrand-package

rdlocrand: Local Randomization Methods for RD Designs

Description

The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. Under the local randomization approach, RD designs can be interpreted as randomized experiments inside a window around the cutoff. The rdlocrand package provides tools to analyze RD designs under local randomization: **rdrandinf** to perform hypothesis testing using randomization inference, **rdwinselect** to select a window around the cutoff in which randomization is likely to hold, **rdsensitivity** to assess the sensitivity of the results to different window lengths and null hypotheses and **rdrbounds** to construct Rosenbaum bounds for sensitivity to unobserved confounders. For more details, and related Stata and R packages useful for analysis of RD designs, visit https://sites.google.com/site/rdpackages.

Author(s)

Matias Cattaneo, University of Michigan. <cattaneo@umich.edu>
Rocio Titiunik, University of Michigan. <titiunik@umich.edu>
Gonzalo Vazquez-Bare, University of Michigan. <gvazquez@umich.edu>

References

rdrandinf

Randomization Inference for RD Designs under Local Randomization

Description

rdrandinf implements randomization inference and related methods for RD designs, using observations in a specified or data-driven selected window around the cutoff where local randomization is assumed to hold.
Usage

rdrandinf(Y, R, cutoff = 0, wl = NULL, wr = NULL, reps = 1000,
 statistic = "diffmeans", p = 0, nulltau = 0, evall = NULL,
 evalr = NULL, kernel = "uniform", ci, interfci = NULL, seed = NULL,
 fuzzy = NULL, d = NULL, dscale = NULL, bernoulli = NULL,
 quietly = FALSE, covariates, obsmin = NULL, wmin = NULL, wobs = NULL,
 wstep = NULL, nwindows = 10, rdwstat = "diffmeans", approx = FALSE,
 rdwreps = 1000, level = 0.15, plot = FALSE, obsstep = NULL)

Arguments

Y
 a vector containing the values of the outcome variable.
R
 a vector containing the values of the running variable.
cutoff
 the RD cutoff (default is 0).
wL
 the left limit of the window. The default takes the minimum of the running
 variable.
wr
 the right limit of the window. The default takes the maximum of the running
 variable.
reps
 the number of replications (default is 1000).
statistic
 the statistic to be used in the balance tests. Allowed options are diffmeans
 (difference in means statistic), ksmirnov (Kolmogorov-Smirnov statistic) and
 ranksum (Wilcoxon-Mann-Whitney standardized statistic). Default option is
 diffmeans. The statistic ttest is equivalent to diffmeans and included for
 backward compatibility.
p
 the order of the polynomial for outcome transformation model (default is 0).
nulltau
 the value of the treatment effect under the null hypothesis (default is 0).
evall
 the point at the left of the cutoff at which to evaluate the transformed outcome
 is evaluated. Default is the cutoff value.

 evalr
 specifies the point at the right of the cutoff at which the transformed outcome is
 evaluated. Default is the cutoff value.

kernel
 specifies the type of kernel to use as weighting scheme. Allowed kernel types are
 uniform (uniform kernel), triangular (triangular kernel) and epan (Epanechnikov kernel).
 Default is uniform.

 ci
 calculates a confidence interval for the treatment effect by test inversion. ci can
 be specified as a scalar or a vector, where the first element indicates the level
 of the confidence interval and the remaining elements, if specified, indicate the
 grid of treatment effects to be evaluated. This option uses rdsensitivity to
 calculate the confidence interval. See corresponding help for details.

interfci
 the level for Rosenbaum’s confidence interval under arbitrary interference be-
 tween units.
seed
 the seed to be used for the randomization test.
fuzzy
 indicates that the RD design is fuzzy. fuzzy can be specified as a vector contain-
 ing the values of the endogenous treatment variable, or as a list where the first
element is the vector of endogenous treatment values and the second element is a string containing the name of the statistic to be used. Allowed statistics are ar (Anderson-Rubin statistic) and tsls (2SLS statistic). Default statistic is ar. The tsls statistic relies on large-sample approximation.

d
the effect size for asymptotic power calculation. Default is 0.5 * standard deviation of outcome variable for the control group.

dscale
the fraction of the standard deviation of the outcome variable for the control group used as alternative hypothesis for asymptotic power calculation. Default is 0.5.

bernoulli
the probabilities of treatment for each unit when assignment mechanism is a Bernoulli trial. This option should be specified as a vector of length equal to the length of the outcome and running variables.

quietly
suppresses the output table.

covariates
the covariates used by rdwinselect to choose the window when wl and wr are not specified. This should be a matrix of size n x k where n is the total sample size and k is the number of covariates.

obsmin
the minimum number of observations above and below the cutoff in the smallest window employed by the companion command rdwinselect. Default is 10.

wmin
the smallest window to be used (if minobs is not specified) by the companion command rdwinselect. Specifying both wmin and obsmin returns an error.

wobs
the number of observations to be added at each side of the cutoff at each step.

wstep
the increment in window length (if obsstep is not specified) by the companion command rdwinselect. Specifying both obsstep and wstep returns an error.

nwindows
the number of windows to be used by the companion command rdwinselect. Default is 10.

rdwstat
the statistic to be used by the companion command rdwinselect (see corresponding help for options). Default option is ttest.

approx
forces the companion command rdwinselect to conduct the covariate balance tests using a large-sample approximation instead of finite-sample exact randomization inference methods.

rdwreps
the number of replications to be used by the companion command rdwinselect. Default is 1000.

level
the minimum accepted value of the p-value from the covariate balance tests to be used by the companion command rdwinselect. Default is .15.

plot
draws a scatter plot of the minimum p-value from the covariate balance test against window length implemented by the companion command rdwinselect.

obsstep
the minimum number of observations to be added on each side of the cutoff for the sequence of fixed-increment nested windows. Default is 2. This option is deprecated and only included for backward compatibility.

Value

sumstats summary statistics
obs.stat observed statistic(s)
rdrandinf

p.value randomization p-value(s)
asy.pvalue asymptotic p-value(s)
window chosen window
ci confidence interval (only if ci option is specified)
interf.ci confidence interval under interference (only if interf.ci is specified)

Author(s)
Matias Cattaneo, University of Michigan. <cattaneo@umich.edu>
Rocio Titiunik, University of Michigan. <titiunik@umich.edu>
Gonzalo Vazquez-Bare, University of Michigan. <gvazquez@umich.edu>

References

Examples
Toy dataset
X <- array(rnorm(200),dim=c(100,2))
R <- X[1,] + X[2,] + rnorm(100)
Y <- 1 + R -.5*R^2 + .3*R^3 + (R>=0) + rnorm(100)
Randomization inference in window (-.75,.75)
tmp <- rdrandinf(Y,R,wl= -.75,wr=.75)
Randomization inference in window (-.75,.75), all statistics
tmp <- rdrandinf(Y,R,wl= -.75,wr=.75,statistic='all')
Randomization inference with window selection
Note: low number of replications to speed up process.
The user should increase the number of replications.
tmp <- rdrandinf(Y,R,statistic='all',covariates=X,wmin=.5,wstep=.125,rdwreps=500)
rdrbounds

Rosenbaum bounds for RD designs under local randomization

Description

rdrbounds calculates lower and upper bounds for the randomization p-value under different degrees of departure from a local randomized experiment, as suggested by Rosenbaum (2002).

Usage

rdrbounds(Y, R, cutoff = 0, prob = NULL, reps = 1000, bound = "both", wlist, gamma, expgamma, fmpval = FALSE, statistic = "ranksum", p = 0, evalat = "cutoff", kernel = "uniform", nulltau = 0, seed = NULL, fuzzy = NULL)

Arguments

Y a vector containing the values of the outcome variable.
R a vector containing the values of the running variable.
cutoff the RD cutoff (default is 0).
prob the probabilities of treatment for each unit when assignment mechanism is a Bernoulli trial. This option should be specified as a vector of length equal to the length of the outcome and running variables.
reps number of replications. Default is 1000.
bound specifies which bounds the command calculates. Options are upper for upper bound, lower for lower bound and both for both upper and lower bounds. Default is both.
wlist the list of window lengths to be evaluated. By default the program constructs 10 windows around the cutoff, the first one including 10 treated and control observations and adding 5 observations to each group in subsequent windows.
gamma the list of values of gamma to be evaluated.
expgamma the list of values of exp(gamma) to be evaluated. Default is c(1, 1.5, 2, 2.5, 3).
fmpval reports the p-value under fixed margins randomization, in addition to the p-value under Bernoulli trials.
statistic the statistic to be used in the balance tests. Allowed options are diffmeans (difference in means statistic), ksmirnov (Kolmogorov-Smirnov statistic) and ranksum (Wilcoxon-Mann-Whitney standardized statistic). Default option is diffmeans. The statistic ttest is equivalent to diffmeans and included for backward compatibility.
p the order of the polynomial for outcome adjustment model. Default is 0.
evalat specifies the point at which the adjusted variable is evaluated. Allowed options are cutoff and means. Default is cutoff.
kernel specifies the type of kernel to use as weighting scheme. Allowed kernel types are uniform (uniform kernel), triangular (triangular kernel) and epan (Epanechnikov kernel). Default is uniform.

nulltau the value of the treatment effect under the null hypothesis. Default is 0.

seed the seed to be used for the randomization tests.

fuzzy indicates that the RD design is fuzzy. fuzzy can be specified as a vector containing the values of the endogenous treatment variable, or as a list where the first element is the vector of endogenous treatment values and the second element is a string containing the name of the statistic to be used. Allowed statistics are ar (Anderson-Rubin statistic) and tsls (2SLS statistic). Default statistic is ar. The tsls statistic relies on large-sample approximation.

Value

gamma list of gamma values.
expgamma list of exp(gamma) values.
wlist window grid.
p.values p-values for each window (under gamma = 0).
lower.bound list of lower bound p-values for each window and gamma pair.
upper.bound list of upper bound p-values for each window and gamma pair.

Author(s)

Matias Cattaneo, University of Michigan. <cattaneo@umich.edu>
Rocio Titiunik, University of Michigan. <titiunik@umich.edu>
Gonzalo Vazquez-Bare, University of Michigan. <gvazquez@umich.edu>

References

Examples

Toy dataset
R <- runif(100,-1,1)
Y <- 1 + R -.5*R^2 + .3*R^3 + (R>=0) + rnorm(100)
Rosenbaum bounds
Note: low number of replications and windows to speed up process.
rdsensitivity

Sensitivity analysis for RD designs under local randomization

Description

rdsensitivity analyze the sensitivity of randomization p-values and confidence intervals to different window lengths.

Usage

```r
rdsensitivity(Y, R, cutoff = 0, wlist, tlist, ci, statistic = "diffmeans", nodraw = FALSE, p = 0, evalat = "cutoff", kernel = "uniform", reps = 1000, seed = NULL, fuzzy = NULL, quietly = FALSE)
```

Arguments

- **Y**: a vector containing the values of the outcome variable.
- **R**: a vector containing the values of the running variable.
- **cutoff**: the RD cutoff (default is 0).
- **wlist**: the list of window lengths to be evaluated. By default the program constructs 10 windows around the cutoff, the first one including 10 treated and control observations and adding 5 observations to each group in subsequent windows.
- **tlist**: the list of values of the treatment effect under the null to be evaluated. By default the program employs ten evenly spaced points within the asymptotic confidence interval for a constant treatment effect in the smallest window to be used.
- **ci**: returns the confidence interval corresponding to the indicated window length. ci has to be a scalar or a two-dimensional vector, where the first value needs to be one of the values in wlist. The second value, if specified, indicates the level of the confidence interval. Default level is .05 (95% level CI).
- **statistic**: the statistic to be used in the balance tests. Allowed options are `diffmeans` (difference in means statistic), `ksmirnov` (Kolmogorov-Smirnov statistic) and `ranksum` (Wilcoxon-Mann-Whitney standardized statistic). Default option is `diffmeans`. The statistic `ttest` is equivalent to `diffmeans` and included for backward compatibility.
- **nodraw**: suppresses contour plot.
- **p**: the order of the polynomial for outcome adjustment model. Default is 0.
- **evalat**: specifies the point at which the adjusted variable is evaluated. Allowed options are `cutoff` and `means`. Default is `cutoff`.
kernel specifies the type of kernel to use as weighting scheme. Allowed kernel types are `uniform` (uniform kernel), `triangular` (triangular kernel) and `epan` (Epanechnikov kernel). Default is `uniform`.

reps number of replications. Default is 1000.

seed the seed to be used for the randomization tests.

fuzzy indicates that the RD design is fuzzy. `fuzzy` can be specified as a vector containing the values of the endogenous treatment variable, or as a list where the first element is the vector of endogenous treatment values and the second element is a string containing the name of the statistic to be used. Allowed statistics are `ar` (Anderson-Rubin statistic) and `tsls` (2SLS statistic). Default statistic is `ar`. The `tsls` statistic relies on large-sample approximation.

quietly suppresses the output table.

Value

- **tlist** treatment effects grid
- **wlist** window grid
- **results** table with corresponding p-values for each window and treatment effect pair.
- **ci** confidence interval (if `ci` is specified).

Author(s)

- Matias Cattaneo, University of Michigan. <cattaneo@umich.edu>
- Rocio Titiunik, University of Michigan. <titiunik@umich.edu>
- Gonzalo Vazquez-Bare, University of Michigan. <gvazquez@umich.edu>

References

Examples

```r
# Toy dataset
tmp <- rdsensitivity(Y,R,wlist=seq(.75,2,by=.25),tlist=seq(0,5,by=1),reps=500)
```

```r
R <- runif(100,-1,1)
Y <- 1 + R -.5*R^2 + .3*R^3 + (R>=0) + rnorm(100)
```
Description

rdwinselect implements the window-selection procedure based on balance tests for RD designs under local randomization. Specifically, it constructs a sequence of nested windows around the RD cutoff and reports binomial tests for the running variable runvar and covariate balance tests for covariates covariates (if specified). The recommended window is the largest window around the cutoff such that the minimum p-value of the balance test is larger than a prespecified level for all nested (smaller) windows. By default, the p-values are calculated using randomization inference methods.

Usage

```
rdwinselect(R, X, cutoff = 0, obsmin = NULL, wmin = NULL, wobs = NULL,
            wstep = NULL, nwindows = 10, statistic = "diffmeans", approx = FALSE,
            p = 0, evalat = "cutoff", kernel = "uniform", reps = 1000,
            seed = NULL, level = NULL, plot = FALSE, quietly = FALSE,
            obsstep = NULL)
```

Arguments

- **R**: a vector containing the values of the running variable.
- **X**: the matrix of covariates to be used in the balancing tests. The matrix is optional but the recommended window is only provided when at least one covariate is specified. This should be a matrix of size n x k where n is the total sample size and k is the number of covariates.
- **cutoff**: the RD cutoff (default is 0).
- **obsmin**: the minimum number of observations above and below the cutoff in the smallest window. Default is 10.
- **wmin**: the smallest window to be used.
- **wobs**: the number of observations to be added at each side of the cutoff at each step.
- **wstep**: the increment in window length.
- **nwindows**: the number of windows to be used. Default is 10.
- **statistic**: the statistic to be used in the balance tests. Allowed options are \texttt{diffmeans} (difference in means statistic), \texttt{ksmirnov} (Kolmogorov-Smirnov statistic), \texttt{ranksum} (Wilcoxon-Mann-Whitney standardized statistic) and \texttt{hotelling} (Hotelling’s T-squared statistic). Default option is \texttt{diffmeans}. The statistic \texttt{ttest} is equivalent to \texttt{diffmeans} and included for backward compatibility.
- **approx**: forces the command to conduct the covariate balance tests using a large-sample approximation instead of finite-sample exact randomization inference methods.
- **p**: the order of the polynomial for outcome adjustment model (for covariates). Default is 0.
evalat specifies the point at which the adjusted variable is evaluated. Allowed options are cutoff and means. Default is cutoff.

kernel specifies the type of kernel to use as weighting scheme. Allowed kernel types are uniform (uniform kernel), triangular (triangular kernel) and epan (Epanechnikov kernel). Default is uniform.

reps number of replications. Default is 1000.

seed the seed to be used for the randomization tests.

level the minimum accepted value of the p-value from the covariate balance tests. Default is .15.

plot draws a scatter plot of the minimum p-value from the covariate balance test against window length.

quietly suppress output

obsstep the minimum number of observations to be added on each side of the cutoff for the sequence of fixed-increment nested windows. Default is 2. This option is deprecated and only included for backward compatibility.

Value

window recommended window (NA is covariates are not specified)

results table including window lengths, minimum p-value in each window, corresponding number of the variable with minimum p-value (i.e. column of covariate matrix), Binomial test p-value and sample sizes to the left and right of the cutoff in each window.

summary summary statistics.

Author(s)

Matias Cattaneo, University of Michigan. <cattaneo@umich.edu>

Rocio Titiunik, University of Michigan. <titiunik@umich.edu>

Gonzalo Vazquez-Bare, University of Michigan. <gvazquez@umich.edu>

References

Examples

Toy dataset
X <- array(rnorm(200),dim=c(100,2))
R <- X[1,] + X[2,] + rnorm(100)
Window selection adding 5 observations at each step
Note: low number of replications to speed up process.
tmp <- rdwinselect(R,X,obsmin=10,wobs=5,reps=500)
Window selection setting initial window and step
The user should increase the number of replications.
tmp <- rdwinselect(R,X,wmin=.5,wstep=.125,reps=500)
Window selection with approximate (large sample) inference and p-value plot
tmp <- rdwinselect(R,X,wmin=.5,wstep=.125,approx=TRUE,nwin=80,quietly=TRUE,plot=TRUE)
Index

_PACKAGE (rdlocrand-package), 2
rdlocrand-package, 2
rdlocrand_package (rdlocrand-package), 2
rdrandinf, 2, 2
rdrbounds, 2, 6
rdsensitivity, 2, 8
rdwinselect, 2, 10