
Package ‘readr’
May 16, 2017

Version 1.1.1

Title Read Rectangular Text Data

Description The goal of 'readr' is to provide a fast and friendly way to read
rectangular data (like 'csv', 'tsv', and 'fwf'). It is designed to flexibly
parse many types of data found in the wild, while still cleanly failing when
data unexpectedly changes.

Encoding UTF-8

Depends R (>= 3.0.2)

LinkingTo Rcpp, BH

Imports Rcpp (>= 0.12.0.5), tibble, hms, R6

Suggests curl, testthat, knitr, rmarkdown, stringi, covr

License GPL (>= 2) | file LICENSE

BugReports https://github.com/tidyverse/readr/issues

URL http://readr.tidyverse.org, https://github.com/tidyverse/readr

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation yes

Author Hadley Wickham [aut],
Jim Hester [aut, cre],
Romain Francois [aut],
R Core Team [ctb] (Date time code adapted from R),
RStudio [cph, fnd],
Jukka Jylänki [ctb, cph] (grisu3 implementation),
Mikkel Jørgensen [ctb, cph] (grisu3 implementation)

Maintainer Jim Hester <james.hester@rstudio.com>

Repository CRAN

Date/Publication 2017-05-16 19:03:57 UTC

1

https://github.com/tidyverse/readr/issues
http://readr.tidyverse.org
https://github.com/tidyverse/readr

2 cols

R topics documented:
cols . 2
cols_condense . 3
col_skip . 4
count_fields . 4
date_names . 5
format_delim . 5
guess_encoding . 6
locale . 7
parse_atomic . 8
parse_datetime . 9
parse_factor . 12
parse_guess . 13
parse_number . 14
problems . 15
read_delim . 16
read_file . 18
read_fwf . 20
read_lines . 22
read_log . 23
read_table . 25
spec_delim . 27
type_convert . 29
write_delim . 30

Index 33

cols Create column specification

Description

Create column specification

Usage

cols(..., .default = col_guess())

cols_only(...)

Arguments

... Either column objects created by col_*(), or their abbreviated character names.
If you’re only overriding a few columns, it’s best to refer to columns by name.
If not named, the column types must match the column names exactly.

.default Any named columns not explicitly overridden in ... will be read with this
column type.

cols_condense 3

Examples

cols(a = col_integer())
cols_only(a = col_integer())

You can also use the standard abreviations
cols(a = "i")
cols(a = "i", b = "d", c = "_")

cols_condense Examine the column specifications for a data frame

Description

cols_condense() takes a spec object and condenses its definition by setting the default column
type to the most frequent type and only listing columns with a different type.

spec() extracts the full column specification from a tibble created by readr.

Usage

cols_condense(x)

spec(x)

Arguments

x The data frame object to extract from

Value

A col_spec object.

Examples

df <- read_csv(readr_example("mtcars.csv"))
s <- spec(df)
s

cols_condense(s)

4 count_fields

col_skip Skip a column

Description

Use this function to ignore a column when reading in a file. To skip all columns not otherwise
specified, use cols_only().

Usage

col_skip()

See Also

Other parsers: parse_datetime, parse_factor, parse_guess, parse_logical, parse_number

count_fields Count the number of fields in each line of a file

Description

This is useful for diagnosing problems with functions that fail to parse correctly.

Usage

count_fields(file, tokenizer, skip = 0, n_max = -1L)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. It must contain at least one
new line to be recognised as data (instead of a path).

tokenizer A tokenizer that specifies how to break the file up into fields, e.g., tokenizer_csv(),
tokenizer_fwf()

skip Number of lines to skip before reading data.

n_max Optionally, maximum number of rows to count fields for.

Examples

count_fields(readr_example("mtcars.csv"), tokenizer_csv())

date_names 5

date_names Create or retrieve date names

Description

When parsing dates, you often need to know how weekdays of the week and months are represented
as text. This pair of functions allows you to either create your own, or retrieve from a standard list.
The standard list is derived from ICU (http://site.icu-project.org) via the stringi package.

Usage

date_names(mon, mon_ab = mon, day, day_ab = day, am_pm = c("AM", "PM"))

date_names_lang(language)

date_names_langs()

Arguments

mon, mon_ab Full and abbreviated month names.

day, day_ab Full and abbreviated week day names. Starts with Sunday.

am_pm Names used for AM and PM.

language A BCP 47 locale, made up of a languge and a region, e.g. "en_US" for American
English. See date_names_locales() for a complete list of available locales.

Examples

date_names_lang("en")
date_names_lang("ko")
date_names_lang("fr")

format_delim Convert a data frame to a delimited string

Description

These functions are equivalent to write_csv() etc., but instead of writing to disk, they return a
string.

Usage

format_delim(x, delim, na = "NA", append = FALSE, col_names = !append)

format_csv(x, na = "NA", append = FALSE, col_names = !append)

format_tsv(x, na = "NA", append = FALSE, col_names = !append)

http://site.icu-project.org

6 guess_encoding

Arguments

x A data frame to write to disk

delim Delimiter used to separate values. Defaults to " ". Must be a single character.

na String used for missing values. Defaults to NA. Missing values will never be
quoted; strings with the same value as na will always be quoted.

append If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if file does not exist a new file is created.

col_names Write columns names at the top of the file?

Value

A string.

Output

Factors are coerced to character. Doubles are formatted using the grisu3 algorithm. POSIXct’s are
formatted as ISO8601.

All columns are encoded as UTF-8. write_excel_csv() also includes a UTF-8 Byte order mark
which indicates to Excel the csv is UTF-8 encoded.

Values are only quoted if needed: if they contain a comma, quote or newline.

References

Florian Loitsch, Printing Floating-Point Numbers Quickly and Accurately with Integers, PLDI ’10,
http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf

guess_encoding Guess encoding of file

Description

Uses stringi::stri_enc_detect(): see the documentation there for caveats.

Usage

guess_encoding(file, n_max = 10000, threshold = 0.2)

Arguments

file A character string specifying an input as specified in datasource(), a raw vec-
tor, or a list of raw vectors.

n_max Number of lines to read. If n_max is -1, all lines in file will be read.

threshold Only report guesses above this threshold of certainty.

https://en.wikipedia.org/wiki/Byte_order_mark
http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf

locale 7

Value

A tibble

Examples

guess_encoding(readr_example("mtcars.csv"))
guess_encoding(read_lines_raw(readr_example("mtcars.csv")))
guess_encoding(read_file_raw(readr_example("mtcars.csv")))

guess_encoding("a\n\u00b5\u00b5")

locale Create locales

Description

A locale object tries to capture all the defaults that can vary between countries. You set the locale
in once, and the details are automatically passed on down to the columns parsers. The defaults have
been chosen to match R (i.e. US English) as closely as possible. See vignette("locales") for
more details.

Usage

locale(date_names = "en", date_format = "%AD", time_format = "%AT",
decimal_mark = ".", grouping_mark = ",", tz = "UTC",
encoding = "UTF-8", asciify = FALSE)

default_locale()

Arguments

date_names Character representations of day and month names. Either the language code as
string (passed on to date_names_lang()) or an object created by date_names().

date_format, time_format

Default date and time formats.
decimal_mark, grouping_mark

Symbols used to indicate the decimal place, and to chunk larger numbers. Dec-
imal mark can only be , or ..

tz Default tz. This is used both for input (if the time zone isn’t present in indi-
vidual strings), and for output (to control the default display). The default is
to use "UTC", a time zone that does not use daylight savings time (DST) and
hence is typically most useful for data. The absence of time zones makes it
approximately 50x faster to generate UTC times than any other time zone.
Use "" to use the system default time zone, but beware that this will not be
reproducible across systems.
For a complete list of possible time zones, see OlsonNames(). Americans, note
that "EST" is a Canadian time zone that does not have DST. It is not Eastern
Standard Time. It’s better to use "US/Eastern", "US/Central" etc.

8 parse_atomic

encoding Default encoding. This only affects how the file is read - readr always converts
the output to UTF-8.

asciify Should diacritics be stripped from date names and converted to ASCII? This is
useful if you’re dealing with ASCII data where the correct spellings have been
lost. Requires the stringi package.

Examples

locale()
locale("fr")

South American locale
locale("es", decimal_mark = ",")

parse_atomic Parse logicals, integers, and reals

Description

Use parse_*() if you have a character vector you want to parse. Use col_*() in conjunction with
a read_*() function to parse the values as they’re read in.

Usage

parse_logical(x, na = c("", "NA"), locale = default_locale())

parse_integer(x, na = c("", "NA"), locale = default_locale())

parse_double(x, na = c("", "NA"), locale = default_locale())

parse_character(x, na = c("", "NA"), locale = default_locale())

col_logical()

col_integer()

col_double()

col_character()

Arguments

x Character vector of values to parse.
na Character vector of strings to use for missing values. Set this option to character()

to indicate no missing values.
locale The locale controls defaults that vary from place to place. The default locale is

US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

parse_datetime 9

See Also

Other parsers: col_skip, parse_datetime, parse_factor, parse_guess, parse_number

Examples

parse_integer(c("1", "2", "3"))
parse_double(c("1", "2", "3.123"))
parse_number("$1,123,456.00")

Use locale to override default decimal and grouping marks
es_MX <- locale("es", decimal_mark = ",")
parse_number("$1.123.456,00", locale = es_MX)

Invalid values are replaced with missing values with a warning.
x <- c("1", "2", "3", "-")
parse_double(x)
Or flag values as missing
parse_double(x, na = "-")

parse_datetime Parse date/times

Description

Parse date/times

Usage

parse_datetime(x, format = "", na = c("", "NA"),
locale = default_locale())

parse_date(x, format = "", na = c("", "NA"), locale = default_locale())

parse_time(x, format = "", na = c("", "NA"), locale = default_locale())

col_datetime(format = "")

col_date(format = "")

col_time(format = "")

Arguments

x A character vector of dates to parse.

format A format specification, as described below. If set to "", date times are parsed
as ISO8601, dates and times used the date and time formats specified in the
locale().
Unlike strptime(), the format specification must match the complete string.

10 parse_datetime

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

Value

A POSIXct() vector with tzone attribute set to tz. Elements that could not be parsed (or did not
generate valid dates) will bes set to NA, and a warning message will inform you of the total number
of failures.

Format specification

readr uses a format specification similar to strptime(). There are three types of element:

1. Date components are specified with "%" followed by a letter. For example "%Y" matches a
4 digit year, "%m", matches a 2 digit month and "%d" matches a 2 digit day. Month and day
default to 1, (i.e. Jan 1st) if not present, for example if only a year is given.

2. Whitespace is any sequence of zero or more whitespace characters.

3. Any other character is matched exactly.

parse_datetime() recognises the following format specifications:

• Year: "%Y" (4 digits). "%y" (2 digits); 00-69 -> 2000-2069, 70-99 -> 1970-1999.

• Month: "%m" (2 digits), "%b" (abbreviated name in current locale), "%B" (full name in
current locale).

• Day: "%d" (2 digits), "%e" (optional leading space)

• Hour: "%H" or "%I", use I (and not H) with AM/PM.

• Minutes: "%M"

• Seconds: "%S" (integer seconds), "%OS" (partial seconds)

• Time zone: "%Z" (as name, e.g. "America/Chicago"), "%z" (as offset from UTC, e.g. "+0800")

• AM/PM indicator: "%p".

• Non-digits: "%." skips one non-digit character, "%+" skips one or more non-digit characters,
"%*" skips any number of non-digits characters.

• Automatic parsers: "%AD" parses with a flexible YMD parser, "%AT" parses with a flexible
HMS parser.

• Shortcuts: "%D" = "%m/%d/%y", "%F" = "%Y-%m-%d", "%R" = "%H:%M", "%T" =
"%H:%M:%S", "%x" = "%y/%m/%d".

parse_datetime 11

ISO8601 support

Currently, readr does not support all of ISO8601. Missing features:

• Week & weekday specifications, e.g. "2013-W05", "2013-W05-10"

• Ordinal dates, e.g. "2013-095".

• Using commas instead of a period for decimal separator

The parser is also a little laxer than ISO8601:

• Dates and times can be separated with a space, not just T.

• Mostly correct specifications like "2009-05-19 14:" and "200912-01" work.

See Also

Other parsers: col_skip, parse_factor, parse_guess, parse_logical, parse_number

Examples

Format strings --
parse_datetime("01/02/2010", "%d/%m/%Y")
parse_datetime("01/02/2010", "%m/%d/%Y")
Handle any separator
parse_datetime("01/02/2010", "%m%.%d%.%Y")

Dates look the same, but internally they use the number of days since
1970-01-01 instead of the number of seconds. This avoids a whole lot
of troubles related to time zones, so use if you can.
parse_date("01/02/2010", "%d/%m/%Y")
parse_date("01/02/2010", "%m/%d/%Y")

You can parse timezones from strings (as listed in OlsonNames())
parse_datetime("2010/01/01 12:00 US/Central", "%Y/%m/%d %H:%M %Z")
Or from offsets
parse_datetime("2010/01/01 12:00 -0600", "%Y/%m/%d %H:%M %z")

Use the locale parameter to control the default time zone
(but note UTC is considerably faster than other options)
parse_datetime("2010/01/01 12:00", "%Y/%m/%d %H:%M",

locale = locale(tz = "US/Central"))
parse_datetime("2010/01/01 12:00", "%Y/%m/%d %H:%M",

locale = locale(tz = "US/Eastern"))

Unlike strptime, the format specification must match the complete
string (ignoring leading and trailing whitespace). This avoids common
errors:
strptime("01/02/2010", "%d/%m/%y")
parse_datetime("01/02/2010", "%d/%m/%y")

Failures ---
parse_datetime("01/01/2010", "%d/%m/%Y")
parse_datetime(c("01/ab/2010", "32/01/2010"), "%d/%m/%Y")

12 parse_factor

Locales --
By default, readr expects English date/times, but that's easy to change'
parse_datetime("1 janvier 2015", "%d %B %Y", locale = locale("fr"))
parse_datetime("1 enero 2015", "%d %B %Y", locale = locale("es"))

ISO8601 --
With separators
parse_datetime("1979-10-14")
parse_datetime("1979-10-14T10")
parse_datetime("1979-10-14T10:11")
parse_datetime("1979-10-14T10:11:12")
parse_datetime("1979-10-14T10:11:12.12345")

Without separators
parse_datetime("19791014")
parse_datetime("19791014T101112")

Time zones
us_central <- locale(tz = "US/Central")
parse_datetime("1979-10-14T1010", locale = us_central)
parse_datetime("1979-10-14T1010-0500", locale = us_central)
parse_datetime("1979-10-14T1010Z", locale = us_central)
Your current time zone
parse_datetime("1979-10-14T1010", locale = locale(tz = ""))

parse_factor Parse factors

Description

parse_factor is similar to factor(), but will generate warnings if elements of x are not found in
levels.

Usage

parse_factor(x, levels, ordered = FALSE, na = c("", "NA"),
locale = default_locale(), include_na = TRUE)

col_factor(levels, ordered = FALSE, include_na = FALSE)

Arguments

x Character vector of values to parse.

levels Character vector providing set of allowed levels. if NULL, will generate levels
based on the unique values of x, ordered by order of appearance in x.

ordered Is it an ordered factor?

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

parse_guess 13

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

include_na If NA are present, include as an explicit factor to level?

See Also

Other parsers: col_skip, parse_datetime, parse_guess, parse_logical, parse_number

Examples

parse_factor(c("a", "b"), letters)

x <- c("cat", "dog", "caw")
levels <- c("cat", "dog", "cow")

Base R factor() silently converts unknown levels to NA
x1 <- factor(x, levels)

parse_factor generates a warning & problems
x2 <- parse_factor(x, levels)

Using an argument of `NULL` will generate levels based on values of `x`
x2 <- parse_factor(x, levels = NULL)

parse_guess Parse using the "best" type

Description

parse_guess() returns the parser vector; guess_parser() returns the name of the parser. These
functions use a number of heuristics to determine which type of vector is "best". Generally they try
to err of the side of safety, as it’s straightforward to override the parsing choice if needed.

Usage

parse_guess(x, na = c("", "NA"), locale = default_locale())

col_guess()

guess_parser(x, locale = default_locale())

Arguments

x Character vector of values to parse.

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

14 parse_number

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

See Also

Other parsers: col_skip, parse_datetime, parse_factor, parse_logical, parse_number

Examples

Logical vectors
parse_guess(c("FALSE", "TRUE", "F", "T"))

Integers and doubles
parse_guess(c("1","2","3"))
parse_guess(c("1.6","2.6","3.4"))

Numbers containing grouping mark
guess_parser("1,234,566")
parse_guess("1,234,566")

ISO 8601 date times
guess_parser(c("2010-10-10"))
parse_guess(c("2010-10-10"))

parse_number Parse numbers, flexibly

Description

This drops any non-numeric characters before or after the first number. The grouping mark specified
by the locale is ignored inside the number.

Usage

parse_number(x, na = c("", "NA"), locale = default_locale())

col_number()

Arguments

x Character vector of values to parse.

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

problems 15

See Also

Other parsers: col_skip, parse_datetime, parse_factor, parse_guess, parse_logical

Examples

parse_number("$1000")
parse_number("1,234,567.78")

problems Retrieve parsing problems

Description

Readr functions will only throw an error if parsing fails in an unrecoverable way. However, there
are lots of potential problems that you might want to know about - these are stored in the problems
attribute of the output, which you can easily access with this function. stop_for_problems() will
throw an error if there are any parsing problems: this is useful for automated scripts where you want
to throw an error as soon as you encounter a problem.

Usage

problems(x)

stop_for_problems(x)

Arguments

x An data frame (from read_*()) or a vector (from parse_*()).

Value

A data frame with one row for each problem and four columns:

row,col Row and column of problem

expected What readr expected to find

actual What it actually got

Examples

x <- parse_integer(c("1X", "blah", "3"))
problems(x)

y <- parse_integer(c("1", "2", "3"))
problems(y)

16 read_delim

read_delim Read a delimited file (including csv & tsv) into a tibble

Description

read_csv() and read_tsv() are special cases of the general read_delim(). They’re useful for
reading the most common types of flat file data, comma separated values and tab separated val-
ues, respectively. read_csv2() uses ; for separators, instead of ,. This is common in European
countries which use , as the decimal separator.

Usage

read_delim(file, delim, quote = "\"", escape_backslash = FALSE,
escape_double = TRUE, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
comment = "", trim_ws = FALSE, skip = 0, n_max = Inf,
guess_max = min(1000, n_max), progress = show_progress())

read_csv(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = Inf,
guess_max = min(1000, n_max), progress = show_progress())

read_csv2(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = Inf,
guess_max = min(1000, n_max), progress = show_progress())

read_tsv(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = Inf,
guess_max = min(1000, n_max), progress = show_progress())

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. It must contain at least one
new line to be recognised as data (instead of a path).

delim Single character used to separate fields within a record.

quote Single character used to quote strings.

read_delim 17

escape_backslash

Does the file use backslashes to escape special characters? This is more gen-
eral than escape_double as backslashes can be used to escape the delimiter
character, the quote character, or to add special characters like \n.

escape_double Does the file escape quotes by doubling them? i.e. If this option is TRUE, the
value """" represents a single quote, \".

col_names Either TRUE, FALSE or a character vector of column names.
If TRUE, the first row of the input will be used as the column names, and will
not be included in the data frame. If FALSE, column names will be generated
automatically: X1, X2, X3 etc.
If col_names is a character vector, the values will be used as the names of the
columns, and the first row of the input will be read into the first row of the output
data frame.
Missing (NA) column names will generate a warning, and be filled in with dummy
names X1, X2 etc. Duplicate column names will generate a warning and be made
unique with a numeric prefix.

col_types One of NULL, a cols() specification, or a string. See vignette("column-types")
for more details.
If NULL, all column types will be imputed from the first 1000 rows on the input.
This is convenient (and fast), but not robust. If the imputation fails, you’ll need
to supply the correct types yourself.
If a column specification created by cols(), it must contain one column speci-
fication for each column. If you only want to read a subset of the columns, use
cols_only().
Alternatively, you can use a compact string representation where each character
represents one column: c = character, i = integer, n = number, d = double, l =
logical, D = date, T = date time, t = time, ? = guess, or _/- to skip the column.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

quoted_na Should missing values inside quotes be treated as missing values (the default) or
strings.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

trim_ws Should leading and trailing whitespace be trimmed from each field before pars-
ing it?

skip Number of lines to skip before reading data.

n_max Maximum number of records to read.

guess_max Maximum number of records to use for guessing column types.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The display is updated every 50,000 values

18 read_file

and will only display if estimated reading time is 5 seconds or more. The auto-
matic progress bar can be disabled by setting option readr.show_progress to
FALSE.

Value

A data frame. If there are parsing problems, a warning tells you how many, and you can retrieve the
details with problems().

Examples

Input sources ---
Read from a path
read_csv(readr_example("mtcars.csv"))
read_csv(readr_example("mtcars.csv.zip"))
read_csv(readr_example("mtcars.csv.bz2"))
read_csv("https://github.com/tidyverse/readr/raw/master/inst/extdata/mtcars.csv")

Or directly from a string (must contain a newline)
read_csv("x,y\n1,2\n3,4")

Column types --
By default, readr guesses the columns types, looking at the first 100 rows.
You can override with a compact specification:
read_csv("x,y\n1,2\n3,4", col_types = "dc")

Or with a list of column types:
read_csv("x,y\n1,2\n3,4", col_types = list(col_double(), col_character()))

If there are parsing problems, you get a warning, and can extract
more details with problems()
y <- read_csv("x\n1\n2\nb", col_types = list(col_double()))
y
problems(y)

File types --
read_csv("a,b\n1.0,2.0")
read_csv2("a;b\n1,0;2,0")
read_tsv("a\tb\n1.0\t2.0")
read_delim("a|b\n1.0|2.0", delim = "|")

read_file Read/write a complete file

Description

read_file() reads a complete file into a single object: either a character vector of length one, or
a raw vector. write_file() takes a single string, or a raw vector, and writes it exactly as is. Raw
vectors are useful when dealing with binary data, or if you have text data with unknown encoding.

read_file 19

Usage

read_file(file, locale = default_locale())

read_file_raw(file)

write_file(x, path, append = FALSE)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).

Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.

Literal data is most useful for examples and tests. It must contain at least one
new line to be recognised as data (instead of a path).

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

x A data frame to write to disk

path Path or connection to write to.

append If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if file does not exist a new file is created.

Value

read_file: A length 1 character vector. read_lines_raw: A raw vector.

Examples

read_file(file.path(R.home("doc"), "AUTHORS"))
read_file_raw(file.path(R.home("doc"), "AUTHORS"))

tmp <- tempfile()

x <- format_csv(mtcars[1:6,])
write_file(x, tmp)
identical(x, read_file(tmp))

read_lines(x)

20 read_fwf

read_fwf Read a fixed width file into a tibble

Description

A fixed width file can be a very compact representation of numeric data. It’s also very fast to parse,
because every field is in the same place in every line. Unfortunately, it’s painful to parse because
you need to describe the length of every field. Readr aims to make it as easy as possible by providing
a number of different ways to describe the field structure.

Usage

read_fwf(file, col_positions, col_types = NULL, locale = default_locale(),
na = c("", "NA"), comment = "", skip = 0, n_max = Inf,
guess_max = min(n_max, 1000), progress = show_progress())

fwf_empty(file, skip = 0, col_names = NULL, comment = "", n = 100L)

fwf_widths(widths, col_names = NULL)

fwf_positions(start, end = NULL, col_names = NULL)

fwf_cols(...)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. It must contain at least one
new line to be recognised as data (instead of a path).

col_positions Column positions, as created by fwf_empty(), fwf_widths() or fwf_positions().
To read in only selected fields, use fwf_positions(). If the width of the last
column is variable (a ragged fwf file), supply the last end position as NA.

col_types One of NULL, a cols() specification, or a string. See vignette("column-types")
for more details.
If NULL, all column types will be imputed from the first 1000 rows on the input.
This is convenient (and fast), but not robust. If the imputation fails, you’ll need
to supply the correct types yourself.
If a column specification created by cols(), it must contain one column speci-
fication for each column. If you only want to read a subset of the columns, use
cols_only().

read_fwf 21

Alternatively, you can use a compact string representation where each character
represents one column: c = character, i = integer, n = number, d = double, l =
logical, D = date, T = date time, t = time, ? = guess, or _/- to skip the column.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

skip Number of lines to skip before reading data.

n_max Maximum number of records to read.

guess_max Maximum number of records to use for guessing column types.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The display is updated every 50,000 values
and will only display if estimated reading time is 5 seconds or more. The auto-
matic progress bar can be disabled by setting option readr.show_progress to
FALSE.

col_names Either NULL, or a character vector column names.

n Number of lines the tokenizer will read to determine file structure. By default it
is set to 100.

widths Width of each field. Use NA as width of last field when reading a ragged fwf
file.

start, end Starting and ending (inclusive) positions of each field. Use NA as last end field
when reading a ragged fwf file.

... If the first element is a data frame, then it must have all numeric columns and
either one or two rows. The column names are the variable names, and the
column values are the variable widths if a length one vector, and variable start
and end positions. Otherwise, the elements of ... are used to construct a data
frame with or or two rows as above.

See Also

read_table() to read fixed width files where each column is separated by whitespace.

Examples

fwf_sample <- readr_example("fwf-sample.txt")
cat(read_lines(fwf_sample))

You can specify column positions in several ways:
1. Guess based on position of empty columns
read_fwf(fwf_sample, fwf_empty(fwf_sample, col_names = c("first", "last", "state", "ssn")))
2. A vector of field widths
read_fwf(fwf_sample, fwf_widths(c(20, 10, 12), c("name", "state", "ssn")))

22 read_lines

3. Paired vectors of start and end positions
read_fwf(fwf_sample, fwf_positions(c(1, 30), c(10, 42), c("name", "ssn")))
4. Named arguments with start and end positions
read_fwf(fwf_sample, fwf_cols(name = c(1, 10), ssn = c(30, 42)))
5. Named arguments with column widths
read_fwf(fwf_sample, fwf_cols(name = 20, state = 10, ssn = 12))

read_lines Read/write lines to/from a file

Description

read_lines() reads up to n_max lines from a file. New lines are not included in the output.
read_lines_raw() produces a list of raw vectors, and is useful for handling data with unknown
encoding. write_lines() takes a character vector or list of raw vectors, appending a new line after
each entry.

Usage

read_lines(file, skip = 0, n_max = -1L, locale = default_locale(),
na = character(), progress = show_progress())

read_lines_raw(file, skip = 0, n_max = -1L, progress = show_progress())

write_lines(x, path, na = "NA", append = FALSE)

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. It must contain at least one
new line to be recognised as data (instead of a path).

skip Number of lines to skip before reading data.

n_max Number of lines to read. If n_max is -1, all lines in file will be read.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

read_log 23

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The display is updated every 50,000 values
and will only display if estimated reading time is 5 seconds or more. The auto-
matic progress bar can be disabled by setting option readr.show_progress to
FALSE.

x A data frame to write to disk

path Path or connection to write to.

append If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if file does not exist a new file is created.

Value

read_lines(): A character vector with one element for each line. read_lines_raw(): A list
containing a raw vector for each line.

write_lines() returns x, invisibly.

Examples

read_lines(file.path(R.home("doc"), "AUTHORS"), n_max = 10)
read_lines_raw(file.path(R.home("doc"), "AUTHORS"), n_max = 10)

tmp <- tempfile()

write_lines(rownames(mtcars), tmp)
read_lines(tmp)
read_file(tmp) # note trailing \n

write_lines(airquality$Ozone, tmp, na = "-1")
read_lines(tmp)

read_log Read common/combined log file into a tibble

Description

This is a fairly standard format for log files - it uses both quotes and square brackets for quoting,
and there may be literal quotes embedded in a quoted string. The dash, "-", is used for missing
values.

Usage

read_log(file, col_names = FALSE, col_types = NULL, skip = 0,
n_max = Inf, progress = show_progress())

24 read_log

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. It must contain at least one
new line to be recognised as data (instead of a path).

col_names Either TRUE, FALSE or a character vector of column names.
If TRUE, the first row of the input will be used as the column names, and will
not be included in the data frame. If FALSE, column names will be generated
automatically: X1, X2, X3 etc.
If col_names is a character vector, the values will be used as the names of the
columns, and the first row of the input will be read into the first row of the output
data frame.
Missing (NA) column names will generate a warning, and be filled in with dummy
names X1, X2 etc. Duplicate column names will generate a warning and be made
unique with a numeric prefix.

col_types One of NULL, a cols() specification, or a string. See vignette("column-types")
for more details.
If NULL, all column types will be imputed from the first 1000 rows on the input.
This is convenient (and fast), but not robust. If the imputation fails, you’ll need
to supply the correct types yourself.
If a column specification created by cols(), it must contain one column speci-
fication for each column. If you only want to read a subset of the columns, use
cols_only().
Alternatively, you can use a compact string representation where each character
represents one column: c = character, i = integer, n = number, d = double, l =
logical, D = date, T = date time, t = time, ? = guess, or _/- to skip the column.

skip Number of lines to skip before reading data.

n_max Maximum number of records to read.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The display is updated every 50,000 values
and will only display if estimated reading time is 5 seconds or more. The auto-
matic progress bar can be disabled by setting option readr.show_progress to
FALSE.

Examples

read_log(readr_example("example.log"))

read_table 25

read_table Read whitespace-separated columns into a tibble

Description

read_table() and read_table2() are designed to read the type of textual data where each column
is #’ separate by one (or more) columns of space.

read_table2() is like read.table(), it allows any number of whitespace characters between
columns, and the lines can be of different lengths.

read_table() is more strict, each line must be the same length, and each field is in the same
position in every line. It first finds empty columns and then parses like a fixed width file.

spec_table() and spec_table2() return the column specifications rather than a data frame.

Usage

read_table(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = "NA", skip = 0, n_max = Inf,
guess_max = min(n_max, 1000), progress = show_progress(), comment = "")

read_table2(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = "NA", skip = 0, n_max = Inf,
guess_max = min(n_max, 1000), progress = show_progress(), comment = "")

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. It must contain at least one
new line to be recognised as data (instead of a path).

col_names Either TRUE, FALSE or a character vector of column names.
If TRUE, the first row of the input will be used as the column names, and will
not be included in the data frame. If FALSE, column names will be generated
automatically: X1, X2, X3 etc.
If col_names is a character vector, the values will be used as the names of the
columns, and the first row of the input will be read into the first row of the output
data frame.
Missing (NA) column names will generate a warning, and be filled in with dummy
names X1, X2 etc. Duplicate column names will generate a warning and be made
unique with a numeric prefix.

26 read_table

col_types One of NULL, a cols() specification, or a string. See vignette("column-types")
for more details.
If NULL, all column types will be imputed from the first 1000 rows on the input.
This is convenient (and fast), but not robust. If the imputation fails, you’ll need
to supply the correct types yourself.
If a column specification created by cols(), it must contain one column speci-
fication for each column. If you only want to read a subset of the columns, use
cols_only().
Alternatively, you can use a compact string representation where each character
represents one column: c = character, i = integer, n = number, d = double, l =
logical, D = date, T = date time, t = time, ? = guess, or _/- to skip the column.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

skip Number of lines to skip before reading data.

n_max Maximum number of records to read.

guess_max Maximum number of records to use for guessing column types.

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The display is updated every 50,000 values
and will only display if estimated reading time is 5 seconds or more. The auto-
matic progress bar can be disabled by setting option readr.show_progress to
FALSE.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

See Also

read_fwf() to read fixed width files where each column is not separated by whitespace. read_fwf()
is also useful for reading tabular data with non-standard formatting.

Examples

One corner from http://www.masseyratings.com/cf/compare.htm
massey <- readr_example("massey-rating.txt")
cat(read_file(massey))
read_table(massey)

Sample of 1978 fuel economy data from
http://www.fueleconomy.gov/feg/epadata/78data.zip
epa <- readr_example("epa78.txt")
cat(read_file(epa))
read_table(epa, col_names = FALSE)

spec_delim 27

spec_delim Generate a column specification

Description

When printed, only the first 20 columns are printed by default. To override, set options(readr.num_columns)
can be used to modify this (a value of 0 turns off printing).

Usage

spec_delim(file, delim, quote = "\"", escape_backslash = FALSE,
escape_double = TRUE, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
comment = "", trim_ws = FALSE, skip = 0, n_max = 0,
guess_max = 1000, progress = show_progress())

spec_csv(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = 0,
guess_max = 1000, progress = show_progress())

spec_csv2(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = 0,
guess_max = 1000, progress = show_progress())

spec_tsv(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = c("", "NA"), quoted_na = TRUE,
quote = "\"", comment = "", trim_ws = TRUE, skip = 0, n_max = 0,
guess_max = 1000, progress = show_progress())

spec_table(file, col_names = TRUE, col_types = NULL,
locale = default_locale(), na = "NA", skip = 0, n_max = 0,
guess_max = 1000, progress = show_progress(), comment = "")

Arguments

file Either a path to a file, a connection, or literal data (either a single string or a raw
vector).
Files ending in .gz, .bz2, .xz, or .zip will be automatically uncompressed.
Files starting with http://, https://, ftp://, or ftps:// will be automati-
cally downloaded. Remote gz files can also be automatically downloaded and
decompressed.
Literal data is most useful for examples and tests. It must contain at least one
new line to be recognised as data (instead of a path).

delim Single character used to separate fields within a record.

28 spec_delim

quote Single character used to quote strings.
escape_backslash

Does the file use backslashes to escape special characters? This is more gen-
eral than escape_double as backslashes can be used to escape the delimiter
character, the quote character, or to add special characters like \n.

escape_double Does the file escape quotes by doubling them? i.e. If this option is TRUE, the
value """" represents a single quote, \".

col_names Either TRUE, FALSE or a character vector of column names.
If TRUE, the first row of the input will be used as the column names, and will
not be included in the data frame. If FALSE, column names will be generated
automatically: X1, X2, X3 etc.
If col_names is a character vector, the values will be used as the names of the
columns, and the first row of the input will be read into the first row of the output
data frame.
Missing (NA) column names will generate a warning, and be filled in with dummy
names X1, X2 etc. Duplicate column names will generate a warning and be made
unique with a numeric prefix.

col_types One of NULL, a cols() specification, or a string. See vignette("column-types")
for more details.
If NULL, all column types will be imputed from the first 1000 rows on the input.
This is convenient (and fast), but not robust. If the imputation fails, you’ll need
to supply the correct types yourself.
If a column specification created by cols(), it must contain one column speci-
fication for each column. If you only want to read a subset of the columns, use
cols_only().
Alternatively, you can use a compact string representation where each character
represents one column: c = character, i = integer, n = number, d = double, l =
logical, D = date, T = date time, t = time, ? = guess, or _/- to skip the column.

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

quoted_na Should missing values inside quotes be treated as missing values (the default) or
strings.

comment A string used to identify comments. Any text after the comment characters will
be silently ignored.

trim_ws Should leading and trailing whitespace be trimmed from each field before pars-
ing it?

skip Number of lines to skip before reading data.

n_max Maximum number of records to read.

guess_max Maximum number of records to use for guessing column types.

type_convert 29

progress Display a progress bar? By default it will only display in an interactive session
and not while knitting a document. The display is updated every 50,000 values
and will only display if estimated reading time is 5 seconds or more. The auto-
matic progress bar can be disabled by setting option readr.show_progress to
FALSE.

Value

The col_spec generated for the file.

Examples

Input sources ---
Retrieve specs from a path
spec_csv(system.file("extdata/mtcars.csv", package = "readr"))
spec_csv(system.file("extdata/mtcars.csv.zip", package = "readr"))

Or directly from a string (must contain a newline)
spec_csv("x,y\n1,2\n3,4")

Column types --
By default, readr guesses the columns types, looking at the first 1000 rows.
You can specify the number of rows used with guess_max.
spec_csv(system.file("extdata/mtcars.csv", package = "readr"), guess_max = 20)

type_convert Re-convert character columns in existing data frame

Description

This is useful if you need to do some manual munging - you can read the columns in as character,
clean it up with (e.g.) regular expressions and then let readr take another stab at parsing it. The
name is a homage to the base type.convert().

Usage

type_convert(df, col_types = NULL, na = c("", "NA"), trim_ws = TRUE,
locale = default_locale())

Arguments

df A data frame.

col_types One of NULL, a cols() specification, or a string. See vignette("column-types")
for more details.
If NULL, all column types will be imputed from the first 1000 rows on the input.
This is convenient (and fast), but not robust. If the imputation fails, you’ll need
to supply the correct types yourself.

30 write_delim

If a column specification created by cols(), it must contain one column speci-
fication for each column. If you only want to read a subset of the columns, use
cols_only().
Unlike other functions type_convert() does not allow character specifications
of col_types.

na Character vector of strings to use for missing values. Set this option to character()
to indicate no missing values.

trim_ws Should leading and trailing whitespace be trimmed from each field before pars-
ing it?

locale The locale controls defaults that vary from place to place. The default locale is
US-centric (like R), but you can use locale() to create your own locale that
controls things like the default time zone, encoding, decimal mark, big mark,
and day/month names.

Examples

df <- data.frame(
x = as.character(runif(10)),
y = as.character(sample(10)),
stringsAsFactors = FALSE

)
str(df)
str(type_convert(df))

df <- data.frame(x = c("NA", "10"), stringsAsFactors = FALSE)
str(type_convert(df))

Type convert can be used to infer types from an entire dataset
type_convert(

read_csv(readr_example("mtcars.csv"),
col_types = cols(.default = col_character())))

write_delim Write a data frame to a delimited file

Description

This is about twice as fast as write.csv(), and never writes row names. output_column() is a
generic method used to coerce columns to suitable output.

Usage

write_delim(x, path, delim = " ", na = "NA", append = FALSE,
col_names = !append)

write_csv(x, path, na = "NA", append = FALSE, col_names = !append)

write_delim 31

write_excel_csv(x, path, na = "NA", append = FALSE, col_names = !append)

write_tsv(x, path, na = "NA", append = FALSE, col_names = !append)

Arguments

x A data frame to write to disk

path Path or connection to write to.

delim Delimiter used to separate values. Defaults to " ". Must be a single character.

na String used for missing values. Defaults to NA. Missing values will never be
quoted; strings with the same value as na will always be quoted.

append If FALSE, will overwrite existing file. If TRUE, will append to existing file. In
both cases, if file does not exist a new file is created.

col_names Write columns names at the top of the file?

Value

write_*() returns the input x invisibly.

Output

Factors are coerced to character. Doubles are formatted using the grisu3 algorithm. POSIXct’s are
formatted as ISO8601.

All columns are encoded as UTF-8. write_excel_csv() also includes a UTF-8 Byte order mark
which indicates to Excel the csv is UTF-8 encoded.

Values are only quoted if needed: if they contain a comma, quote or newline.

References

Florian Loitsch, Printing Floating-Point Numbers Quickly and Accurately with Integers, PLDI ’10,
http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf

Examples

tmp <- tempfile()
write_csv(mtcars, tmp)
head(read_csv(tmp))

format_* is useful for testing and reprexes
cat(format_csv(head(mtcars)))
cat(format_tsv(head(mtcars)))
cat(format_delim(head(mtcars), ";"))

df <- data.frame(x = c(1, 2, NA))
format_csv(df, na = ".")

Quotes are automatically as needed
df <- data.frame(x = c("a", '"', ",", "\n"))
cat(format_csv(df))

https://en.wikipedia.org/wiki/Byte_order_mark
http://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf

32 write_delim

A output connection will be automatically created for output filenames
with appropriate extensions.
dir <- tempdir()
write_tsv(mtcars, file.path(dir, "mtcars.tsv.gz"))
write_tsv(mtcars, file.path(dir, "mtcars.tsv.bz2"))
write_tsv(mtcars, file.path(dir, "mtcars.tsv.xz"))

Index

col_character (parse_atomic), 8
col_date (parse_datetime), 9
col_datetime (parse_datetime), 9
col_double (parse_atomic), 8
col_factor (parse_factor), 12
col_guess (parse_guess), 13
col_integer (parse_atomic), 8
col_logical (parse_atomic), 8
col_number (parse_number), 14
col_skip, 4, 9, 11, 13–15
col_time (parse_datetime), 9
cols, 2
cols(), 17, 20, 24, 26, 28–30
cols_condense, 3
cols_only, 4
cols_only (cols), 2
cols_only(), 17, 20, 24, 26, 28, 30
count_fields, 4

datasource(), 6
date_names, 5
date_names(), 7
date_names_lang (date_names), 5
date_names_lang(), 7
date_names_langs (date_names), 5
default_locale (locale), 7

factor(), 12
format_csv (format_delim), 5
format_delim, 5
format_tsv (format_delim), 5
fwf_cols (read_fwf), 20
fwf_empty (read_fwf), 20
fwf_empty(), 20
fwf_positions (read_fwf), 20
fwf_positions(), 20
fwf_widths (read_fwf), 20
fwf_widths(), 20

guess_encoding, 6

guess_parser (parse_guess), 13

locale, 7
locale(), 8–10, 13, 14, 17, 19, 21, 22, 26, 28,

30

OlsonNames, 7

parse_atomic, 8
parse_character (parse_atomic), 8
parse_date (parse_datetime), 9
parse_datetime, 4, 9, 9, 13–15
parse_double (parse_atomic), 8
parse_factor, 4, 9, 11, 12, 14, 15
parse_guess, 4, 9, 11, 13, 13, 15
parse_integer (parse_atomic), 8
parse_logical, 4, 11, 13–15
parse_logical (parse_atomic), 8
parse_number, 4, 9, 11, 13, 14, 14
parse_time (parse_datetime), 9
POSIXct(), 10
problems, 15, 18

read.table(), 25
read_csv (read_delim), 16
read_csv2 (read_delim), 16
read_delim, 16
read_file, 18
read_file_raw (read_file), 18
read_fwf, 20
read_fwf(), 26
read_lines, 22
read_lines_raw (read_lines), 22
read_log, 23
read_table, 25
read_table(), 21
read_table2 (read_table), 25
read_tsv (read_delim), 16

spec (cols_condense), 3
spec_csv (spec_delim), 27

33

34 INDEX

spec_csv2 (spec_delim), 27
spec_delim, 27
spec_table (spec_delim), 27
spec_tsv (spec_delim), 27
stop_for_problems (problems), 15
stringi::stri_enc_detect(), 6
strptime(), 9, 10

tokenizer_csv(), 4
tokenizer_fwf(), 4
type.convert, 29
type_convert, 29

write.csv(), 30
write_csv (write_delim), 30
write_csv(), 5
write_delim, 30
write_excel_csv (write_delim), 30
write_file (read_file), 18
write_lines (read_lines), 22
write_tsv (write_delim), 30

	cols
	cols_condense
	col_skip
	count_fields
	date_names
	format_delim
	guess_encoding
	locale
	parse_atomic
	parse_datetime
	parse_factor
	parse_guess
	parse_number
	problems
	read_delim
	read_file
	read_fwf
	read_lines
	read_log
	read_table
	spec_delim
	type_convert
	write_delim
	Index

