Package ‘recurrentpseudo’

October 14, 2022

Title
Creates Pseudo-Observations and Analysis for Recurrent Event Data

Version
1.0.0

Description
Computation of one-, two- and three-dimensional pseudo-observations based on recurrent events and terminal events. Generalised linear models are fitted using generalised estimating equations. Technical details on the bivariate procedure can be found in “Bivariate pseudo-observations for recurrent event analysis with terminal events” (Furberg et al., 2021) <doi:10.1007/s10985-021-09533-5>.

License
GPL (>= 2)

URL
https://github.com/JulieKFurberg/recurrentpseudo

Encoding
UTF-8

RoxygenNote
7.2.1

Imports
survival, geepack, stringr, prodlim

Depends
magrittr, dplyr

Suggests
knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition
3

VignetteBuilder
knitr

NeedsCompilation
no

Author
Julie Kjærulff Furberg [aut, cre]
(<https://orcid.org/0000-0001-8785-1462>)

Maintainer
Julie Kjærulff Furberg <julie_furberg@hotmail.com>

Repository
CRAN

Date/Publication
2022-09-19 14:16:16 UTC

R topics documented:

pseudo.geefit ... 2
pseudo.onedim .. 3
pseudo.threedim ... 5
pseudo.twodim .. 6
Function that makes GEE model fit for recurrent pseudo-observations

Description

This function fits a GEE model based on pseudo-observations of the marginal mean function, and the survival probability or cumulative incidences of two death causes as returned by `pseudo.onedim()` (marginal mean function), or `pseudo.twodim()` (marginal mean function and survival probability), or `pseudo.threedim()` (marginal mean function and cumulative incidences of death causes 1 and 2).

Usage

`pseudo.geefit(pseudodata, covar_names)`

Arguments

- `pseudodata` Data set containing pseudo-observations. Expecting output from `pseudo.twodim()`
- `covar_names` Vector with covariate names to be found in "pseudodata". E.g. `covar_names = c("Z", "Z1")`

Value

An object of class `pseudo.geefit`.
- `xi` contains the estimated model parameters
- `sigma` contains the estimated variance matrix corresponding to `xi`

References

Examples

```r
# Bladder cancer data from survival package
require(survival)

# Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

# Add one extra day for the two patients with start=stop=0
# subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
bladder1[bladder1$id == 49, "stop"] <- 1
```
Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")

head(bladdersub)

Two-dimensional (bivariate pseudo-obs) model fit

Computation of pseudo-observations
pseudo_bladder_2d <- pseudo.twodim(tstart = bladdersub$start,
tstop = bladdersub$stop,
status = bladdersub$status3,
id = bladdersub$id,
covar_names = "Z",
tk = c(30),
data = bladdersub)

Data in wide format
head(pseudo_bladder_2d$outdata)

Data in long format
head(pseudo_bladder_2d$outdata_long)

GEE fit
fit_bladder_2d <- pseudo.geefit(pseudodata = pseudo_bladder_2d,
covar_names = c("Z"))
fit_bladder_2d

###pseudo.onedim

Function that computes univariate pseudo-observations

Description

This function computes univariate pseudo-observations of the marginal mean function (in the presence of terminal events)

Usage

```r
pseudo.onedim(tstart, tstop, status, covar_names, id, tk, data)
```

Arguments

- **tstart**: Start time - expecting counting process notation
- **tstop**: Stop time - expecting counting process notation
- **status**: Status variable (0 = censoring, 1 = recurrent event, 2 = death)
- **covar_names**: Vector containing names of covariates intended for further analysis
id ID variable for subject
tk Vector of time points to calculate pseudo-observations at
data Data set which contains variables of interest

Value

An object of class pseudo.onedim.

- `outdata` contains the semi-wide version of the computed pseudo-observations (one row per time, `tk`, per `id`).
- `outdata_long` contains the long version of the computed pseudo-observations (one row per observation, several per `id`).
- `indata` contains the input data which the pseudo-observations are based on.
- `ts` vector with time points used for computation of pseudo-observations.
- `k` number of time points used for computation of pseudo-observations (`length(ts)`).

References

Examples

```r
# Example: Bladder cancer data from survival package
require(survival)

# Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

# Add one extra day for the two patients with start=stop=0
# subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
bladder1[bladder1$id == 49, "stop"] <- 1

# Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

# Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")
head(bladdersub)

# Pseudo observations
pseudo_bladder_1d <- pseudo.onedim(tstart = bladdersub$start,
                                   tstop = bladdersub$stop,
                                   status = bladdersub$status3,
                                   id = bladdersub$id,
                                   covar_names = "Z",
                                   tk = c(30),
                                   value = an object of class pseudo.onedim.
                                   
- `outdata` contains the semi-wide version of the computed pseudo-observations (one row per time, `tk`, per `id`).
- `outdata_long` contains the long version of the computed pseudo-observations (one row per observation, several per `id`).
- `indata` contains the input data which the pseudo-observations are based on.
- `ts` vector with time points used for computation of pseudo-observations.
- `k` number of time points used for computation of pseudo-observations (`length(ts)`).

References


Examples

```
```r
head(pseudo_bladder_1d$outdata)

# GEE fit
fit_bladder_1d <- pseudo.geefit(pseudodata = pseudo_bladder_1d,
covar_names = c("Z"))
fit_bladder_1d
```

pseudo.threedim

Function that computes 3-dim pseudo-observations

Description

This function computes 3-dimensional pseudo-observations of the marginal mean function (in the presence of terminal events) and cumulative incidences of death causes 1 and 2.

Usage

```r
pseudo.threedim(tstart, tstop, status, covar_names, id, tk, data, deathtype)
```

Arguments

- `tstart`: Start time - expecting counting process notation
- `tstop`: Stop time - expecting counting process notation
- `status`: Status variable (0 = censoring, 1 = recurrent event, 2 = death)
- `covar_names`: Vector containing names of covariates intended for further analysis
- `id`: ID variable for subject
- `tk`: Vector of time points to calculate pseudo-observations at
- `data`: Data set which contains variables of interest
- `deathtype`: Type of death (cause 1 or cause 2)

Value

An object of class `pseudo.threedim`.

- `outdata` contains the semi-wide version of the computed pseudo-observations (one row per time, `tk`, per `id`).
- `outdata_long` contains the long version of the computed pseudo-observations (one row per observation, several per `id`).
- `indata` contains the input data which the pseudo-observations are based on.
- `ts` vector with time points used for computation of pseudo-observations.
- `k` number of time points used for computation of pseudo-observations (length(`ts`)).
References

Examples

Example: Bladder cancer data from survival package
require(survival)

Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

Add one extra day for the two patients with start=stop=0
subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
bladder1[bladder1$id == 49, "stop"] <- 1

Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")
head(bladdersub)

Add deathtype variable to bladder data
Deathtype = 1 (bladder disease death), deathtype = 2 (other death reason)
bladdersub$deathtype <- with(bladdersub, ifelse(status == 2, 1, ifelse(status == 3, 2, 0)))
table(bladdersub$deathtype, bladdersub$status)

Pseudo-observations
pseudo_bladder_3d <- pseudo.threedim(tstart = bladdersub$start,
 tstop = bladdersub$stop,
 status = bladdersub$status3,
 id = bladdersub$id,
 deathtype = bladdersub$deathtype,
 covar_names = "Z",
 tk = c(30),
 data = bladdersub)

pseudo_bladder_3d

GEE fit
fit_bladder_3d <- pseudo.geefit(pseudodata = pseudo_bladder_3d,
 covar_names = c("Z"))

fit_bladder_3d

pseudo.twodim
Function that computes bivariate pseudo-observations
Description

This function computes bivariate pseudo-observations of the marginal mean function (in the presence of terminal events) and the survival probability

Usage

pseudo.twodim(tstart, tstop, status, covar_names, id, tk, data)

Arguments

tstart Start time - expecting counting process notation
tstop Stop time - expecting counting process notation
status Status variable (0 = censoring, 1 = recurrent event, 2 = death)
covar_names Vector containing names of covariates intended for further analysis
id ID variable for subject
tk Vector of time points to calculate pseudo-observations at
data Data set which contains variables of interest

Value

An object of class pseudo.twodim.

- outdata contains the semi-wide version of the computed pseudo-observations (one row per time, tk, per id).
- outdata.long contains the long version of the computed pseudo-observations (one row per observation, several per id).
- indata contains the input data which the pseudo-observations are based on.
- ts vector with time points used for computation of pseudo-observations.
- k number of time points used for computation of pseudo-observations (length(ts)).

References

Examples

Example: Bladder cancer data from survival package
require(survival)

Make a three level status variable
bladder1$status3 <- ifelse(bladder1$status %in% c(2, 3), 2, bladder1$status)

Add one extra day for the two patients with start=stop=0
subset(bladder1, stop <= start)
bladder1[bladder1$id == 1, "stop"] <- 1
pseudo.twodim

bladder1[bladder1$id == 49, "stop"] <- 1

Restrict the data to placebo and thiotepa
bladdersub <- subset(bladder1, treatment %in% c("placebo", "thiotepa"))

Make treatment variable two-level factor
bladdersub$Z <- as.factor(ifelse(bladdersub$treatment == "placebo", 0, 1))
levels(bladdersub$Z) <- c("placebo", "thiotepa")
head(bladdersub)

Pseudo observations
pseudo_bladder_2d <- pseudo.twodim(tstart = bladdersub$start,
tstop = bladdersub$stop,
status = bladdersub$status3,
id = bladdersub$id,
covar_names = "Z",
tk = c(30),
data = bladdersub)
head(pseudo_bladder_2d$outdata)

GEE fit
fit_bladder_2d <- pseudo.geefit(pseudodata = pseudo_bladder_2d,
covar_names = c("Z"))
fit_bladder_2d
Index

* recurrentpseudo
 pseudo.geefit, 2
 pseudo.onedim, 3
 pseudo.threedim, 5
 pseudo.twodim, 6

pseudo.geefit, 2
pseudo.onedim, 3
pseudo.threedim, 5
pseudo.twodim, 6