Package ‘refineR’

August 2, 2021

Type Package

Version 1.0.0

Date 2021-07-29

Title Reference Interval Estimation using Real-World Data

Author Tatjana Ammer [aut, cre],
Christopher M Rank [aut],
Andre Schuetzenmeister [aut]

Maintainer Tatjana Ammer <tatjana.ammer@roche.com>

Depends R (>= 3.2.0)

Imports stats, ash, future, future.apply, parallel, graphics,
grDevices

Description Indirect method for the estimation of reference intervals using Real-
World Data (‘RWD’). It takes routine measurements
of diagnostic tests, containing pathological and non-
pathological samples as input and uses sophisticated
statistical methods to derive a model describing the distribution of the non-
pathological samples. This distribution can then be
used to derive reference intervals.
Furthermore, the package offers functions for printing and plotting the results of the algorithm.
The method is described in detail in Ammer T., Schuetzenmeister A., Prokosch H.-
U., Rauh M., Rank C.M., Zierk J. ‘refineR: A Novel Algorithm for Reference Interval Estima-
tion from Real-World Data’. Scientific Reports (2021) [accepted July 21, 2021].

License GPL (>= 3)

NeedsCompilation no

LazyData true

RoxygenNote 7.1.0

Repository CRAN

Date/Publication 2021-08-02 08:10:02 UTC
R topics documented:

- addGrid
- as.rgb
- ashDensity
- BoxCox
- calculateCostHist
- estimateStartValues
- findPeaksAndValleys
- findRI
- generateHistData
- getRI
- getSumForPArea
- invBoxCox
- optimizeGrid
- plot.RWDRI
- pnormApprox
- print.RWDRI
- testcase1
- testcase2
- testcase3
- testcase4
- testParam

Index

addGrid

Add a grid to an existing plot.

Description

It is possible to use automatically determined grid lines (x=NULL, y=NULL) or specifying the number of cells x = 3, y = 4 as done by grid. Additionally, x- and y-locations of grid-lines can be specified, e.g. x = 1:10, y = seq(0, 10, 2).

Usage

addGrid(x = NULL, y = NULL, col = "lightgray", lwd = 1L, lty = 3L)

Arguments

- x: (integer, numeric) single integer specifies number of cells, numeric vector specifies vertical grid-lines
- y: (integer, numeric) single integer specifies number of cells, numeric vector specifies horizontal grid-lines
- col: (character) color of grid-lines
- lwd: (integer) line width of grid-lines
- lty: (integer) line type of grid-lines
as.rgb

Value

No return value, called for adding a grid to a plot

Author(s)

Andre Schuetzenmeister <andre.schuetzenmeister@roche.com>

as.rgb

\textit{Convert color-names or RGB-code to possibly semi-transparent RGB-code.}

Description

Function takes the name of a color and converts it into the rgb space. Parameter "alpha" allows to specify the transparency within \([0,1]\), 0 meaning completely transparent and 1 meaning completely opaque. If an RGB-code is provided and alpha \(!= 1\), the RGB-code of the transparency adapted color will be returned.

Usage

\texttt{as.rgb(col = "black", alpha = 1)}

Arguments

\begin{verbatim}
col (character) name of the color to be converted/transformed into RGB-space (code). Only those colors can be used which are part of the set returned by function colors(). Defaults to "black".
alpha (numeric) value specifying the transparency to be used, 0 = completely transparent, 1 = opaque.
\end{verbatim}

Value

RGB-code

Author(s)

Andre Schuetzenmeister <andre.schuetzenmeister@roche.com>
ashDensity

Estimate density of distribution employing the R package "ash" using R-wrapper function.

Usage

ashDensity(x, ab, nbin, m, kopt = c(2, 1), normToAB = FALSE)

Arguments

x (numeric) vector of data points
ab (numeric) vector of lower and higher truncation limit of density estimation
nbin (integer) specifying the number of bins used for density estimation
m (integer) specifying the width of the smoothing kernel(s) used for density estimation
kopt (integer) vector specifying the smoothing kernel
normToAB (logical) specifying if the density is normed to the interval ab or to all data points in x

Value

(list) with density estimation (x values, y values, m and ab).

Author(s)

Christopher Rank <christopher.rank@roche.com>, Tatjana Ammer <tatjana.ammer@roche.com>

BoxCox

One-parameter Box-Cox transformation.

Description

One-parameter Box-Cox transformation.

Usage

BoxCox(x, lambda)
calculateCostHist

Arguments

- `x` (numeric) data to be transformed
- `lambda` (numeric) Box-Cox transformation parameter

Value

(numeric) vector with Box-Cox transformation of x

Author(s)

Andre Schuetzenmeister <andre.schuetzenmeister@roche.com>

calculateCostHist Calculate costs for a specific combinations of lambda, muVec and sigmaVec.

Description

Calculate costs for a specific combinations of lambda, muVec and sigmaVec.

Usage

```r
calculateCostHist(
  lambda, 
  muVec, 
  sigmaVec, 
  HistData, 
  alpha = 0.01,
  alphaMcb = 0.1,
  pNormLookup
)
```

Arguments

- `lambda` (numeric) transformation parameter for inverse Box-Cox transformation
- `muVec` (numeric) vector of mean values of non-pathological Gaussian distribution in transformed space
- `sigmaVec` (numeric) vector of sd values of non-pathological Gaussian distribution in transformed space
- `HistData` (list) with histogram data generated by function `generateHistData`
- `alpha` (numeric) specifying the confidence region used for selection of histogram bins in cost calculation
- `alphaMcb` (numeric) specifying the confidence level defining the maximal allowed counts below asymmetric confidence region
- `pNormLookup` (list) with lookup table for pnormApprox function `pnormApprox`
Value

(numeric) vector with (lambda, mu, sigma, P, cost).

Author(s)

Tatjana Ammer <tatjana.ammer@roche.com>

estimateStartValues Helper function to estimate search regions for mu and sigma and to get the region around main peak 'ab'

Description

The function estimates start search regions for mu and sigma for each lambda. Further it determines an appropriate region around the main peak 'ab' that is used for all lambdas.

Usage

estimateStartValues(Data, lambdaVec, useQuantiles = FALSE)

Arguments

Data (numeric) values specifying data points comprising pathological and non-pathological values
lambdaVec (numeric) transformation parameter for inverse Box-Cox transformation
useQuantiles (logical) indicating if quantiles or raw data should be used (for more than 100000 data points quantiles are always used)

Value

(list) with (abOriginal, search region for mu and sigma)

Author(s)

Tatjana Ammer <tatjana.ammer@roche.com>
findPeaksAndValleys

Find the index of the peaks and valleys of the density estimation.

Description
Find the index of the peaks and valleys of the density estimation.

Usage

```r
defindPeaksAndValleys(Dens)
```

Arguments

- **Dens** (list) with density estimation (x values, y values)

Value
(list) specifying the index of the peaks and valleys of the density estimation.

Author(s)
Tatjana Ammer <tatjana.ammer@roche.com>

findRI
Function to estimate reference intervals for a single population

Description
The function estimates the optimal parameters lambda, mu and sigma for a raw data set containing pathological and non-pathological values. The optimization is carried out via a multi-level grid search to minimize the cost function (negative log-likelihood with regularization) and to find a model that fits the distribution of the physiological values and thus separates pathological from non-pathological values.

Usage

```r
defindRI(Data = NULL, NBootstrap = 0, seed = 123)
```

Arguments

- **Data** (numeric) values specifying data points comprising pathological and non-pathological values
- **NBootstrap** (integer) specifying the number of bootstrap repetitions
- **seed** (integer) specifying the seed used for bootstrapping
Value

(object) of class "RWDRI" with parameters optimized

Author(s)

Tatjana Ammer <tatjana.ammer@roche.com>

Examples

first example

data(testcase1)
resRI <- findRI(Data = testcase1)
print(resRI)
plot(resRI, showPathol = FALSE)

second example

data(testcase2)
resRI <- findRI(Data = testcase2)
print(resRI)

third example, with bootstrapping

data(testcase3)
resRI <- findRI(Data = testcase3, NBootstrap = 30, seed = 123)
print(resRI)
getRI(resRI, RIperc = c(0.025, 0.5, 0.975), CIprop = 0.95, pointEst = "fullDataEst")
getRI(resRI, RIperc = c(0.025, 0.5, 0.975), CIprop = 0.95, pointEst = "medianBS")
plot(resRI)
plot without showing values and pathological distribution
plot(resRI, showValue = FALSE, showPathol = FALSE)
plot(resRI, RIperc = c(0.025, 0.5, 0.975), showPathol = FALSE, showCI = TRUE)

forth example, with bootstrapping

data(testcase4)
resRI <- findRI(Data = testcase4, NBootstrap = 30)
plot(resRI, RIperc = c(0.025, 0.5, 0.975), showPathol = FALSE, showCI = TRUE)

generateHistData

Generate list with histogram data.

Description

Generate list with histogram data.
getRI

Usage

generateHistData(x, ab)

Arguments

x (numeric) vector of data points
ab (numeric) vector of lower and higher limit embedding appropriate region with the main peak

Value

(list) with histogram data used in the calculation of cost.

Author(s)

Tatjana Ammer <tatjana.ammer@roche.com>

Description

Method to calculate reference intervals (percentiles) for objects of class 'RWDRI'

getRI

getRI(x, RIperc = c(0.025, 0.975), CIprop = 0.95, pointEst = c("fullDataEst", "medianBS"), Scale = c("original", "transformed"))

Arguments

x (object) of class 'RWDRI'
RIperc (numeric) value specifying the percentiles, which define the reference interval
CIprop (numeric) value specifying the central region for estimation of confidence intervals
pointEst (character) specifying the point estimate determination: (1) using the full dataset ("fullDataEst"), (2) calculating the median from the bootstrap samples ("medianBS"), (2) works only if NBootstrap > 0
Scale (character) specifying if percentiles are calculated on the original scale ("Or") or the transformed scale ("Tr")
getSumForPArea

Value
(data.frame) with columns for percentile, point estimate and confidence intervals.

Author(s)
Christopher Rank <christopher.rank@roche.com>, Tatjana Ammer <tatjana.ammer@roche.com>

getSumForPArea Helper function to calculate the amount of observed and estimated data points within specified regions around the peak.

Description
The function helps to define the search region for P (fraction of non-pathological samples).

Usage
getSumForPArea(
pLimitMin,
pLimitMax,
countsPred,
indexPeak,
HistData,
countsFullHist,
lambda,
mu,
sigma
)

Arguments
pLimitMin (numeric) vector specifying the lower limits for the regions next to the peak
pLimitMax (numeric) vector specifying the upper limits for the regions next to the peak
countsPred (numeric) vector with the predicted counts
indexPeak (integer) specifying the position of the peak
HistData (list) with histogram data generated by function generateHistData
countsFullHist (integer) vector with the observed counts
lambda (numeric) transformation parameter for inverse Box-Cox transformation
mu (numeric) parameter of the mean of non-pathological distribution
sigma (numeric) parameter of the standard deviation of non-pathological distribution

Value
(list) with two numeric vectors specifying the amount of observed and estimated data points surrounding the peak
invBoxCox

Author(s)

Tatjana Ammer <tatjana.ammer@roche.com>

Description

Inverse of the one-parameter Box-Cox transformation.

Usage

```r
invBoxCox(x, lambda)
```

Arguments

- `x` (numeric) data to be transformed
- `lambda` (numeric) Box-Cox transformation parameter

Value

(numeric) vector with inverse Box-Cox transformation of `x`

Author(s)

Andre Schuetzenmeister <andre.schuetzenmeister@roche.com>

optimizeGrid

Helper function for grid search for mu and sigma.

Description

Helper function for grid search for mu and sigma.

Usage

```r
optimizeGrid(currentBestParam, paramUnique, iter, sigmLimit = TRUE)
```

Arguments

- `currentBestParam` (numeric) value specifying the current best value for this parameter
- `paramUnique` (numeric) vector of possible values for this parameter
- `iter` (integer) indicating the number of iteration, as in the first iteration the search region is larger than in the following iterations
- `sigmLimit` (logical) specifying if parameter is sigma and thus minimum is 0
plot.RWDRI

Value

(vector) specifying the new search region for the parameter to be optimized

Author(s)

Tatjana Ammer <tatjana.ammer@roche.com>

Description

Standard plot method for objects of class ‘RWDRI’

Usage

S3 method for class ‘RWDRI’
plot(
x,
Scale = c("original", "transformed"),
RIperc = c(0.025, 0.975),
Nhist = 60,
showCI = TRUE,
showPathol = TRUE,
showValue = TRUE,
CIprop = 0.95,
pointEst = c("fullDataEst", "medianBS"),
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
title = NULL,
...
)

Arguments

x (object) of class ‘RWDRI’
Scale (character) specifying if the plot is generated on the original scale ("Or") or the transformed scale ("Tr")
RIperc (numeric) value specifying the percentiles, which define the reference interval
Nhist (integer) number of bins in the histogram (derived automatically if not set)
showCI (logical) specifying if the confidence intervals are shown
showPathol (logical) specifying if the estimated pathological distribution shall be shown
showValue (logical) specifying if the exact value of the estimated reference intervals shall be shown above the plot
CIprop (numeric) value specifying the central region for estimation of confidence intervals
pointEst (character) specifying the point estimate determination: (1) using the full dataset ("fullDataEst"), (2) calculating the median from the bootstrap samples ("medianBS"), (2) works only if NBootstrap > 0
xlim (numeric) vector specifying the limits in x-direction
ylim (numeric) vector specifying the limits in y-direction
xlab (character) specifying the x-axis label
ylab (character) specifying the y-axis label
title (character) specifying plot title
... additional arguments passed forward to other functions

Value

No return value. Instead, a plot is generated.

Author(s)

Christopher Rank <christopher.rank@roche.com>, Tatjana Ammer <tatjana.ammer@roche.com>

pnormApprox

Approximate calculation of CDF of normal distribution.

Description

Approximate calculation of CDF of normal distribution.

Usage

pnormApprox(q, pNormVal, mean = 0, oneOverSd = 1, oneOverH = 10)

Arguments

q (numeric) vector of quantiles of data points
pNormVal (numeric) vector of lookup table for pNorm
mean (numeric) vector of mean values
oneOverSd (numeric) reciprocal vector of sd values
oneOverH (numeric) defining the precision of the approximation

Value

(numeric) vector of approximate CDFs of normal distribution.
print.RWDRI

S3 method for class 'RWDRI'
print(x, RIperc = c(0.025, 0.975), CIprop = 0.95, pointEst = c("fullDataEst", "medianBS"), ...)

Arguments

- **x**: (object) of class 'RWDRI'
- **RIperc**: (numeric) value specifying the percentiles, which define the reference interval
- **CIprop**: (numeric) value specifying the central region for estimation of confidence intervals
- **pointEst**: (character) specifying the point estimate determination: (1) using the full dataset ("fullDataEst"), (2) calculating the median from the bootstrap samples ("medianBS"), (2) works only if NBootstrap > 0
- **...**: additional arguments passed forward to other functions.

Value

No return value. Instead, a summary is printed.

Author(s)

Christopher Rank <christopher.rank@roche.com>
testcase1

Simulated Testcase 1.

Description
This dataset consists of N = 10,000 simulated measurements with 80% non-pathological and 20% pathological samples. Ground Truth for reference intervals (2.5% perc., 97.5% perc): [10.2, 29.8]

Usage
data(testcase1)

Format
Numeric vector with data points.

testcase2

Simulated Testcase 2.

Description
This dataset consists of N = 50,000 simulated measurements with 60% non-pathological and 40% pathological samples. Ground Truth for reference intervals (2.5% perc., 97.5% perc): [59.8, 160]

Usage
data(testcase2)

Format
Numeric vector with data points.

testcase3

Simulated Testcase 3.

Description
This dataset consists of N = 75,000 simulated measurements with 96% non-pathological and 4% pathological samples. Ground Truth for reference intervals (2.5% perc., 97.5% perc): [9.04, 13]

Usage
data(testcase3)

Format
Numeric vector with data points.
Description

This dataset consists of \(N = 250,000 \) simulated measurements with \(80\% \) non-pathological and \(20\% \) pathological samples. Ground Truth for reference intervals (2.5\% perc., 97.5\% perc): [0.25, 4]

Usage

data(testcase4)

Format

Numeric vector with data points.

testParam

Helper function to find optimal parameters \(\lambda, \mu \) and \(\sigma \).

Description

Helper function to find optimal parameters \(\lambda, \mu \) and \(\sigma \).

Usage

testParam(
 lambdaVec,
 bestParam,
 Data,
 HistData,
 startValues,
 NIter,
 alpha = 0.01,
 alphaMcb = 0.1
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambdaVec</td>
<td>(numeric) transformation parameter for inverse Box-Cox transformation</td>
</tr>
<tr>
<td>bestParam</td>
<td>(numeric) vector containing best guess for (\lambda, \mu, \sigma, P,) cost</td>
</tr>
<tr>
<td>Data</td>
<td>(numeric) values specifying percentiles or data points comprising pathological and non-pathological values</td>
</tr>
<tr>
<td>HistData</td>
<td>(list) with histogram data</td>
</tr>
<tr>
<td>startValues</td>
<td>(list) with start search regions for (\mu) and (\sigma)</td>
</tr>
</tbody>
</table>
testParam

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIter</td>
<td>(integer) specifying the number of iterations for optimized grid-search</td>
</tr>
<tr>
<td>alpha</td>
<td>(numeric) specifying the confidence region used for selection of histogram bins in cost calculation</td>
</tr>
<tr>
<td>alphaMcb</td>
<td>(numeric) specifying the confidence level defining the maximal allowed counts below the asymmetric confidence region</td>
</tr>
</tbody>
</table>

Value

(numeric) vector with best parameters for lambda, mu, sigma, P, cost.

Author(s)

Tatjana Ammer <tatjana.ammer@roche.com>
Index

* datasets
 testcase1, 15
 testcase2, 15
 testcase3, 15
 testcase4, 16

addGrid, 2
as.rgb, 3
ashDensity, 4
BoxCox, 4

calculateCostHist, 5
estimateStartValues, 6
findPeaksAndValleys, 7
findRI, 7

generateHistData, 5, 8, 10
getRI, 9
getSumForPArea, 10

invBoxCox, 11

optimizeGrid, 11

plot.RWDRI, 12
pnormApprox, 5, 13
print.RWDRI, 14

testcase1, 15
testcase2, 15
testcase3, 15
testcase4, 16
testParam, 16