anovarefitME

MCEMfit_CR .. 7
MCEMfit_gam .. 8
MCEMfit_gen .. 10
MCEMfit_glm .. 12
Prinidata .. 14
refitME ... 14
sqrt.na ... 16
wt.var ... 17

Index

| anova.refitME | An ANOVA function for fitted refitME objects |

Description

An ANOVA function for fitted refitME objects.

Usage

```r
## S3 method for class 'reftiME'
anova(object, ..., dispersion = NULL, test = NULL)
```

Arguments

- `object` : fitted model objects of class reftiME.
- `...` : further arguments passed through to lm or glm.
- `dispersion` : the dispersion parameter for the fitting family. By default it is obtained from the object(s).
- `test` : a character string, (partially) matching one of "Chisq", "LRT", "Rao", "F" or "Cp". See stat.anova.

Value

anova.refitME produces output identical to anova.lm, anova.glm or anova.gam.

Author(s)

Jakub Stoklosa, Wen-Han Hwang and David I. Warton.

See Also

anova
anova_MCEMfit_glm

An ANOVA function for fitted MCEMfit_glm objects.

Usage

```r
anova_MCEMfit_glm(object, ..., dispersion = NULL, test = NULL)
```

Arguments

- `object`: fitted model objects of class `MCEMfit_glm`.
- `...`: further arguments passed through to `glm`.
- `dispersion`: the dispersion parameter for the fitting family. By default it is obtained from the object(s).
- `test`: a character string, (partially) matching one of "Chisq", "LRT", "Rao", "F" or "Cp".

Value

`anova_MCEMfit_glm` produces output identical to `anova.glm`.

Author(s)

Jakub Stoklosa, Wen-Han Hwang and David I. Warton.

See Also

- `anova.glm`

Corymbiaeximiidata

The Corymbia eximia presence-only data set

Description

Data set consisting of presence-only records for the plant species *Corymbia eximia*, site coordinates 5 covariates for each site.

Usage

Corymbiaeximiidata
Format

A data set that contains: 8 columns with 86,316 observations (or sites). The columns are defined as follows:

- **X**: Longitude coordinate.
- **Y**: Latitude coordinate.
- **FC**: Recorded number of fire counts for each site.
- **MNT**: Recorded minimum temperatures for each site.
- **MXT**: Recorded maximum temperature for each site.
- **Rain**: Recorded rainfall for each site.
- **D.Main**: Recorded distance from nearest major road.
- **Y.obs**: Presences for the plant species *Corymbia eximia* for each site.

Source

See Renner and Warton (2013) for full details on the data and study.

References

Examples

```r
# Load the data.

data(Corymbiaeximiadata)
```

Framinghamdata

The Framingham heart study data set

Description

Data set consisting of records of male patients with coronary heart disease collected from the Framingham heart study. The *Framinghamdata* data consists of binary responses and four predictor variables collected on ‘n = 1615’ patients.

Usage

Framinghamdata
Format

A data set that contains: 5 columns with 1,615 observations. The columns are defined as follows:

- Y: Response indicator (binary variable) of first evidence of CHD status of patient.
- z1: Serum cholesterol level of patient.
- z2: Age of patient.
- z3: Smoking indicator - whether the patient smokes.
- w1: Systolic blood pressure (SBP) of patient - this is the error contaminated variable, calculated from mean scores. The measurement error is 0.00630, see pp. 112 of Carroll et al. (2006).

Source

See Carroll et al. (2006) for full details on the data and study. Also, see https://github.com/JakubStats/refitME for an RMarkdown vignette of an example that uses the data.

References

Examples

```r
# Load the data.

data(Framinghamdata)
```

logLik.refitME
Extract log-Likelihoods for refitME model objects

Description

Extract log-Likelihoods for refitME model objects. This function subtracts the entropy term from the observed likelihood.

Usage

```r
## S3 method for class 'refitME'
logLik(object, ...)
```

Arguments

- `object`: fitted model objects of class refitME.
- `...`: further arguments passed through to lm or glm.

Value

logLik.refitME produces identical output to logLik but for refitME model objects.
Author(s)
Jakub Stoklosa, Wen-Han Hwang and David I. Warton.

See Also
logLik

logLik_MCEMfit_lm

Description

Extract log-Likelihoods for MCEMfit_lm model objects. This function subtracts the entropy term from the observed likelihood.

Usage

logLik_MCEMfit_lm(object, REML = FALSE, ...)

Arguments

- **object**: fitted model objects of class MCEMfit_lm.
- **REML**: an optional logical value. If TRUE the restricted log-likelihood is returned, else, if FALSE, the log-likelihood is returned. Defaults to FALSE.
- **...**: further arguments passed through to lm.

Value

logLik_MCEMfit_lm produces output identical to logLik.

Author(s)

Jakub Stoklosa, Wen-Han Hwang and David I. Warton.

See Also

logLik
MCEMfit_CR

Function for fitting VGAM capture-recapture (CR) model using the MCEM algorithm

Description

Function for fitting VGAM capture-recapture (CR) model using the MCEM algorithm where covariates have measurement error.

Usage

MCEMfit_CR(mod, sigma.sq.u, B = 50, epsilon = 1e-05, silent = FALSE)

Arguments

- **mod**: a vglm/vgam object (this is the naive CR model). Make sure the first \(p \) input predictor variables in the naive model are the selected error-contaminated variables.
- **sigma.sq.u**: measurement error (ME) variance. A scalar if there is only one error-contaminated predictor variable, otherwise this must be stored as a vector (of ME variances) or a matrix if the ME covariance matrix is known.
- **B**: the number of Monte Carlo replication values (default is set to 50).
- **epsilon**: a set convergence threshold (default is set to 0.00001).
- **silent**: if TRUE, the convergence message (which tells the user if the model has converged and reports the number of iterations required) is suppressed (default is set to FALSE).

Value

MCEMfit_CR returns model coefficient and population size estimates with standard errors and the effective sample size.

Warning

This function is still under development. Currently the function can only fit the CR model used in the manuscript. IT DOES NOT SUPPORT ALL VGAM families.

Author(s)

Jakub Stoklosa, Wen-Han Hwang and David I. Warton.

Source

See https://github.com/JakubStats/refitME for an RMarkdown vignette with examples.
References

See Also

MCEMfit_glm

Examples

A VGAM example using the Prinia flaviventris capture-recapture data.

library(refitME)
library(VGAM)

data(Priniadata)

tau <- 17 # No. of capture occasions.
w1 <- Priniadata$w1 # Bird wing length predictor.

CR_naiv <- vglm(cbind(cap, noncap) ~ w1,
 VGAM::posbinomial(omit.constant = TRUE, parallel = TRUE ~ w1),
 data = Priniadata, trace = FALSE)

sigma.sq.u <- 0.37 # ME variance.

CR_MCEM <- refitME(CR_naiv, sigma.sq.u)

detach(package:VGAM)

MCEMfit_gam

Function for wrapping the MCEM algorithm on gam objects

Description

Function for wrapping the MCEM algorithm on GAMs where predictors are subject to measurement error/error-in-variables.

Usage

MCEMfit_gam(
 mod,
 family,
 sigma.sq.u,
 B = 50,
 epsilon = 1e-05,
 silent = FALSE,
 ...
)
Arguments

- **mod**: a `gam` object (this is the naive fitted model). Make sure the first p input predictor variables entered in the naive model are the specified error-contaminated variables. These p predictors also need the measurement error variance to be specified in `sigma.sq.u`, see below.

- **family**: a specified family/distribution.

- **sigma.sq.u**: measurement error (ME) variance. A scalar if there is only one error-contaminated predictor variable, otherwise this must be stored as a vector (of ME variances) or a matrix if the ME covariance matrix is known.

- **B**: the number of Monte Carlo replication values (default is set to 50).

- **epsilon**: convergence threshold (default is set to 0.00001).

- **silent**: if `TRUE`, the convergence message (which tells the user if the model has converged and reports the number of iterations required) is suppressed (default is set to `FALSE`).

- **...**: further arguments passed to `gam`.

Value

`MCEMfit_gam` returns the original naive fitted model object but coefficient estimates and the covariance matrix have been replaced with the final MCEM model fit. Standard errors and the effective sample size (which diagnose how closely the proposal distribution matches the posterior, see equation (2) of Stoklosa, Hwang and Warton) have also been included as outputs.

Author(s)

Jakub Stoklosa, Wen-Han Hwang and David I. Warton.

Source

See https://github.com/JakubStats/refitME for an RMarkdown vignette with examples.

References

See Also

`MCEMfit_glm`
Examples

A GAM example using the air pollution data set from the SemiPar package.

library(refitME)
library(SemiPar)
library(mgcv)
library(dplyr)

data(milan.mort)

dat.air <- sample_n(milan.mort, 100) # Takes a random sample of size 100.

n <- length(Y)

z1 <- (dat.air[, 1])
z2 <- (dat.air[, 4])
z3 <- (dat.air[, 5])
w1 <- log(dat.air[, 9]) # The error-contaminated predictor (total suspended particles).

dat <- data.frame(cbind(Y, w1, z1, z2, z3))

gam_naiv <- gam(Y ~ s(w1), family = "poisson", data = dat)

sigma.sq.u <- 0.0915 # Measurement error variance.

B <- 10 # Consider increasing this if you want a more accurate answer.

gam_MCEM <- refitME(gam_naiv, sigma.sq.u, B)

plot(gam_MCEM, select = 1)

detach(package:mgcv)

MCEMfit_gen

Function for fitting any likelihood-based model using the MCEM algorithm

Description

Function for wrapping the MCEM algorithm on any likelihood-based model where predictors are subject to measurement error/error-in-variables.

Usage

MCEMfit_gen(
 mod,
family,
sigma.sq.u,
\(B = 50 \),
epsilon = 1e-05,
silent = FALSE,
theta.est = 1,
shape.est = 1,
...
)

Arguments

mod : a model object (this is the naive fitted model). Make sure the first \(p \) input predictor variables entered in the naive model are the specified error-contaminated variables. These \(p \) predictors also need the measurement error variance to be specified in sigma.sq.u, see below.

family : a specified family/distribution.

sigma.sq.u : measurement error (ME) variance. A scalar if there is only one error-contaminated predictor variable, otherwise this must be stored as a vector (of ME variances) or a matrix if the ME covariance matrix is known.

\(B \) : the number of Monte Carlo replication values (default is set to 50).

epsilon : a set convergence threshold (default is set to 0.00001).

silent : if TRUE, the convergence message (which tells the user if the model has converged and reports the number of iterations required) is suppressed (default is set to FALSE).

theta.est : an initial value for the dispersion parameter (this is required for fitting negative binomial models).

shape.est : an initial value for the shape parameter (this is required for fitting gamma models).

... : further arguments passed through to the function that was used to fit mod, that will be used in refitting. These need only be specified if making changes to the arguments as compared to the original call that produced mod.

Value

MCEMfit_gen returns the original naive fitted model object but coefficient estimates and residuals have been replaced with the final MCEM model fit. Standard errors are included and returned, if mod is a class of object accepted by the sandwich package (such as glm, gam, survreg and many more).

Author(s)

Jakub Stoklosa, Wen-Han Hwang and David I. Warton.
References

See Also
MCEMfit_glm and MCEMfit_gam

MCEMfit_glm Function for wrapping the MCEM algorithm on lm or glm objects

Description
Function for wrapping the MCEM algorithm on GLMs where predictors are subject to measurement error/error-in-variables.

Usage
MCEMfit_glm(
 mod,
 family,
 sigma.sq.u,
 B = 50,
 epsilon = 1e-05,
 silent = FALSE,
 ...
)

Arguments
mod : a lm(glm object (this is the naive fitted model). Make sure the first p input predictor variables entered in the naive model are the specified error-contaminated variables. These p predictors also need the measurement error variance to be specified in sigma.sq.u, see below.
family : a specified family/distribution.
sigma.sq.u : measurement error (ME) variance. A scalar if there is only one error-contaminated predictor variable, otherwise this must be stored as a vector (of ME variances) or a matrix if the ME covariance matrix is known.
B : the number of Monte Carlo replication values (default is set to 50).
epsilon : a set convergence threshold (default is set to 0.00001).
silent : if TRUE, the convergence message (which tells the user if the model has converged and reports the number of iterations required) is suppressed (default is set to FALSE).
... : further arguments passed to lm or glm.
Value

MCEMfit_glm returns the naive fitted model object where coefficient estimates, the covariance matrix, fitted values, the log-likelihood, and residuals have been replaced with the final MCEM model fit. Standard errors and the effective sample size (which diagnose how closely the proposal distribution matches the posterior, see equation (2) of Stoklosa, Hwang and Warton) have also been included as outputs.

Author(s)

Jakub Stoklosa, Wen-Han Hwang and David I. Warton.

Source

See https://github.com/JakubStats/refitME for an RMarkdown vignette with examples.

References

See Also

MCEMfit_gam

Examples

A GLM example I - binary response data.
library(refitME)
data(Framinghamdata)
glm_naiv <- glm(Y ~ w1 + z1 + z2 + z3, x = TRUE, family = binomial, data = Framinghamdata)
The error-contaminated predictor in this example is systolic blood pressure (w1).
sigma.sq.u <- 0.006295 # ME variance, as obtained from Carroll et al. (2006) monograph.
B <- 50 # The number of Monte Carlo replication values.
glm_MCEM <- refitME(glm_naiv, sigma.sq.u, B)
Priniadata
The yellow-bellied Prinia Prinia flaviventris capture-recapture data

Description

Data set consisting of capture-recapture histories 164 uniquely captured birds across 17 weekly capture occasions. Bird wing lengths were also measured in the study.

Usage

Priniadata

Format

A data set that contains: 3 columns with 164 observations. The columns are defined as follows:

w1 Bird wing lengths.
cap Number of times the individual was captured.
noncap Number of times the individual was not captured.

Source

See Hwang, Huang and Wang (2007) for full details on the data and study.

References

Examples

Load the data.
data(Priniadata)

refitME
A wrapper function for correcting measurement error in predictor variables via the MCEM algorithm

Description

Function that extracts the fitted (naive) model object and wraps the MCEM algorithm to correct for measurement error/error-in-variables in predictors.

Usage

refitME(mod, sigma.sq.u, B = 50, epsilon = 1e-05, silent = FALSE, ...)

Arguments

mod : any (S3 class) fitted object that responds to the generic functions family, model.frame, update and predict, and accepts weighted observations via weights. The mod argument specifies the naive fitted model. Make sure the first p input predictor variables in the naive model are the selected error-contaminated predictors variables. Also, the mod argument allows vglm/vgam (S4 class) model objects when using the posbinomial family – this is a specific function developed for fitting closed population capture–recapture models, see MCEMfit_CR.

sigma.sq.u : measurement error (ME) variance. A scalar if there is only one error-contaminated predictor variable, otherwise this must be stored as a vector (of known ME variances) or a matrix if the ME covariance matrix is known.

B : the number of Monte Carlo replication values (default is set 50).

epsilon : convergence threshold (default is set to 0.00001).

silent : if TRUE, the convergence message (which tells the user if the model has converged and reports the number of iterations required) is suppressed (default is set to FALSE).

... : further arguments passed through to the function that was used to fit mod, that will be used in refitting. These need only be specified if making changes to the arguments as compared to the original call that produced mod.

Value

refitME returns the naive fitted model object where coefficient estimates, the covariance matrix, fitted values, the log-likelihood, and residuals have been replaced with the final MCEM model fit. Standard errors are included and returned, if mod is a class of object accepted by the sandwich package (such as glm, gam, survreg and many more). The effective sample size (which diagnose how closely the proposal distribution matches the posterior, see equation (2) of Stoklosa, Hwang and Warton) have also been included as outputs.

Author(s)

Jakub Stoklosa, Wen-Han Hwang and David I. Warton.

Source

See https://github.com/JakubStats/refitME for an RMarkdown vignette with examples.

References

See Also

MCEMfit_glm, MCEMfit_gam and MCEMfit_gen
Examples

A GLM example I - binary response data.

library(refitME)

data(Framinghamdata)

glm_naiv <- glm(Y ~ w1 + z1 + z2 + z3, x = TRUE, family = binomial, data = Framinghamdata)

The error-contaminated predictor variable in this example is systolic blood pressure (w1).

sigma.sq.u <- 0.01259/2 # ME variance, as obtained from Carroll et al. (2006) monograph.

B <- 50 # The number of Monte Carlo replication values.

glm_MCEM <- refitME(glm_naiv, sigma.sq.u, B)

sqrt.na

Function that replaces NA with zero for a matrix

Description

This function replaces NA with zero for a matrix.

Usage

S3 method for class 'na'

sqrt(x)

Arguments

x : a matrix

Value

sqrt.na returns a matrix.

Author(s)

Jakub Stoklosa
wt.var

Function that calculates a weighted variance

Description

This function that calculates a weighted variance for a given vector.

Usage

wt.var(x, w)

Arguments

x : a vector of numerical data.
w : a vector of equal length to x representing the weights.

Value

wt.var returns a single value from analysis requested.

Source

The developer of this function is Jeremy VanDerWal. See https://rdrr.io/cran/SDMTools/src/R/wt.mean.R

Examples

Define simple data
x = 1:25 # Set of numbers.
wt = runif(25) # Some arbitrary weights.

Display variances (unweighted and then weighted).
var(x)
wt.var(x, wt)
Index

* datasets
 Corymbiaeximiadata, 3
 Framinghamdata, 4
 Priniadata, 14

anova, 2
anova.glm, 3
anova.refitME, 2
anova_MCEMfit_glm, 3

Corymbiaeximiadata, 3

Framinghamdata, 4

logLik, 6
logLik.refitME, 5
logLik_MCEMfit_lm, 6

MCEMfit_CR, 7, 15
MCEMfit_gam, 8, 12, 13, 15
MCEMfit_gen, 10, 15
MCEMfit_glm, 8, 9, 12, 12, 15

Priniadata, 14

refitME, 14

sqrt.na, 16
stat.anova, 2

wt.var, 17