Package ‘refund.shiny’

November 13, 2016

Title Interactive Plotting for Functional Data Analyses
Version 0.3.0
Description Interactive plotting for functional data analyses.
Depends R (>= 3.0.1)
Imports ggplot2, tidyr, shiny (>= 0.11), reshape2, dplyr, gridExtra,
lme4, plotly, refund
License GPL (>= 2)
LazyData true
Repository CRAN
RoxygenNote 5.0.1
NeedsCompilation no
Author Julia Wrobel [aut, cre],
 Jeff Goldsmith [aut]
Maintainer Julia Wrobel <jw3134@columbia.edu>
Date/Publication 2016-11-13 00:42:23

R topics documented:

as_refundObj .. 2
as_refundObj.matrix ... 3
bakeLasagna .. 4
combinat .. 4
createInputCall ... 5
createInvLink .. 5
downloadModule ... 6
downloadModuleUI ... 6
fMBD ... 7
makeLasagna .. 7
mf pcaCalls ... 8
outliers ... 8
plot_shiny .. 9
plot_shiny.flcm ... 12
as_refundObj

Convert data to refund objects for use in functional data analyses

Description

Very experimental function, primarily used to convert matrices storing functional data to data.frames with specific variable names.

Usage

```r
as_refundObj(obj, ...)
```

Arguments

- `obj`: Object to be converted. Currently supports class `matrix`, formatted so that rows contain functional observations on subjects.
- `...`: additional arguments to be passed to methods.

Value

An object of classes `data.frame` and `refund.object`, the latter of which is so far not used. Columns are `id` (taken from the rownames of `obj`, if they exist), `index` (with behavior described above), and `value` (taken from entries in `obj`).

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>

Examples

```r
## Not run:
library(ggplot2)
library(refund)

cca_df = as_refundObj(DTI$cca)
```
as_refundObj.matrix

```
ggplot(cca_df, aes(x = index, y = value, group = id)) + geom_line()

## End(Not run)
```

as_refundObj.matrix Convert matrices to dataframes for use in functional data analyses

Description

Convert matrices to dataframes for use in functional data analyses

Usage

```
## S3 method for class 'matrix'
as_refundObj(obj, index = NULL, ...)
```

Arguments

- `obj` Matrix object to be converted; rows contain functional observations on subjects.
- `index` Time grid on which functional data are observed; defaults to NULL, which assumes an equally-spaced grid on \([0,1]\).
- `...` additional arguments to be passed to methods (not used).

Value

An object of classes `data.frame` and `refund.object`, the latter of which is so far not used. Columns are `id` (taken from the rownames of `obj`, if they exist), `index` (with behavior described above), and `value` (taken from entries in `obj`).

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>

Examples

```
## Not run:
library(ggplot2)
library(refund)

cca_df = as_refundObj(DTI$cca)
ggplot(cca_df, aes(x = index, y = value, group = id)) + geom_line()

## End(Not run)
```
bakeLasagna

Create side-by-side lasagna plot and density plot

Description

Internal method used in conjunction with `makeLasagna()` to create side-by-side lasagna plot and distribution plot. The distribution plot gives distribution of sorting covariate.

Usage

```
bakeLasagna(data, data.long, covariate = NULL)
```

Arguments

- `data`
 Dataset for lasagna plot. Same data used in `makeLasagna()` function.
- `data.long`
 Sorted longform dataset for lasagna plot output by `makeLasagna()` function.
- `covariate`
 User-selected covariate for sorting the rows in the lasagna plot. Defaults to NULL, in which case data is sorted by row number.

Author(s)

Julia Wrobel <ajg2202@columbia.edu>
Nicole Marie Lapointe Jameson

combinat

internal function from 'fda' package

Description

function used in method for fast modified band depth (MBD) calculation

Usage

```
combinat(n, p)
```

Arguments

- `n`
 number of columns in your dataset
- `p`
 number of rows in your dataset

Author(s)

Ying Sun and Marc G. Genton
createInputCall

Create input calls for plot_shiny.fosr()

Description

Internal method that constructs the input calls for plot_shiny.fosr(). The variable name and values are passed as arguments, and a corresponding slider (for numeric) or drop-down (for factor) input is constructed.

Usage

createInputCall(name, variable)

Arguments

name variable name
variable variable values from dataset

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

createInvLink

Return inverse link function for plot_shiny.fpca()

Description

Internal method that constructs the inverse link function for a generalized FPCA fit. This is used in toggling between plots on the natural scale and on the response scale.

Usage

createInvLink(family = NULL)

Arguments

family Family of the (generalized) FPCA. Currently supported families are gaussian and binomial.

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>
downloadModule

download Plot as PDF or ggplot Object, modularized server

Description

Internal method that creates UI with buttons to download a plot as a PDF or ggplot object.

Usage

```
downloadModule(input, output, session, plotObject, plotName)
```

Arguments

- `input`: gets user input from UI
- `output`: designates output for UI
- `session`: Shiny variable for server modules
- `plotObject`: Reactive plot object defined elsewhere in the server function.
- `plotName`: Character string designating name of the plot for PDF output.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>

downloadModuleUI

download Plot as PDF or ggplot Object, modularized UI

Description

Internal method that creates UI with buttons to download a plot as a PDF or ggplot object.

Usage

```
downloadModuleUI(id)
```

Arguments

- `id`: name of module. Allows each call of this module to be uniquely identified.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>
fMBD

fast modified band depth calculation for fda Method for fast modified band depth (fMBD) calculation

Description

fast modified band depth calculation for fda Method for fast modified band depth (fMBD) calculation

Usage

```r
fMBD(data)
```

Arguments

- `data` name of dataset

Author(s)

Ying Sun and Marc G. Genton

makeLasagna

Pre-process data for lasagna plot

Description

Internal method that takes a dataframe of observed data with an outcome matrix and user-selected covariate, sorts outcome by the selected covariate, and assigns heights to each row based on value of the selected covariate. The resulting dataframe is used with `bakeLasagna()` to create lasagna plot.

Usage

```r
makeLasagna(data, outcome, covariate = NULL)
```

Arguments

- `data` Dataset for lasagna plot.
- `outcome` Matrix of values where each row represents a functional observation.
- `covariate` User-selected covariate for sorting the rows in the lasagna plot. Defaults to NULL, in which case data is sorted by row number.

Author(s)

Julia Wrobel <ajg2202@cumc.columbia.edu>

Nicole Marie Lapointe Jameson
mfpcacalls

Create input calls for plot_shiny.mfpcas()

Description

Internal method that constructs the input calls for plot_shiny.mfpcas(). The number of sliders to construct for each level is passed as an argument, and corresponding sliders for each FPC are constructed.

Usage

mfpcacalls(plot.npc, plotObj, percents)

Arguments

- **plot.npc**
 - list of 2 numeric entries giving number of sliders at each level
- **plotObj**
 - the mfpcas object plotted in the plot_shiny.mfpcas() function.
- **percents**
 - the percent variance calculated for each eigen values for levels 1 and 2.

Value

a list of numbers that indicate percent variance for selected level.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>

outliers

Identifies outliers for plot_shiny.fos()

Description

Internal method that assigns band depth values to curves based on exact fast MBD computation (Sun & Genton, 2012). Code modified from fbplot in fda package. A dataframe of residuals is passed as an argument, and depths and outlying curves are returned.

Usage

outliers(data, factor = 1.5)

Arguments

- **data**
 - matrix or df of functional observations
- **factor**
 - a constant that determines the fences for outliers. Defaults to 1.5, as in classical definition for Tukey outliers.
Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>

References

plot_shiny

The generic function for interactive plots of functional data analyses

Description

Interactive Plotting for Functional Data

Usage

plot_shiny(obj, ...)

Arguments

obj object to be plotted. Currently, allowed data types are fpca mfpca lfpca and fosr.

... additional arguments passed to plotting functions

Details

Function for interactive plotting of functional data analysis results.

This package builds on the refund package: tools in refund are used to conduct analyses and functions in this package create interactive visualizations of the results of those analyses. There are four major categories of analyses that can be viewed:

1. Functional principal components analyses implemented by fpca, sc, fpca, face, fpca, ss, and fpca2s. Plots show the mean +/- 2SD times each FPC; scree plots; linear combinations of score values and FPCs; reconstructions for each subject; and score scatterplots.

2. Function-on-scalar regression analyses implemented by bayes_fosr. Plots show the raw data colored by covariate values; fitted values depending on covariates; coefficient functions; and residuals.

3. Multilevel functional principal components analyses implemented by mfpca.sc. Plots show the mean +/- 2SD times each FPC; scree plots; linear combinations of score values and FPCs; reconstructions for each subject; and score scatterplots for levels 1 and 2.

4. Longitudinal functional principal components analyses
plot_shiny

Author(s)
Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Julia Wrobel <jw3134@cumc.columbia.edu>

See Also
plot_shiny.f pca, plot_shiny.m pca, plot_shiny.f osr

Examples

Not run:

library(refund)
library(dplyr)

FPCA Example on real data
data(cd4)
SC = fpca.sc(cd4)
plot_shiny(SC)

FPCA Examples on simulated data

set.seed(2678695)
n = 101
m = 101
s1 = 20
s2 = 10
s = 4
t = seq(-1, 1, len=m)
v1 = t + sin(pi*t)
v2 = cos(3*pi*t)
Y = cbind(v1/sqrt(sum(v1^2)), v2/sqrt(sum(v2^2)))
U = matrix(rnorm(n*2), n, 2)
D = diag(c(s1^2, s2^2))
eps = matrix(rnorm(m*n, sd=s), n, m)
Y = U%*%D%*%t(Y) + eps

SC = fpca.sc(Y)
FACE = fpca.face(Y)
SSVD = fpca.ssvd(Y, verbose=FALSE)
S = fpca2s(Y)

plot_shiny(SC)
plot_shiny(FACE)
plot_shiny(SSVD)
plot_shiny(S)

#' ###### MFPCA Example ######

data(DTI)
Y = DTI$cca
```r
id = DTI$ID

mfpca.dti = mfpca.sc(Y=Y, id = id, twoway = FALSE)
plot_shiny(mfpca.dti)

#### FoSR Example ####

data(DTI)
DTI = DTI[complete.cases(DTI),]
fit.fosr = bayes_fosr(cca ~ pasat + sex, data = DTI)
plot_shiny(fit.fosr)

#### FoSR Example with outliers ####

DTI$cca[1,] = DTI$cca[1,] + .4
DTI$cca[2,] = DTI$cca[2,] + .4

fosr.dti2 = bayes_fosr(cca ~ pasat + sex, data = DTI)
plot_shiny(fosr.dti2)

#### Longitudinal FoSR Examples ####

data(DTI2)
class(DTI2$cca) = class(DTI2$cca)[-1]
DTI2 = subset(DTI2, select = c(cca, id, pasat))
DTI2 = DTI2[complete.cases(DTI2),]

fosr.dti3 = bayes_fosr(cca ~ pasat + re(id), data = DTI2, Kt = 10, Kp = 4, cov.method = "FPCA")
plot_shiny(fosr.dti3)

#### LfPCA Example on real data ####

data(DTI)
MS <- subset(DTI, case ==1)  # subset data with multiple sclerosis (MS) case

index.na <- which(is.na(MS$cca))
Y <- MS$cca; Y[index.na] <- fpca.sc(Y)$Yhat[index.na]; sum(is.na(Y))
id <- MS$ID
visit.index <- MS$visit
cov.Visit <- MS$visit.time/max(MS$visit.time)

lfpcadti1 <- fpca.lfda(Y = Y, subject.index = id, 
visit.index = visit.index, obsT = visit.time, 
LongiModel.method = 'lme',
mFPCA.pve = 0.95)
plot_shiny(lfpcadti1)

lfpcadti2 <- fpca.lfda(Y = Y, subject.index = id, 
visit.index = visit.index, obsT = visit.time, 
LongiModel.method = 'fpca.sc',
mFPCA.pve = 0.80, sFPCA.pve = 0.80)
plot_shiny(lfpcadti2)
```
plot_shiny.flc

plot_shiny.flc

Interactive Plotting for Functional Linear Concurrent regression

Description

Produces an interactive plot illustrating a functional linear concurrent regression analysis.

Usage

```r
## S3 method for class 'flcm'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...)
```

Arguments

- `obj` : fscr object to be plotted.
- `xlab` : x axis label
- `ylab` : y axis label
- `title` : plot title
- `...` : additional arguments passed to plotting functions

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Julia Wrobel <jw3134@cumc.columbia.edu>

See Also

- `plot_shiny`
plot_shiny.fosr

Interactive Plotting for Functional-on-Scalar Regressions

Description

Produces an interactive plot illustrating a function-on-scalar regression analysis.

Usage

```r
## S3 method for class 'fosr'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...)  
```

Arguments

- `obj` fosr object to be plotted.
- `xlab` x axis label
- `ylab` y axis label
- `title` plot title
- `...` additional arguments passed to plotting functions

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Julia Wrobel <jw3134@cumc.columbia.edu>

See Also

`plot_shiny`

plot_shiny.fpca

Interactive Plotting for Functional Principal Component Analysis

Description

Produces an interactive plot illustrating a functional principal component analysis.

Usage

```r
## S3 method for class 'fpca'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...)  
```

plot_shiny.lfpcas

Arguments

- **obj**: fpca object to be plotted.
- **xlab**: x axis label
- **ylab**: y axis label
- **title**: plot title
- **...**: additional arguments passed to plotting functions

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>, Jeff Goldsmith <jeff.goldsmith@columbia.edu>

See Also

plot_shiny

plot_shiny.lfpcas

Interactive Plotting for Longitudinal Functional Data Analysis using FPCA

Description

Produces an interactive plot illustrating longitudinal functional data analysis (Park and Staicu, 2015).

Usage

```r
## S3 method for class 'lfpcas'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...
```

Arguments

- **obj**: lfpcas object to be plotted.
- **xlab**: x axis label
- **ylab**: y axis label
- **title**: plot title
- **...**: additional arguments passed to plotting functions

Author(s)

So Young Park <spark13@ncsu.edu>, Ana-Maria Staicu <astaicu@ncsu.edu>

References

See Also

plot_shiny; fpca.lfda in the refund package for estimation method.
plot_shiny.mfpca

Interactive Plotting for Multilevel Functional Principal Component Analysis

Description

Produces an interactive plot illustrating a multilevel functional principal component analysis.

Usage

S3 method for class 'mfpca'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...)

Arguments

- obj: mfpca object to be plotted.
- xlab: x axis label
- ylab: y axis label
- title: plot title
- ...: additional arguments passed to plotting functions

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>, Jeff Goldsmith <jeff.goldsmith@columbia.edu>

See Also

plot_shiny

savePDF

Save Plot Object as PDF

Description

Internal method that saves plots as PDF. Can be used with all plotting methods in the package. The name of the plot object and its name to be saved under are passed in and the plot is saved as a PDF.

Usage

savePDF(title, plotName)

Arguments

- title: new name for the plot, and name of the PDF file created
- plotName: name of the ggplot object
Description

Internal method that saves ggplot plots as .RData files. Can be used with all plotting methods in the package. The name of the plot object and it's name to be saved under are passed in and the plot is saved as an RData file.

Usage

```r
savePlot(title, plotName)
```

Arguments

- `title`: new name for the plot, and name of the RData file created.
- `plotName`: name of the ggplot object.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>

tabPanelModule

download Plot as PDF or ggplot Object, modularized server

Description

Internal method that creates UI with buttons to download a plot as a PDF or ggplot object.

Usage

```r
tabPanelModule(input, output, session, plotObject = NULL, plotName = NULL,
               plotObject2 = NULL, plotName2 = NULL, is.plotly = FALSE,
               is.grid = FALSE)
```
Arguments

input gets user input from UI
output designates output for UI.
session Shiny variable for server modules.
plotObject Reactive plot object defined elsewhere in the server function.
plotName Character string designating name of the plot for PDF output.
plotObject2 Reactive plot object for the (optional) second plot.
plotName2 Character string designating name of the (optional) second plot for the PDF output.
is.plotly Indicates if plots are plotly generated. Defaults to FALSE.
is.grid Indicates if plot is generated using grid.arrange() to arrange ggplot objects. If TRUE, prints plot object implicitly rather than explicitly.

Author(s)

Julia Wrobel <jw3134@columbia.edu>

Description

Creates a UI tab with helpText, widgets for user input, a plot, and standardized layout. The default is to create one plot, but if the argument 'twoPlots' is set to TRUE, then the layout allows for two plots, where each can have separate helper text and Shiny widget calls.

Usage

tabpanelModuleUI(id, tabTitle, icon = NULL, calls = NULL,
helperText = NULL, twoPlots = FALSE, calls2 = NULL,
helperText2 = NULL, title2 = NULL, brushName = NULL,
is.plotly = FALSE)

Arguments

id Name of module. Allows each call of this module to be uniquely identified.
tabTitle Title of the tab, visible in UI
icon Optional icon to appear on the tab. This attribute is only valid when using a tabPanel within a navbarPage.
calls Unevaluated expression that stores Shiny widgets (for example, a call to a sliderInput function) for the tab.
helpertext Optional help text for the tab.
varPercent

twoPlots defaults to FALSE, and layout is generated for one plot. If TRUE, layout is generated for two plots

Unevaluated expression that stores Shiny widgets for the (optional) second plot

Helper Text for the (optional) second plot

Plot title for the (optional) second plot

Character vector indicating the name of brush if you want brushing for the plot. For use in score scatterplots for `plot_shiny.f pca()` and `plot_shiny.m f pca()`.

Indicates if plots are plotly generated. Defaults to FALSE.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>

varPercent | Calculate percent variance of eigenvalues for plot_shiny.mf pca() |

Description

Internal method that calculates percent variance of eigenvalues for specified level (1, 2, or total) for `plot_shiny.mf pca()`(). The desired level is passed in as an argument (level = 12 for total) and a list of percent variances is returned.

Usage

```r
varPercent(level, plotObj)
```

Arguments

- `level` numeric, 1 or 2 for levels 1 or 2, respectively, 12 to calculate total variance.
- `plotObj` the mf pca object plotted in the `plot_shiny.mf pca()` function.

Value

A list of numbers that indicate percent variance for selected level.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>
Index

as_refundObj, 2
as_refundObj.matrix, 3

bakeLasagna, 4
bayes_fosr, 9

combinat, 4
createInputCall, 5
createInvLink, 5

downloadModule, 6
downloadModuleUI, 6

fMBD, 7
fpca.face, 9
fpca.sc, 9
fpca.ssvd, 9
fpca2s, 9

makeLasagna, 7
mfpca.sc, 9
mfpcaCalls, 8

outliers, 8

plot_shiny, 9, 12–15
plot_shiny.flcm, 12
plot_shiny.fosr, 10, 13
plot_shiny.fpca, 10, 13
plot_shiny.lfpca, 14
plot_shiny.mfpca, 10, 15

savePDF, 15
savePlot, 16

tabPanelModule, 16
tabPanelModuleUI, 17

varPercent, 18