Package ‘refund.shiny’

October 14, 2022

Title Interactive Plotting for Functional Data Analyses

Version 1.0

Date 2022-10-07

Description

Produces Shiny applications for different types of popular functional data analyses. The functional data analyses are implemented in the refund package, then refund.shiny reads in the refund object and implements an object-specific set of plots based on the object class using S3.

Depends R (>= 3.0.1)

Imports ggplot2, tidyr, shiny (>= 0.11), reshape2, dplyr, gridExtra, lme4, plotly, refund

License GPL (>= 2)

Encoding UTF-8

Repository CRAN

RoxygenNote 7.2.0

Suggests testthat, registr

NeedsCompilation no

Author Julia Wrobel [aut, cre],
Jeff Goldsmith [aut]

Maintainer Julia Wrobel <julia.wrobel@cuanschutz.edu>

Date/Publication 2022-10-10 18:40:02 UTC

R topics documented:

as_refundObj ... 2
as_refundObj.matrix ... 3
bakeLasagna ... 4
combinat .. 4
createInputCall .. 5
createInvLink .. 5
downloadModule ... 6
downloadModuleUI ... 6
as_refundObj

Convert data to refund objects for use in functional data analyses

Description

Very experimental function, primarily used to convert matrices storing functional data to data.frames with specific variable names.

Usage

as_refundObj(obj, ...)

Arguments

obj

Object to be converted. Currently supports class matrix, formatted so that rows contain functional observations on subjects.

...

additional arguments to be passed to methods.

Value

An object of classes data.frame and refund.object, the latter of which is so far not used. Columns are id (taken from the rownames of obj, if they exist), index (with behavior described above), and value (taken from entries in obj).
as_refundObj.matrix

Description

Convert matrices to dataframes for use in functional data analyses

Usage

S3 method for class 'matrix'
as_refundObj(obj, index = NULL, ...)

Arguments

- obj: Matrix object to be converted; rows contain functional observations on subjects.
- index: Time grid on which functional data are observed; defaults to NULL, which assumes an equally-spaced grid on [0,1].
- ...: additional arguments to be passed to methods (not used).

Value

An object of classes data.frame and refund.object, the latter of which is so far not used. Columns are id (taken from the rownames of obj, if they exist), index (with behavior described above), and value (taken from entries in obj).

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>
Examples

```r
library(ggplot2)
library(refund)

cca_df = as_refundObj(DTI$cca)
ggplot(cca_df, aes(x = index, y = value, group = id)) + geom_line()
```

bakeLasagna

Create side-by-side lasagna plot and density plot

Description

Internal method used in conjunction with makeLasagna() to create side-by-side lasagna plot and distribution plot. The distribution plot gives distribution of sorting covariate.

Usage

```r
bakeLasagna(data, data.long, covariate = NULL)
```

Arguments

- `data` Dataset for lasagna plot. Same data used in makeLasagna() function.
- `data.long` Sorted longform dataset for lasagna plot output by makeLasagna() function.
- `covariate` User-selected covariate for sorting the rows in the lasagna plot. Defaults to NULL, in which case data is sorted by row number.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>

combinat

internal function from 'fda' package

Description

function used in method for fast modified band depth (MBD) calculation

Usage

```r
combinat(n, p)
```
createInputCall

Arguments

n number of columns in your dataset
p number of rows in your dataset

Author(s)

Ying Sun and Marc G. Genton

createInputCall

Create input calls for plot_shiny.fosr()

Description

Internal method that constructs the input calls for plot_shiny.fosr(). The variable name and values are passed as arguments, and a corresponding slider (for numeric) or drop-down (for factor) input is constructed.

Usage

createInputCall(name, variable)

Arguments

name variable name
variable variable values from dataset

Author(s)

Jeff Goldsmith <ajg2202@columbia.edu>

createInvLink

Return inverse link function for plot_shiny.fpca()

Description

Internal method that constructs the inverse link function for a generalized FPCA fit. This is used in toggling between plots on the natural scale and on the response scale.

Usage

createInvLink(family = NULL)

Arguments

family Family of the (generalized) FPCA. Currently supported families are gaussian and binomial.
downloadModuleUI

download Plot as PDF or ggplot Object, modularized UI

Description

Internal method that creates UI with buttons to download a plot as a PDF or ggplot object.

Usage

downloadModuleUI(id)

Arguments

id name of module. Allows each call of this module to be uniquely identified.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>
fMBD

fast modified band depth calculation for fda Method for fast modified band depth (fMBD) calculation

Description

fast modified band depth calculation for fda
Method for fast modified band depth (fMBD) calculation

Usage

```r
fMBD(data)
```

Arguments

- `data` name of dataset

Author(s)

Ying Sun and Marc G. Genton

getWidth

Get spaces between timepoints as widths for binary registration lasagna plot.

Description

Get spaces between timepoints as widths for binary registration lasagna plot.

Usage

```r
getWidth(z)
```

Arguments

- `z` time values for a specific subject

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>
makeLasagna
Pre-process data for lasagna plot

Description
Internal method that takes a dataframe of observed data with an outcome matrix and user-selected covariate, sorts outcome by the selected covariate, and assigns heights to each row based on value of the selected covariate. The resulting dataframe is used with bakeLasagna() to create lasagna plot.

Usage
makeLasagna(data, outcome, covariate = NULL)

Arguments
data Dataset for lasagna plot.
outcome Matrix of values where each row represents a functional observation.
covariate User-selected covariate for sorting the rows in the lasagna plot. Defaults to NULL, in which case data is sorted by row number.

Author(s)
Julia Wrobel <julia.wrobel@cuanschutz.edu>

make_linCom
Create lincom plot for FPCA panels

Description
Produces a ggplot with mean and sliders to change weighting of each PC; allows you to obtain range of potential fitted values.

Usage
make_linCom(obj, pc_weights, response_scale = FALSE)

Arguments
obj fpca object to be plotted.
pc_weights User-selected weights for FPCs
response_scale Scale of response to be plotted. If TRUE results are plotted on response scale, if FALSE results are plotted on natural scale.
make_muPC

Create muPC plot for FPCA panels

Description

Produces a ggplot with mean plus or minus two standard deviations of a selected FPC.

Usage

make_muPC(obj, pc_choice, response_scale = FALSE)

Arguments

obj
fpca object to be plotted.

pc_choice
FPC to be plotted.

response_scale
Scale of response to be plotted. If TRUE results are plotted on response scale, if FALSE results are plotted on natural scale.

mfpcaCalls

Create input calls for plot_shiny.mfpca()

Description

Internal method that constructs the input calls for plot_shiny.mfpca(). The number of sliders to construct for each level is passed as an argument, and corresponding sliders for each FPC are constructed.

Usage

mfpcaCalls(plot.npc, plotObj, percents)

Arguments

plot.npc
list of 2 numeric entries giving number of sliders at each level

plotObj
the mfpca object plotted in the plot_shiny.mfpca() function.

percents
the percent variance calculated for each eigen values for levels 1 and 2.

Value

a list of numbers that indicate percent variance for selected level.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>
outliers

Identifies outliers for plot_shiny.fosr()

Description

Internal method that assigns band depth values to curves based on exact fast MBD computation (Sun & Genton, 2012). Code modified from fbplot in fda package. A dataframe of residuals is passed as an argument, and depths and outlying curves are returned.

Usage

outliers(data, factor = 1.5)

Arguments

data matrix or df of functional observations

factor a constant that determines the fences for outliers. Defaults to 1.5, as in classical definition for Tukey outliers.

Author(s)

Julia Wrobel <jw3134@cumc.columbia.edu>

References

plot_shiny

The generic function for interactive plots of functional data analyses

Description

Interactive Plotting for Functional Data

Usage

plot_shiny(obj, ...)

Arguments

obj
object to be plotted. Currently, allowed data types are fpca mfpcalfpca and fosr.

...
additional arguments passed to plotting functions

Details

Function for interactive plotting of functional data analysis results.

This package builds on the refund package: tools in refund are used to conduct analyses and functions in this package create interactive visualizations of the results of those analyses. There are four major categories of analyses that can be viewed:

1. Functional principal components analyses implemented by fpca.sc, fpca.face, fpca.ssvd, and fpca2s. Plots show the mean +/- 2SD times each FPC; scree plots; linear combinations of score values and FPCs; reconstructions for each subject; and score scatterplots.

2. Function-on-scalar regression analyses implemented by bayes_fosr. Plots show the raw data colored by covariate values; fitted values depending on covariates; coefficient functions; and residuals.

3. Multilevel functional principal components analyses implemented by mfpca.sc. Plots show the mean +/- 2SD times each FPC; scree plots; linear combinations of score values and FPCs; reconstructions for each subject; and score scatterplots for levels 1 and 2. #'

4. Longitudinal functional principal components analyses

Value

This function outputs a shiny app based on the class of the input object.

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Julia Wrobel <julia.wrobel@cuanschutz.edu>

See Also

plot_shiny.fpca, plot_shiny.mfpcalplot_shiny.fosr

Examples

```r
## Not run:
library(dplyr)

##### FPCA Example on real data #####

data(cd4)
SC = fpca.sc(cd4)
plot_shiny(SC)

##### FoSR Example #####
```
data(DTI)
DTI = DTI[complete.cases(DTI),]
fit.fosr = refund::bayes_fosr(cca ~ pasat + sex, data = DTI)
plot_shiny(fit.fosr)

FoSR Example with outliers

DTI$cca[1,] = DTI$cca[1,] + .4
DTI$cca[2,] = DTI$cca[2,] + .4

fosr.dti2 = bayes_fosr(cca ~ pasat + sex, data = DTI)
plot_shiny(fosr.dti2)

Longitudinal FoSR Examples

data(DTI2)
class(DTI2$cca) = class(DTI2$cca)[-1]
DTI2 = subset(DTI2, select = c(cca, id, pasat))
DTI2 = DTI2[complete.cases(DTI2),]

fosr.dti3 = bayes_fosr(cca ~ pasat + re(id), data = DTI2, Kt = 10, Kp = 4, cov.method = "FPCA")
plot_shiny(fosr.dti3)
plot_shiny(fosr.dti3$fpc.obj)

LFPCA Example on real data

data(DTI)
MS <- subset(DTI, case == 1) # subset data with multiple sclerosis (MS) case

index.na <- which(is.na(MS$cca))
Y <- MS$cca; Y[index.na] <- fpca.sc(Y)$Yhat[index.na]; sum(is.na(Y))
id <- MS$ID
visit.index <- MS$visit
visit.time <- MS$visit.time/max(MS$visit.time)

lfpcadata(Y = Y, subject.index = id,
visit.index = visit.index, obsT = visit.time,
LongiModel.method = 'lme',
mFPCA.pve = 0.95)
plot_shiny(lfpcadata)

lfpcadata(Y = Y, subject.index = id,
visit.index = visit.index, obsT = visit.time,
LongiModel.method = 'fpca.sc',
mFPCA.pve = 0.80, sFPCA.pve = 0.80)
plot_shiny(lfpcadata)

End(Not run)
plot_shiny.flcm

Interactive Plotting for Functional Linear Concurrent regression

Description

Produces an interactive plot illustrating a functional linear concurrent regression analysis.

Usage

S3 method for class 'flcm'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...)

Arguments

obj
 fosr object to be plotted.

xlab
 x axis label

ylab
 y axis label

title
 plot title

... additional arguments passed to plotting functions

Value

No object is returned. This function takes in objects of class 'fosr' and outputs a shiny application for that object.

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Julia Wrobel <julia.wrobel@cuanschutz.edu>

See Also

plot_shiny

plot_shiny.fosr

Interactive Plotting for Functional-on-Scalar Regressions

Description

Produces an interactive plot illustrating a function-on-scalar regression analysis.

Usage

S3 method for class 'fosr'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...)

plot_shiny.fpca

Arguments

- obj: fosr object to be plotted.
- xlab: x axis label
- ylab: y axis label
- title: plot title
- ...: additional arguments passed to plotting functions

Value

No object is returned. This function takes in objects of class 'fosr' and outputs a shiny application for that object.

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Julia Wrobel <julia.wrobel@cuanschutz.edu>

See Also

plot_shiny

plot_shiny.fpca Interactive Plotting for Functional Principal Component Analysis

Description

Produces an interactive plot illustrating a functional principal component analysis.

Usage

```r
## S3 method for class 'fpca'
plot_shiny(obj, xlab = "", ylab = "", title = "", thin_data = FALSE, ...)
```

Arguments

- obj: fpca object to be plotted.
- xlab: x axis label
- ylab: y axis label
- title: plot title
- thin_data: If TRUE data is thinned for each subject to make plotting faster. Defaults to FALSE.
- ...: additional arguments passed to plotting functions

Value

No object is returned. This function takes in objects of class 'fpca' and outputs a shiny application for that object.
plot_shiny.lfpca

Author(s)
Julia Wrobel <julia.wrobel@cuanschutz.edu>, Jeff Goldsmith <jeff.goldsmith@columbia.edu>

See Also
plot_shiny

Description
Produces an interactive plot illustrating longitudinal functional data analysis (Park and Staicu, 2015).

Usage
S3 method for class 'lfpca'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...)

Arguments
- obj: lfpca object to be plotted.
- xlab: x axis label
- ylab: y axis label
- title: plot title
- ...: additional arguments passed to plotting functions

Author(s)
So Young Park <spark13@ncsu.edu>, Ana-Maria Staicu <astaicu@ncsu.edu>

References

See Also
plot_shiny; fpca.lfda in the refund package for estimation method.
plot_shiny.mf pca

Interactive Plotting for Multilevel Functional Principal Component Analysis

Description

Produces an interactive plot illustrating a multilevel functional principal component analysis.

Usage

S3 method for class 'mf pca'
plot_shiny(obj, xlab = "", ylab = "", title = "", ...)

Arguments

obj mf pca object to be plotted.
xlab x axis label
ylab y axis label
title plot title
... additional arguments passed to plotting functions

Value

No object is returned. This function takes in objects of class 'mf pca' and outputs a shiny application for that object.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>, Jeff Goldsmith <jeff.goldsmith@columbia.edu>

See Also

plot_shiny

plot_shiny.registration

Interactive Plotting for Registration Objects

Description

Produces an interactive plot illustrating functional data before and after registration. Our registration method uses FPCA, the FPCA is plotted as well.
Usage

```r
## S3 method for class 'registration'
plot_shiny(obj, xlab = "", ylab = "", title = "", thin_data = FALSE, ...)
```

Arguments

- `obj`: registration object to be plotted.
- `xlab`: x axis label
- `ylab`: y axis label
- `title`: plot title
- `thin_data`: If TRUE data is thinned for each subject to make plotting faster. Defaults to FALSE.
- `...`: additional arguments passed to plotting functions

Value

No object is returned. This function takes in objects of class 'registration' and outputs a shiny application for that object.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>

See Also

- `plot_shiny`

registerLasagna Create lasagna plot for unregistered and registered data

Description

Get registered and unregistered lasagna plots for binary data. Note: should make this compatible for other data types as well. Requires data to have \(t_{\text{hat}} \) and \(t_{\text{star}} \) variables.

Usage

```r
registerLasagna(data)
```

Arguments

- `data`: Dataset for lasagna plot.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>
savePDF

Save Plot Object as PDF

Description
Internal method that saves plots as PDF. Can be used with all plotting methods in the package. The name of the plot object and its name to be saved under are passed in and the plot is saved as a PDF.

Usage
savePDF(title, plotName)

Arguments
- title: new name for the plot, and name of the PDF file created
- plotName: name of the ggplot object

Author(s)
Julia Wrobel <julia.wrobel@cuanschutz.edu>

savePlot

Save Plot Object as .RData file

Description
Internal method that saves ggplot plots as .RData files. Can be used with all plotting methods in the package. The name of the plot object and its name to be saved under are passed in and the plot is saved as an RData file.

Usage
savePlot(title, plotName)

Arguments
- title: new name for the plot, and name of the RData file created.
- plotName: name of the ggplot object.

Author(s)
Julia Wrobel <julia.wrobel@cuanschutz.edu>
Description

Internal method that creates UI with buttons to download a plot as a PDF or ggplot object.

Usage

tabPanelModule(
 input,
 output,
 session,
 plotObject = NULL,
 plotName = NULL,
 plotObject2 = NULL,
 plotName2 = NULL,
 is.plotly = FALSE,
 is.grid = FALSE
)

Arguments

input gets user input from UI
output designates output for UI.
session Shiny variable for server modules.
plotObject Reactive plot object defined elsewhere in the server function.
plotName Character string designating name of the plot for PDF output.
plotObject2 Reactive plot object for the (optional) second plot.
plotName2 Character string designating name of the (optional) second plot for the PDF output
is.plotly Indicates if plots are plotly generated. Defaults to FALSE.
is.grid Indicates if plot is generated using grid.arrange() to arrange ggplot objects. If TRUE, prints plot object implicitly rather than explicitly.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>
Description

Creates a UI tab with help text, widgets for user input, a plot, and standardized layout. The default is to create one plot, but if the argument `twoPlots` is set to TRUE, then the layout allows for two plots, where each can have separate helper text and Shiny widget calls.

Usage

```r
tabPanelModuleUI(
  id,
  tabTitle,
  icon = NULL,
  calls = NULL,
  helperText = NULL,
  twoPlots = FALSE,
  calls2 = NULL,
  helperText2 = NULL,
  title2 = NULL,
  brushName = NULL,
  is.plotly = FALSE
)
```

Arguments

- `id`: Name of module. Allows each call of this module to be uniquely identified.
- `tabTitle`: Title of the tab, visible in UI.
- `icon`: Optional icon to appear on the tab. This attribute is only valid when using a `tabPanel` within a `navbarPage`.
- `calls`: Unevaluated expression that stores Shiny widgets (for example, a call to a `sliderInput` function) for the tab.
- `helperText`: Optional help text for the tab.
- `twoPlots`: defaults to FALSE, and layout is generated for one plot. If TRUE, layout is generated for two plots.
- `calls2`: Unevaluated expression that stores Shiny widgets for the (optional) second plot.
- `helperText2`: Optional help text for the (optional) second plot.
- `title2`: plot title for the (optional) second plot.
- `brushName`: character vector indicating the name of brush if you want brushing for the plot. For use in score scatterplots for `plot_shiny.fpca()` and `plot_shiny.mfpca()`.
- `is.plotly`: Indicates if plots are plotly generated. Defaults to FALSE.

Author(s)

Julia Wrobel <julia.wrobel@cuanschutz.edu>
thin_functional_data

Description
Takes a dense functional dataset in long form and thins it so that there are 100 observations per subject, equally spaced.

Usage
thin_functional_data(Y, length_out = 100)

Arguments
Y functional dataframe
length_out number of points per subject for dataframe that is returned

Author(s)
Julia Wrobel <julia.wrobel@cuanschutz.edu>

varPercent

Calculate percent variance of eigenvalues for plot_shiny.mfPCA()

Description
Internal method that calculates percent variance of eigenvalues for specified level (1, 2, or total) for plot_shiny.mfPCA(). The desired level is passed in as an argument (level = 12 for total) and a list of percent variances is returned.

Usage
varPercent(level, plotObj)

Arguments
level numeric, 1 or 2 for levels 1 or 2, respectively, 12 to calculate total variance.
plotObj the mfPCA object plotted in the plot_shiny.mfPCA() function.

Value
da list of numbers that indicate percent variance for selected level.

Author(s)
Julia Wrobel <julia.wrobel@cuanschutz.edu>
Index

as_refundObj, 2
as_refundObj.matrix, 3

bakeLasagna, 4
bayes_fosr, 11

combinat, 4
createInputCall, 5
createInvLink, 5

downloadModule, 6
downloadModuleUI, 6

fMBD, 7
fpca.face, 11
fpca.sc, 11
fpca.ssvd, 11
fpca2s, 11

getWidth, 7
make_linCom, 8
make_muPC, 9
makeLasagna, 8
mfpca.sc, 11
mfpcaCalls, 9

outliers, 10

plot_shiny, 10, 13–17
plot_shiny.f1cm, 13
plot_shiny.fosr, 11, 13
plot_shiny.fpca, 11, 14
plot_shiny.lfpca, 15
plot_shiny.mfpca, 11, 16
plot_shiny.registration, 16

registerLasagna, 17

savePDF, 18
savePlot, 18