Package `refund`

December 9, 2019

Type Package

Title Regression with Functional Data

Version 0.1-21

Date 2019-12-06

Depends R (>= 3.00.0)

Imports fda, Matrix, lattice, boot, mgcv (>= 1.8-23), MASS, magic, nlme, gamm4, lme4, RLRsim, splines, grpreg, ggplot2, stats, pbs, methods

Suggests RColorBrewer, reshape2, testthat

Description Methods for regression for functional data, including function-on-scalar, scalar-on-function, and function-on-function regression. Some of the functions are applicable to image data.

License GPL (>= 2)

LazyLoad yes

LazyData true

Repository CRAN

Collate 'Omegas.R' 'af.R' 'af_old.R' 'ame.R' 'ccb.fpc.R'
'create.prep.func.R' 'coefficients.pfr.R' 'dt_basis.R'
'irreg2mat.R' 'fbps.R' 'fgam.R' 'fosr.R' 'fosr.perm.R'
'fosr.perm.fit.R' 'fosr.perm.test.R' 'fosr.vs.R' 'fosr2s.R'
'fpc.R' 'fpcas2s.R' 'fpcas.sc.R' 'fpcas.face.R' 'fpcas.ssvd.R'
'fpcr.R' 'fpcr.setup.R' 'lf.R' 'lf_old.R' 'lf.vd.R' 'lofocv.R'
'lpeer.R' 'lfr.R' 'quadWeights.R' 'tw.test.R' 'osplinepen2d.R'
'parse.predict.pfr.R' 'peer.R' 'peer_old.R' 'pfr-ff.R'
'pfr-fpc.R' 'pfr-methods.R' 'pfr-pcre.R' 'pfr-robust.R'
'pfr-sff.R' 'pfr-utilities.R' 'pfr.R' 'pf.R' 'pfr_old.R'
'pi_basis.R' 'plot.fosr.R' 'plot.fosr.perm.R' 'plot.fosr.vs.R'
'plot.fpcr.R' 'plot.lpeer.R' 'plot.peer.R' 'plot.pfr.R'
'poridge.R' 'postprocess.pfr.R' 'predict.fgam.R'
'predict.pfr.R' 'predict.pfr.old.R' 'preprocess.pfr.R'
'pspline.setting.R' 'pwcv.R' 'summary.pfr.R' 're.R'
R topics documented:

'rlrt.pfr.R' 'vis.fgam.R' 'predict.fosr.vs.R' 'CD4-data.R' 'DTI-data.R' 'DTI2-data.R' 'PEER.Sim-data.R' 'gasoline-data.R' 'vis.pfr.R' 'GLS_CS.R' 'Gibbs_CS_FPCA.R' 'Gibbs_CS_Wish.R' 'Gibbs_Mult_FPCA.R' 'Gibbs_Mult_Wish.R' 'OLS_CS.R' 'VB_CS_FPCA.R' 'VB_CS_Wish.R' 'VB_Mult_FPCA.R' 'VB_Mult_Wish.R' 'XtSiginvX.R' 'bayes_fosr.R' 'f_sum.R' 'f_sum2.R' 'f_sum4.R' 'f_trace.R' 'mfpcas.sc.R' 'fpca.lfda.R' 'predict.fbps.R' 'select_knots.R'

RoxygenNote 6.1.1

NeedsCompilation no

Author Jeff Goldsmith [aut], Fabian Scheipl [aut], Lei Huang [aut], Julia Wrobel [aut, cre], Chongzhi Di [aut], Jonathan Gellar [aut], Jaroslaw Harezlak [aut], Mathew W. McLean [aut], Bruce Swihart [aut], Luo Xiao [aut], Ciprian Crainiceanu [aut], Philip T. Reiss [aut], Yakuan Chen [ctb], Sonja Greven [ctb], Lan Huo [ctb], Madan Gopal Kundu [ctb], So Young Park [ctb], David L. Miller [ctb], Ana-Maria Staicu [ctb]

Maintainer Julia Wrobel <julia.wrobel@cuanschutz.edu>

Date/Publication 2019-12-09 18:30:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>Package</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>refund-package</td>
<td>5</td>
</tr>
<tr>
<td>af</td>
<td>5</td>
</tr>
<tr>
<td>af_old</td>
<td>8</td>
</tr>
<tr>
<td>bayes_fosr</td>
<td>10</td>
</tr>
<tr>
<td>ccb.fpc</td>
<td>12</td>
</tr>
<tr>
<td>cd4</td>
<td>14</td>
</tr>
<tr>
<td>cmdscale_lanczos</td>
<td>14</td>
</tr>
<tr>
<td>coef.pfr</td>
<td>15</td>
</tr>
<tr>
<td>coefboot.pfr</td>
<td>17</td>
</tr>
<tr>
<td>coefficients.pfr</td>
<td>18</td>
</tr>
<tr>
<td>create.prep.func</td>
<td>19</td>
</tr>
<tr>
<td>DTI</td>
<td>20</td>
</tr>
</tbody>
</table>
R topics documented:

• DTI2 ... 21
• expand.call ... 22
• fbps ... 23
• ff ... 25
• ffc ... 27
• ffcplot ... 29
• fgam ... 30
• fosr ... 32
• fosr.perm ... 36
• fosr.vs .. 38
• fosr2s ... 40
• fpc ... 42
• fpca.face .. 45
• fpca.lfda ... 48
• fpca.sc .. 54
• fpca.ssvd .. 57
• fpca2s ... 60
• fpcr ... 62
• f_sum ... 66
• f_sum2 ... 66
• f_sum4 ... 67
• f_trace ... 67
• gasoline ... 68
• gibbs_cs_fpca .. 68
• gibbs_cs_wish ... 69
• gibbs_mult_fpca .. 71
• gibbs_mult_wish .. 72
• gls_cs ... 73
• lf ... 74
• lf.vd ... 76
• lf_old .. 79
• lpeer ... 80
• lpfr ... 85
• mfpca.sc ... 87
• model.matrix.pffr ... 89
• ols_cs ... 90
• pco_predict_preprocess .. 90
• pcre ... 92
• peer ... 93
• PEER.Sim .. 95
• peer_old ... 96
• pffr ... 99
• pffr.check ... 103
• pffrGLS .. 104
• pffrSim ... 105
• pfr ... 106
• pfr_old ... 109
• plot.fosr ... 114
<table>
<thead>
<tr>
<th>R topics documented:</th>
</tr>
</thead>
<tbody>
<tr>
<td>plot.fosr.vs</td>
</tr>
<tr>
<td>plot.fpcr</td>
</tr>
<tr>
<td>plot.lpeer</td>
</tr>
<tr>
<td>plot.peer</td>
</tr>
<tr>
<td>plot.pffr</td>
</tr>
<tr>
<td>plot.pfr</td>
</tr>
<tr>
<td>predict.fbps</td>
</tr>
<tr>
<td>predict.fgam</td>
</tr>
<tr>
<td>predict.fosr.vs</td>
</tr>
<tr>
<td>Predict.matrix.dt.smooth</td>
</tr>
<tr>
<td>Predict.matrix.fpc.smooth</td>
</tr>
<tr>
<td>Predict.matrix.pcre.random.effect</td>
</tr>
<tr>
<td>Predict.matrix.peer.smooth</td>
</tr>
<tr>
<td>Predict.matrix.pi.smooth</td>
</tr>
<tr>
<td>predict.pffr</td>
</tr>
<tr>
<td>predict.pfr</td>
</tr>
<tr>
<td>print.summary.pffr</td>
</tr>
<tr>
<td>pwcv</td>
</tr>
<tr>
<td>qq.pffr</td>
</tr>
<tr>
<td>quadWeights</td>
</tr>
<tr>
<td>re</td>
</tr>
<tr>
<td>refund-internal</td>
</tr>
<tr>
<td>residuals.pffr</td>
</tr>
<tr>
<td>rlrt.pfr</td>
</tr>
<tr>
<td>sff</td>
</tr>
<tr>
<td>smooth.construct.dt.smooth.spec</td>
</tr>
<tr>
<td>smooth.construct.fpc.smooth.spec</td>
</tr>
<tr>
<td>smooth.construct.pco.smooth.spec</td>
</tr>
<tr>
<td>smooth.construct.pcre.smooth.spec</td>
</tr>
<tr>
<td>smooth.construct.peer.smooth.spec</td>
</tr>
<tr>
<td>smooth.construct.pi.smooth.spec</td>
</tr>
<tr>
<td>smooth.construct.pss.smooth.spec</td>
</tr>
<tr>
<td>sofa</td>
</tr>
<tr>
<td>summary.pffr</td>
</tr>
<tr>
<td>summary.pfr</td>
</tr>
<tr>
<td>vb_cs_f pca</td>
</tr>
<tr>
<td>vb_cs_wish</td>
</tr>
<tr>
<td>vb_mult_f pca</td>
</tr>
<tr>
<td>vb_mult_wish</td>
</tr>
<tr>
<td>vis.fgam</td>
</tr>
<tr>
<td>vis.pfr</td>
</tr>
<tr>
<td>$X_t _siginv _X$</td>
</tr>
</tbody>
</table>

Index 163
Description

Methods for regression with functional data. Various approaches to regression with scalar responses and functional predictors are implemented by `pfr`, `peer`, `lpeer` and `fpcr`. For regression with functional responses, see `pffr`, `fosr`, and `fosr2s`.

Details

For a complete list of functions type `library(help=refund)`.

Author(s)

Authors: Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Fabian Scheipl <fabian.scheipl@stat.uni-muenchen.de>, Lei Huang <huangracer@gmail.com>, Julia Wrobel <jw3134@cumc.columbia.edu>, Jonathan Gellar <jgellar1@jhu.edu>, Jaroslaw Harezlak, Mathew W. McLean <mathew.w.mclean@gmail.com>, Bruce Swihart <bswihart@jhsphs.edu>, Luo Xiao <lxiao@jhsphs.edu>, Ciprian Crainiceanu <ccrainic@jhsphs.edu>, Philip Reiss <phil.reiss@nyumc.org>.

Contributors: Yakuan Chen, Sonja Greven, Lan Huo, Madan Gopal Kundu, Ana-Maria Staicu, David L. Miller, So Young Park

Maintainer: Lei Huang <huangracer@gmail.com>

af

Construct an FGAM regression term

Description

Defines a term \(\int_T F(X_i(t), t) dt \) for inclusion in an `mgcv::gam`-formula (or `bam` or `gamm` or `gamm4::gamm`) as constructed by `pfr`, where \(F(x, t) \) is an unknown smooth bivariate function and \(X_i(t) \) is a functional predictor on the closed interval \(T \). See `smooth.terms` for a list of bivariate basis and penalty options; the default is a tensor product basis with marginal cubic regression splines for estimating \(F(x, t) \).

Usage

```r
af(X, argvals = NULL, xind = NULL, basistype = c("te", "t2", "s"), integration = c("simpson", "trapezoidal", "riemann"), L = NULL, presmooth = NULL, presmooth.opts = NULL, Xrange = range(X, na.rm = T), Qtransform = FALSE, ...)
```
Arguments

X functional predictors, typically expressed as an N by J matrix, where N is the number of columns and J is the number of evaluation points. May include missing/sparse functions, which are indicated by NA values. Alternatively, can be an object of class "fd"; see fd.

argvals indices of evaluation of X, i.e. \((t_{i1}, \ldots, t_{iJ})\) for subject \(i\). May be entered as either a length-J vector, or as an N by J matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject. If NULL, defaults to an equally-spaced grid between 0 or 1 (or within X$basis$rangeval if X is a fd object.)

xind same as argvals. It will not be supported in the next version of refund.

basistype defaults to "te", i.e. a tensor product spline to represent \(F(x, t)\) Alternatively, use "s" for bivariate basis functions (see s) or "t2" for an alternative parameterization of tensor product splines (see t2)

integration method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in \(L\). Alternatively and for non-equidistant grids, "trapezoidal" or "riemann".

L an optional N by ncol(argvals) matrix giving the weights for the numerical integration over t. If present, overrides integration.

presmooth string indicating the method to be used for preprocessing functional predictor prior to fitting. Options are fpca.sc, fpca.face, fpca.ssvd, fpca.bspline, and fpca.interpolate. Defaults to NULL indicating no preprocessing. See create.prep.func.

presmooth.opts list including options passed to preprocessing method create.prep.func.

Xrange numeric; range to use when specifying the marginal basis for the x-axis. It may be desired to increase this slightly over the default of range(X) if concerned about predicting for future observed curves that take values outside of range(X)

Qtransform logical; should the functional be transformed using the empirical cdf and applying a quantile transformation on each column of \(X\) prior to fitting?

... optional arguments for basis and penalization to be passed to the function indicated by basistype. These could include, for example, "bs", "k", "m", etc. See te or s for details.

Value

A list with the following entries:

call a "call" to te (or s, t2) using the appropriately constructed covariate and weight matrices.

argvals the argvals argument supplied to af

L the matrix of weights used for the integration

xindname the name used for the functional predictor variable in the formula used by mgcv

tindname the name used for argvals variable in the formula used by mgcv

Lname the name used for the L variable in the formula used by mgcv
presmooth the presmooth argument supplied to af
Xrange the Xrange argument supplied to af
prep.func a function that preprocesses data based on the preprocessing method specified in presmooth. See create.prep.func

Author(s)
Mathew W. McLean <mathew.w.mcLean@gmail.com>, Fabian Scheipl, and Jonathan Gellar

References

See Also
pfr, lf, mgcv’s linear.functional.terms, pfr for examples

Examples
```r
## Not run:
data(DTI)
## only consider first visit and cases (no PASAT scores for controls)
DTI1 <- DTI[DTI$visit==1 & DTI$case==1,]
DTI2 <- DTI1[complete.cases(DTI1),]

## fit FGAM using FA measurements along corpus callosum
## as functional predictor with PASAT as response
## using 8 cubic B-splines for marginal bases with third
## order marginal difference penalties
## specifying gamma > 1 enforces more smoothing when using
## GCV to choose smoothing parameters
fit1 <- pfr(pasat ~ af(cca, k=c(8,8), m=list(c(2,3), c(2,3)),
                      presmooth="bspline", bs="ps"),
                      method="GCV.Cp", gamma=1.2, data=DTI2)
plot(fit1, scheme=2)
vis.pfr(fit1)

## af term for the cca measurements plus an lf term for the rcst measurements
## leave out 10 samples for prediction
# test <- sample(nrow(DTI2), 10)
# fit2 <- pfr(pasat ~ af(cca, k=c(7,7), m=list(c(2,2), c(2,2)), bs="ps",
#                     presmooth="fpca.face") +
#             lf(rcst, k=7, m=c(2,2), bs="ps"),
#             method="GCV.Cp", gamma=1.2, data=DTI2[-test,])
# par(mfrow=c(1,2))
# plot(fit2, scheme=2, rug=FALSE)
# vis.pfr(fit2, select=1, xval=.6)
# pred <- predict(fit2, newdata = DTI2[test,], type='response', PredOutOfRange = TRUE)
# sqrt(mean((DTI2$pasat[test] - pred)^2))
```
Try to predict the binary response disease status (case or control)
using the quantile transformed measurements from the rcst tract
with a smooth component for a scalar covariate that is pure noise
DTI3 <- DTI[DTI$visit==1,]
DTI3 <- DTI3[complete.cases(DTI3$rcst),]
z1 <- rnorm(nrow(DTI3))
fit3 <- pfr(case ~ af(rcst, k=c(7,7), m = list(c(2, 1), c(2, 1)), bs="ps", presmooth="fpca.face", Qtransform=TRUE) + s(z1, k = 10), family="binomial", select=TRUE, data=DTI3)
par(mfrow=c(1,2))
plot(fit3, scheme=2, rug=FALSE)
abline(h=0, col="green")

4 versions: fit with/without Qtransform, plotted with/without Qtransform
fit4 <- pfr(case ~ af(rcst, k=c(7,7), m = list(c(2, 1), c(2, 1)), bs="ps", presmooth="fpca.face", Qtransform=FALSE) + s(z1, k = 10), family="binomial", select=TRUE, data=DTI3)
par(mfrow=c(2,2))
zlms <- c(-7.2,4.3)
plot(fit4, select=1, scheme=2, main="QT=FALSE", zlim=zlms, xlab="t", ylab="rcst")
plot(fit4, select=1, scheme=2, Qtransform=TRUE, main="QT=FALSE", rug=FALSE, zlim=zlms, xlab="t", ylab="p(rcst)")
plot(fit3, select=1, scheme=2, main="QT=TRUE", zlim=zlms, xlab="t", ylab="rcst")
plot(fit3, select=1, scheme=2, Qtransform=TRUE, main="QT=TRUE", rug=FALSE, zlim=zlms, xlab="t", ylab="p(rcst)")
vis.pfr(fit3, select=1, plot.type="contour")

End(Not run)

af_old

Construct an FGAM regression term

Description

Defines a term \(\int_T F(X_i(t), t) dt \) for inclusion in an `mgcv::gam`-formula (or `bam` or `gamm` or `gamm4::gamm`) as constructed by `fgam`, where \(F(x, t) \) is an unknown smooth bivariate function and \(X_i(t) \) is a functional predictor on the closed interval \(T \). Defaults to a cubic tensor product B-spline with marginal second-order difference penalties for estimating \(F(x, t) \). The functional predictor must be fully observed on a regular grid.

Usage

```r
af_old(X, argvals = seq(0, 1, l = ncol(X)), xind = NULL, basistype = c("te", "t2", "s"), integration = c("simpson", "trapezoidal", "riemann"), L = NULL, splinepars = list(bs = "ps", k = c(min(ceiling(nrow(X)/5), 20), min(ceiling(ncol(X)/5), 20)), m = list(c(2, 2), c(2, 2))), presmooth = TRUE, Xrange = range(X), Qtransform = FALSE)
```

8 af_old

af_old

Construct an FGAM regression term

Description

Defines a term \(\int_T F(X_i(t), t) dt \) for inclusion in an `mgcv::gam`-formula (or `bam` or `gamm` or `gamm4::gamm`) as constructed by `fgam`, where \(F(x, t) \) is an unknown smooth bivariate function and \(X_i(t) \) is a functional predictor on the closed interval \(T \). Defaults to a cubic tensor product B-spline with marginal second-order difference penalties for estimating \(F(x, t) \). The functional predictor must be fully observed on a regular grid.

Usage

```r
af_old(X, argvals = seq(0, 1, l = ncol(X)), xind = NULL, basistype = c("te", "t2", "s"), integration = c("simpson", "trapezoidal", "riemann"), L = NULL, splinepars = list(bs = "ps", k = c(min(ceiling(nrow(X)/5), 20), min(ceiling(ncol(X)/5), 20)), m = list(c(2, 2), c(2, 2))), presmooth = TRUE, Xrange = range(X), Qtransform = FALSE)
```
Arguments

X
an N by J=ncol(argvals) matrix of function evaluations \(X_i(t_{i1}), \ldots, X_i(t_{iJ}); i = 1, \ldots, N\).

argvals
matrix (or vector) of indices of evaluations of \(X_i(t)\); i.e. a matrix with \(i\)th row \((t_{i1}, \ldots, t_{iJ})\)

xind
Same as argvals. It will discard this argument in the next version of refund.

basistype
defaults to "te", i.e. a tensor product spline to represent \(F(x, t)\) Alternatively, use "s" for bivariate basis functions (see s) or "t2" for an alternative parameterization of tensor product splines (see t2)

integration
method used for numerical integration. Defaults to "simpson"s rule for calculating entries in \(L\). Alternatively and for non-equidistant grids, "trapezoidal" or "riemann". "riemann" integration is always used if \(L\) is specified

L
optional weight matrix for the linear functional

splinepars
optional arguments specifying options for representing and penalizing the function \(F(x, t)\). Defaults to a cubic tensor product B-spline with marginal second-order difference penalties, i.e. list(bs="ps",m=list(c(2,2),c(2,2))), see te or s for details

presmooth
logical; if true, the functional predictor is pre-smoothed prior to fitting; see smooth.basisPar

Xrange
numeric; range to use when specifying the marginal basis for the \(x\)-axis. It may be desired to increase this slightly over the default of range(X) if concerned about predicting for future observed curves that take values outside of range(X)

Qtransform
logical; should the functional be transformed using the empirical cdf and applying a quantile transformation on each column of \(X\) prior to fitting? This ensures Xrange=c(0,1). If Qtransform=TRUE and presmooth=TRUE, presmoothing is done prior to transforming the functional predictor

Value

A list with the following entries:

1. call - a "call" to te (or s, t2) using the appropriately constructed covariate and weight matrices.
2. argvals - the argvals argument supplied to af
3. L the matrix of weights used for the integration xindname the name used for the functional predictor variable in the formula used by mgcv. tindname - the name used for argvals variable in the formula used by mgcv Lname - the name used for the L variable in the formula used by mgcv presmooth - the presmooth argument supplied to af Qtranform - the Qtransform argument supplied to af Xrange - the Xrange argument supplied to af ecdflist - a list containing one empirical cdf function from applying ecdf to each (possibly presmoothed) column of \(X\). Only present if Qtransform=TRUE Xfd - an fd object from presmoothing the functional predictors using smooth.basisPar. Only present if presmooth=TRUE. See fd.

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl
References

See Also
bayes_fosr, *lgf*, mgcv's *linear.functional.terms*, *fgam* for examples

bayes_fosr
Bayesian Function-on-scalar regression

Description
Wrapper function that implements several approaches to Bayesian function-on-scalar regression. Currently handles real-valued response curves; models can include subject-level random effects in a multilevel framework. The residual curve error structure can be estimated using Bayesian FPCA or a Wishart prior. Model parameters can be estimated using a Gibbs sampler or variational Bayes.

Usage

```r
bayes_fosr(formula, data = NULL, est.method = "VB", cov.method = "FPCA", ...)
```

Arguments

- **formula**: a formula indicating the structure of the proposed model. Random intercepts are designated using `re()`.
- **data**: an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from `environment(formula)`, typically the environment from which the function is called.
- **est.method**: method used to estimate model parameters. Options are "VB", "Gibbs", and "GLS" with "VB" as default. Variational Bayes is a fast approximation to the full posterior and often provides good point estimates, but may be unreliable for inference. "GLS" doesn't do anything Bayesian – just fits an unpenalized GLS estimator for the specified model.
- **cov.method**: method used to estimate the residual covariance structure. Options are "FPCA" and "Wishart", with default "FPCA"
- **...**: additional arguments that are passed to individual fitting functions.

Author(s)
Jeff Goldsmith <ajg2202@cumc.columbia.edu>
References

Examples

```r
## Not run:
library(reshape2)
library(dplyr)
library(ggplot2)

##### Cross-sectional real-data examples #####

## organize data
data(DTI)
DTI = subset(DTI, select = c(cca, case, pasat))
DTI = DTI[complete.cases(DTI),]
DTI$gender = factor(sample(c("male","female"), dim(DTI)[1], replace = TRUE))
DTI$status = factor(sample(c("RRMS", "SPMS", "PPMS"), dim(DTI)[1], replace = TRUE))

## fit models
default = bayes_fosr(cca ~ pasat, data = DTI)
VB = bayes_fosr(cca ~ pasat, data = DTI, Kp = 4, Kt = 10)
Gibbs = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "Gibbs", cov.method = "Wishart",
                  N.iter = 500, N.burn = 200)
OLS = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "OLS")
GLS = bayes_fosr(cca ~ pasat, data = DTI, Kt = 10, est.method = "GLS")

## plot results
models = c("default", "VB", "Gibbs", "OLS", "GLS")
intercepts = sapply(models, function(u) get(u)$beta.hat[1,])
slopes = sapply(models, function(u) get(u)$beta.hat[2,])

plot.dat = melt(intercepts); colnames(plot.dat) = c("grid", "method", "value")
ggplot(plot.dat, aes(x = grid, y = value, group = method, color = method)) +
  geom_path() + theme_bw()

plot.dat = melt(slopes); colnames(plot.dat) = c("grid", "method", "value")
ggplot(plot.dat, aes(x = grid, y = value, group = method, color = method)) +
  geom_path() + theme_bw()

## fit a model with an interaction
fosr.dti.interaction = bayes_fosr(cca ~ pasat*gender, data = DTI, Kp = 4, Kt = 10)

##### Longitudinal real-data examples #####

data(DTI2)
class(DTI2$cca) = class(DTI2$cca)[-1]
```
DTI2 = subset(DTI2, select = c(cca, id, pasat))
DTI2 = DTI2[complete.cases(DTI2),]

default = bayes_fosr(cca ~ pasat + re(id), data = DTI2)
VB = bayes_fosr(cca ~ pasat + re(id), data = DTI2, Kt = 10, cov.method = "Wishart")

End(Not run)

ccb.fpc
Corrected confidence bands using functional principal components

Description

Uses iterated expectation and variances to obtain corrected estimates and inference for functional expansions.

Usage

```
ccb.fpc(Y, argvals = NULL, nbasis = 10, pve = 0.99, n.boot = 100,
        simul = FALSE, sim.alpha = 0.95)
```

Arguments

- **Y**
 matrix of observed functions for which estimates and covariance matrices are desired.

- **argvals**
 numeric; function argument.

- **nbasis**
 number of splines used in the estimation of the mean function and the bivariate smoothing of the covariance matrix

- **pve**
 proportion of variance explained used to choose the number of principal components to be included in the expansion.

- **n.boot**
 number of bootstrap iterations used to estimate the distribution of FPC decomposition objects.

- **simul**
 TRUE or FALSE, indicating whether critical values for simultaneous confidence intervals should be estimated

- **sim.alpha**
 alpha level of the simultaneous intervals.

Details

To obtain corrected curve estimates and variances, this function accounts for uncertainty in FPC decomposition objects. Observed curves are resampled, and a FPC decomposition for each sample is constructed. A mixed-model framework is used to estimate curves and variances conditional on each decomposition, and iterated expectation and variances combines both model-based and decomposition-based uncertainty.
Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yhat</td>
<td>a matrix whose rows are the estimates of the curves in Y.</td>
</tr>
<tr>
<td>Yhat.boot</td>
<td>a list containing the estimated curves within each bootstrap iteration.</td>
</tr>
<tr>
<td>diag.var</td>
<td>diagonal elements of the covariance matrices for each estimated curve.</td>
</tr>
<tr>
<td>VarMats</td>
<td>a list containing the estimated covariance matrices for each curve in Y.</td>
</tr>
<tr>
<td>crit.val</td>
<td>estimated critical values for constructing simultaneous confidence intervals.</td>
</tr>
</tbody>
</table>

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>

References

Examples

```r
## Not run:
data(cd4)

# obtain a subsample of the data with 25 subjects
set.seed(1236)
sample = sample(1:dim(cd4)[1], 25)
Y.sub = cd4[sample,]

# obtain a mixed-model based FPCA decomposition
Fit.MM = fpca.sc(Y.sub, var = TRUE, simul = TRUE)

# use iterated variance to obtain curve estimates and variances
Fit.IV = ccb.fpc(Y.sub, n.boot = 25, simul = TRUE)

# for one subject, examine curve estimates, pointwise and simultaneous intervals
EX = 2
EX.IV = cbind(Fit.IV$Yhat[EX,],
              Fit.IV$Yhat[EX,] + 1.96 * sqrt(Fit.IV$diag.var[EX,]),
              Fit.IV$Yhat[EX,] - 1.96 * sqrt(Fit.IV$diag.var[EX,]),
              Fit.IV$Yhat[EX,] + Fit.IV$crit.val[EX] * sqrt(Fit.IV$diag.var[EX,]),
              Fit.IV$Yhat[EX,] - Fit.IV$crit.val[EX] * sqrt(Fit.IV$diag.var[EX,]))

EX.MM = cbind(Fit.MM$Yhat[EX,],
              Fit.MM$Yhat[EX,] + 1.96 * sqrt(Fit.MM$diag.var[EX,]),
              Fit.MM$Yhat[EX,] - 1.96 * sqrt(Fit.MM$diag.var[EX,]),
              Fit.MM$Yhat[EX,] + Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]),
              Fit.MM$Yhat[EX,] - Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]))

# plot data for one subject, with curve and interval estimates
d = as.numeric(colnames(cd4))
plot(d[which(!is.na(Y.sub[EX,]))], Y.sub[EX,which(!is.na(Y.sub[EX,]))], type = 'o',
```
```r
pch = 19, cex=.75, ylim = range(0, 3400), xlim = range(d),
  xlab = "Months since seroconversion", lwd = 1.2, ylab = "Total CD4 Cell Count",
  main = "Est. & CI - Sampled Data")

matpoints(d, EX.IV, col = 2, type = '/', quotesingle.Var

matpoints(d, EX.MM, col = 4, type = '/', quotesingle.Var

legend("topright", c("IV Est", "IV PW Int", "IV Simul Int",
  expression(paste("MM - \hat\theta Est", sep = "")),
  expression(paste("MM - \hat\theta PW Int", sep = "")),
  expression(paste("MM - \hat\theta Simul Int", sep = "")),
  lty=c(1,1,2,1,1,2), lwd = c(2, 1, 1, 1, 1, 1), lty = c(1,1,1,2,2))

## End(Not run)

---

**cd4**

**Observed CD4 cell counts**

CD4 cell counts for 366 subjects between months -18 and 42 since seroconversion. Each subject’s observations are contained in a single row.

**Format**

A data frame made up of

- **list("cd4")** A 366 x 61 matrix of CD4 cell counts.
  
  A 366 x 61 matrix of CD4 cell counts.

**References**


---

**cmdscale_lanczos**

**Faster multi-dimensional scaling**

This is a modified version of cmdscale that uses the Lanczos procedure (slanczos) instead of eigen. Called by smooth.construct.pco.smooth.spec.

**Usage**

```r
cmdscale_lanczos(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE)
```
Arguments

d    a distance structure as returned by dist, or a full symmetric matrix of distances or dissimilarities.
k    the maximum dimension of the space which the data are to be represented in; must be in \(\{1, 2, \ldots, n-1\}\).
eig   logical indicating whether eigenvalues should be returned.
add   logical indicating if the additive constant of Cailliez (1983) should be computed, and added to the non-diagonal dissimilarities such that the modified dissimilarities are Euclidean.
x.ret  indicates whether the doubly centred symmetric distance matrix should be returned.

Value

as cmdscale

Author(s)

David L Miller, based on code by R Core.

References


See Also

smooth.construct.pco.smooth.spec

descript

Description

Returns estimated coefficient functions/surfaces \(\beta(t), \beta(s, t)\) and estimated smooth effects \(f(z), f(x, z)\)
or \(f(x, z, t)\) and their point-wise estimated standard errors. Not implemented for smooths in more than 3 dimensions.

Usage

## S3 method for class 'pffr'
coef(object, raw = FALSE, se = TRUE, freq = FALSE,
sandwich = FALSE, seWithMean = TRUE, n1 = 100, n2 = 40,
n3 = 20, Ktt = NULL, ...)

---

**coef.pffr**  
*Get estimated coefficients from a pffr fit*

---

**Description**

Returns estimated coefficient functions/surfaces \(\beta(t), \beta(s, t)\) and estimated smooth effects \(f(z), f(x, z)\)
or \(f(x, z, t)\) and their point-wise estimated standard errors. Not implemented for smooths in more than 3 dimensions.

**Usage**

```r
S3 method for class 'pffr'
coef(object, raw = FALSE, se = TRUE, freq = FALSE,
sandwich = FALSE, seWithMean = TRUE, n1 = 100, n2 = 40,
n3 = 20, Ktt = NULL, ...)
```
Arguments

object a fitted pffr-object
raw logical, defaults to FALSE. If TRUE, the function simply returns object$coefficients
se logical, defaults to TRUE. Return estimated standard error of the estimates?
freq logical, defaults to FALSE. If FALSE, use posterior variance object$Vp for variability estimates, else use object$Ve. See gamObject
sandwich logical, defaults to FALSE. Use a Sandwich-estimator for approximate vari-
ances? See Details. THIS IS AN EXPERIMENTAL FEATURE, USE AT YOUR
risk.
seWithMean logical, defaults to TRUE. Include uncertainty about the intercept/overall mean
in standard errors returned for smooth components?
n1 see below
n2 see below
n3 n1,n2,n3 give the number of gridpoints for 1-2-/3-dimensional smooth terms
used in the marginal equidistant grids over the range of the covariates at which
the estimated effects are evaluated.
Ktt (optional) an estimate of the covariance operator of the residual process \( \epsilon_i(t) \sim N(0, K(t,t')) \), evaluated on yind of object. If not supplied, this is estimated
from the crossproduct matrices of the observed residual vectors. Only relevant
for sandwich CIs.
...
other arguments, not used.

Details

The seWithMean-option corresponds to the "iterms"-option in predict.gam. The sandwich-
options works as follows: Assuming that the residual vectors \( \epsilon_i(t), i = 1, \ldots, n \) are i.i.d. real-
izations of a mean zero Gaussian process with covariance \( K(t,t') \), we can construct an estimator
for \( K(t,t') \) from the \( n \) replicates of the observed residual vectors. The covariance matrix of the
stacked observations vec(\( Y_i(t) \)) is then given by a block-diagonal matrix with \( n \) copies of the es-
timated \( K(t,t') \) on the diagonal. This block-diagonal matrix is used to construct the "meat" of a
sandwich covariance estimator, similar to Chen et al. (2012), see reference below.

Value

If raw==FALSE, a list containing

- pterms a matrix containing the parametric / non-functional coefficients (and, optionally, their
  se’s)
- smterms a named list with one entry for each smooth term in the model. Each entry contains
  - coef a matrix giving the grid values over the covariates, the estimated effect (and, option-
    ally, the se’s). The first covariate varies the fastest.
  - x,y,z the unique gridpoints used to evaluate the smooth/coefficient function/coefficient
    surface
  - xlim,ylim,zlim the extent of the x/y/z-axes
  - xlab,ylab,zlab the names of the covariates for the x/y/z-axes
Description
This function resamples observations in the data set to obtain approximate CIs for different terms and coefficient functions that correct for the effects of dependency and heteroskedasticity of the residuals along the index of the functional response, i.e., it aims for correct inference if the residuals along the index of the functional response are not i.i.d.

Usage
coefboot.pffr(object, n1 = 100, n2 = 40, n3 = 20, B = 100,
ncpus = getOption("boot.ncpus", 1), parallel = c("no", "multicore",
"snow"), cl = NULL, conf = c(0.9, 0.95), type = "percent",
method = c("resample", "residual", "residual.c"),
showProgress = TRUE, ...)

Arguments
object a fitted pffr-model
n1 see coef.pffr
n2 see coef.pffr
n3 see coef.pffr
B number of bootstrap replicates, defaults to (a measly) 100
ncpus see boot. Defaults to getOption("boot.ncpus",1L) (like boot).
parallel see boot
cl see boot

Author(s)
Fabian Scheipl

References

See Also
plot.gam, predict.gam which this routine is based on.
coefficients.pfr

## S3 method for class 'pfr'
coefficients(object, select = 1, coords = NULL,
  n = NULL, se = ifelse(length(object$smooth) & select, TRUE, FALSE),
  seWithMean = FALSE, useVc = TRUE, Qtransform = FALSE, ...)

## S3 method for class 'pfr'
coef(object, select = 1, coords = NULL, n = NULL,
  se = ifelse(length(object$smooth) & select, TRUE, FALSE),
  seWithMean = FALSE, useVc = TRUE, Qtransform = FALSE, ...)

### Arguments

- **object**
  - return object from `pfr`

- **select**
  - integer indicating the index of the desired smooth term in `object$smooth`. Enter 0 to request the raw coefficients (i.e., `object$coefficients`) and standard errors (if `se==TRUE`).

### Description

This function is used to extract a coefficient from a fitted ‘pfr’ model, in particular smooth functions resulting from including functional terms specified with `lf`, `af`, etc. It can also be used to extract smooths generated using mgcv’s `s`, `te`, or `t2`.

### Usage

```r
S3 method for class 'pfr'
coefficients(object, select = 1, coords = NULL,
 n = NULL, se = ifelse(length(object$smooth) & select, TRUE, FALSE),
 seWithMean = FALSE, useVc = TRUE, Qtransform = FALSE, ...)

S3 method for class 'pfr'
coef(object, select = 1, coords = NULL, n = NULL,
 se = ifelse(length(object$smooth) & select, TRUE, FALSE),
 seWithMean = FALSE, useVc = TRUE, Qtransform = FALSE, ...)
```

### Value

A list with similar structure as the return value of `coef.pfr`, containing the original point estimates of the various terms along with their bootstrap CIs.

### Author(s)

Fabian Scheipl
create.prep.func

coords named list indicating the desired coordinates where the coefficient function is to be evaluated. Names must match the argument names in object$smooth[[select]]$term. If NULL, uses n to generate equally-spaced coordinates.

n integer vector indicating the number of equally spaced coordinates for each argument. If length 1, the same number is used for each argument. Otherwise, the length must match object$smooth[[select]]$dim.

se if TRUE, returns pointwise standard error estimates. Defaults to FALSE if raw coefficients are being returned; otherwise TRUE.

seWithMean if TRUE the standard errors include uncertainty about the overall mean; if FALSE, they relate purely to the centered smooth itself. Marra and Wood (2012) suggests that TRUE results in better coverage performance for GAMs.

useVc if TRUE, standard errors are calculated using a covariance matrix that has been corrected for smoothing parameter uncertainty. This matrix will only be available under ML or REML smoothing.

Qtransform For additive functional terms, TRUE indicates the coefficient should be extracted on the quantile-transformed scale, whereas FALSE indicates the scale of the original data. Note this is different from the Qtransform argument of af, which specifies the scale on which the term is fit.

... these arguments are ignored

Value

da data frame containing the evaluation points, coefficient function values and optionally the SE’s for the term indicated by select.

Author(s)

Jonathan Gellar and Fabian Scheipl

References


create.prep.func Construct a function for preprocessing functional predictors

Description

Prior to using functions X as predictors in a scalar-on-function regression, it is often necessary to presmooth curves to remove measurement error or interpolate to a common grid. This function creates a function to do this preprocessing depending on the method specified.
Usage

```r
create.prep.func(X, argvals = seq(0, 1, length = ncol(X)),
 method = c("fpca.sc", "fpca.face", "fpca.ssvd", "bspline",
 "interpolate"), options = NULL)
```

Arguments

- **X**: an \(N \times J=\text{ncol(argvals)}\) matrix of function evaluations \(X_i(t_{i1}), \ldots, X_i(t_{iJ}); i = 1, \ldots, N\). For FPCA-based processing methods, these functions are used to define the eigen decomposition used to preprocess current and future data (for example, in `predict.pfr`).
- **argvals**: matrix (or vector) of indices of evaluations of \(X_i(t)\); i.e., a matrix with \(i\)th row \((t_{i1}, \ldots, t_{iJ})\).
- **method**: character string indicating the preprocessing method. Options are "fpca.sc", "fpca.face", "fpca.ssvd", "bspline", and "interpolate". The first three use the corresponding existing function; "bspline" uses an (unpenalized) cubic bspline smoother with \(nbasis\) basis functions; "interpolate" uses linear interpolation.
- **options**: list of options passed to the preprocessing method; as an example, options for `fpca.sc` include `pve`, `nbasis`, and `npc`.

Value

A function that returns the preprocessed functional predictors, with arguments

- **newX**: The functional predictors to process
- **argvals**: Indices of evaluation of \(newX\)
- **options**: Any options needed to preprocess the predictor functions

Author(s)

Jeff Goldsmith <ajg2202@columbia.edu>

See Also

`pfr`, `fpca.sc`, `fpca.face`, `fpca.ssvd`

Description

Fractional anisotropy (FA) tract profiles for the corpus callosum (cca) and the right corticospinal tract (rcst). Accompanying the tract profiles are the subject ID numbers, visit number, total number of scans, multiple sclerosis case status and Paced Auditory Serial Addition Test (pasat) score.
Format
A data frame made up of

cca A 382 x 93 matrix of fractional anisotropy tract profiles from the corpus callosum;
rcst A 382 x 55 matrix of fractional anisotropy tract profiles from the right corticospinal tract;
ID Numeric vector of subject ID numbers;
visit Numeric vector of the subject-specific visit numbers;
visit.time Numeric vector of the subject-specific visit time, measured in days since first visit;
Nscans Numeric vector indicating the total number of visits for each subject;
case Numeric vector of multiple sclerosis case status: 0 - healthy control, 1 - MS case;
sex factor variable indicated subject’s sex;
pasat Numeric vector containing the PASAT score at each visit.

Details
If you use this data as an example in written work, please include the following acknowledgment:
“The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute”

DTI2 uses mean diffusivity of the the corpus callosum rather than FA, and parallel diffusivity of the
rcst rather than FA. Please see the documentation for DTI2.

References
Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2010). Longitudinal Penalized Func-
tional Regression for Cognitive Outcomes on Neuronal Tract Measurements. Journal of the Royal

Description
A diffusion tensor imaging dataset used in Swihart et al. (2012). Mean diffusivity profiles for the
corpus callosum (cca) and parallel diffusivity for the right corticospinal tract (rcst). Accompanying
the profiles are the subject ID numbers, visit number, and Paced Auditory Serial Addition Test
(pasat) score. We thank Dr. Daniel Reich for making this dataset available.
expand.call

Format

A data frame made up of:
- **cca** a 340 x 93 matrix of fractional anisotropy profiles from the corpus callosum;
- **rcst** a 340 x 55 matrix of fractional anisotropy profiles from the right corticospinal tract;
- **id** numeric vector of subject ID numbers;
- **visit** numeric vector of the subject-specific visit numbers;
- **pasat** numeric vector containing the PASAT score at each visit.

Details

If you use this data as an example in written work, please include the following acknowledgment:
“The MRI/DTI data were collected at Johns Hopkins University and the Kennedy-Krieger Institute”
Note: DTI2 uses mean diffusivity of the the corpus callosum rather than fractional anisotropy (FA),
and parallel diffusivity of the rcst rather than FA. Please see the documentation for DTI for more
about the DTI dataset.

References

regression for cognitive outcomes on neuronal tract measurements. *Journal of the Royal Statistical

expand.call

*Return call with all possible arguments*

Description

Return a call in which all of the arguments which were supplied or have presets are specified by
their full names and their supplied or default values.

Usage

```r
expand.call(definition = NULL, call = sys.call(sys.parent(1)),
 expand.dots = TRUE)
```

Arguments

- **definition** a function. See *match.call*.
- **call** an unevaluated call to the function specified by definition. See *match.call*.
- **expand.dots** logical. Should arguments matching ... in the call be included or left as a ... argument? See *match.call*. 

Value

An object of mode "call".

Author(s)

Fabian Scheipl

See Also

match.call

Description

A fast bivariate P-spline method for smoothing matrix data.

Usage

```r
fbps(data, subj = NULL, covariates = NULL, knots = 35,
 knots.option = "equally-spaced", periodicity = c(FALSE, FALSE),
 p = 3, m = 2, lambda = NULL, selection = "GCV",
 search.grid = T, search.length = 100, method = "L-BFGS-B",
 lower = -20, upper = 20, control = NULL)
```

Arguments

data: n1 by n2 data matrix without missing data
subj: vector of subject id (corresponding to the columns of data); defaults to NULL
covariates: list of two vectors of covariates of lengths n1 and n2; if NULL, then generates
            equidistant covariates
knots: list of two vectors of knots or number of equidistant knots for all dimensions;
       defaults to 35
knots.option: knot selection method; defaults to "equally-spaced"
periodicity: vector of two logical, indicating periodicity in the direction of row and column;
             defaults to c(FALSE, FALSE)
p: degrees of B-splines; defaults to 3
m: order of differencing penalty; defaults to 2
lambda: user-specified smoothing parameters; defaults to NULL
selection: selection of smoothing parameter; defaults to "GCV"
search.grid: logical; defaults to TRUE, if FALSE, uses optim
search.length: number of equidistant (log scale) smoothing parameter; defaults to 100
method: see optim; defaults to L-BFGS-B
lower, upper: bounds for log smoothing parameter, passed to optim; defaults are -20 and 20.
control: see optim
Details

The smoothing parameter can be user-specified; otherwise, the function uses grid searching method or optim for selecting the smoothing parameter.

Value

A list with components

- \( \text{lambda} \): vector of length 2 of selected smoothing parameters
- \( \text{Yhat} \): fitted data
- \( \text{trace} \): trace of the overall smoothing matrix
- \( \text{gcv} \): value of generalized cross validation
- \( \text{Theta} \): matrix of estimated coefficients

Author(s)

Luo Xiao <lxiao@jhsph.edu>

References


Examples

```r
##########################
True function
##########################
n1 <- 60
n2 <- 80
x <- (1:n1)/n1-1/2/n1
z <- (1:n2)/n2-1/2/n2
MY <- array(0,c(length(x),length(z))
sigx <- .3
sigz <- .4
for(i in 1:length(x))
for(j in 1:length(z))
{
 MY[i,j] = sin(2*pi*(x[i]-.5)^3)*cos(4*pi*z[j])
}
##########################
Observed data
##########################
sigma <- 1
Y <- MY + sigma*rnorm(n1*n2,0,1)

```
### Estimation

```r
est <- fbps(Y,list(x=x,z=z))
mse <- mean((est$Yhat-MY)^2)
cat("mse of fbps is ",mse,"\n")
cat("The smoothing parameters are: ",est$lambda,"\n")
```

#### Compare the estimated surface with the true surface

```r
par(mfrow=c(1,2))
persp(x,z,MY,zlab="f(x,z)",zlim=c(-1,2.5), phi=30,theta=45,expand=0.8,r=4,
col="blue",main="True surface")
persp(x,z,est$Yhat,zlab="f(x,z)",zlim=c(-1,2.5), phi=30,theta=45,
expand=0.8,r=4,col="red",main="Estimated surface")
```

---

#### ff

---

**Construct a function-on-function regression term**

**Description**

Defines a term \( \int_{s_{lo,i}}^{s_{hi,i}} X_i(s) \beta(t,s) ds \) for inclusion in an mgcv::gam-formula (or bam or gamm or gamm4::gamm4) as constructed by pffr.

Defaults to a cubic tensor product B-spline with marginal first order differences penalties for \( \beta(t,s) \) and numerical integration over the entire range \([s_{lo,i},s_{hi,i}] = [\min(s_i), \max(s_i)]\) by using Simpson weights. Can’t deal with any missing \( X_i(s) \), unequal lengths of \( X_i(s) \) not (yet?) possible. Unequal integration ranges for different \( X_i(s) \) should work. \( X_i(s) \) is assumed to be numeric (duh...).

**Usage**

```r
ff(X, yind = NULL, xind = seq(0, 1, l = ncol(X)), basistype = c("te",
"t2", "ti", "s", "tes"), integration = c("simpson", "trapezoidal",
"riemann"), L = NULL, limits = NULL, splinepars = if (basistype !=
"s") { list(bs = "ps", m = list(c(2, 1), c(2, 1)), k = c(5, 5)) }
else { list(bs = "tp", m = NA) }, check.ident = TRUE)
```

**Arguments**

- **X**
  
an \( n \) by \( \text{ncol}(\text{xind}) \) matrix of function evaluations \( X_i(s_{i1}), \ldots, X_i(s_{iS}); i = 1, \ldots, n. \)

- **yind**
  
  **DEPRECATED** used to supply matrix (or vector) of indices of evaluations of \( Y_i(t) \), no longer used.

- **xind**
  
  vector of indices of evaluations of \( X_i(s) \), i.e. \( (s_1, \ldots, s_S) \)

- **basistype**
  
defaults to "te", i.e. a tensor product spline to represent \( \beta(t,s) \). Alternatively, use "s" for bivariate basis functions (see mgcv’s s) or "t2" for an alternative parameterization of tensor product splines (see mgcv’s t2).
integration method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in $L$. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann". "riemann" integration is always used if limits is specified

$L$: optional: an $n$ by ncol(xind) matrix giving the weights for the numerical integration over $s$.

limits defaults to NULL for integration across the entire range of $X(s)$, otherwise specifies the integration limits $s_{hi}(t), s_{lo}(t)$: either one of "s<t" or "s<=t" for $(s_{hi}(t), s_{lo}(t)) = (t, 0]$ or $[t, 0]$, respectively, or a function that takes $s$ as the first and $t$ as the second argument and returns TRUE for combinations of values $(s, t)$ if $s$ falls into the integration range for the given $t$. This is an experimental feature and not well tested yet; use at your own risk.

splinepars optional arguments supplied to the basistype-term. Defaults to a cubic tensor product B-spline with marginal first difference penalties, i.e. list(bs="ps",m=list(c(2,1),c(2,1))). See te or s in mgcv for details

check.ident check identifiability of the model spec. See Details and References. Defaults to TRUE.

Details
If check.ident==TRUE and basistype!="s" (the default), the routine checks conditions for non-identifiability of the effect. This occurs if a) the marginal basis for the functional covariate is rank-deficient (typically because the functional covariate has lower rank than the spline basis along its index) and simultaneously b) the kernel of Cov($X(s)$) is not disjunct from the kernel of the marginal penalty over $s$. In practice, a) occurs quite frequently, and b) occurs usually because curve-wise mean centering has removed all constant components from the functional covariate.
If there is kernel overlap, $\beta(t,s)$ is constrained to be orthogonal to functions in that overlap space (e.g., if the overlap contains constant functions, constraints $\int \beta(t,s)ds = 0$ for all $t'$ are enforced). See reference for details.
A warning is always given if the effective rank of Cov($X(s)$) (defined as the number of eigenvalues accounting for at least 0.995 of the total variance in $X_i(s)$) is lower than 4. If $X_i(s)$ is of very low rank, ffpc-term may be preferable.

Value
A list containing

call a "call" to te (or s or t2) using the appropriately constructed covariate and weight matrices

data a list containing the necessary covariate and weight matrices

Author(s)
Fabian Scheipl, Sonja Greven

References
For background on check.ident:
Scheipl, F., Greven, S. (2016). Identifiability in penalized function-on-function regression mod-
Construct a PC-based function-on-function regression term

### Description

Defines a term $\int X_i(s)\beta(t,s)ds$ for inclusion in an mgcv::gam-formula (or bam or gamm or gamm4::gamm4) as constructed by pffr.

### Usage

```r
ffpc(X, yind = NULL, xind = seq(0, 1, length = ncol(X)),
 splinepars = list(bs = "ps", m = c(2, 1), k = 8),
 decomppars = list(pve = 0.99, useSymm = TRUE), npc.max = 15)
```

### Arguments

- `X`: an n by ncol(xind) matrix of function evaluations $X_i(s_{i1}),\ldots, X_i(s_{iS}); i = 1,\ldots,n.$
- `yind`: DEPRECATED used to supply matrix (or vector) of indices of evaluations of $Y_i(t)$, no longer used.
- `xind`: matrix (or vector) of indices of evaluations of $X_i(t)$, defaults to seq(0,1,length=ncol(X)).
- `splinepars`: optional arguments supplied to the basistype-term. Defaults to a cubic B-spline with first difference penalties and 8 basis functions for each $\tilde{\beta}_k(t)$.
- `decomppars`: parameters for the FPCA performed with fpca.sc.
- `npc.max`: maximal number $K$ of FPCs to use, regardless of decomppars; defaults to 15

### Details

In contrast to ff, ffpc does an FPCA decomposition $X(s) \approx \sum_{k=1}^{K} \xi_{ik} \Phi_k(s)$ using fpca.sc and represents $\beta(t,s)$ in the function space spanned by these $\Phi_k(s)$. That is, since

$$
\int X_i(s)\beta(t,s)ds = \sum_{k=1}^{K} \xi_{ik} \int \Phi_k(s)\beta(s,t)ds = \sum_{k=1}^{K} \xi_{ik} \tilde{\beta}_k(t),
$$

the function-on-function term can be represented as a sum of $K$ univariate functions $\tilde{\beta}_k(t)$ in $t$ each multiplied by the FPC scores $\xi_{ik}$. The truncation parameter $K$ is chosen as described in fpca.sc. Using this instead of ff() can be beneficial if the covariance operator of the $X_i(s)$ has low effective rank (i.e., if $K$ is small). If the covariance operator of the $X_i(s)$ is of (very) high rank, i.e., if $K$ is large, ffpc() will not be very efficient.
To reduce model complexity, the $\tilde{\beta}_k(t)$ all have a single joint smoothing parameter (in mgcv, they get the same id, see `s`).

Please see `pffr` for details on model specification and implementation.

**Value**

A list containing the necessary information to construct a term to be included in a `mgcv::gam`-formula.

**Author(s)**

Fabian Scheipl

**Examples**

```r
Not run:
set.seed(1122)
n <- 55
S <- 60
T <- 50
s <- seq(0,1, l=S)
t <- seq(0,1, l=T)
#generate X from a polynomial FPC-basis:
rankX <- 5
Phi <- cbind(1/sqrt(S), poly(s, degree=rankX-1))
lambda <- rankX:1
Xi <- sapply(lambda, function(l)
 scale(rnorm(n, sd=sqrt(l)), scale=FALSE))
X <- Xi %*% t(Phi)
beta.st <- outer(s, t, function(s, t) cos(2 * pi * s * t))
y <- (1/S*X) %*% beta.st + 0.1 * matrix(rnorm(n * T), nrow=n, ncol=T)
data <- list(y=y, X=X)
set number of FPCs to true rank of process for this example:
m.pc <- pffr(y ~ c(1) + 0 + ffpc(X, yind=t, decomppars=list(npc=rankX)),
 data=data, yind=t)
summary(m.pc)
m.ff <- pffr(y ~ c(1) + 0 + ff(X, yind=t), data=data, yind=t)
summary(m.ff)

fits are very similar:
all.equal(fitted(m.pc), fitted(m.ff))

plot implied coefficient surfaces:
layout(t(1:3))
persp(t, s, t(beta.st), theta=50, phi=40, main="Truth",
 ticktype="detailed")
plot(m.ff, select=1, pers=TRUE, zlim=range(beta.st), theta=50, phi=40,

```
ffpcplot

Plot PC-based function-on-function regression terms

Description

Convenience function for graphical summaries of ffpc-terms from a pffr fit.

Usage

ffpcplot(object, type = c("fpc+surf", "surf", "fpc"), pages = 1,
    se.mult = 2, ticktype = "detailed", theta = 30, phi = 30,
    plot = TRUE, auto.layout = TRUE)

Arguments

- **object**: a fitted pffr-model
- **type**: one of "fpc+surf", "surf" or "fpc": "surf" shows a perspective plot of the coefficient surface implied by the estimated effect functions of the FPC scores, "fpc" shows three plots: 1) a scree-type plot of the estimated eigenvalues of the functional covariate, 2) the estimated eigenfunctions, and 3) the estimated coefficient functions associated with the FPC scores. Defaults to showing both.
- **pages**: the number of pages over which to spread the output. Defaults to 1. (Irrelevant if auto.layout=FALSE.)
- **se.mult**: display estimated coefficient functions associated with the FPC scores with plus/minus this number time the estimated standard error. Defaults to 2.
- **ticktype**: see persp.
- **theta**: see persp.
- **phi**: see persp.
- **plot**: produce plots or only return plotting data? Defaults to TRUE.
- **auto.layout**: should the the function set a suitable layout automatically? Defaults to TRUE

Value

primarily produces plots, invisibly returns a list containing the data used for the plots.
**Author(s)**

Fabian Scheipl

**Examples**

```r
Not run:
#see ?ffpc
End(Not run)
```

---

**fgam**

*Functional Generalized Additive Models*

**Description**

Implements functional generalized additive models for functional and scalar covariates and scalar responses. Additionally implements functional linear models. This function is a wrapper for mgcv’s `gam` and its siblings to fit models of the general form

\[
g(E(Y_i)) = \beta_0 + \int_{T_1} F(X_{i1}, t)dt + \int_{T_2} \beta(t)X_{i2}dt + f(z_{i1}) + f(z_{i2}, z_{i3}) + \ldots
\]

with a scalar (but not necessarily continuous) response \( Y \), and link function \( g \)

**Usage**

```r
gam(formula, fitter = NA, tensortype = c("te", "t2"), ...)```

Arguments

- `formula`: a formula with special terms as for `gam`, with additional special terms `af()`, `lf()`, `re()`.
- `fitter`: the name of the function used to estimate the model. Defaults to `gam` if the matrix of functional responses has less than 2e5 data points and to `bam` if not. "gamm" (see `gamm`) and "gamm4" (see `gamm4`) are valid options as well.
- `tensortype`: defaults to `te`, other valid option is `t2`
- `...`: additional arguments that are valid for `gam` or `bam`; for example, specify a gamma > 1 to increase amount of smoothing when using GCV to choose smoothing parameters or `method="REML"` to change to REML for estimation of smoothing parameters (default is GCV).

Value

A fitted `fgam`-object, which is a `gam`-object with some additional information in a `fgam`-entry. If `fitter` is "gamm" or "gamm4", only the $gam part of the returned list is modified in this way.
Warning

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

References

See Also

af, lf, predict.fgam, vis.fgam

Examples

data(DTI)

only consider first visit and cases (no PASAT scores for controls)
y <- DTI$pasat[DTI$visit==1 & DTI$case==1]
X <- DTI$cca[DTI$visit==1 & DTI$case==1,]
X_2 <- DTI$rcst[DTI$visit==1 & DTI$case==1,]

remove samples containing missing data
ind <- rowSums(is.na(X)) > 0
ind2 <- rowSums(is.na(X_2)) > 0

y <- y[!(ind | ind2)]
X <- X[!(ind | ind2),]
X_2 <- X_2[!(ind | ind2),]

N <- length(y)

fit fgam using FA measurements along corpus callosum
as functional predictor with PASAT as response
using 8 cubic B-splines for marginal bases with third order marginal difference penalties
specifying gamma > 1 enforces more smoothing when using GCV to choose smoothing parameters
fit <- fgam(y ~ af(X, splinepars = list(k = c(8, 8), m = list(c(2, 3), c(2, 3)))), gamma = 1.2)
vis.fgam(fit)

fgam term for the cca measurements plus an flm term for the rcst measurements
leave out 10 samples for prediction
test <- sample(N, 10)
fit <- fgam(y ~ af(X, splinepars = list(k = c(7, 7), m = list(c(2, 2), c(2, 2)))),
if(X_2, splinepars = list(k7 = 7, m = c(2, 2))), subset=(1:N)[-test])
plot the fits
plot(fit)
vis.fgam(fit, af.term = "X")
predict the ten left outs samples
pred <- predict(fit, newdata = list(X=X[test,], X_2 = X_2[test,]), type='response',
PredOutOfRange = TRUE)
sqrt(mean((y[test] - pred)^2))
Try to predict the binary response disease status (case or control)
using the quantile transformed measurements from the rcst tract
with a smooth component for a scalar covariate that is pure noise
y <- DTI$case[DTI$visit==1]
X <- DTI$cca[DTI$visit==1,]
X_2 <- DTI$rcst[DTI$visit==1,]

ind <- rowSums(is.na(X)) > 0
ind2 <- rowSums(is.na(X_2)) > 0

y <- y[!(ind | ind2)]
X <- X[!(ind | ind2),]
X_2 <- X_2[!(ind | ind2),]
z1 <- rnorm(length(y))

select=TRUE allows terms to be zeroed out of model completely
fit <- fgam(y ~ s(z1, k = 10) + af(X_2, splinepars = list(k=c(7,7), m = list(c(2, 1), c(2, 1))),
Qtransform=TRUE), family=binomial(), select=TRUE)
plot(fit)
vis.fgam(fit, af.term='X_2', plot.type='contour')

fosr

Function-on-scalar regression

Description

Fit linear regression with functional responses and scalar predictors, with efficient selection of optimal smoothing parameters.

Usage

```r
fosr(formula = NULL, Y = NULL, fdobj = NULL, data = NULL, X,
con = NULL, argvals = NULL, method = c("OLS", "GLS", "mix"),
gam.method = c("REML", "ML", "GCV.Cp", "GACV.Cp", "P-REML", "P-ML"),
cov.method = c("naive", "mod.chol"), lambda = NULL, nbasis = 15,
norder = 4, pen.order = 2, multi.sp = ifelse(method == "OLS",
FALSE, TRUE), pve = 0.99, max.iter = 1, maxlam = NULL,
cv1 = FALSE, scale = FALSE)
```

Arguments

- `formula` Formula for fitting fosr. If used, data argument must not be null.
Y, fdobj the functional responses, given as either an $n \times d$ matrix Y or a functional data object (class "fd") as in the fda package.
data data frame containing the predictors and responses.
X the model matrix, whose columns represent scalar predictors. Should ordinarily include a column of 1s.
con a row vector or matrix of linear contrasts of the coefficient functions, to be constrained to equal zero.
argsvals the d argument values at which the coefficient functions will be evaluated.
method estimation method: "OLS" for penalized ordinary least squares, "GLS" for penalized generalized least squares, "mix" for mixed effect models.
gam.method smoothing parameter selection method, to be passed to gam: "REML" for restricted maximum likelihood, "GCV.Cp" for generalized cross-validation.
cov.method covariance estimation method: the current options are naive or modified Cholesky. See Details.
lambda smoothing parameter value. If NULL, the smoothing parameter(s) will be estimated. See Details.
nbasis, norder number of basis functions, and order of splines (the default, 4, gives cubic splines), for the B-spline basis used to represent the coefficient functions. When the functional responses are supplied using fdobj, these arguments are ignored in favor of the values pertaining to the supplied object.
pen.order order of derivative penalty.
multi.sp a logical value indicating whether separate smoothing parameters should be estimated for each coefficient function. Currently must be FALSE if method = "OLS".
pve if method = 'mix', the percentage of variance explained by the principal components; defaults to 0.99.
max.iter maximum number of iterations if method = "GLS".
maxlam maximum smoothing parameter value to consider (when lamvec=NULL; see lofocv).
cv1 logical value indicating whether a cross-validation score should be computed even if a single fixed lambda is specified (when method = "OLS").
scale logical value or vector determining scaling of the matrix X (see scale, to which the value of this argument is passed).

Details

The GLS method requires estimating the residual covariance matrix, which has dimension $d \times d$ when the responses are given by Y, or $nbasis \times nbasis$ when they are given by fdobj. When cov.method = "naive", the ordinary sample covariance is used. But this will be singular, or non-singular but unstable, in high-dimensional settings, which are typical. cov.method = "mod.chol" implements the modified Cholesky method of Pourahmadi (1999) for estimation of covariance matrices whose inverse is banded. The number of bands is chosen to maximize the p-value for a sphericity test (Ledoit and Wolf, 2002) applied to the "prewhitened" residuals. Note, however, that the banded inverse covariance assumption is sometimes inappropriate, e.g., for periodic functional responses.

There are three types of values for argument lambda:
1. if NULL, the smoothing parameter is estimated by `gam` (package `mgcv`) if `method = "GLS"`, or by `optimize` if `method = "OLS"`;

2. if a scalar, this value is used as the smoothing parameter (but only for the initial model, if `method = "GLS"`);

3. if a vector, this is used as a grid of values for optimizing the cross-validation score (provided `method = "OLS"`; otherwise an error message is issued).

Please note that currently, if `multi.sp = TRUE`, then `lambda` must be NULL and `method` must be "GLS".

Value

An object of class `fosr`, which is a list with the following elements:

- **fd**: object of class "fd" representing the estimated coefficient functions. Its main components are a basis and a matrix of coefficients with respect to that basis.

- **pca.resid**: if `method = "mix"`, an object representing a functional PCA of the residuals, performed by `fpca.sc` if the responses are in raw form or by `pca.fd` if in functional-data-object form.

- **U**: if `method = "mix"`, an \(n \times m \) matrix of random effects, where \(m \) is the number of functional PC’s needed to explain proportion \(pve \) of the residual variance. These random effects can be interpreted as shrunken FPC scores.

- **yhat, resid**: objects of the same form as the functional responses (see arguments `Y` and `fdobj`), giving the fitted values and residuals.

- **est.func**: matrix of values of the coefficient function estimates at the points given by `argvals`.

- **se.func**: matrix of values of the standard error estimates for the coefficient functions, at the points given by `argvals`.

- **argvals**: points at which the coefficient functions are evaluated.

- **fit**: fit object outputted by `amc`.

- **edf**: effective degrees of freedom of the fit.

- **lambda**: smoothing parameter, or vector of smoothing parameters.

- **cv**: cross-validated integrated squared error if `method="OLS"`, otherwise NULL.

- **roughness**: value of the roughness penalty.

- **resp.type**: "raw" or "fd", indicating whether the responses were supplied in raw or functional-data-object form.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>, Lan Huo, and Fabian Scheipl
References

See Also

plot.fosr

Examples

```r
## Not run:
require(fda)
# The first two lines, adapted from help(fRegress) in package fda,
# set up a functional data object representing daily average
# temperatures at 35 sites in Canada
daybasis25 <- create.fourier.basis(rangeval=c(0, 365), nbasis=25,
    axes=list('axesIntervals'))
Temp.fd <- with(CanadianWeather, smooth.basisPar(day.5,
    dailyAv[,,'Temperature.C'], daybasis25)$fd)

modmat = cbind(1, model.matrix(~ factor(CanadianWeather$region) - 1))
constraints = matrix(c(0,1,1,1,1), 1)

# Penalized OLS with smoothing parameter chosen by grid search
olsmod = fosr(fdobj = Temp.fd, X = modmat, con = constraints, method="OLS", lambda=100*10:30)
plot(olsmod, 1)

# Test use formula to fit fosr
set.seed(2121)
data1 <- pffrSim(scenario="ff", n=40)
formod = fosr(Y~xlin+xsmoo, data=data1)
plot(formod, 1)

# Penalized GLS
glsmod = fosr(fdobj = Temp.fd, X = modmat, con = constraints, method="GLS")
plot(glsmod, 1)

## End(Not run)
```
fosr.perm

Permutation testing for function-on-scalar regression

Description

fosr.perm() is a wrapper function calling fosr.perm.fit(), which fits models to permuted data, followed by fosr.perm.test(), which performs the actual simultaneous hypothesis test. Calling the latter two functions separately may be useful for performing tests at different significance levels. By default, fosr.perm() produces a plot using the plot function for class fosr.perm.

Usage

fosr.perm(Y = NULL, fdobj = NULL, X, con = NULL, X0 = NULL,
con0 = NULL, argvals = NULL, lambda = NULL, lambda0 = NULL,
multi.sp = FALSE, nperm, level = 0.05, plot = TRUE, xlab = "",
title = NULL, prelim = if (multi.sp) 0 else 15, ...)

fosr.perm.fit(Y = NULL, fdobj = NULL, X, con = NULL, X0 = NULL,
con0 = NULL, argvals = NULL, lambda = NULL, lambda0 = NULL,
multi.sp = FALSE, nperm, prelim, ...)

fosr.perm.test(x, level = 0.05)

S3 method for class 'fosr.perm'
plot(x, level = 0.05, xlab = "", title = NULL,
...)

Arguments

Y, fdobj the functional responses, given as either an \(n \times d \) matrix \(Y \) or a functional data object (class "fd") as in the fda package.

X the design matrix, whose columns represent scalar predictors.

con a row vector or matrix of linear contrasts of the coefficient functions, to be restricted to equal zero.

X0 design matrix for the null-hypothesis model. If NULL, the null hypothesis is the intercept-only model.

con0 linear constraints for the null-hypothesis model.

argvals the \(d \) argument values at which the coefficient functions will be evaluated.

lambda smoothing parameter value. If NULL, the smoothing parameter(s) will be estimated. See fosr for details.

lambda0 smoothing parameter for null-hypothesis model.

multi.sp a logical value indicating whether separate smoothing parameters should be estimated for each coefficient function. Currently must be FALSE if method = "OLS".
fosr.perm

nperm number of permutations.
level significance level for the simultaneous test.
plot logical value indicating whether to plot the real- and permuted-data pointwise F-type statistics.
xlabel x-axis label for plots.
title title for plot.
prelim number of preliminary permutations. The smoothing parameter in the main permutations will be fixed to the median value from these preliminary permutations. If prelim=0, this is not done. Preliminary permutations are not available when multi.sp = TRUE (hence the complicated default).

... for fosr.perm and fosr.perm.fit, additional arguments passed to fosr. These arguments may include max.iter, method, gam.method, and scale. For plot.fosr.perm, graphical parameters (see par) for the plot.

x object of class fosr.perm, outputted by fosr.perm, fosr.perm.fit, or fosr.perm.test.

Value

fosr.perm or fosr.perm.test produces an object of class fosr.perm, which is a list with the elements below. fosr.perm.fit also outputs an object of this class, but without the last five elements.

F pointwise F-type statistics at each of the points given by argvals.
F.perm a matrix, each of whose rows gives the pointwise F-type statistics for a permuted data set.
argvals points at which F-type statistics are computed.
lambda.real smoothing parameter(s) for the real-data fit.
lambda.prelim smoothing parameter(s) for preliminary permuted-data fits.
lambda.perm smoothing parameter(s) for main permuted-data fits.
lambda0.real, lambda0.prelim, lambda0.perm as above, but for null hypothesis models.
level significance level of the test.
critval critical value for the test.
signif vector of logical values indicating whether significance is attained at each of the points argvals.
n2s subset of 1,...,length(argvals) identifying the points at which the test statistic changes from non-significant to significant.
s2n points at which the test statistic changes from significant to non-significant.

Author(s)

Philip Reiss <phil.reiss@nyumc.org> and Lan Huo

References

See Also

fosr

Examples

```r
## Not run:
# Test effect of region on mean temperature in the Canadian weather data
# The next two lines are taken from the fRegress.CV help file (package fda)
smallbasis <- create.fourier.basis(c(0, 365), 25)
tempfd <- smooth.basis(day.5,
               CanadianWeather$dailyAv[, "Temperature.C"], smallbasis)$fd

Xreg = cbind(1, model.matrix(~factor(CanadianWeather$region)-1))
conreg = matrix(c(0,1,1,1), 1)  # constrain region effects to sum to 0

# This is for illustration only; for a real test, must increase nperm
# (and probably prelim as well)
regionperm = fosr.perm(fdobj=tempfd, X=Xreg, con=conreg, method="OLS", nperm=10, prelim=3)

# Redo the plot, using axisIntervals() from the fda package
plot(regionperm, axes=FALSE, xlab="")
box()
axis(2)
axisIntervals(1)

## End(Not run)
```
method

group variable selection method to be used ("grLasso", "grMCP", "grSCAD" refer to group Lasso, group MCP and group SCAD, respectively) or "ls" for least squares estimation.

epsilon

the convergence criterion.

max.iter_num

maximum number of iterations.

Value

A fitted fosr.vs-object, which is a list with the following elements:

formula

an object of class "formula": an expression of the model to be fitted.

coefficients

the estimated coefficient functions.

fitted.values

the fitted curves.

residuals

the residual curves.

vcov

the estimated variance-covariance matrix when convergence is achieved.

method

group variable selection method to be used or "ls" for least squares estimation.

Author(s)

Yakuan Chen <yc2641@cumc.columbia.edu>

References

See Also

grpreg

Examples

Not run:
set.seed(100)

I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)

beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2

psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)
```r
set.seed(100)

X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))

fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)

Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error

data = as.data.frame(X)
data$Y = Yi.obs
fit.fosr.vs = fosr.vs(Y~., data = data, method="grMCP")
plot(fit.fosr.vs)
## End(Not run)
```

fosr2s
Two-step function-on-scalar regression

Description

This function performs linear regression with functional responses and scalar predictors by (1) fitting a separate linear model at each point along the function, and then (2) smoothing the resulting coefficients to obtain coefficient functions.

Usage

```r
fosr2s(Y, X, argvals = seq(0, 1, , ncol(Y)), nbasis = 15, norder = 4, 
pen.order = norder - 2, basistype = "bspline")
```

Arguments

- **Y**
 the functional responses, given as an $n \times d$ matrix.
- **X**
 $n \times p$ model matrix, whose columns represent scalar predictors. Should ordinarily include a column of 1s.
- **argvals**
 the d argument values at which the functional responses are evaluated, and at which the coefficient functions will be evaluated.
- **nbasis**
 number of basis functions used to represent the coefficient functions.
- **norder**
 order of the spline basis, when basistype="bspline" (the default, 4, gives cubic splines).
pen.order order of derivative penalty.
basistype type of basis used. The basis is created by an appropriate constructor function from the fda package; see basisfd. Only "bspline" and "fourier" are supported.

Details

Unlike fosr and pffr, which obtain smooth coefficient functions by minimizing a penalized criterion, this function introduces smoothing only as a second step. The idea was proposed by Fan and Zhang (2000), who employed local polynomials rather than roughness penalization for the smoothing step.

Value

An object of class fosr, which is a list with the following elements:

fd object of class "fd" representing the estimated coefficient functions. Its main components are a basis and a matrix of coefficients with respect to that basis.
raw.coef $d \times p$ matrix of coefficient estimates from regressing on X separately at each point along the function.
raw.se $d \times p$ matrix of standard errors of the raw coefficient estimates.
yhat $n \times d$ matrix of fitted values.
est.func $d \times p$ matrix of coefficient function estimates, obtained by smoothing the columns of raw.coef.
se.func $d \times p$ matrix of coefficient function standard errors.
argvals points at which the coefficient functions are evaluated.
lambda smoothing parameters (chosen by REML) used to smooth the p coefficient functions with respect to the supplied basis.

Author(s)

Philip Reiss <phil.reiss@nyumc.org> and Lan Huo

References

See Also

fosr, pffr
Examples

```r
require(fda)
#
# Effect of latitude on daily mean temperatures
tempmat = t(CanadianWeather$dailyAv[,1])
latmat = cbind(1, scale(CanadianWeather$coord[ , 1], TRUE, FALSE))  # centred!
fzmod <- fosr2s(tempmat, latmat, argvals=day.5, basistype="fourier", nbasis=25)

par(mfrow=1:2)
ylabs = c("Intercept", "Latitude effect")
for (k in 1:2) {
  with(fzmod, matplot(day.5, cbind(raw.coef[,k],raw.coef[,k]-2*raw.se[,k],
                                  raw.coef[,k]+2*raw.se[,k],est.func[,k],est.func[,k]-2*se.func[,k],
                                  est.func[,k]+2*se.func[,k]), type=c("p","1","1","1","1"),pch=16,
                                  lty=c(1,2,1,2,1,2),col=c(1,1,1,2,2,2), cex=.5,axes=FALSE,xlab="",ylab=ylabs[k])
  axesIntervals()
  box()
  if (k==1) legend("topleft", legend=c("Raw","Smoothed"), col=1:2, lty=2)
}
```

fpc

Construct a FPC regression term

Description

Constructs a functional principal component regression (Reiss and Ogden, 2007, 2010) term for inclusion in an `mgcv::gam`-formula (or `bam` or `gamm` or `gamm4::gamm`) as constructed by `pfr`. Currently only one-dimensional functions are allowed.

Usage

```r
fpc(X, argvals = NULL, method = c("svd", "fpca.sc", "fpca.face", "fpca.ssvd"), ncomp = NULL, pve = 0.99, penalize = (method == "svd"), bs = "ps", k = 40, ...)
```

Arguments

- **X**: functional predictors, typically expressed as an `N` by `J` matrix, where `N` is the number of columns and `J` is the number of evaluation points. May include missing/sparse functions, which are indicated by NA values. Alternatively, can be an object of class "fd"; see `fd`.

- **argvals**: indices of evaluation of `X`, i.e. \((t_{i1}, \ldots, t_{ij})\) for subject `i`. May be entered as either a length-`J` vector, or as an `N` by `J` matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject. If NULL, defaults to an equally-spaced grid between 0 or 1 (or within `X$basis$rangeval` if `X` is a fd object).
method
the method used for finding principal components. The default is an unconstrained SVD of the XB matrix. Alternatives include constrained (functional) principal components approaches.

ncomp
number of principal components. If NULL, chosen by pve.

pve
proportion of variance explained; used to choose the number of principal components.

penalize
if TRUE, a roughness penalty is applied to the functional estimate. Defaults to TRUE if method=="svd" (corresponding to the FPCR_R method of Reiss and Ogden (2007)), and FALSE if method!="svd" (corresponding to FPCR_C).

bs
two letter character string indicating the mgcv-style basis to use for pre-smoothing X.

k
the dimension of the pre-smoothing basis.

...
additional options to be passed to lf. These include argvals, integration, and any additional options for the pre-smoothing basis (as constructed by mgcv::s), such as m.

Details

fpc is a wrapper for lf, which defines linear functional predictors for any type of basis for inclusion in a pfr formula. fpc simply calls lf with the appropriate options for the fpc basis and penalty construction.

This function implements both the FPCR-R and FPCR-C methods of Reiss and Ogden (2007). Both methods consist of the following steps:

1. project X onto a spline basis B
2. perform a principal components decomposition of XB
3. use those PC’s as the basis in fitting a (generalized) functional linear model

This implementation provides options for each of these steps. The basis for in step 1 can be specified using the arguments bs and k, as well as other options via . . .; see s for these options. The type of PC-decomposition is specified with method. And the FLM can be fit either penalized or unpenalized via penalize.

The default is FPCR-R, which uses a b-spline basis, an unconstrained principal components decomposition using svd, and the FLM fit with a second-order difference penalty. FPCR-C can be selected by using a different option for method, indicating a constrained ("functional") PC decomposition, and by default an unpenalized fit of the FLM.

FPCR-R is also implemented in fpcr; here we implement the method for inclusion in a pfr formula.

Value

The result of a call to lf.

NOTE

Unlike fpcr, fpc within a pfr formula does not automatically decorrelate the functional predictors from additional scalar covariates.
Author(s)
Jonathan Gellar <JGellar@mathematica-mpr.com>, Phil Reiss <phil.reiss@nyumc.org>, Lan Huo <lan.huo@nyumc.org>, and Lei Huang <huangracer@gmail.com>

References

See Also
lf, smooth.construct.fpc.smooth.spec

Examples
data(gasoline)
par(mfrow=c(3,1))

Fit PFCR_R
gasmod1 <- pfr(octane ~ fpc(NIR, ncomp=30), data=gasoline)
plot(gasmod1, rug=FALSE)
est1 <- coef(gasmod1)

Fit FPCR_C with fpca.sc
gasmod2 <- pfr(octane ~ fpc(NIR, method="fpca.sc", ncomp=6), data=gasoline)
plot(gasmod2, se=FALSE)
est2 <- coef(gasmod2)

Fit penalized model with fpca.face
gasmod3 <- pfr(octane ~ fpc(NIR, method="fpca.face", penalize=TRUE), data=gasoline)
plot(gasmod3, rug=FALSE)
est3 <- coef(gasmod3)

par(mfrow=c(1,1))
ylim <- range(est1$value)*1.35
plot(value ~ X.argvals, type="l", data=est1, ylim=ylim)
lines(value ~ X.argvals, col=2, data=est2)
lines(value ~ X.argvals, col=3, data=est3)
fpca.face

Functional principal component analysis with fast covariance estimation

Description

A fast implementation of the sandwich smoother (Xiao et al., 2013) for covariance matrix smoothing. Pooled generalized cross validation at the data level is used for selecting the smoothing parameter.

Usage

```r
fpca.face(Y = NULL, ydata = NULL, Y.pred = NULL, argvals = NULL, 
pve = 0.99, npc = NULL, var = FALSE, simul = FALSE, 
sim.alpha = 0.95, center = TRUE, knots = 35, p = 3, m = 2, 
lambda = NULL, alpha = 1, search.grid = TRUE, 
search.length = 100, method = "L-BFGS-B", lower = -20, 
upper = 20, control = NULL)
```

Arguments

- `Y, ydata`: the user must supply either `Y`, a matrix of functions observed on a regular grid, or a data frame `ydata` representing irregularly observed functions. See Details.
- `Y.pred`: if desired, a matrix of functions to be approximated using the FPC decomposition.
- `argvals`: numeric; function argument.
- `pve`: proportion of variance explained: used to choose the number of principal components.
- `npc`: how many smooth SVs to try to extract, if `NA` (the default) the hard thresholding rule of Gavish and Donoho (2014) is used (see Details, References).
- `var`: logical; should an estimate of standard error be returned?
- `simul`: logical; if TRUE curves will we simulated using Monte Carlo to obtain an estimate of the `sim.alpha` quantile at each `argval`; ignored if `var == FALSE`.
- `sim.alpha`: numeric; if `simul==TRUE`, quantile to estimate at each `argval`; ignored if `var == FALSE`.
- `center`: logical; center `Y` so that its column-means are 0? Defaults to `TRUE`.
- `knots`: number of knots to use or the vectors of knots; defaults to 35.
- `p`: integer; the degree of B-splines functions to use.
- `m`: integer; the order of difference penalty to use.
- `lambda`: smoothing parameter; if not specified smoothing parameter is chosen using `optim` or a grid search.
- `alpha`: numeric; tuning parameter for GCV; see parameter `gamma` in `gam`.
- `search.grid`: logical; should a grid search be used to find `lambda`? Otherwise, `optim` is used.
search.length integer; length of grid to use for grid search for lambda; ignored if search.grid is FALSE

method method to use; see optim

lower see optim

upper see optim

control see optim

Value

A list with components

1. Yhat - If Y.pred is specified, the smooth version of Y.pred. Otherwise, if Y.pred=NULL, the smooth version of Y.
2. scores - matrix of scores
3. mu - mean function
4. npc - number of principal components
5. efunctions - matrix of eigenvectors
6. evalues - vector of eigenvalues

if var == TRUE additional components are returned

1. sigma2 - estimate of the error variance
2. VarMats - list of covariance function estimate for each subject
3. diag.var - matrix containing the diagonals of each matrix in
4. crit.val - list of estimated quantiles; only returned if simul == TRUE

Author(s)

Luo Xiao

References

See Also

fpca.sc for another covariance-estimate based smoothing of Y; fpca2s and fpca.ssvd for two SVD-based smoothings.
Examples

```r
#### settings
I <- 50 # number of subjects
J <- 3000 # dimension of the data
t <- (1:J)/J # a regular grid on [0,1]
N <- 4 # number of eigenfunctions
sigma <- 2 # standard deviation of random noises
lambdaTrue <- c(1, 0.5, 0.5^2, 0.5^3) # True eigenvalues

case = 1
#### True Eigenfunctions
if(case==1) phi <- sqrt(2)*cbind(sin(2*pi*t), cos(2*pi*t),
                          sin(4*pi*t), cos(4*pi*t))
if(case==2) phi <- cbind(rep(1,J), sqrt(3)*(2*t-1),
                          sqrt(5)*(6*t^2-6*t+1),
                          sqrt(7)*(20*t^3-30*t^2+12*t-1))

###################################################
######## Generate Data #############
###################################################
xi <- matrix(rnorm(I*N), I, N);
xi <- xi%*%diag(sqrt(lambdaTrue))
X <- xi%*%t(phi); # of size I by J
Y <- X + sigma*matrix(rnorm(I*J), I, J)
results <- fpca.face(Y, center = TRUE, argvals=t, knots=100, pve=0.99)

###################################################
#### FACE ########
###################################################
Phi <- results$efunctions
eigenvalues <- results$evalues
for(k in 1:N){
  if(Phi[,k]%*%phi[,k] < 0)
    Phi[,k] <- - Phi[,k]
}

### plot eigenfunctions
par(mfrow=c(N/2, 2))
seq <- (1:(J/10))*10
for(k in 1:N){
  plot(t[seq], Phi[seq,k]*sqrt(J), type="l", lwd = 3,
       ylim = c(-2,2), col = "red",
       ylab = paste("Eigenfunction ",k,sep=""),
       xlab="t", main="FACE")
  lines(t[seq], phi[seq,k], lwd = 2, col = "black")
}
```

Longitudinal Functional Data Analysis using FPCA

Description

Implements longitudinal functional data analysis (Park and Staicu, 2015). It decomposes longitudinally-observed functional observations in two steps. It first applies FPCA on a properly defined marginal covariance function and obtain estimated scores (mFPCA step). Then it further models the underlying process dynamics by applying another FPCA on a covariance of the estimated scores obtained in the mFPCA step. The function also allows to use a random effects model to study the underlying process dynamics instead of a KL expansion model in the second step. Scores in mFPCA step are estimated using numerical integration. Scores in sFPCA step are estimated under a mixed model framework.

Usage

```r
fpca.lfda(Y, subject.index, visit.index, obsT = NULL, funcArg = NULL,
numTEvalPoints = 41, newdata = NULL, fbps.knots = c(5, 10),
fbps.p = 3, fbps.m = 2, mFPCA.pve = 0.95, mFPCA.knots = 35,
mFPCA.p = 3, mFPCA.m = 2, mFPCA.npc = NULL,
LongiModel.method = c("fpca.sc", "lme"), sFPCA.pve = 0.95,
sFPCA.nbasis = 10, sFPCA.npc = NULL, gam.method = "REML",
gam.kT = 10)
```

Arguments

- **Y**: a matrix of which each row corresponds to one curve observed on a regular and dense grid (dimension of N by m; N = total number of observed functions; m = number of grid points)
- **subject.index**: subject id; vector of length N with each element corresponding a row of Y
- **visit.index**: index for visits (repeated measures); vector of length N with each element corresponding a row of Y
- **obsT**: actual time of visits at which a function is observed; vector of length N with each element corresponding a row of Y
- **funcArg**: numeric; function argument
- **numTEvalPoints**: total number of evaluation time points for visits; used for pre-binning in sFPCA step; defaults to 41
- **newdata**: an optional data frame providing predictors (i for subject id / Ltime for visit time) with which prediction is desired; defaults to NULL
- **fbps.knots**: list of two vectors of knots or number of equidistant knots for all dimensions for a fast bivariate P-spline smoothing (fbps) method used to estimate a bivariate, smooth mean function; defaults to c(5,10); see fbps
- **fbps.p**: integer; degrees of B-spline functions to use for a fbps method; defaults to 3; see fbps
fbps.m
integer; order of differencing penalty to use for a fbps method; defaults to 2; see fbps

mFPCA.pve
proportion of variance explained for a mFPCA step; used to choose the number of principal components (PCs); defaults to 0.95; see fpca.face

mFPCA.knots
number of knots to use or the vectors of knots in a mFPCA step; used for obtaining a smooth estimate of a covariance function; defaults to 35; see fpca.face

mFPCA.p
integer; the degree of B-spline functions to use in a mFPCA step; defaults to 3; see fpca.face

mFPCA.m
integer; order of differencing penalty to use in a mFPCA step; defaults to 2; see fpca.face

mFPCA.npc
pre-specified value for the number of principal components; if given, it overrides pve; defaults to NULL; see fpca.face

LongiModel.method
model and estimation method for estimating covariance of estimated scores from a mFPCA step; either KL expansion model or random effects model; defaults to fpca.sc

sFPCA.pve
proportion of variance explained for sFPCA step; used to choose the number of principal components; defaults to 0.95; see fpca.sc

sFPCA.nbasis
number of B-spline basis functions used in sFPCA step for estimation of the mean function and bivariate smoothing of the covariance surface; defaults to 10; see fpca.sc

sFPCA.npc
pre-specified value for the number of principal components; if given, it overrides pve; defaults to NULL; see fpca.sc

gam.method
smoothing parameter estimation method when gam is used for predicting score functions at unobserved visit time, T; defaults to REML; see gam

gam.kT
dimension of basis functions to use; see gam

Value
A list with components

- **obsData** observed data (input)
- **i** subject id
- **funcArg** function argument
- **visitTime** visit times
- **fitted.values** fitted values (in-sample); of the same dimension as Y
- **fitted.values.all** a list of which each component consists of a subject’s fitted values at all pairs of evaluation points (s and T)
- **predicted.values** predicted values for variables provided in newdata
- **bivariateSmoothMeanFunc** estimated bivariate smooth mean function
mFPCA.efunctions
estimated eigenfunction in a mFPCA step
mFPCA.evalues
estimated eigenvalues in a mFPCA step
mFPCA.npc
number of principal components selected with pre-specified pve in a mFPCA step
mFPCA.scree.eval
estimated eigenvalues obtained with pre-specified pve = 0.9999; for scree plot
sFPCA.xiHat.bySubj
a list of which each component consists of a subject’s predicted score functions evaluated at equidistanced grid in direction of visit time, T
sFPCA.npc
a vector of numbers of principal components selected in a sFPCA step with pre-specified pve; length of mFPCA.npc
mFPCA.covar
estimated marginal covariance
sFPCA.longDynCov.k
a list of estimated covariance of score function; length of mFPCA.npc

Details
A random effects model is recommended when a set of visit times for all subjects and visits is not dense in its range.

Author(s)
So Young Park <spark13@ncsu.edu>, Ana-Maria Staicu

References

Examples

```r
## Not run:
########################################
### Illustration with real data ###
########################################
data(DTI)
MS <- subset(DTI, case == 1)  # subset data with multiple sclerosis (MS) case
index.na <- which(is.na(MS$cca))
Y <- MS$cca; Y[index.na] <- fpca.sc(Y)$Yhat[index.na]; sum(is.na(Y))
id <- MS$ID
visit.index <- MS$visit
visit.time <- MS$visit.time/max(MS$visit.time)
lfpca.dti <- fpca.lfda(Y = Y, subject.index = id, visit.index = visit.index, obsT = visit.time,
                      LongiModel.method = 'lme', mFPCA.pve = 0.95)
```
TT <- seq(0,1,length.out=41); ss = seq(0,1,length.out=93)

estimated mean function
persp(x = ss, y = TT, z = t(lfpca.dti$bivariateSmoothMeanFunc),
 xlab="s", ylab="visit times", zlab="estimated mean fn", col="light blue")

first three estimated marginal eigenfunctions
matplot(ss, lfpca.dti$mFPCA.efunctions[,1:3], type='l', xlab='s', ylab='estimated eigen fn')

predicted scores function corresponding to first two marginal PCs
matplot(TT, do.call(cbind, lapply(lfpca.dti$sFPCA.xiHat.bySubj, function(a) a[,1])),
 xlab="visit time (T)", ylab="\text{\textit{xi}}_\text{hat}(T)", main = "k = 1")
matplot(TT, do.call(cbind, lapply(lfpca.dti$sFPCA.xiHat.bySubj, function(a) a[,2])),
 xlab="visit time (T)", ylab="\text{\textit{xi}}_\text{hat}(T)", main = "k = 2")

prediction of cca of first two subjects at T = 0, 0.5 and 1 (black, red, green)
matplot(ss, t(lfpca.dti$fitted.values.all[[1]][c(1,21,41),]),
 xlab="s", ylab='', lty = 1, main = "Subject = 1")
matplot(ss, t(lfpca.dti$fitted.values.all[[2]][c(1,21,41),]),
 xlab="s", ylab='', lty = 1, main = "Subject = 2")

data generation
set.seed(1)

number of subjects
n <- 100

sequence of visit times
ss <- seq(0,1,length.out=101)

sequence of study times
TT <- seq(0,1, length.out=41)

random number of visits per subject
mi <- runif(n, min=6, max=15)
ij <- sapply(mi, function(a) sort(sample(1:41, size=a, replace=FALSE))

error variances
sigma <- 0.1
sigma_wn <- 0.2

True eigenvalues
lambdaTrue <- c(1,0.5)
eta1True <- c(0.5, 0.5^2, 0.5^3)
eta2True <- c(0.5^2, 0.5^3)
phi <- sqrt(2)*cbind(sin(2*pi*ss),cos(2*pi*ss))
psi1 <- cbind(rep(1,length(TT)), sqrt(3)*(2*TT-1), sqrt(5)*(6*TT^2-6*TT+1))
psi2 <- sqrt(2)*cbind(sin(2*pi*TT),cos(2*pi*TT))

True eigenvalues
zeta1 <- sapply(eta1True, function(a) rnorm(n = n, mean = 0, sd = a))
zeta2 <- sapply(eta2True, function(a) rnorm(n = n, mean = 0, sd = a))

predicted scores
xi1 <- unlist(lapply(1:n, function(a) (zeta1 %*% t(psi1))[a,ij[[a]]]))
xi2 <- unlist(lapply(1:n, function(a) (zeta2 %*% t(psi2))[a,ij[[a]]]))
xi <- cbind(xi1, xi2)
Tij <- unlist(lapply(1:n, function(i) TT[[i]])
))
i <- unlist(lapply(1:n, function(i) rep(i, length(ij[[i]]))))
j <- unlist(lapply(1:n, function(i) 1:length(ij[[i]]))))

X <- xi %*% t(phi)
meanFn <- function(s,t){ 0.5*t + 1.5*s + 1.3*s*t}
mu <- matrix(meanFn(s = rep(ss, each=length(Tij)), t=rep(Tij, length(ss))) , nrow=nrow(X))

Y <- mu + X +
matrix(rnorm(nrow(X)*ncol(phi), 0, sigma), nrow=nrow(X)) %*% t(phi) + #correlated error
matrix(rnorm(length(X), 0, sigma_wn), nrow=nrow(X)) # white noise

matplot(ss, t(Y[which(i==2),]), type='l', ylab='', xlab="functional argument",
main="observations from subject i = 2")

END: data generation

Illustration I : when covariance of scores from a mFPCA step is estimated using fpca.sc
Definition of parameter passing in the function
est <- fpca.lfda(Y = Y,
subject.index = i, visit.index = j, obsT = Tij,
funcArg = ss, numTEvalPoints = length(TT),
newdata = data.frame(i = c(1:3), Ltime = c(Tij[1], 0.2, 0.5)),
fbps.knots = 35, fbps.p = 3, fbps.m = 2,
LongiModel.method='fpca.sc',
mFPCA.pve = 0.95, mFPCA.knots = 35, mFPCA.p = 3, mFPCA.m = 2,
sFPCA.pve = 0.95, sFPCA.nbasis = 10, sFPCA.npc = NULL,
gam.method = 'REML', gam.kT = 10)

mean function (true vs. estimated)
par(mfrow=c(1,2))
persp(x=TT, y = ss, z= t(sapply(TT, function(a) meanFn(s=ss, t = a)))),
xlab="visit times", ylab="", zlab="true mean fn")
persp(x = TT, y = ss, est$bivariateSmoothMeanFunc,
xlab="visit times", ylab="", zlab="estimated mean fn", col='light blue')

marginal covariance fn (true vs. estimated)
image(phi%*%diag(lambdaTrue)%*%t(phi))
image(est$mFPCA.covar)

eigenfunctions (true vs. estimated)
matplot(ss, phi, type='l')
matlines(ss, cbind(est$mFPCA.efunctions[,1], est$mFPCA.efunctions[,2]), type='l', lwd=2)

scree plot
plot(cumsum(est$mFPCA.scree.eval)/sum(est$mFPCA.scree.eval), type='l',
ylab = "Percentage of variance explained")
points(cumsum(est$mFPCA.scree.eval)/sum(est$mFPCA.scree.eval), pch=16)

################ sFPCA step ################
par(mfrow=c(1,2))
print(est$mFPCA.npc) # k = 2

covariance of score functions for k = 1 (true vs. estimated)
image(psi1%*%diag(eta1True)%*%t(psi1), main='TRUE')
image(est$sFPCA.longDynCov.k[[1]], main='ESTIMATED')

covariance of score functions for k = 2 (true vs. estimated)
image(psi2%*%diag(eta2True)%*%t(psi2))
image(est$sFPCA.longDynCov.k[[2]])

estimated scores functions
matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,1])),
xlab="visit time", main="k=1", type='l', ylab='', col=rainbow(100, alpha = 1),
lwd=1, lty=1)
matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,2])),
xlab="visit time", main="k=2", type='l', ylab='', col=rainbow(100, alpha = 1),
lwd=1, lty=1)

################ In-sample and Out-of-sample Prediction ################
par(mfrow=c(1,2))
fitted
matplot(ss, t(Y[which(i==1),]), type='l', ylab='', xlab="functional argument")
matlines(ss, t(est$fitted.values[which(i==1),]), type='l', lwd=2)

sanity check : expect fitted and predicted (obtained using info from newdata) values to be the same
plot(ss, est$fitted.values[1,], type='p', xlab='', ylab='', pch = 1, cex=1)
lines(ss, est$predicted.values[1,], type='l', lwd=2, col='blue')
all.equal(est$predicted.values[1,], est$fitted.values[1,])

Illustration II : when covariance of scores from a mFPCA step is estimated using lmer
est.lme <- fpca.lfda(Y = Y,
 subject.index = i, visit.index = j, obsT = Tij,
 funcArg = ss, numTEvalPoints = length(TT),
 newdata = data.frame(i = c(1:3), Ltime = c(Tij[1], 0.2, 0.5)),
 fbps.knots = 35, fbps.p = 3, fbps.m = 2,
 LongiModel.method='lme',
 mFPCA.pve = 0.95, mFPCA.knots = 35, mFPCA.p = 3, mFPCA.m = 2,
 gam.method = 'REML', gam.kT = 10)

par(mfrow=c(2,2))

fpca.sc vs. lme (assumes linearity)
matplot(TT, do.call(cbind,lapply(est$sFPCA.xiHat.bySubj, function(a) a[,1])),
xlab="visit time", main="k=1", type='l', ylab='', col=rainbow(100, alpha = 1),
lwd=1, lty=1)
Functional principal components analysis by smoothed covariance

Description

Decomposes functional observations using functional principal components analysis. A mixed model framework is used to estimate scores and obtain variance estimates.

Usage

```r
fpca.sc(Y = NULL, ydata = NULL, Y.pred = NULL, argvals = NULL,
random.int = FALSE, nbasis = 10, pve = 0.99, npc = NULL,
var = FALSE, simul = FALSE, sim.alpha = 0.95, useSymm = FALSE,
makePD = FALSE, center = TRUE, cov.est.method = 2,
integration = "trapezoidal")
```

Arguments

- **Y, ydata**

 the user must supply either `Y`, a matrix of functions observed on a regular grid, or a data frame `ydata` representing irregularly observed functions. See Details.

- **Y.pred**

 if desired, a matrix of functions to be approximated using the FPC decomposition.

- **argvals**

 the argument values of the function evaluations in `Y`, defaults to an equidistant grid from 0 to 1.

- **random.int**

 If `TRUE`, the mean is estimated by `gamm4` with random intercepts. If `FALSE` (the default), the mean is estimated by `gam` treating all the data as independent.

- **nbasis**

 number of B-spline basis functions used for estimation of the mean function and bivariate smoothing of the covariance surface.

- **pve**

 proportion of variance explained: used to choose the number of principal components.

- **npc**

 prespecified value for the number of principal components (if given, this overrides `pve`).
TRUE or FALSE indicating whether model-based estimates for the variance of FPCA expansions should be computed.

simul

logical: should critical values be estimated for simultaneous confidence intervals?

sim.alpha

1 - coverage probability of the simultaneous intervals.

useSymm

logical, indicating whether to smooth only the upper triangular part of the naive covariance (when cov.est.method==2). This can save computation time for large data sets, and allows for covariance surfaces that are very peaked on the diagonal.

makePD

logical: should positive definiteness be enforced for the covariance surface estimate?

center

logical: should an estimated mean function be subtracted from Y? Set to FALSE if you have already demeaned the data using your favorite mean function estimate.

cov.est.method

covariance estimation method. If set to 1, a one-step method that applies a bivariate smooth to the $y(s_1)y(s_2)$ values. This can be very slow. If set to 2 (the default), a two-step method that obtains a naive covariance estimate which is then smoothed.

integration

quadrature method for numerical integration; only 'trapezoidal' is currently supported.

Details

This function computes a FPC decomposition for a set of observed curves, which may be sparsely observed and/or measured with error. A mixed model framework is used to estimate curve-specific scores and variances.

FPCA via kernel smoothing of the covariance function, with the diagonal treated separately, was proposed in Staniswalis and Lee (1998) and much extended by Yao et al. (2005), who introduced the ‘PACE’ method. fpca.sc uses penalized splines to smooth the covariance function, as developed by Di et al. (2009) and Goldsmith et al. (2013).

The functional data must be supplied as either

- an $n \times d$ matrix Y, each row of which is one functional observation, with missing values allowed; or
- a data frame ydata, with columns '.id' (which curve the point belongs to, say i), '.index' (function argument such as time point t), and '.value' (observed function value $Y_i(t)$).

Value

An object of class fpca containing:

Yhat

FPC approximation (projection onto leading components) of Y.pred if specified, or else of Y.

Y

the observed data

scores

$n \times npe$ matrix of estimated FPC scores.

mu

estimated mean function (or a vector of zeroes if center==FALSE).
efunctions $d \times npc$ matrix of estimated eigenfunctions of the functional covariance, i.e., the FPC basis functions.

values estimated eigenvalues of the covariance operator, i.e., variances of FPC scores.

npc number of FPCs: either the supplied npc, or the minimum number of basis functions needed to explain proportion pve of the variance in the observed curves.

argvals argument values of eigenfunction evaluations

sigma2 estimated measurement error variance.

diag.var diagonal elements of the covariance matrices for each estimated curve.

VarMats a list containing the estimated covariance matrices for each curve in Y.

crit.val estimated critical values for constructing simultaneous confidence intervals.

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>, Sonja Greven <sonja.greven@stat.uni-muenchen.de>, Lan Huo <Lan.Huo@nyumc.org>, Lei Huang <huangracer@gmail.com>, and Philip Reiss <phil.reiss@nyumc.org>

References

Examples

```r
## Not run:
library(ggplot2)
library(reshape2)
data(cd4)
Fit.MM = fpca.sc(cd4, var = TRUE, simul = TRUE)
Fit.mu = data.frame(mu = Fit.MM$mu,
                   d = as.numeric(colnames(cd4)))
Fit.basis = data.frame(efunctions = Fit.MM$efunctions,
                   d = as.numeric(colnames(cd4)))

## for one subject, examine curve estimate, pointwise and simultaneous intervals
EX = 1
EX.MM = data.frame(fitted = Fit.MM$Yhat[EX,],
                   ptwise.UB = Fit.MM$Yhat[EX,] + 1.96 * sqrt(Fit.MM$diag.var[EX,]),
                   ptwise.LB = Fit.MM$Yhat[EX,] - 1.96 * sqrt(Fit.MM$diag.var[EX,]),
                   simul.UB = Fit.MM$Yhat[EX,] + Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,]),
                   simul.LB = Fit.MM$Yhat[EX,] - Fit.MM$crit.val[EX] * sqrt(Fit.MM$diag.var[EX,])
```

\(d = \text{as.numeric(colnames(cd4))} \)

plot data for one subject, with curve and interval estimates
EX.MM.m = melt(EX.MM, id = 'd')
ggplot(EX.MM.m, aes(x = d, y = value, group = variable, color = variable, linetype = variable)) + geom_path() +
 scale_linetype_manual(values = c(fitted = 1, ptwise.UB = 2, ptwise.LB = 2, simul.UB = 3, simul.LB = 3)) +
 scale_color_manual(values = c(fitted = 1, ptwise.UB = 2, ptwise.LB = 2, simul.UB = 3, simul.LB = 3)) +
 labs(x = 'Months since seroconversion', y = 'Total CD4 Cell Count')

plot estimated mean function
ggplot(Fit.mu, aes(x = d, y = mu)) + geom_path() +
 labs(x = 'Months since seroconversion', y = 'Total CD4 Cell Count')

plot the first two estimated basis functions
Fit.basis.m = melt(Fit.basis, id = 'd')
ggplot(subset(Fit.basis.m, variable %in% c('phi.1', 'phi.2')), aes(x = d, y = value, group = variable, color = variable)) + geom_path()

input a dataframe instead of a matrix
nid <- 20
nobs <- sample(10:20, nid, rep=TRUE)
ydata <- data.frame(
 .id = rep(1:nid, nobs),
 .index = round(runif(sum(nobs), 0, 1), 3))
ydata$.value <- unlist(tapply(ydata$.index,
 ydata$.id,
 function(x)
 runif(1, -.5, .5) +
 dbeta(x, runif(1, 6, 8), runif(1, 3, 5))
))

Fit.MM = fpca.sc(ydata=ydata, var = TRUE, simul = FALSE)

End(Not run)

fpca.ssvd

Smoothed FPCA via iterative penalized rank one SVDs.

Description

Implements the algorithm of Huang, Shen, Buja (2008) for finding smooth right singular vectors of a matrix \(X \) containing (contaminated) evaluations of functional random variables on a regular, equidistant grid. If the number of smooth SVs to extract is not specified, the function hazards a guess for the appropriate number based on the asymptotically optimal truncation threshold under the assumption of a low rank matrix contaminated with i.i.d. Gaussian noise with unknown variance.
derived in Donoho, Gavish (2013). Please note that Donoho, Gavish (2013) should be regarded as experimental for functional PCA, and will typically not work well if you have more observations than grid points.

Usage

fpca.ssvd(Y = NULL, ydata = NULL, argvals = NULL, npc = NA, center = TRUE, maxiter = 15, tol = 1e-04, diffpen = 3, gridsearch = TRUE, alphagrid = 1.5^(-20:40), lower.alpha = 1e-05, upper.alpha = 1e+07, verbose = FALSE, integration = "trapezoidal")

Arguments

Y data matrix (rows: observations; columns: grid of eval. points)
ydata a data frame ydata representing irregularly observed functions. NOT IMPLEMENTED for this method.
argvals the argument values of the function evaluations in Y, defaults to a equidistant grid from 0 to 1. See Details.
npc how many smooth SVs to try to extract, if NA (the default) the hard thresholding rule of Donoho, Gavish (2013) is used (see Details, References).
center center Y so that its column-means are 0? Defaults to TRUE
maxiter how many iterations of the power algorithm to perform at most (defaults to 15)
tol convergence tolerance for power algorithm (defaults to 1e-4)
diffpen difference penalty order controlling the desired smoothness of the right singular vectors, defaults to 3 (i.e., deviations from local quadratic polynomials).
gridsearch use optimize or a grid search to find GCV-optimal smoothing parameters? defaults to TRUE.
alphagrid grid of smoothing parameter values for grid search
lower.alpha lower limit for for smoothing parameter if !gridsearch
upper.alpha upper limit for smoothing parameter if !gridsearch
verbose generate graphical summary of progress and diagnostic messages? defaults to FALSE
integration ignored, see Details.

Details

Note that fpca.ssvd computes smoothed orthonormal eigenvectors of the supplied function evaluations (and associated scores), not (!) evaluations of the smoothed orthonormal eigenfunctions. The smoothed orthonormal eigenvectors are then rescaled by the length of the domain defined by argvals to have a quadratic integral approximately equal to one (instead of crossproduct equal to one), so they approximate the behavior of smooth eigenfunctions. If argvals is not equidistant, fpca.ssvd will simply return the smoothed eigenvectors without rescaling, with a warning.
Value

an \texttt{fpca} object like that returned from \texttt{fpca.sc}, with entries \texttt{Yhat}, the smoothed trajectories, \texttt{Y}, the observed data, \texttt{scores}, the estimated FPC loadings, \texttt{mu}, the column means of \texttt{Y} (or a vector of zeroes if !center), \texttt{efunctions}, the estimated smooth FPCs (note that these are orthonormal vectors, not evaluations of orthonormal functions if \texttt{argvals} is not equidistant), \texttt{evalues}, their associated eigenvalues, and \texttt{npc}, the number of smooth components that were extracted.

Author(s)

Fabian Scheipl

References

See Also

\texttt{fpca.sc} and \texttt{fpca.face} for FPCA based on smoothing a covariance estimate; \texttt{fpca2s} for a faster SVD-based approach.

Examples

```r
## as in Sec. 6.2 of Huang, Shen, Buja (2008):
set.seed(2678695)
n <- 101
m <- 101
s1 <- 20
s2 <- 10
s <- 4
t <- seq(-1, 1, l=m)
v1 <- t + sin(pi*t)
v2 <- cos(3*pi*t)
V <- cbind(v1/sqrt(sum(v1^2)), v2/sqrt(sum(v2^2)))
U <- matrix(rnorm(n*2), n, 2)
D <- diag(c(s1^2, s2^2))
eps <- matrix(rnorm(m*n, sd=s), n, m)
Y <- U%*%D%*%t(V) + eps
smoothSV <- fpca.ssvd(Y, verbose=TRUE)

layout(t(matrix(1:4, nr=2)))
clrs <- sapply(rainbow(n), function(c)
do.call(rgb, as.list(c(col2rgb(c)/255, .1))))
matplot(V, type="l", lty=1, col=1:2, xlab="", main="FPCs: true", bty="n")
matplot(smoothSV$efunctions, type="l", lty=1, col=1:5, xlab="", main="FPCs: estimate", bty="n")
matplot(1:m, t(U%*%D%*%t(V)), type="l", lty=1, col=clrs, xlab="", ylab="")
```
fpca2s

Functional principal component analysis by a two-stage method

Description
This function performs functional PCA by performing an ordinary singular value decomposition on the functional data matrix, then smoothing the right singular vectors by smoothing splines.

Usage
fpca2s(Y = NULL, ydata = NULL, argvals = NULL, npc = NA, center = TRUE, smooth = TRUE)

Arguments
Y data matrix (rows: observations; columns: grid of eval. points)
ydata a data frame ydata representing irregularly observed functions. NOT IMPLEMENTED for this method.
argvals the argument values of the function evaluations in Y, defaults to a equidistant grid from 0 to 1. See Details.
npc how many smooth SVs to try to extract, if NA (the default) the hard thresholding rule of Donoho, Gavish (2013) is used (see Details, References).
center center Y so that its column-means are 0? Defaults to TRUE
smooth logical; defaults to TRUE, if NULL, no smoothing of eigenvectors.

Details
Note that fpca2s computes smoothed orthonormal eigenvectors of the supplied function evaluations (and associated scores), not (!) evaluations of the smoothed orthonormal eigenfunctions. The smoothed orthonormal eigenvectors are then rescaled by the length of the domain defined by argvals to have a quadratic integral approximately equal to one (instead of crossproduct equal to one), so they approximate the behavior of smooth eigenfunctions. If argvals is not equidistant, fpca2s will simply return the smoothed eigenvectors without rescaling, with a warning.

Value
an fpca object like that returned from fpca.sc, with entries Yhat, the smoothed trajectories, Y, the observed data, scores, the estimated FPC loadings, mu, the column means of Y (or a vector of zeroes if !center), efunctions, the estimated smooth FPCs (note that these are orthonormal vectors, not evaluations of orthonormal functions if argvals is not equidistant), evalues, their associated eigenvalues, and npc, the number of smooth components that were extracted.
Author(s)
Luo Xiao <lxiao@jhsph.edu>, Fabian Scheipl

References

See Also
fpca.sc and fpca.face for FPCA based on smoothing a covariance estimate; fpca.ssvd for another SVD-based approach.

Examples

```r
#### settings
I <- 50 # number of subjects
J <- 3000 # dimension of the data
t <- (1:J)/J # a regular grid on [0,1]
N <- 4 # number of eigenfunctions
sigma <- 2 # standard deviation of random noises
lambdaTrue <- c(1,0.5,0.5^2,0.5^3) # True eigenvalues

case = 1
for(k in 1:N){

### True Eigenfunctions
if(case==1) phi <- sqrt(2)*cbind(sin(2*pi*t),cos(2*pi*t),
                                  sin(4*pi*t),cos(4*pi*t))
if(case==2) phi <- cbind(rep(1,J),sqrt(3)*(2*t-1),
                            sqrt(5)*(6*t^2-6*t+1),
                            sqrt(7)*(20*t^3-30*t^2+12*t-1))

###################################################
######## Generate Data #############
###################################################
xi <- matrix(rnorm(I*N),I,N);
xi <- xi%*%diag(sqrt(lambdaTrue))
X <- xi%*%t(phi); # of size I by J
Y <- X + sigma*matrix(rnorm(I*J),I,J)
results <- fpca2s(Y,npc=4,argvals=t)

###################################################
#### SVDS ########
###################################################
Phi <- results$efunctions
eigenvalues <- results$evalues
```
if(Phi[,k] %*% phi[,k] < 0)
 Phi[,k] <- - Phi[,k]
}

plot eigenfunctions
par(mfrow=c(N/2,2))
seq <- (1:(J/10))*10
for(k in 1:N){
 plot(t[seq],Phi[seq,k]*sqrt(J),type='l',lwd = 3,
 ylim = c(-2,2),col = 'red',
 ylab = paste('Eigenfunction ','k',sep=''),
 xlab='t',main='SVDS')
 lines(t[seq],phi[seq,k],lwd = 2, col = 'black')
}

fpcr

Functional principal component regression

Description

Usage

fpcr(y, xfuncs = NULL, fdobj = NULL, ncomp = NULL, pve = 0.99, nbasis = NULL, basismat = NULL, penmat = NULL, argvals = NULL, covt = NULL, mean.signal.term = FALSE, spline.order = NULL, family = "gaussian", method = "REML", sp = NULL, pen.order = 2, cv1 = FALSE, nfold = 5, store.cv = FALSE, store.gam = TRUE, ...)

Arguments

y scalar outcome vector.

xfuncs for 1D predictors, an n x d matrix of signals/functional predictors, where n is the length of y and d is the number of sites at which each signal is defined. For 2D predictors, an n x d1 x d2 array representing n images of dimension d1 x d2.

fdobj functional data object (class "fd") giving the functional predictors. Allowed only for 1D functional predictors.

ncomp number of principal data object. If NULL, this is chosen by pve.

pve proportion of variance explained: used to choose the number of principal components.

nbasis number(s) of B-spline basis functions: either a scalar, or a vector of values to be compared. For 2D predictors, tensor product B-splines are used, with the given basis dimension(s) in each direction; alternatively, nbasis can be given in the form list(v1,v2), in which case cross-validation will be performed for each
combination of the first-dimension basis sizes in \(v_1 \) and the second-dimension basis sizes in \(v_2 \). Ignored if \(\text{fdobj} \) is supplied. If \(\text{fdobj} \) is not supplied, this defaults to 40 (i.e., 40 B-spline basis functions) for 1D predictors, and 15 (i.e., tensor product B-splines with 15 functions per dimension) for 2D predictors.

- \(\text{basismat} \): a \(d \times K \) matrix of values of \(K \) basis functions at the \(d \) sites.
- \(\text{penmat} \): a \(K \times K \) matrix defining a penalty on the basis coefficients.
- \(\text{argvals} \): points at which the functional predictors and the coefficient function are evaluated. By default, if 1D functional predictors are given by the \(n \times d \) matrix \(\text{xfuncs} \), \(\text{argvals} \) is set to \(d \) equally spaced points from 0 to 1; if they are given by \(\text{fdobj} \), \(\text{argvals} \) is set to 401 equally spaced points spanning the domain of the given functions. For 2D (image) predictors supplied as an \(n \times d_1 \times d_2 \) array, \(\text{argvals} \) defaults to a list of (1) \(d_1 \) equally spaced points from 0 to 1; (2) \(d_2 \) equally spaced points from 0 to 1.
- \(\text{covt} \): covariates: an \(n \)-row matrix, or a vector of length \(n \).
- \(\text{mean.signal.term} \): logical: should the mean of each subject’s signal be included as a covariate?
- \(\text{spline.order} \): order of B-splines used, if \(\text{fdobj} \) is not supplied; defaults to 4, i.e., cubic B-splines.
- \(\text{family} \): generalized linear model family. Current version supports "gaussian" (the default) and "binomial".
- \(\text{method} \): smoothing parameter selection method, passed to function \text{gam}; see the \text{gam} documentation for details.
- \(\text{sp} \): a fixed smoothing parameter; if \(\text{NULL} \), an optimal value is chosen (see \text{method}).
- \(\text{pen.order} \): order of derivative penalty applied when estimating the coefficient function; defaults to 2.
- \(\text{cv1} \): logical: should cross-validation be performed to select the best model if only one set of tuning parameters provided? By default, \(\text{FALSE} \). Note that, if there are multiple sets of tuning parameters provided, \(\text{cv} \) is always performed.
- \(\text{nfold} \): the number of validation sets ("folds") into which the data are divided; by default, 5.
- \(\text{store.cv} \): logical: should a CV result table be in the output? By default, \(\text{FALSE} \).
- \(\text{store.gam} \): logical: should the \text{gam} object be included in the output? Defaults to \(\text{TRUE} \).
- \(\ldots \): other arguments passed to function \text{gam}.

Details

One-dimensional functional predictors can be given either in functional data object form, using argument \(\text{fdobj} \) (see the \text{fda} package of Ramsay, Hooker and Graves, 2009, and Method 1 in the example below), or explicitly, using \(\text{xfuncs} \) (see Method 2 in the example). In the latter case, arguments \(\text{basismat} \) and \(\text{penmat} \) can also be used to specify the basis and/or penalty matrices (see Method 3).

For two-dimensional predictors, functional data object form is not supported. Instead of radial B-splines as in Reiss and Ogden (2010), this implementation employs tensor product cubic B-splines, sometimes known as bivariate O-splines (Ormerod, 2008).
For purposes of interpreting the fitted coefficients, please note that the functional predictors are
decorrelated from the scalar predictors before fitting the model (when there are no scalar predictors
other than the intercept, this just means the columns of the functional predictor matrix are de-
meaned); see section 3.2 of Reiss (2006) for details.

Value

A list with components

- **gamObject** if `store.gam = TRUE`, an object of class `gam` (see `gamObject` in the `mgcv` pack-
 age documentation).
- **fhat** coefficient function estimate.
- **se** pointwise Bayesian standard error.
- **undecor.coef** undecorrelated coefficient for covariates.
- **argvals** the supplied value of `argvals`.
- **cv.table** a table giving the CV criterion for each combination of `nbasis` and `ncomp`, if
 `store.cv = TRUE`; otherwise, the CV criterion only for the optimized combi-
 nation of these parameters. Set to `NULL` if CV is not performed.
- **nbasis, ncomp** when CV is performed, the values of `nbasis` and `comp` that minimize the CV
criterion.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>, Lan Huo <lan.huo@nyumc.org>, and Lei Huang <huangracer@gmail.com>

References

of Mathematics and Statistics, University of New South Wales.

New York: Springer.

partment of Biostatistics, Columbia University. Available at http://works.bepress.com/phil_
reiss/11/.

Reiss, P. T., and Ogden, R. T. (2010). Functional generalized linear models with images as predi-

man & Hall.

Examples

```r
require(fda)
### 1D functional predictor example ###
```
Octane data example

data(gasoline)

Create the requisite functional data objects
bbasis = create.bspline.basis(c(900, 1700), 40)
wavelengths = 2*450:850
nir <- t(gasoline$NIR)
gas.fd = smooth.basisPar(wavelengths, nir, bbasis)$fd

Method 1: Call fpcr with fdobj argument
gasmod1 = fpcr(gasoline$octane, fdobj = gas.fd, ncomp = 30)
plot(gasmod1, xlab="Wavelength")
Not run:
Method 2: Call fpcr with explicit signal matrix
gasmod2 = fpcr(gasoline$octane, xfuncs = gasoline$NIR, ncomp = 30)
Method 3: Call fpcr with explicit signal, basis, and penalty matrices
gasmod3 = fpcr(gasoline$octane, xfuncs = gasoline$NIR,
 basismat = eval.basis(wavelengths, bbasis),
 penmat = getbasispenalty(bbasis), ncomp = 30)

Check that all 3 calls yield essentially identical estimates
all.equal(gasmod1$fhat, gasmod2$fhat, gasmod3$fhat)
But note that, in general, you’d have to specify argvals in Method 1
to get the same coefficient function values as with Methods 2 & 3.
End(Not run)

2D functional predictor example

n = 200; d = 70

Create true coefficient function
ftrue = matrix(0,d,d)
ftrue[40:46,34:38] = 1

Generate random functional predictors, and scalar responses
ii = array(rnorm(n*d^2), dim=c(n,d,d))
iimat = ii; dim(iimat) = c(n,d^2)
yy = iimat %*% as.vector(ftrue) + rnorm(n, sd=.3)

mm = fpcr(yy, ii, ncomp=40)
image(ftrue)
contour(mm$fhat, add=TRUE)

Not run:

Cross-validation

cv.gas = fpcr(gasoline$octane, xfuncs = gasoline$NIR,
 nbasis=seq(20,40,5), ncomp = seq(10,20,5), store.cv = TRUE)
image(seq(20,40,5), seq(10,20,5), cv.gas$cv.table, xlab="Basis size",
 ylab="Number of PCs", xaxp=c(20,40,4), yaxp=c(10,20,2))
f_sum

Sum computation 1

Description

Internal function used compute a sum in FPCA-based covariance updates

Usage

```r
f_sum(mu.q.c, sig.q.c, theta, obspts.mat)
```

Arguments

- `mu.q.c`: current value of mu.q.c
- `sig.q.c`: current value of sig.q.c
- `theta`: spline basis
- `obspts.mat`: matrix indicating the points on which data is observed

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

f_sum2

Sum computation 2

Description

Internal function used compute a sum in FPCA-based covariance updates

Usage

```r
f_sum2(y, fixef, mu.q.c, kt, theta)
```

Arguments

- `y`: outcome matrix
- `fixef`: current estimate of fixed effects
- `mu.q.c`: current value of mu.q.c
- `kt`: number of basis functions
- `theta`: spline basis

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>
f_sum4
Sum computation 2

Description
Internal function used compute a sum in FPCA-based covariance updates

Usage
f_sum4(mu.q.c, sig.q.c, mu.q.bpsi, sig.q.bpsi, theta, obspts.mat)

Arguments
- **mu.q.c**: current value of mu.q.c
- **sig.q.c**: current value of sig.q.c
- **mu.q.bpsi**: current value of mu.q.bpsi
- **sig.q.bpsi**: current value of sig.q.bpsi
- **theta**: current value of theta
- **obspts.mat**: matrix indicating where curves are observed

Author(s)
Jeff Goldsmith <ajg2202@cumc.columbia.edu>

f_trace
Trace computation

Description
Internal function used compute a trace in FPCA-based covariance updates

Usage
f_trace(Theta_i, Sig_q_Bpsi, Kp, Kt)

Arguments
- **Theta_i**: basis functions on observed grid points
- **Sig_q_Bpsi**: variance of FPC basis coefficients
- **Kp**: number of FPCs
- **Kt**: number of spline basis functions

Author(s)
Jeff Goldsmith <ajg2202@cumc.columbia.edu>
gibbs_cs_fpca
Cross-sectional FoSR using a Gibbs sampler and FPCA

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using FPCA.

Usage

```r
gibbs_cs_fpca(formula, Kt = 5, Kp = 2, data = NULL, verbose = TRUE, 
N.iter = 5000, N.burn = 1000, SEED = NULL, sig2.me = 0.01, 
alpha = 0.1, Aw = NULL, Bw = NULL, Apsi = NULL, Bpsi = NULL)
```
Arguments

- **formula**: a formula indicating the structure of the proposed model.
- **Kt**: number of spline basis functions used to estimate coefficient functions.
- **Kp**: number of FPCA basis functions to be estimated.
- **data**: an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
- **verbose**: logical defaulting to TRUE – should updates on progress be printed?
- **N.iter**: number of iterations used in the Gibbs sampler.
- **N.burn**: number of iterations discarded as burn-in.
- **SEED**: seed value to start the sampler; ensures reproducibility.
- **sig2.me**: starting value for measurement error variance.
- **alpha**: tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = 0 is all second-derivative penalty).
- **Aw**: hyperparameter for inverse gamma controlling variance of spline terms for population-level effects.
- **Bw**: hyperparameter for inverse gamma controlling variance of spline terms for population-level effects.
- **Apsi**: hyperparameter for inverse gamma controlling variance of spline terms for FPC effects.
- **Bpsi**: hyperparameter for inverse gamma controlling variance of spline terms for FPC effects.

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using a Wishart prior.
Usage

gibbs_cs_wish(formula, Kt = 5, data = NULL, verbose = TRUE,
N.iter = 5000, N.burn = 1000, alpha = 0.1, min.iter = 10,
max.iter = 50, Aw = NULL, Bw = NULL, v = NULL, SEED = NULL)

Arguments

 formula a formula indicating the structure of the proposed model.

 Kt number of spline basis functions used to estimate coefficient functions

 data an optional data frame, list or environment containing the variables in the model.
If not found in data, the variables are taken from environment(formula), typi-

 verbose logical defaulting to TRUE – should updates on progress be printed?

 N.iter number of iterations used in the Gibbs sampler

 N.burn number of iterations discarded as burn-in

 alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty
(alpha = 0 is all second-derivative penalty)

 min.iter minimum number of iterations

 max.iter maximum number of iterations

 Aw hyperparameter for inverse gamma controlling variance of spline terms for population-

 Bw hyperparameter for inverse gamma controlling variance of spline terms for population-

 v hyperparameter for inverse Wishart prior on residual covariance

 SEED seed value to start the sampler; ensures reproducibility

Author(s)

 Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

215-236.
Description

Fitting function for function-on-scalar regression for longitudinal data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using FPCA.

Usage

gibbs_mult_fpca(formula, Kt = 5, Kp = 2, data = NULL, verbose = TRUE, N.iter = 5000, N.burn = 1000, sig2.me = 0.01, alpha = 0.1, SEED = NULL)

Arguments

- **formula**: a formula indicating the structure of the proposed model.
- **Kt**: number of spline basis functions used to estimate coefficient functions
- **Kp**: number of FPCA basis functions to be estimated
- **data**: an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
- **verbose**: logical defaulting to TRUE – should updates on progress be printed?
- **N.iter**: number of iterations used in the Gibbs sampler
- **N.burn**: number of iterations discarded as burn-in
- **sig2.me**: starting value for measurement error variance
- **alpha**: tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = 0 is all second-derivative penalty)
- **SEED**: seed value to start the sampler; ensures reproducibility

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

gibbs_mult_wish

Multilevel FoSR using a Gibbs sampler and Wishart prior

Description

Fitting function for function-on-scalar regression for multilevel data. This function estimates model parameters using a Gibbs sampler and estimates the residual covariance surface using a Wishart prior.

Usage
gibbs_mult_wish(formula, Kt = 5, data = NULL, verbose = TRUE, N.iter = 5000, N.burn = 1000, alpha = 0.1, Az = NULL, Bz = NULL, Aw = NULL, Bw = NULL, v = NULL, SEED = NULL)

Arguments

formula a formula indicating the structure of the proposed model.
Kt number of spline basis functions used to estimate coefficient functions
data an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
verbose logical defaulting to TRUE – should updates on progress be printed?
N.iter number of iterations used in the Gibbs sampler
N.burn number of iterations discarded as burn-in
alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = 0 is all second-derivative penalty)
Az hyperparameter for inverse gamma controlling variance of spline terms for subject-level effects
Bz hyperparameter for inverse gamma controlling variance of spline terms for subject-level effects
Aw hyperparameter for inverse gamma controlling variance of spline terms for population-level effects
Bw hyperparameter for inverse gamma controlling variance of spline terms for population-level effects
v hyperparameter for inverse Wishart prior on residual covariance
SEED seed value to start the sampler; ensures reproducibility

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>
References

gls_cs

Cross-sectional FoSR using GLS

Description
Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using GLS: first, an OLS estimate of spline coefficients is estimated; second, the residual covariance is estimated using an FPC decomposition of the OLS residual curves; finally, a GLS estimate of spline coefficients is estimated. Although this is in the ‘BayesFoSR’ package, there is nothing Bayesian about this FoSR.

Usage
gls_cs(formula, data = NULL, Kt = 5, basis = "bs", sigma = NULL, verbose = TRUE, CI.type = "pointwise")

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>formula</td>
<td>a formula indicating the structure of the proposed model.</td>
</tr>
<tr>
<td>data</td>
<td>an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.</td>
</tr>
<tr>
<td>Kt</td>
<td>number of spline basis functions used to estimate coefficient functions</td>
</tr>
<tr>
<td>basis</td>
<td>basis type; options are "bs" for b-splines and "pbs" for periodic b-splines</td>
</tr>
<tr>
<td>sigma</td>
<td>optional covariance matrix used in GLS; if NULL, OLS will be used to estimated fixed effects, and the covariance matrix will be estimated from the residuals.</td>
</tr>
<tr>
<td>verbose</td>
<td>logical defaulting to TRUE – should updates on progress be printed?</td>
</tr>
<tr>
<td>CI.type</td>
<td>Indicates CI type for coefficient functions; options are "pointwise" and "simultaneous"</td>
</tr>
</tbody>
</table>

Author(s)
Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References
Construct an FLM regression term

Description

Defines a term $\int_T \beta(t)X_i(t)\,dt$ for inclusion in an mgcv::gam-formula (or bam or gamm or gamm4::gamm) as constructed by pfr, where $\beta(t)$ is an unknown coefficient function and $X_i(t)$ is a functional predictor on the closed interval T. See smooth.terms for a list of basis and penalty options; the default is thin-plate regression splines, as this is the default option for s.

Usage

lf(X, argvals = NULL, xind = NULL, integration = c("simpson", "trapezoidal", "riemann"), L = NULL, presmooth = NULL, presmooth.opts = NULL, ...)

Arguments

X functional predictors, typically expressed as an N by J matrix, where N is the number of columns and J is the number of evaluation points. May include missing/sparse functions, which are indicated by NA values. Alternatively, can be an object of class "fd"; see fd.

argvals indices of evaluation of X, i.e. $(t_{i1}, .., t_{iJ})$ for subject i. May be entered as either a length-J vector, or as an N by J matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject. If NULL, defaults to an equally-spaced grid between 0 or 1 (or within X$basis$rangeval if X is a fd object.)

xind same as argvals. It will not be supported in the next version of refund.

integration method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann".

L an optional N by ncol(argvals) matrix giving the weights for the numerical integration over t. If present, overrides integration.

presmooth string indicating the method to be used for preprocessing functional predictor prior to fitting. Options are fpca.sc, fpca.face, fpca.ssvd, fpca.bspline, and fpca.interpolate. Defaults to NULL indicating no preprocessing. See create.prep.func.

presmooth.opts list including options passed to preprocessing method create.prep.func.

... optional arguments for basis and penalization to be passed to mgcv::s. These could include, for example, "bs", "k", "m", etc. See s for details.

Value

a list with the following entries
call a call to `te` (or `s`, `t2`) using the appropriately constructed covariate and weight matrices

argvals the `argvals` argument supplied to `lf`

L the matrix of weights used for the integration

xindname the name used for the functional predictor variable in the formula used by `mgcv`

tindname the name used for `argvals` variable in the formula used by `mgcv`

LXname the name used for the `L` variable in the formula used by `mgcv`

presmooth the `presmooth` argument supplied to `lf`

prep.func a function that preprocesses data based on the preprocessing method specified in `presmooth`. See `create.prep.func`

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com>, Fabian Scheipl, and Jonathan Gellar

References

See Also

`pfr`, `af`, `mgcv`’s `smooth.terms` and `linear.functional.terms`; `pfr` for additional examples

Examples

data(DTI)
DTI1 <- DTI[DTI$visit==1 & complete.cases(DTI),]

We can apply various preprocessing options to the DTI data
fit1 <- pfr(pasat ~ lf(cca, k=30), data=DTI1)
fit2 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.sc",
 presmooth.opts=list(nbasis=8, pve=.975)), data=DTI1)
fit3 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.face",
 presmooth.opts=list(m=3, npc=9)), data=DTI1)
fit4 <- pfr(pasat ~ lf(cca, k=30, presmooth="fpca.ssvd"), data=DTI1)
fit5 <- pfr(pasat ~ lf(cca, k=30, presmooth="bspline",
 presmooth.opts=list(nbasis=8)), data=DTI1)
fit6 <- pfr(pasat ~ lf(cca, k=30, presmooth="interpolate"), data=DTI1)

All models should result in similar fits
fits <- as.data.frame(lapply(1:6, function(i)
 get(paste0("fit",i))$fitted.values))
names(fits) <- c("none", "fpca.sc", "fpca.face", "fpca.ssvd", "bspline", "interpolate")
pairs(fits)
Construct a VDFR regression term

Description

This function defines the a variable-domain functional regression term for inclusion in an `gam`-formula (or `bam` or `gamm` or `gamm4::gamm` as constructed by `pfr`). These are functional predictors for which each function is observed over a domain of different width. The default is the term \(\frac{1}{T_i} \int_0^{T_i} X_i(t) \beta(t, T_i) dt \), where \(X_i(t) \) is a functional predictor of length \(T_i \) and \(\beta(t, T_i) \) is an unknown bivariate coefficient function. Various domain transformations are available, such as lagging or domain-standardizing the coordinates, or parameterizing the interactions; these often result in improved model fit. Basis choice is fully customizable using the options of `s` and `te`.

Usage

`lf.vd(X, argvals = seq(0, 1, l = ncol(X)), vd = NULL, integration = c("simpson", "trapezoidal", "riemann"), L = NULL, basistype = c("s", "te", "t2"), transform = NULL, mp = TRUE, ...)`

Arguments

- `X` matrix containing variable-domain functions. Should be \(N \times J \), where \(N \) is the number of subjects and \(J \) is the maximum number of time points per subject. Most rows will have NA values in the right-most columns, corresponding to unobserved time points.
- `argvals` indices of evaluation of \(X \), i.e. \((t_{i1}, ..., t_{iJ}) \) for subject \(i \). May be entered as either a length-J vector, or as an \(N \) by \(J \) matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject.
- `vd` vector of values of containing the variable-domain width (\(T_i \) above). Defaults to the `argvals` value corresponding to the last non-NA element of \(X_i(t) \).
- `integration` method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in \(L \). Alternatively and for non-equidistant grids, "trapezoidal" or "riemann".
- `L` an optional \(N \) by `ncol(argvals)` matrix giving the weights for the numerical integration over \(t \). If present, overrides `integration`.
- `basistype` character string indicating type of bivariate basis used. Options include "s" (the default), "te", and "t2", which correspond to mgcv::s, mgcv::te, and mgcv::t2.
- `transform` character string indicating an optional basis transformation; see Details for options.
- `mp` for `transform`="linear" or `transform`="quadratic", TRUE to use multiple penalties for the smooth (one for each marginal basis). If FALSE, penalties are concatenated into a single block-diagonal penalty matrix (with one smoothing parameter).
optional arguments for basis and penalization to be passed to the function indicated by basistype. These could include, for example, "bs", "k", "m", etc. See te or s for details.

Details

The variable-domain functional regression model uses the term \(\frac{1}{T_i} \int_0^{T_i} X_i(t) \beta(t, T_i) dt \) to incorporate a functional predictor with subject-specific domain width. This term imposes a smooth (non-parametric) interaction between \(t \) and \(T_i \). The domain of the coefficient function is the triangular (or trapezoidal) surface defined by \(t, T_i : 0 \leq t \leq T_i \). The default basis uses bivariate thin-plate regression splines.

Different basis transformations can result in different properties; see Gellar, et al. (2014) for a more complete description. We make five basis transformations easily accessible using the transform argument. This argument is a character string that can take one of the following values:

1. "lagged": transforms \(\text{argvals} \) to \(\text{argvals} - \text{vd} \)
2. "standardized": transforms \(\text{argvals} \) to \(\text{argvals}/\text{vd} \), and then rescales \(\text{vd} \) linearly so it ranges from 0 to 1
3. "linear": first transforms the domain as in "standardized", then parameterizes the interaction with "vd" to be linear
4. "quadratic": first transforms the domain as in "standardized", then parameterizes the interaction with "vd" to be quadratic
5. "noInteraction": first transforms the domain as in "standardized", then reduces the bivariate basis to univariate with no effect of \(\text{vd} \). This would be equivalent to using \(\text{lf} \) on the domain-standardized predictor functions.

The practical effect of using the "lagged" basis is to increase smoothness along the right (diagonal) edge of the resultant estimate. The practical effect of using a "standardized" basis is to allow for greater smoothness at high values of \(T_i \) compared to lower values.

These basis transformations rely on the basis constructors available in the mgcvTrans package. For more specific control over the transformations, you can use bs="dt" and/or bs="pi"; see smooth.construct.dt.smooth.spec or smooth.construct.pi.smooth.spec for an explanation of the options (entered through the xt argument of \(\text{lf.vd/s} \)).

Note that tensor product bases are only recommended when a standardized transformation is used. Without this transformation, just under half of the "knots" used to define the basis will fall outside the range of the data and have no data available to estimate them. The penalty allows the corresponding coefficients to be estimated, but results may be unstable.

Value

a list with the following entries

- call: a call to s or te, using the appropriately constructed weight matrices
- data: data used by the call, which includes the matrices indicated by argname, Tindname, and LXname
- \(L \): the matrix of weights used for the integration
- argname: the name used for the \(\text{argvals} \) variable in the formula used by mgcv::gam
Tindname the name used for the Tind variable in the formula used by mgcv::gam
LXname the name of the by variable used by s or te in the formula for mgcv::gam

Author(s)
Jonathan E. Gellar <JGellar@mathematica-mpr.com>

References

See Also
pfr, lf, mgcv's linear.functional.terms.

Examples
```r
## Not run:
data(sofa)
fit.vd1 <- pfr(death ~ lf.vd(SOFA) + age + los,
               family="binomial", data=sofa)
fit.vd2 <- pfr(death ~ lf.vd(SOFA, transform="lagged") + age + los,
               family="binomial", data=sofa)
fit.vd3 <- pfr(death ~ lf.vd(SOFA, transform="standardized") + age + los,
               family="binomial", data=sofa)
fit.vd4 <- pfr(death ~ lf.vd(SOFA, transform="standardized",
                           basistype="te") + age + los,
               family="binomial", data=sofa)
fit.vd5 <- pfr(death ~ lf.vd(SOFA, transform="linear", bs="ps") + age + los,
               family="binomial", data=sofa)
fit.vd6 <- pfr(death ~ lf.vd(SOFA, transform="quadratic", bs="ps") + age + los,
               family="binomial", data=sofa)
fit.vd7 <- pfr(death ~ lf.vd(SOFA, transform="noInteraction", bs="ps") + age + los,
               family="binomial", data=sofa)
ests <- lapply(1:7, function(i) {
    c.i <- coef(get(paste0("fit.vd", i)), n=173, n2=173)
    c.i[(c.i$SOFA.arg <= c.i$SOFA.vd),]
})
# Try plotting for each i
i <- 1
lims <- c(-2,8)
if (requireNamespace("ggplot2", quietly = TRUE) &
    requireNamespace("RColorBrewer", quietly = TRUE)) {
    est <- ests[[1]]
ext$value[est$value<lims[1]] <- lims[1]
ext$value[est$value>lims[2]] <- lims[2]
ggplot2::ggplot(est, ggplot2::aes(SOFA.arg, SOFA.vd)) +
ggplot2::geom_tile(ggplot2::aes(colour=value, fill=value)) +
```
Construct an FLM regression term

Description

Defines a term $\int_T \beta(t)X_i(t)\,dt$ for inclusion in an \texttt{gam}-formula (or \texttt{bam} or \texttt{gamm} or \texttt{gamm4}) as constructed by \texttt{fgam}, where $\beta(t)$ is an unknown coefficient function and $X_i(t)$ is a functional predictor on the closed interval T. Defaults to a cubic B-spline with second-order difference penalties for estimating $\beta(t)$. The functional predictor must be fully observed on a regular grid.

Usage

\begin{verbatim}
lf_old(X, argvals = seq(0, 1, l = ncol(X)), xind = NULL,
integration = c("simpson", "trapezoidal", "riemann"), L = NULL,
spinepars = list(bs = "ps", k = min(ceiling(n/4), 40), m = c(2, 2)),
presmooth = TRUE)
\end{verbatim}

Arguments

- \texttt{X}: an \texttt{N} by \texttt{J=ncol(argvals)} matrix of function evaluations $X_i(t_{i1}), \ldots, X_i(t_{iJ}); i = 1, \ldots, N.$
- \texttt{argvals}: matrix (or vector) of indices of evaluations of $X_i(t)$; i.e. a matrix with ith row (t_{i1}, \ldots, t_{iJ})
- \texttt{xind}: same as argvals. It will not be supported in the next version of refund.
- \texttt{integration}: method used for numerical integration. Defaults to "simpson"'s rule for calculating entries in L. Alternatively and for non-equidistant grids, "trapezoidal" or "riemann". "riemann" integration is always used if L is specified
- \texttt{L}: an optional \texttt{N} by \texttt{ncol(argvals)} matrix giving the weights for the numerical integration over t
- \texttt{spinepars}: optional arguments specifying options for representing and penalizing the functional coefficient $\beta(t)$. Defaults to a cubic B-spline with second-order difference penalties, i.e. list(bs="ps", m=c(2,2)) See \texttt{te} or \texttt{s} for details
- \texttt{presmooth}: logical; if true, the functional predictor is pre-smoothed prior to fitting. See \texttt{smooth.basisPar}
Value

a list with the following entries

1. call - a call to te (or s, t2) using the appropriately constructed covariate and weight matrices
2. argvals - the argvals argument supplied to lf
3. L - the matrix of weights used for the integration
4. xindname - the name used for the functional predictor variable in the formula used by mgcv
5. tindname - the name used for argvals variable in the formula used by mgcv
6. LXname - the name used for the L variable in the formula used by mgcv
7. presmooth - the presmooth argument supplied to lf
8. Xfd - an fd object from presmoothing the functional predictors using smooth.basisPar. Only present if presmooth=TRUE. See fd

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

See Also

fgam, af, mgcv's linear.functional.terms, fgam for examples

Description

Implements longitudinal functional model with structured penalties (Kundu et al., 2012) with scalar outcome, single functional predictor, one or more scalar covariates and subject-specific random intercepts through mixed model equivalence.

Usage

lpeer(Y, subj, t, funcs, argvals = NULL, covariates = NULL,
comm.pen = TRUE, pentype = "Ridge", L.user = NULL, f_t = NULL,
Q = NULL,phia = 10^3, se = FALSE, ...)

Arguments

Y vector of all outcomes over all visits or timepoints
subj vector containing the subject number for each observation
t vector containing the time information when the observation are taken
funcs matrix containing observed functional predictors as rows. Rows with NA and Inf values will be deleted.
argvals matrix (or vector) of indices of evaluations of $X_i(t)$; i.e. a matrix with ith row (t_{i1}, \ldots, t_{ij})
covariates matrix of scalar covariates.
comm.pen logical value indicating whether common penalty for all the components of regression function. Default is TRUE.
pentype type of penalty: either decomposition based penalty ("DECOMP") or ridge ("RIDGE") or second-order difference penalty ("D2") or any user defined penalty ("USER"). For decomposition based penalty user need to specify Q matrix in Q argument (see details). For user defined penalty user need to specify L matrix in L argument (see details). For Ridge and second-order difference penalty, specification for arguments L and Q will be ignored. Default is "RIDGE".
L.user penalty matrix. Need to be specified with pentype="USER". When comm.pen=TRUE, Number of columns need to be equal with number of columns of matrix specified to funcs. When comm.pen=FALSE, Number of columns need to be equal with the number of columns of matrix specified to funcs times the number of components of regression function. Each row represents a constraint on functional predictor. This argument will be ignored when value of pentype is other than "USER".
f_t vector or matrix with number of rows equal to number of total observations and number of columns equal to d (see details). If matrix then each column pertains to single function of time and the value in the column represents the realization corresponding to time vector t. The column with intercept or multiple of intercept will be dropped. A NULL value refers to time-invariant regression function. Default value is NULL.
Q Q matrix to derive decomposition based penalty. Need to be specified with pentype='DECOMP'. When comm.pen=TRUE, number of columns must equal number of columns of matrix specified to funcs. When comm.pen=FALSE, Number of columns need to be equal with the number of columns of matrix specified to funcs times the number of components of regression function. Each row represents a basis function where functional predictor is expected lie according to prior belief. This argument will be ignored when value of pentype is other than 'DECOMP'.
phia scalar value of a in decomposition based penalty. Needs to be specified with pentype='DECOMP'.
se logical; calculate standard error when TRUE.
... additional arguments passed to lme.

Details
If there are any missing or infinite values in Y, subj, t, covariates, funcs and f_t, the corresponding row (or observation) will be dropped, and infinite values are not allowed for these arguments. Neither Q nor L may contain missing or infinite values. lpeer() fits the following model:

$$y_{i(t)} = X_{i(t)}^T \beta + \int W_{i(t)}(s) \gamma(t, s) ds + Z_{i(t)} u_i + \epsilon_{i(t)}$$

where $\epsilon_{i(t)} \sim N(0, \sigma^2)$ and $u_i \sim N(0, \sigma^2_u)$. For all the observations, predictor function $W_{i(t)}(s)$ is evaluated at K sampling points. Here, regression function $\gamma(t, s)$ is represented in terms of (d+1) component functions $\gamma_0(s), \ldots, \gamma_d(s)$ as follows
\[\gamma(t, s) = \gamma_0(s) + f_1(t)\gamma_1(s) + f_d(t)\gamma_d(s) \]

Values of \(y_{i(t)}, X_{i(t)} \) and \(W_{i(t)}(s) \) are passed through argument \(Y \), covariates and \(\text{funcs} \), respectively. Number of elements or rows in \(Y, t, \text{subj} \), covariates (if not \(\text{NULL} \)) and \(\text{funcs} \) need to be equal.

Values of \(f_1(t), ..., f_d(t) \) are passed through \(f_t \) argument. The matrix passed through \(f_t \) argument should have \(d \) columns where each column represents one and only one of \(f_1(t), ..., f_d(t) \).

The estimate of \((d+1)\) component functions \(\gamma_0(s), ..., \gamma_d(s) \) is obtained as penalized estimated. The following 3 types of penalties can be used for a component function:

i. Ridge: \(I_K \)

ii. Second-order difference: \(\{d_{i,j}\} \) with \(d_{i,i} = d_{i,i+2} = 1, d_{i,i+1} = -2, \) otherwise \(d_{i,j} = 0 \)

iii. Decomposition based penalty: \(bP_Q + a(I - P_Q) \) where \(P_Q = Q^T(QQ^T)^{-1}Q \)

For Decomposition based penalty the user must specify \(\text{pentype} = \text{DECOMP} \) and the associated \(Q \) matrix must be passed through the \(Q \) argument. Alternatively, one can directly specify the penalty matrix by setting \(\text{pentype} = \text{USER} \) and using the \(L \) argument to supply the associated \(L \) matrix.

If \(Q \) (or \(L \)) matrix is similar for all the component functions then argument \(\text{comm.pen} \) should have value \(\text{TRUE} \) and in that case specified matrix to argument \(Q \) (or \(L \)) should have \(K \) columns. When \(Q \) (or \(L \)) matrix is different for all the component functions then argument \(\text{comm.pen} \) should have value \(\text{FALSE} \) and in that case specified matrix to argument \(Q \) (or \(L \)) should have \(K(d+1) \) columns.

Here first \(K \) columns pertains to first component function, second \(K \) columns pertains to second component functions, and so on.

Default penalty is Ridge penalty for all the component functions and user needs to specify \'RIDGE\'. For second-order difference penalty, user needs to specify \'D2\'. When \(\text{pentype} = \text{RIDGE} \) or \'D2\' the value of \(\text{comm.pen} \) is always \(\text{TRUE} \) and \(\text{comm.pen}=\text{FALSE} \) will be ignored.

Value

A list containing:

- \textit{fit} result of the call to \texttt{lme}
- \textit{fitted.vals} predicted outcomes
- \textit{BetaHat} parameter estimates for scalar covariates including intercept
- \textit{se.Beta} standard error of parameter estimates for scalar covariates including intercept
- \textit{Beta} parameter estimates with standard error for scalar covariates including intercept
- \textit{GammaHat} estimates of components of regression functions. Each column represents one component function.
- \textit{Se.Gamma} standard error associated with \textit{GammaHat}
- \textit{AIC} AIC value of fit (smaller is better)
- \textit{BIC} BIC value of fit (smaller is better)
- \textit{logLik} (restricted) log-likelihood at convergence
- \textit{lambda} list of estimated smoothing parameters associated with each component function
- \textit{V} conditional variance of \(Y \) treating only random intercept as random one.
- \textit{V1} unconditional variance of \(Y \)
N number of subjects
K number of Sampling points in functional predictor
TotalObs total number of observations over all subjects
Sigma.u estimated sd of random intercept.
sigma estimated within-group error standard deviation.

Author(s)
Madan Gopal Kundu <mgkundu@iupui.edu>

References

See Also
peer, plot.lpeer

Examples

```r
## Not run:
#----------------------------------------------------------------------
# Example 1: Estimation with Ridge penalty
#----------------------------------------------------------------------

#Load Data
data(DTI)

## Extract values for arguments for lpeer() from given data
cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]

##1.1 Fit the model with single component function
## gamma(t,s)=gamm0(s)
t<- DTI$visit
fit.cca.lpeer1 = lpeer(Y=DTI$pasat, t=t, subj=DTI$ID, funcs = cca)
plot(fit.cca.lpeer1)

##1.2 Fit the model with two component function
## gamma(t,s)=gamm0(s) + t*gamma1(s)
fit.cca.lpeer2 = lpeer(Y=DTI$pasat, t=t, subj=DTI$ID, funcs = cca, f_t=t, se=TRUE)
plot(fit.cca.lpeer2)

#----------------------------------------------------------------------
# Example 2: Estimation with structured penalty (need structural
# Information about regression function or predictor function
#
## Load Data

data(PEER.Sim)

## Extract values for arguments for lpeer() from given data
K <- 100
W <- PEER.Sim[,c(3:(K+2))]
Y <- PEER.Sim[,K+3]
t <- PEER.Sim[,2]
id <- PEER.Sim[,1]

## Load Q matrix containing structural information

data(Q)

## 2.1 Fit the model with two component function
## \( \gamma(t,s) = \gamma_0(s) + t\gamma_1(s) \)
Fit1 <- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W, 
pentype='DECOMP', f_t=cbind(1, t), Q=Q, se=TRUE)
Fit1$Beta
plot(Fit1)

## 2.2 Fit the model with three component function
## \( \gamma(t,s) = \gamma_0(s) + t\gamma_1(s) + t^2\gamma_1(s) \)
Fit2 <- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W, 
pentype='DECOMP', f_t=cbind(1, t, t^2), Q=Q, se=TRUE)
Fit2$Beta
plot(Fit2)

## 2.3 Fit the model with two component function with different penalties
## \( \gamma(t,s) = \gamma_0(s) + t\gamma_1(s) \)
Q1 <- cbind(Q, Q)
Fit3 <- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), comm.pen=FALSE, funcs=W, 
pentype='DECOMP', f_t=cbind(1, t), Q=Q1, se=TRUE)

## 2.4 Fit the model with two component function with user defined penalties
## \( \gamma(t,s) = \gamma_0(s) + t\gamma_1(s) \)
phia <- 10^3
P_Q <- t(Q)%*%solve(Q%*%t(Q))%*% Q
L <- phia*(diag(K)- P_Q) + 1*P_Q
Fit4 <- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), funcs=W, 
pentype='USER', f_t=cbind(1, t), L=L, se=TRUE)

L1 <- adiag(L, L)
Fit5 <- lpeer(Y=Y, subj=id, t=t, covariates=cbind(t), comm.pen=FALSE, funcs=W, 
pentype='USER', f_t=cbind(1, t), L=L1, se=TRUE)

## End(Not run)
Description

Implements longitudinal penalized functional regression (Goldsmith et al., 2012) for generalized
linear functional models with scalar outcomes and subject-specific random intercepts.

Usage

lpfr(Y, subj, covariates = NULL, funcs, kz = 30, kb = 30,
    smooth.cov = FALSE, family = "gaussian", method = "REML", ...)

Arguments

- **Y**: vector of all outcomes over all visits
- **subj**: vector containing the subject number for each observation
- **covariates**: matrix of scalar covariates
- **funcs**: matrix or list of matrices containing observed functional predictors as rows. NA values are allowed.
- **kz**: dimension of principal components basis for the observed functional predictors
- **kb**: dimension of the truncated power series spline basis for the coefficient function
- **smooth.cov**: logical; do you wish to smooth the covariance matrix of observed functions? Increases computation time, but results in smooth principal components
- **family**: generalized linear model family
- **method**: method for estimating the smoothing parameters; defaults to REML
- **...**: additional arguments passed to `gam` to fit the regression model.

Details

Functional predictors are entered as a matrix or, in the case of multiple functional predictors, as a list of matrices using the `funcs` argument. Missing values are allowed in the functional predictors, but it is assumed that they are observed over the same grid. Functional coefficients and confidence bounds are returned as lists in the same order as provided in the `funcs` argument, as are principal component and spline bases.

Value

- **fit**: result of the call to `gam`
- **fitted.vals**: predicted outcomes
- **betaHat**: list of estimated coefficient functions
- **beta.covariates**: parameter estimates for scalar covariates
- **ranef**: vector of subject-specific random intercepts
X design matrix used in the model fit

phi list of truncated power series spline bases for the coefficient functions

psi list of principal components basis for the functional predictors

varBetaHat list containing covariance matrices for the estimated coefficient functions

Bounds list of bounds of a 95% confidence interval for the estimated coefficient functions

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu>

References


Examples

```r
Not run:
##
use longitudinal data to regress continuous outcomes on
functional predictors (continuous outcomes only recorded for
case == 1)
##
data(DTI)

subset data as needed for this example
cca = DTI$cca[which(DTI$case == 1),]
rcst = DTI$rcst[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]

note there is missingness in the functional predictors
apply(is.na(cca), 2, mean)
apply(is.na(rcst), 2, mean)

fit two models with single functional predictors and plot the results
fit.cca = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = cca, smooth.cov=FALSE)
fit.rcst = lpfr(Y=DTI$pasat, subj=DTI$ID, funcs = rcst, smooth.cov=FALSE)

par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),
 type = 'l', lty = c(1,2), col = c(1,2,2), ylab = "BetaHat",
 main = "CCA")
matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
 type = 'l', lty = c(1,2), col = c(1,2,2), ylab = "BetaHat",
 main = "RCST")
```
# fit a model with two functional predictors and plot the results
fit.cca.rcst = lpfr(Y=DTI$pasat, subj=DTI$ID, func = list(cca,rcst),
                   smooth.cov=FALSE)

par(mfrow = c(1,2))
matplot(cbind(fit.cca.rcst$BetaHat[[1]], fit.cca.rcst$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
        main = "CCA")
matplot(cbind(fit.cca.rcst$BetaHat[[2]], fit.cca.rcst$Bounds[[2]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
        main = "RCST")

## End(Not run)

### mfpca.sc

**Multilevel functional principal components analysis by smoothed covariance**

**Description**

Decomposes functional observations using functional principal components analysis. A mixed model framework is used to estimate scores and obtain variance estimates.

**Usage**

```r
mfpca.sc(Y = NULL, id = NULL, visit = NULL, twoway = FALSE,
 argvals = NULL, nbasis = 10, pve = 0.99, npc = NULL,
 makePD = FALSE, center = TRUE, cov.est.method = 2,
 integration = "trapezoidal")
```

**Arguments**

- **Y**
  - The user must supply a matrix of functions on a regular grid
- **id**
  - Must be supplied, a vector containing the id information used to identify clusters
- **visit**
  - A vector containing information used to identify visits. Defaults to NULL.
- **twoway**
  - logical, indicating whether to carry out twoway ANOVA and calculate visit-specific means. Defaults to FALSE.
- **argvals**
  - function argument.
- **nbasis**
  - number of B-spline basis functions used for estimation of the mean function and bivariate smoothing of the covariance surface.
- **pve**
  - proportion of variance explained: used to choose the number of principal components.
- **npc**
  - prespecified value for the number of principal components (if given, this overrides pve).
makePD logical: should positive definiteness be enforced for the covariance surface estimate? Defaults to FALSE. Only FALSE is currently supported.

center logical: should an estimated mean function be subtracted from \(Y\)? Set to FALSE if you have already demeaned the data using your favorite mean function estimate.

cov.est.method covariance estimation method. If set to 1, a one-step method that applies a bivariate smooth to the \(y(s_1)y(s_2)\) values. This can be very slow. If set to 2 (the default), a two-step method that obtains a naive covariance estimate which is then smoothed. 2 is currently supported.

integration quadrature method for numerical integration; only "trapezoidal" is currently supported.

Details

This function computes a multilevel FPC decomposition for a set of observed curves, which may be sparsely observed and/or measured with error. A mixed model framework is used to estimate level 1 and level 2 scores.

MFPCA was proposed in Di et al. (2009), with variations for MFPCA with sparse data in Di et al. (2014). mfpca.sc uses penalized splines to smooth the covariance functions, as described in Di et al. (2009) and Goldsmith et al. (2013).

Value

An object of class mfpca containing:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yhat</td>
<td>FPC approximation (projection onto leading components) of (Y), estimated curves for all subjects and visits</td>
</tr>
<tr>
<td>Yhat.subject</td>
<td>estimated subject specific curves for all subjects</td>
</tr>
<tr>
<td>Y</td>
<td>the observed data</td>
</tr>
<tr>
<td>scores</td>
<td>(n \times npc) matrix of estimated FPC scores for level 1 and level 2.</td>
</tr>
<tr>
<td>mu</td>
<td>estimated mean function (or a vector of zeroes if center==FALSE).</td>
</tr>
<tr>
<td>efunctions</td>
<td>(d \times npc) matrix of estimated eigenfunctions of the functional covariance, i.e., the FPC basis functions for levels 1 and 2.</td>
</tr>
<tr>
<td>evalues</td>
<td>estimated eigenvalues of the covariance operator, i.e., variances of FPC scores for levels 1 and 2.</td>
</tr>
<tr>
<td>npc</td>
<td>number of FPCs: either the supplied npc, or the minimum number of basis functions needed to explain proportion pve of the variance in the observed curves for levels 1 and 2.</td>
</tr>
<tr>
<td>sigma2</td>
<td>estimated measurement error variance.</td>
</tr>
<tr>
<td>eta</td>
<td>the estimated visit specific shifts from overall mean.</td>
</tr>
</tbody>
</table>

Author(s)

Julia Wrobel <jw3134@columbia.edu>, Jeff Goldsmith <jeff.goldsmith@columbia.edu>, and Chongzhi Di
References


Examples

```r
Not run:
data(DTI)
DTI = subset(DTI, Nscans < 6) ## example where all subjects have 6 or fewer visits
id = DTI$ID
Y = DTI$cca
mfpca.DTI = mfpca.sc(Y=Y, id = id, twoway = TRUE)

End(Not run)
```

---

**model.matrix.pffr**

*Obtain model matrix for a pffr fit*

**Description**

Obtain model matrix for a pffr fit

**Usage**

```r
S3 method for class 'pffr'
model.matrix(object, ...)
```

**Arguments**

- `object`: a fitted `pffr`-object
- `...`: other arguments, passed to `predict.gam`.

**Value**

A model matrix

**Author(s)**

Fabian Scheipl
ols_cs  
Cross-sectional FoSR using GLS

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using GLS: first, an OLS estimate of spline coefficients is estimated; second, the residual covariance is estimated using an FPC decomposition of the OLS residual curves; finally, a GLS estimate of spline coefficients is estimated. Although this is in the ‘BayesFoSR’ package, there is nothing Bayesian about this FoSR.

Usage

ols_cs(formula, data = NULL, Kt = 5, basis = "bs", verbose = TRUE)

Arguments

formula  
a formula indicating the structure of the proposed model.
data  
an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
Kt  
number of spline basis functions used to estimate coefficient functions
basis  
basis type; options are "bs" for b-splines and "pbs" for periodic b-splines
verbose  
logical defaulting to TRUE – should updates on progress be printed?

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References


pco_predict_preprocess

Make predictions using pco basis terms

Description

This function performs the necessary preprocessing for making predictions with gam models that include pco basis terms. The function pco_predict_preprocess builds a data.frame (or augments an existing one) to be used with the usual predict function.
Usage

```r
pco_predict_preprocess(model, newdata = NULL, dist_list)
```

Arguments

- **model**: a fitted `gam` model with at least one term of class "pco.smooth".
- **newdata**: data frame including the new values for any non-pco terms in the original fit. If there were none, this can be left as NULL.
- **dist_list**: a list of $n \times n^*$ matrices, one per pco term in the model, giving the distances from the $n^*$ prediction points to the $n$ design points (original observations). List entry names should correspond to the names of the terms in the model (e.g., if the model includes a $s(x)$ term, `dist_list` must include an element named "x").

Details

Models with pco basis terms are fitted by inputting distances among the observations and then regressing (with a ridge penalty) on leading principal coordinates arising from these distances. To perform prediction, we must input the distances from the new data points to the original points, and then "insert" the former into the principal coordinate space by the interpolation method of Gower (1968) (see also Miller, 2012).

An example of how to use this function in practice is shown in `smooth.construct.pco.smooth.spec`.

Value

A `data.frame` with the coordinates for the new data inserted into principal coordinate space, in addition to the supplied newdata if this was non-NULL. This can be used as the newdata argument in a call to `predict.gam`.

Author(s)

David L Miller

References


See Also

`smooth.construct.pco.smooth.spec`
pcr

**Description**

pffr-constructor for functional principal component-based functional random intercepts.

**Usage**

```r
cpare(id, efunctions, evalues, yind, ...)
```

**Arguments**

- `id`: grouping variable a factor
- `efunctions`: matrix of eigenfunction evaluations on gridpoints `yind` (<length of `yind`) x <no. of used eigenfunctions>)
- `evalues`: eigenvalues associated with `efunctions`
- `yind`: vector of gridpoints on which `efunctions` are evaluated.
- `...`: not used

**Value**

a list used internally for constructing an appropriate call to `mgcv::gam`

**Details**

Fits functional random intercepts \( B_i(t) \) for a grouping variable `id` using as a basis the functions \( \phi_m(t) \) in `efunctions` with variances \( \lambda_m \) in `evalues`: \( B_i(t) \approx \sum_{m}^{M} \phi_m(t) \delta_{im} \) with independent \( \delta_{im} \sim N(0, \sigma^2 \lambda_m) \), where \( \sigma^2 \) is (usually) estimated and controls the overall contribution of the \( B_i(t) \) while the relative importance of the \( M \) basisfunctions is controlled by the supplied variances \( \lambda_m \). Can be used to model smooth residuals if `id` is simply an index of observations. Differing from random effects in `mgcv`, these effects are estimated under a "sum-to-zero-for-each-t"-constraint.

`efunctions` and `evalues` are typically eigenfunctions and eigenvalues of an estimated covariance operator for the functional process to be modeled, i.e., they are a functional principal components basis.

**Author(s)**

Fabian Scheipl
Examples

```r
Not run:
residualfunction <- function(t){
 # generate quintic polynomial error functions
 drop(poly(t, 5)*rnorm(5, sd=sqrt(2:6)))
}

generate data Y(t) = mu(t) + E(t) + white noise
set.seed(1122)
n <- 50
T <- 30
t <- seq(0,1, l=T)
E(t): smooth residual functions
E <- t(replicate(n, residualfunction(t)))
int <- matrix(scale(3*dnorm(t, m=.5, sd=.5) - dbeta(t, 5, 2)), byrow=T, n, T)
Y <- int + E + matrix(.2*rnorm(n*T), n, T)
data <- data.frame(Y=I(Y))

fit model under independence assumption:
summary(m0 <- pffr(Y ~ 1, yind=t, data=data))
get first 5 eigenfunctions of residual covariance
(i.e. first 5 functional PCs of empirical residual process)
Ehat <- resid(m0)
fpcE <- fpca.sc(Ehat, npc=5)
efunctions <- fpcE$efunctions
evalues <- fpcE$evalues
data$id <- factor(1:nrow(data))

refit model with fpc-based residuals
m1 <- pffr(Y ~ 1 + pcre(id=id, efunctions=efunctions, evalues=evalues, yind=t), yind=t, data=data)
t1 <- predict(m1, type="terms")

compare squared errors
mean((int-fitted(m0))^2)
mean((int-t1[[1]])^2)
mean((E-t1[[2]])^2)

compare fitted & true smooth residuals and fitted intercept functions:
layout(t(matrix(1:4,2,2)))
matplot(t(E), lty=1, type="l", ylim=range(E, t1[[2]]))
matplot(t(t1[[2]]), lty=1, type="l", ylim=range(E, t1[[2]]))
plot(m1, select=1, main="m1", ylim=range(Y))
lines(t, int[1,], col=rgb(1,0,0,.5))
plot(m0, select=1, main="m0", ylim=range(Y))
lines(t, int[1,], col=rgb(1,0,0,.5))
```

Description

Defines a term $\int \beta(t) X(t) dt$ for inclusion in a `pfr` formula, where $\beta(t)$ is estimated with structured penalties (Randolph et al., 2012).
Usage

```
peer(X, argvals = NULL, pentype = "RIDGE", Q = NULL, phia = 10^3, L = NULL, ...)
```

Arguments

- **X**: functional predictors, typically expressed as an \(N\) by \(J\) matrix, where \(N\) is the number of columns and \(J\) is the number of evaluation points. May include missing/sparse functions, which are indicated by NA values. Alternatively, can be an object of class "fd"; see `fd`.

- **argvals**: indices of evaluation of \(X\), i.e. \((t_{i1}, ..., t_{iJ})\) for subject \(i\). May be entered as either a length-\(J\) vector, or as an \(N\) by \(J\) matrix. Indices may be unequally spaced. Entering as a matrix allows for different observations times for each subject. If NULL, defaults to an equally-spaced grid between 0 or 1 (or within \(X\$basis\$rangeval\) if \(X\) is a fd object.)

- **pentype**: the type of penalty to apply, one of "RIDGE", "D", "DECOMP", or "USER"; see Details.

- **Q**: matrix \(Q\) used for pentype="DECOMP"; see Details.

- **phia**: scalar \(a\) used for pentype="DECOMP"; see Details.

- **L**: user-supplied penalty matrix for pentype="USER"; see Details.

- **...**: additional arguments to be passed to `lf` (and then possibly `s`). Arguments processed by `lf` include, for example, integration for specifying the method of numerical integration. Arguments processed by `s` include information related to basis and penalization, such as \(m\) for specifying the order of the difference penalty; See Details. xt-argument is not allowed for peer-terms and will cause an error.

Details

**peer** is a wrapper for `lf`, which defines linear functional predictors for any type of basis. It simply calls `lf` with the appropriate options for the peer basis and penalty construction. The type of penalty is determined by the pentype argument. There are four types of penalties available:

1. **pentype="RIDGE"** for a ridge penalty, the default
2. **pentype="D"** for a difference penalty. The order of the difference penalty may be specified by supplying an \(m\) argument (default is 2).
3. **pentype="DECOMP"** for a decomposition-based penalty, \(bP_Q + a(I - P_Q)\), where \(P_Q = Q'(QQ')^{-1}Q\). The \(Q\) matrix must be specified by \(Q\), and the scalar \(a\) by phia. The number of columns of \(Q\) must be equal to the length of the data. Each row represents a basis function where the functional predictor is expected to lie, according to prior belief.
4. **pentype="USER"** for a user-specified penalty matrix, supplied by the \(L\) argument.

The original stand-alone implementation by Madan Gopal Kundu is available in `peer_old`.

Author(s)

Jonathan Gellar <jgellar@mathematica-mpr.com> and Madan Gopal Kundu <mgkundu@iupui.edu>
References


See Also

`pfr`, `smooth.construct.peer.smooth.spec`

Examples

```r
Not run:
#--
Example 1: Estimation with D2 penalty
#--
data(DTI)
DTI = DTI[which(DTI$case == 1),]
fit.D2 = pfr(pasat ~ peer(cca, pentype="D"), data=DTI)
plot(fit.D2)

#--
Example 2: Estimation with structured penalty (need structural
information about regression function or predictor function)
#--
data(PEER.Sim)
data(Q)
PEER.Sim1<- subset(PEER.Sim, t==0)

Setting k to max possible value
fit.decomp <- pfr(Y ~ peer(W, pentype="Decomp", Q=Q, k=99), data=PEER.Sim1)
plot(fit.decomp)

End(Not run)
```

PEER.Sim

*Simulated longitudinal data with functional predictor and scalar response, and structural information associated with predictor function*

Description

PEER.Sim contains simulated observations from 100 subjects, each observed at 4 distinct time-points. At each timepoint bumpy predictor profile is generated randomly and the scalar response
variable is generated considering a time-varying regression function and subject intercept. Accompanying the functional predictor and scalar response are the subject ID numbers and time of measurements.

Format

The data frame PEER.Sim is made up of subject ID number (id), subject-specific time of measurement (t), functional predictor profile (W.1-W.100) and scalar response (Y).

Details

Q represents the 7 x 100 matrix where each row provides structural information about the functional predictor profile for data PEER.Sim. For specific details about the simulation and Q matrix, please refer to Kundu et al. (2012).

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties. (please contact J. Harezlak at <harezlak@iupui.edu>)

---

**peer_old**

*Functional Models with Structured Penalties*

---

**Description**

Implements functional model with structured penalties (Randolph et al., 2012) with scalar outcome and single functional predictor through mixed model equivalence.

**Usage**

peer_old(Y, funcs, argvals = NULL, pentype = "Ridge", L.user = NULL, Q = NULL, phia = 10^3, se = FALSE, ...)

**Arguments**

Y vector of all outcomes

funcs matrix containing observed functional predictors as rows. Rows with NA and Inf values will be deleted.

argvals matrix (or vector) of indices of evaluations of \( X_i(t) \); i.e. a matrix with \( ith \) row \((t_{i1},...,t_{iJ})\)

pentype type of penalty. It can be either decomposition based penalty (DECOMP) or ridge (RIDGE) or second-order difference penalty (D2) or any user defined penalty (USER). For decomposition based penalty user need to specify Q matrix in Q argument (see details). For user defined penalty user need to specify L matrix in L argument (see details). For Ridge and second-order difference penalty, specification for arguments L and Q will be ignored. Default is RIDGE.
penalty matrix. Need to be specified with `pentype='USER'`. Number of columns need to be equal with number of columns of matrix specified to `funcs`. Each row represents a constraint on functional predictor. This argument will be ignored when value of `pentype` is other than `USER`.

Q

Q matrix to derive decomposition based penalty. Need to be specified with `pentype='DECOMP'`. Number of columns need to be equal with number of columns of matrix specified to `funcs`. Each row represents a basis function where functional predictor is expected lie according to prior belief. This argument will be ignored when value of `pentype` is other than `DECOMP`.

phia

Scalar value of a in decomposition based penalty. Need to be specified with `pentype='DECOMP'`.

se

logical; calculate standard error when `TRUE`.

... additional arguments passed to the `lme` function.

Details

If there are any missing or infinite values in `Y` and `funcs`, the corresponding row (or observation) will be dropped. Neither `Q` nor `L` may contain missing or infinite values.

peer_old() fits the following model:

\[ y_i = \int W_i(s)\gamma(s)ds + \epsilon_i \]

where \( \epsilon_i \sim N(0, \sigma^2) \). For all the observations, predictor function \( W_i(s) \) is evaluated at K sampling points. Here, \( \gamma(s) \) denotes the regression function.

Values of \( y_i \) and \( W_i(s) \) are passed through argument `Y` and `funcs`, respectively. Number of elements or rows in `Y` and `funcs` need to be equal.

The estimate of regression functions \( \gamma(s) \) is obtained as penalized estimated. Following 3 types of penalties can be used:

i. Ridge: \( I_K \)

ii. Second-order difference: \([d_{i,j}]\) with \( d_{i,i} = d_{i,i+2} = 1, d_{i,i+1} = -2, \) otherwise \( d_{i,i} = 0 \)

iii. Decomposition based penalty: \( bPQ + a(I - PQ) \) where \( PQ = QT(QQT)^{-1}Q \)

For Decomposition based penalty user need to specify `pentype='DECOMP'` and associated Q matrix need to be passed through Q argument.

Alternatively, user can pass directly penalty matrix through argument L. For this user need to specify `pentype='USER'` and associated L matrix need to be passed through L argument.

Default penalty is Ridge penalty and user needs to specify `RIDGE`. For second-order difference penalty, user needs to specify `D2`.

Value

a list containing:

- `fit`: result of the call to `lme`
- `fitted.vals`: predicted outcomes
- `Gamma`: estimates with standard error for regression function
- `GammaHat`: estimates of regression function
se.Gamma standard error associated with GammaHat
AIC AIC value of fit (smaller is better)
BIC BIC value of fit (smaller is better)
logLik (restricted) log-likelihood at convergence
lambda estimates of smoothing parameter
N number of subjects
K number of Sampling points in functional predictor
sigma estimated within-group error standard deviation.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu>

References


See Also

lpeer, plot.peer

Examples

## Not run:
#---------------------------------------------------------------
# Example 1: Estimation with D2 penalty
#---------------------------------------------------------------

## Load Data
data(DTI)

## Extract values for arguments for peer() from given data
cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]

##1.1 Fit the model
fit.cca.peer1 = peer(Y=DTI$pasat, funcs = cca, pентype='D2', se=TRUE)
plot(fit.cca.peer1)

#---------------------------------------------------------------
# Example 2: Estimation with structured penalty (need structural
# information about regression function or predictor function)
#---------------------------------------------------------------

## Load Data
data(PEER.Sim)

## Extract values for arguments for peer() from given data
PEER.Sim1 <- subset(PEER.Sim, t==0)
W <- PEER.Sim1$W
Y <- PEER.Sim1$Y

## Load Q matrix containing structural information
data(Q)

## 2.1 Fit the model
Fit1 <- peer(Y=Y, funcs=W, pentype='Decomp', Q=Q, se=TRUE)
plot(Fit1)

## End(Not run)

---

**pffr**  
*Penalized flexible functional regression*

---

**Description**

Implements additive regression for functional and scalar covariates and functional responses. This function is a wrapper for mgcv’s `gam` and its siblings to fit models of the general form

$$E(Y_i(t)) = g(\mu(t)) + \int X_i(s)\beta(s,t)ds + f(z_{1i},t) + f(z_{2i},t) + \ldots$$

with a functional (but not necessarily continuous) response $Y(t)$, response function $g$, (optional) smooth intercept $\mu(t)$, (multiple) functional covariates $X(t)$ and scalar covariates $z_1, z_2, etc.$

**Usage**

```r
pffr(formula, yind, data = NULL, ydata = NULL, algorithm = NA, method = "REML", tensortype = c("ti", "t2"), bs.yindex = list(bs = "ps", k = 5, m = c(2, 1)), bs.int = list(bs = "ps", k = 20, m = c(2, 1)), ...)```

Arguments

- `formula`: a formula with special terms as for `gam`, with additional special terms `ff()`, `sff()`, `ffpc()`, `pcre()` and `c()`.
- `yind`: a vector with length equal to the number of columns of the matrix of functional responses giving the vector of evaluation points (t_1, \ldots, t_G). If not supplied, `yind` is set to `1:ncol(<response>)`.
- `data`: an (optional) `data.frame` containing the data. Can also be a named list for regular data. Functional covariates have to be supplied as `<no. of observations> by <no. of evaluations> matrices`, i.e. each row is one functional observation.
- `ydata`: an (optional) `data.frame` supplying functional responses that are not observed on a regular grid. See Details.
algorithm the name of the function used to estimate the model. Defaults to `gam` if the matrix
of functional responses has less than 2e5 data points and to `bam` if not. 'gam',
'gamm4' and 'jagam' are valid options as well. See Details for 'gamm4' and
'jagam'.

method Defaults to "REML"-estimation, including of unknown scale. If algorithm="bam",
the default is switched to "fREML". See `gam` and `bam` for details.

tensortype which typ of tensor product splines to use. One of "ti" or "t2", defaults to ti.
t2-type terms do not enforce the more suitable special constraints for functional
regression, see Details.

bs.yindex a named (!) list giving the parameters for spline bases on the index of the func-
tional response. Defaults to list(bs="ps",k=5,m=c(2,1)), i.e. 5 cubic B-
splines bases with first order difference penalty.

bs.int a named (!) list giving the parameters for the spline basis for the global func-
tional intercept. Defaults to list(bs="ps",k=20,m=c(2,1)), i.e. 20 cubic
B-splines bases with first order difference penalty.

... additional arguments that are valid for `gam`, `bam`, 'gamm4' or 'jagam'. subset
is not implemented.

Value

A fitted `pfr`-object, which is a `gam`-object with some additional information in an `pfr`-entry. If
algorithm is "gamm" or "gamm4", only the $gam part of the returned list is modified in this way.
Available methods/functions to postprocess fitted models: `summary.pfr`, `plot.pfr`, `coef.pfr`,
`fitted.pfr`, `residuals.pfr`, `predict.pfr`, `model.matrix.pfr`, `qq.pfr`, `pfr.check`.
If algorithm is "jagam", only the location of the model file and the usual jagam-object are re-
turned, you have to run the sampler yourself.

Details

The routine can estimate

1. linear functional effects of scalar (numeric or factor) covariates that vary smoothly over t (e.g.
 $z_i \beta_1(t)$, specified as \(\sim z_1 \)),
2. nonlinear, and possibly multivariate functional effects of (one or multiple) scalar covariates z
 that vary smoothly over the index t of $Y(t)$ (e.g. $f(z_2, t)$, specified in the formula simply as
 \(\sim s(z_2) \)),
3. (nonlinear) effects of scalar covariates that are constant over t (e.g. $f(z_3)$, specified as
 \(\sim c(s(z_3)) \), or $\beta_3 z_3$, specified as \(\sim c(z_3) \)),
4. function-on-function regression terms (e.g. $\int X_i(s) \beta(s, t) ds$, specified as \(\sim \int \), see ff). Terms given by sff and ffpc provide nonlinear and FPC-based effects of functional
covariates, respectively.
5. concurrent effects of functional covariates X measured on the same grid as the response are
 specified as follows: \(\sim s(x) \) for a smooth, index-varying effect $f(X(t), t)$, \(\sim x \) for a linear
 index-varying effect $X(t) \beta(t)$, \(\sim c(s(x)) \) for a constant nonlinear effect $f(X(t))$, \(\sim c(x) \) for a constant linear effect $X(t) \beta$.
6. Smooth functional random intercepts \(b_{0g(i)}(t) \) for a grouping variable \(g \) with levels \(g(i) \) can be specified via \(-s(g, bs=\text{"re"})\), functional random slopes \(u_i b_{1g(i)}(t) \) in a numeric variable \(u \) via \(-s(g, u, bs=\text{"re"})\). Scheipl, Staicu, Greven (2013) contains code examples for modeling correlated functional random intercepts using \texttt{mrf}-terms.

Use the \texttt{c()}-notation to denote model terms that are constant over the index of the functional response.

Internally, univariate smooth terms without a \texttt{c()}-wrapper are expanded into bivariate smooth terms in the original covariate and the index of the functional response. Bivariate smooth terms \((s(), te() \) or \(t2()\)) without a \texttt{c()}-wrapper are expanded into trivariate smooth terms in the original covariates and the index of the functional response. Linear terms for scalar covariates or categorical covariates are expanded into varying coefficient terms, varying smoothly over the index of the functional response. For factor variables, a separate smooth function with its own smoothing parameter is estimated for each level of the factor.

The marginal spline basis used for the index of the functional response is specified via the \texttt{global} argument \texttt{bs.yindex}. If necessary, this can be overridden for any specific term by supplying a \texttt{bs.yindex}-argument to that term in the formula, e.g. \(-s(x, bs.yindex=list(bs=\text{"tp"},k=7))\) would yield a tensor product spline over \(x \) and the index of the response in which the marginal basis for the index of the response are 7 cubic thin-plate spline functions (overriding the global default for the basis and penalty on the index of the response given by the \texttt{global bs.yindex}-argument).

Use \(\sim 1 + c(1) + \ldots \) to specify a model with only a constant and no functional intercept.

The functional covariates have to be supplied as a \(n \) by \(<\text{no. of evaluations}> \) matrices, i.e. each row is one functional observation. For data on a regular grid, the functional response is supplied in the same format, i.e. as a matrix-valued entry in \texttt{data}, which can contain missing values.

If the functional responses are \textit{sparse or irregular} (i.e., not evaluated on the same evaluation points across all observations), the \texttt{ydata}-argument can be used to specify the responses: \texttt{ydata} must be a \texttt{data.frame} with 3 columns called \texttt{.obs'}, \texttt{.index'}, \texttt{.value'} which specify which curve the point belongs to (\texttt{.obs' =i}), at which \(t \) it was observed (\texttt{.index' =t}), and the observed value (\texttt{.value' =Y_i(t)}). Note that the vector of unique sorted entries in \texttt{ydata$.obs} must be equal to \texttt{rownames(data)} to ensure the correct association of entries in \texttt{ydata} to the corresponding rows of data. For both regular and irregular functional responses, the model is then fitted with the data in long format, i.e., for data on a grid the rows of the matrix of the functional response evaluations \(Y_i(t) \) are stacked into one long vector and the covariates are expanded/repeated correspondingly. This means the models get quite big fairly fast, since the effective number of rows in the design matrix is number of observations times number of evaluations of \(Y(t) \) per observation.

Note that \texttt{pffr} does not use \texttt{mgcv}'s default identifiability constraints (i.e., \(\sum_{i,t} \hat f(z_i, x_i, t) = 0 \) or \(\sum_{i,t} \hat f(x_i, t) = 0 \)) for tensor product terms whose marginals include the index \(t \) of the functional response. Instead, \(\sum_{i,t} \hat f(z_i, x_i, t) = 0 \) for all \(t \) is enforced, so that effects varying over \(t \) can be interpreted as local deviations from the global functional intercept. This is achieved by using \texttt{ti}-terms with a suitably modified \texttt{mc}-argument. Note that this is not possible if \texttt{algorithm=\text{"gamm4"}} since only \texttt{t2}-type terms can then be used and these modified constraints are not available for \texttt{t2}.

We recommend using centered scalar covariates for terms like \(z\beta(t) \sim z \) and centered functional
covariates with $\sum_t X(t) = 0$ for all t in ff-terms so that the global functional intercept can be interpreted as the global mean function.

The `family`-argument can be used to specify all of the response distributions and link functions described in `family.mgcv`. Note that `family = "gaulss"` is treated in a special way: Users can supply the formula for the variance by supplying a special argument `varformula`, but this is not modified in the way that the `formula`-argument is but handed over to the fitter directly, so this is for expert use only. If `varformula` is not given, `pffr` will use the parameters from argument `bs.int` to define a spline basis along the index of the response, i.e., a smooth variance function over t for responses $Y(t)$.

Author(s)

Fabian Scheipl, Sonja Greven

References

See Also

`smooth.terms` for details of mgcv syntax and available spline bases and penalties.

Examples

```r
# univariate model:
# Y(t) = f(t) + \int X1(s)\beta(s,t)ds + eps
set.seed(2121)
data1 <- pffrSim(scenario="ff", n=40)
t <- attr(data1, "yindex")
s <- attr(data1, "xindex")
m1 <- pffr(Y ~ ff(X1, xind=s), yind=t, data=data1)
summary(m1)
plot(m1, pers=TRUE, pages=1)

## Not run:
# multivariate model:
# E(Y(t)) = \beta_0(t) + \int X1(s)\beta_1(s,t)ds + xlin \beta_3(t) + f_1(xte1, xte2) + f_2(xsmoo, t) + \beta_4 xconst
data2 <- pffrSim(scenario="all", n=200)
t <- attr(data2, "yindex")
s <- attr(data2, "xindex")
m2 <- pffr(Y ~ ff(X1, xind=s) + #linear function-on-function
```

```
pffr.check

xlin + # varying coefficient term c(te(xte1, xte2)) + # bivariate smooth term in xte1 & xte2, const. over Y-index s(xsmoo) + # smooth effect of xsmoo varying over Y-index c(xconst), # linear effect of xconst constant over Y-index

yind=t, data=data2)

summary(m2)

plot(m2, pers=TRUE)

str(coef(m2))

# convenience functions:

preddata <- pffrSim(scenario="all", n=20)

str(predict(m2, newdata=preddata))

str(predict(m2, type="terms"))

cm2 <- coef(m2)

cm2$terms

str(cm2$sstems, 2)

str(cm2$sstems[["s(xsmoo)"]]$coef)

# sparse data (80% missing on a regular grid):

set.seed(88182004)

data3 <- pffrSim(scenario=c("int", "smoo"), n=100, propmissing=0.8)

t <- attr(data3, "yindex")

m3.sparse <- pffr(Y ~ s(xsmoo), data=data3$data, ydata=data3$ydata, yind=t)

summary(m3.sparse)

plot(m3.sparse, pers=TRUE, pages=1)

## End(Not run)

description

Some diagnostics for a fitted pffr model

Description

This is simply a wrapper for gam.check().

Usage

pffr.check(b, old.style = FALSE, type = c("deviance", "pearson", "response"), k.sample = 5000, k.rep = 200, rep = 0, level = 0.9, r1.col = 2, rep.col = "gray80", ...)

Arguments

b a fitted pffr-object

old.style If you want old fashioned plots, exactly as in Wood, 2006, set to TRUE.

type type of residuals, see residuals.gam, used in all plots.

k.sample Above this k testing uses a random sub-sample of data.
pffrGLS

Penalized function-on-function regression with non-i.i.d. residuals

Description

Implements additive regression for functional and scalar covariates and functional responses. This function is a wrapper for mgcv’s gam and its siblings to fit models of the general form

\[ Y_i(t) = \mu(t) + \int X_i(s)\beta(s,t)ds + f(z_{1i},t) + f(z_{2i},t) + \ldots + E_i(t) \]

with a functional (but not necessarily continuous) response \( Y(t) \), (optional) smooth intercept \( \mu(t) \), (multiple) functional covariates \( X(t) \) and scalar covariates \( z_1, z_2, \) etc. The residual functions \( E_i(t) \) are assumed to be i.i.d. realizations of a Gaussian process. An estimate of the covariance operator \( K(t,t') \) evaluated on \( yind \) has to be supplied in the hatSigma-argument.

Usage

pffrGLS(formula, yind, hatSigma, algorithm = NA, method = "REML",
tensortype = c("te", "t2"), bs.yindex = list(bs = "ps", k = 5, m = c(2, 1)), bs.int = list(bs = "ps", k = 20, m = c(2, 1)),
cond.cutoff = 500, ...)

Arguments

- **formula**: a formula with special terms as for gam, with additional special terms ff() and c(). See pffr.
- **yind**: a vector with length equal to the number of columns of the matrix of functional responses giving the vector of evaluation points \( (t_1, \ldots, t_G) \). see pffr
- **hatSigma**: (an estimate of) the within-observation covariance (along the responses’ index), evaluated at \( yind \). See Details.
- **algorithm**: the name of the function used to estimate the model. Defaults to gam if the matrix of functional responses has less than 2e5 data points and to bam if not. "gamm" (see gamm) and "gamm4" (see gamm4) are valid options as well.
- **method**: See pffr
- **tensortype**: See pffr
- **bs.yindex**: See pffr
- **bs.int**: See pffr
- **cond.cutoff**: if the condition number of hatSigma is greater than this, hatSigma is made “more” positive-definite via nearPD to ensure a condition number equal to cond.cutoff. Defaults to 500.
- ... additional arguments that are valid for gam or bam. See pffr.
Simulate example data for `pffr`

Simulates example data for `pffr` from a variety of terms. Scenario "all" generates data from a complex multivariate model

\[ Y_i(t) = \mu(t) + \int X_{1i}(s) \beta_1(s,t) ds + x_{lin3}(t) + f(x_{te1}, x_{te2}) + f(x_{smoo}, t) + \beta_4 x_{const} + f(x_{factor}, t) + \epsilon_i(t) \]

Scenarios "int", "ff", "lin", "te", "smoo", "const", "factor", generate data from simpler models containing only the respective term(s) in the model equation given above. Specifying a vector-valued scenario will generate data from a combination of the respective terms. Sparse/irregular response trajectories can be generated by setting `propmissing` to something greater than 0 (and smaller than 1). The return object then also includes a `ydata`-item with the sparsified data.

Usage

```r
pffrSim(scenario = "all", n = 100, nxgrid = 40, nygrid = 60,
 SNR = 10, propmissing = 0, limits = NULL)
```
**Arguments**

- `scenario`  
  see Description

- `n`  
  number of observations

- `nxgrid`  
  number of evaluation points of functional covariates

- `nygrid`  
  number of evaluation points of the functional response

- `SNR`  
  the signal-to-noise ratio for the generated data: empirical variance of the additive predictor divided by variance of the errors.

- `propmissing`  
  proportion of missing data in the response, default = 0. See Details.

- `limits`  
  a function that defines an integration range, see `ff`

**Details**

See source code for details.

**Value**

a named list with the simulated data, and the true components of the predictor etc as attributes.

---

**pfr**

*Penalized Functional Regression*

**Description**

Implements various approaches to penalized scalar-on-function regression. These techniques include Penalized Functional Regression (Goldsmith et al., 2011), Longitudinal Penalized Functional Regression (Goldsmith, et al., 2012), Functional Principal Component Regression (Reiss and Ogden, 2007), Partially Empirical Eigenvectors for Regression (Randolph et al., 2012), Functional Generalized Additive Models (McLean et al., 2013), and Variable-Domain Functional Regression (Gellar et al., 2014). This function is a wrapper for mgcv’s `gam` and its siblings to fit models with a scalar (but not necessarily continuous) response.

**Usage**

```r
pfr(formula = NULL, fitter = NA, method = "REML", ...)
```

**Arguments**

- `formula`  
  a formula that could contain any of the following special terms: `lf()`, `af()`, `lf.vd()`, `peer()`, `fpc()`, or `re()`; also mgcv’s `s()`, `te()`, or `t2()`.

- `fitter`  
  the name of the function used to estimate the model. Defaults to `gam` if the matrix of functional responses has less than 2e5 data points and to `bam` if not. "gamm" (see `gamm`) and "gamm4" (see `gamm4`) are valid options as well.

- `method`  
  The smoothing parameter estimation method. Default is "REML". For options, see `gam`. 
... additional arguments that are valid for `gam` or `bam`. These include data and family to specify the input data and outcome family, as well as many options to control the estimation.

Value

A fitted `pfr`-object, which is a `gam`-object with some additional information in a `$pfr$-element. If fitter is "gamm" or "gamm4", only the $gam$ part of the returned list is modified in this way.

Warning

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

Author(s)

Jonathan Gellar <JGellar@mathematica-mpr.com>, Mathew W. McLean, Jeff Goldsmith, and Fabian Scheipl

References


See Also

`af`, `lf`, `lf.vd`, `fpc`, `peer`, `re`.

Examples

```r
See lf(), lf.vd(), af(), fpc(), and peer() for additional examples

data(DTI)
DTI1 <- DTI[,DTI$visit==1 & complete.cases(DTI),]
par(mfrow=c(1,2))

Fit model with linear functional term for CCA
```
```r
fit.lf <- pfr(pasat ~ lf(cca, k=30, bs="ps"), data=DTI1)
plot(fit.lf, ylab=expression(paste(beta(t))), xlab="t")

Not run:
Alternative way to plot
bhat.lf <- coef(fit.lf, n=101)
bhat.lf$upper <- bhat.lf$value + 1.96*bhat.lf$se
bhat.lf$lower <- bhat.lf$value - 1.96*bhat.lf$se
matplot(bhat.lf$cca.argvals, bhat.lf[,c("value", "upper", "lower")],
 type="l", lty=c(1,2,2), col=1,
ylab=expression(paste(beta(t))), xlab="t")

Fit model with additive functional term for CCA, using tensor product basis
fit.af <- pfr(pasat ~ af(cca, Qtransform=TRUE, k=c(7,7)), data=DTI1)
plot(fit.af, scheme=2, xlab="t", ylab="cca(t)", main="Tensor Product")
plot(fit.af, scheme=2, Qtransform=TRUE,
 xlab="t", ylab="cca(t)", main="Tensor Product")

Change basistype to thin-plate regression splines
fit.af.s <- pfr(pasat ~ af(cca, basistype="s", Qtransform=TRUE, k=50),
data=DTI1)
plot(fit.af.s, scheme=2, xlab="t", ylab="cca(t)", main="TPRS", rug=FALSE)
plot(fit.af.s, scheme=2, Qtransform=TRUE,
 xlab="t", ylab="cca(t)", main="TPRS", rug=FALSE)

Visualize bivariate function at various values of x
par(mfrow=c(2,2))
vis.pfr(fit.af, xval=.2)
vis.pfr(fit.af, xval=.4)
vis.pfr(fit.af, xval=.6)
vis.pfr(fit.af, xval=.8)

Include random intercept for subject
DTI.re <- DTI[complete.cases(DTI$cca),]
DTI.re$ID <- factor(DTI.re$ID)
fit.re <- pfr(pasat ~ lf(cca, k=30) + re(ID), data=DTI.re)
coef.re <- coef(fit.re)
paper(mfrow=c(1,2))
plot(fit.re)

FPCR_R Model
fit.fpc <- pfr(pasat ~ fpc(cca), data=DTI.re)
plot(fit.fpc)

PEER Model with second order difference penalty
DTI.use <- DTI[DTI$case==1,]
DTI.use <- DTI.use[complete.cases(DTI.use$cca),]
fit.peer <- pfr(pasat ~ peer(cca, argvals=seq(0,1,length=93),
 integration="riemann", pentyper="D"), data=DTI.use)
plot(fit.peer)

End(Not run)
```
**Penalized Functional Regression (old version)**

**Description**

This code implements the function pfr() available in refund 0.1-11. It is included to maintain backwards compatibility.

Functional predictors are entered as a matrix or, in the case of multiple functional predictors, as a list of matrices using the `funcs` argument. Missing values are allowed in the functional predictors, but it is assumed that they are observed over the same grid. Functional coefficients and confidence bounds are returned as lists in the same order as provided in the `funcs` argument, as are principal component and spline bases. Increasing values of `nbasis` will increase computational time and the values of `nbasis`, `kz`, and `kb` in relation to each other may need to be adjusted in application-specific ways.

**Usage**

```r
pfr_old(Y, subj = NULL, covariates = NULL, funcs, kz = 10, kb = 30,
 nbasis = 10, family = "gaussian", method = "REML",
 smooth.option = "fpca.sc", pve = 0.99, ...)
```

**Arguments**

- **Y** vector of all outcomes over all visits
- **subj** vector containing the subject number for each observation
- **covariates** matrix of scalar covariates
- **funcs** matrix, or list of matrices, containing observed functional predictors as rows. NA values are allowed.
- **kz** can be NULL; can be a scalar, in which case this will be the dimension of principal components basis for each and every observed functional predictors; can be a vector of length equal to the number of functional predictors, in which case each element will correspond to the dimension of principal components basis for the corresponding observed functional predictors
- **kb** dimension of the B-spline basis for the coefficient function (note: this is a change from versions 0.1-7 and previous)
- **nbasis** passed to refund::fpca.sc (note: using fpca.sc is a change from versions 0.1-7 and previous)
- **family** generalized linear model family
- **method** method for estimating the smoothing parameters; defaults to REML
- **smooth.option** method to do FPC decomposition on the predictors. Two options available – "fpca.sc" or "fpca.face". If using "fpca.sc", a number less than 35 for `nbasis` should be used while if using "fpca.face", 35 or more is recommended.
- **pve** proportion of variance explained used to choose the number of principal components to be included in the expansion.
- **...** additional arguments passed to `gam` to fit the regression model.
Value

- **fit**: result of the call to `gam`.
- **fitted.vals**: predicted outcomes.
- **fitted.vals.level.0**: predicted outcomes at population level.
- **fitted.vals.level.1**: predicted outcomes at subject-specific level (if applicable).
- **betaHat**: list of estimated coefficient functions.
- **beta.covariates**: parameter estimates for scalar covariates.
- **varBetaHat**: list containing covariance matrices for the estimated coefficient functions.
- **Bounds**: list of bounds of a pointwise 95% confidence interval for the estimated coefficient functions.
- **X**: design matrix used in the model fit.
- **D**: penalty matrix used in the model fit.
- **phi**: list of B-spline bases for the coefficient functions.
- **psi**: list of principal components basis for the functional predictors.
- **C**: stacked row-specific principal component scores.
- **J**: transpose of psi matrix multiplied by phi.
- **CJ**: C matrix multiplied J.
- **Z1**: design matrix of random intercepts.
- **subj**: subject identifiers as specified by user.
- **fixed.mat**: the fixed effects design matrix of the pfr as a mixed model.
- **rand.mat**: the fixed effects design matrix of the pfr as a mixed model.
- **N_subj**: the number of unique subjects, if subj is specified.
- **p**: number of scalar covariates.
- **N.pred**: number of functional covariates.
- **kz**: as specified.
- **kz.adj**: For smooth.option="fpca.sc", will be same as kz (or a vector of repeated values of the specified scalar kz). For smooth.option="fpca.face", will be the corresponding number of principal components for each functional predictor as determined by fpca.face; will be less than or equal to kz on an elemental-wise level.
- **kb**: as specified.
- **nbasis**: as specified.
- **totD**: number of penalty matrices created for mgcv::gam.
- **funcs**: as specified.
- **covariates**: as specified.
- **smooth.option**: as specified.
Warning

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

Author(s)

Bruce Swihart <bruce.swihart@gmail.com> and Jeff Goldsmith <jeff.goldsmith@columbia.edu>

References


See Also

*rlrt.pfr, predict.pfr.*

Examples

```r
Not run:
##
######### DTI Data Example #########
##
##
For more about this example, see Swihart et al. 2013
##

load and reassign the data;
data(DTI2)
Y <- DTI2$pasat ## PASAT outcome
id <- DTI2$id ## subject id
W1 <- DTI2$cca ## Corpus Callosum
W2 <- DTI2$rcst ## Right corticospinal
V <- DTI2$visit ## visit

prep scalar covariate
visit.1.rest <- matrix(as.numeric(V > 1), ncol=1)
covar.in <- visit.1.rest

note there is missingness in the functional predictors
apply(is.na(W1), 2, mean)
apply(is.na(W2), 2, mean)
```

## fit two univariate models

```r
pfr.obj.t1 <- pfr(Y = Y, covariates=covar.in, funcs = list(W1), subj = id, kz = 10, kb = 50)
pfr.obj.t2 <- pfr(Y = Y, covariates=covar.in, funcs = list(W2), subj = id, kz = 10, kb = 50)
```

### one model with two functional predictors using "smooth.face"
### for smoothing predictors

```r
pfr.obj.t3 <- pfr(Y = Y, covariates=covar.in, funcs = list(W1, W2),
 subj = id, kz = 10, kb = 50, nbasis=35, smooth.option="fpca.face")
```

## plot the coefficient function and bounds

```r
dev.new()
par(mfrow=c(2,2))
ran <- c(-2,.5)
matplot(cbind(pfr.obj.t1$BetaHat[[1]], pfr.obj.t1$Bounds[[1]]),
 type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
 main = "CCA", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t2$BetaHat[[1]], pfr.obj.t2$Bounds[[1]]),
 type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
 main = "RCST", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[1]], pfr.obj.t3$Bounds[[1]]),
 type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
 main = "CCA - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[2]], pfr.obj.t3$Bounds[[2]]),
 type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
 main = "RCST - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")
```

# use baseline data to regress continuous outcomes on functional
# predictors (continuous outcomes only recorded for case == 1)

```r
data(DTI)

subset data as needed for this example
cca = DTI$cca[which(DTI$visit ==1 & DTI$case == 1),]
rcst = DTI$rcst[which(DTI$visit ==1 & DTI$case == 1),]
DTI = DTI[which(DTI$visit ==1 & DTI$case == 1),]

note there is missingness in the functional predictors
apply(is.na(cca), 2, mean)
apply(is.na(rcst), 2, mean)

fit two models with single functional predictors and plot the results
fit.cca = pfr(Y=DTI$pasat, funcs = cca, kz=10, kb=50, nbasis=20)
fit.rcst = pfr(Y=DTI$pasat, funcs = rcst, kz=10, kb=50, nbasis=20)
par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),
```
# fit a model with two functional predictors and plot the results
fit.cca.rcst = pfr(Y=DTI$pasat, funcs = list(cca, rcst), kz=10, kb=30, nbasis=20)
par(mfrow = c(1,2))
matplot(cbind(fit.cca.rcst$BetaHat[[1]], fit.cca.rcst$Bounds[[1]]),
    type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
    main = "CCA")
matplot(cbind(fit.cca.rcst$BetaHat[[2]], fit.cca.rcst$Bounds[[2]]),
    type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
    main = "RCST")

# use baseline data to regress binary case-status outcomes on
# functional predictors
##################################################################

data(DTI)
# subset data as needed for this example
cca = DTI$cca[which(DTI$visit == 1),]
rcst = DTI$rcst[which(DTI$visit == 1),]
DTI = DTI[which(DTI$visit == 1),]

# fit two models with single functional predictors and plot the results
fit.cca = pfr(Y=DTI$case, funcs = cca, family = "binomial")
fit.rcst = pfr(Y=DTI$case, funcs = rcst, family = "binomial")
par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),
    type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
    main = "CCA")
matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
    type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
    main = "RCST")

##############################################################
#### Octane Data Example ####
##############################################################

data(gasoline)
Y = gasoline$octane
funcs = gasoline$NIR
wavelengths = as.matrix(2*450:850)

# fit the model using pfr and the smoothing option "fpca.face"
fit = pfr(Y=Y, funcs=funcs, kz=15, kb=50, nbasis=35, smooth.option="fpca.face"
matplot(wavelengths, cbind(fit$BetaHat[1], fit$Bounds[1]),
          type='l', lwd=c(2,1,1), lty=c(1,2,2), xlab = "Wavelengths",
          ylab = "Coefficient Function", col=1)

## End(Not run)

---

**plot.fosr**

Default plotting of function-on-scalar regression objects

**Description**

Plots the coefficient function estimates produced by `fosr()`.

**Usage**

```r
S3 method for class 'fosr'
plot(x, split = NULL, titles = NULL, xlabel = "",
 ylabel = "Coefficient function", set.mfrow = TRUE,
 ...)
```

**Arguments**

- `x` an object of class "fosr".
- `split` value, or vector of values, at which to divide the set of coefficient functions into groups, each plotted on a different scale. E.g., if set to 1, the first function is plotted on one scale, and all others on a different (common) scale. If `NULL`, all functions are plotted on the same scale.
- `titles` character vector of titles for the plots produced, e.g., names of the corresponding scalar predictors.
- `xlabel` label for the x-axes of the plots.
- `ylabel` label for the y-axes of the plots.
- `set.mfrow` logical value: if `TRUE`, the function will try to set an appropriate value of the `mfrow` parameter for the plots. Otherwise you may wish to set `mfrow` outside the function call.
- `...` graphical parameters (see `par`) for the plot.

**Author(s)**

Philip Reiss <phil.reiss@nyumc.org>

**See Also**

`fosr`, which includes examples.
Description

Given a "fosr.vs" object, produces a figure of estimated coefficient functions.

Usage

```r
S3 method for class 'fosr.vs'
plot(x, ...)
```

Arguments

- `x`: an object of class "fosr.vs".
- `...`: additional arguments.

Value

A figure of estimated coefficient functions.

Author(s)

Yakuan Chen <yc2641@cumc.columbia.edu>

See Also

fosr.vs

Examples

```r
Not run:
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)

beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2

psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)

set.seed(100)
```
\begin{verbatim}
X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))

fixef = X %*% beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)

Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error

data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
plot(fit.mcp)
## End(Not run)
\end{verbatim}

---

\textbf{plot.fpcr} \hspace{1cm} Default plotting for functional principal component regression output

\textbf{Description}

Inputs an object created by \texttt{fpcr}, and plots the estimated coefficient function.

\textbf{Usage}

\begin{verbatim}
## S3 method for class 'fpcr'
plot(x, se = TRUE, col = 1, lty = c(1, 2, 2),
     xlab = "", ylab = "Coefficient function", ...)
\end{verbatim}

\textbf{Arguments}

- \texttt{x} \hspace{1cm} an object of class "\texttt{fpcr}".
- \texttt{se} \hspace{1cm} if TRUE (the default), upper and lower lines are added at 2 standard errors (in the Bayesian sense; see Wood, 2006) above and below the coefficient function estimate. If a positive number is supplied, the standard error is instead multiplied by this number.
- \texttt{col} \hspace{1cm} color for the line(s). This should be either a number, or a vector of length 3 for the coefficient function estimate, lower bound, and upper bound, respectively.
- \texttt{lty} \hspace{1cm} line type(s) for the coefficient function estimate, lower bound, and upper bound.
- \texttt{xlab, ylab} \hspace{1cm} x- and y-axis labels.
- \texttt{...} \hspace{1cm} other arguments passed to the underlying plotting function.
Value

None; only a plot is produced.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>

References


See Also

fpcr, which includes an example.

---

**plot.lpeer**

*Plotting of estimated regression functions obtained through lpeer()*

Description

Plots the estimate of components of estimated regression function obtained from an lpeer object along with pointwise confidence bands.

Usage

```r
S3 method for class 'lpeer'
plot(x, conf = 0.95, ...)
```

Arguments

- **x**: object of class "lpeer".
- **conf**: pointwise confidence level.
- **...**: additional arguments passed to `plot`.

Details

Pointwise confidence interval is displayed only if the user set se=T in the call to lpeer, and does not reflect any multiplicity correction.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu>
plot.peer

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties. (Please contact J. Harezlak at <harezlak@iupui.edu>.)


See Also

peer, lpeer, plot.peer

Examples

```r
Not run:
data(DTI)
cca = DTI$cca[which(DTI$case == 1),]
DTI = DTI[which(DTI$case == 1),]
fit.cca.lpeer1 = lpeer(Y=DTI$pasat, t=DTI$visit, subj=DTI$ID, funcs = cca)
plot(fit.cca.lpeer1)

End(Not run)
```

plot.peer

Plotting of estimated regression functions obtained through peer()

Description

Plots the estimate of components of estimated regression function obtained from a peer object along with pointwise confidence bands.

Usage

```r
S3 method for class 'peer'
plot(x, conf = 0.95,
 ylab = "Estimated regression function", main = expression(gamma),
 ...)
```

Arguments

- **x**: object of class "peer".
- **conf**: pointwise confidence level.
- **ylab**: y-axis label.
- **main**: title for the plot.
- **...**: additional arguments passed to plot.
plot.pffr

Details

Pointwise confidence interval is displayed only if the user set se=T in the call to peer, and does not reflect any multiplicity correction.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu>

References

Kundu, M. G., Harezlak, J., and Randolph, T. W. (2012). Longitudinal functional models with structured penalties. (Please contact J. Harezlak at <harezlak@iupui.edu>.)


See Also

peer, lpeer, plot.lpeer

Examples

# See example in peer()

plot.pffr

Description

Plot a fitted pffr-object. Simply dispatches to plot.gam.

Usage

## S3 method for class 'pffr'
plot(x, ...)

Arguments

x a fitted pffr-object

... arguments handed over to plot.gam

Value

This function only generates plots.

Author(s)

Fabian Scheipl
plot.pfr  

Plot a pfr object

Description

This function plots the smooth coefficients of a pfr object. These include functional coefficients as well as any smooths of scalar covariates. The function dispatches to pfr_plot.gam, which is our local copy of plot.gam with some minor changes.

Usage

```r
S3 method for class 'pfr'
plot(x, Qtransform = FALSE, ...)
```

Arguments

- `x`  
  a fitted pfr-object

- `Qtransform`  
  For additive functional terms, TRUE indicates the coefficient should be plotted on the quantile-transformed scale, whereas FALSE indicates the scale of the original data. Note this is different from the Qtransform argument of af, which specifies the scale on which the term is fit.

- `...`  
  arguments handed over to plot.gam

Value

This function’s main purpose is its side effect of generating plots. It also silently returns a list of the data used to produce the plots, which can be used to generate customized plots.

Author(s)

Jonathan Gellar

See Also

af.pfr
**predict.fbps**  
*Prediction for fast bivariate P-spline (fbps)*

**Description**

Produces predictions given a fbps object and new data

**Usage**

```r
S3 method for class 'fbps'
predict(object, newdata, ...)
```

**Arguments**

- `object` : an object returned by fbps
- `newdata` : a data frame or list consisting of x and z values for which predicted values are desired. vectors of x and z need to be of the same length.
- `...` : additional arguments.

**Value**

A list with components

- `x` : a vector of x given in newdata
- `z` : a vector of z given in newdata
- `fitted.values` : a vector of fitted values corresponding to x and z given in newdata

**Author(s)**

Luo Xiao <lxiao@jhsph.edu>

**References**


**Examples**

```r
##########################
True function
##########################
n1 <- 60
n2 <- 80
x <- (1: n1)/n1-1/2/n1
z <- (1: n2)/n2-1/2/n2
MY <- array(0,c(length(x),length(z)))
sigx <- .3
sigz <- .4
```
predict.fbps

for(i in 1: length(x))
    for(j in 1: length(z))
    {
        \#MY[i,j] <- .75/(pi*sigx*sigz) *exp(-(x[i]-.2)^2/sigx^2-(z[j]-.3)^2/sigz^2)
        \#MY[i,j] <- MY[i,j] + .45/(pi*sigx*sigz) *exp(-(x[i]-.7)^2/sigx^2-(z[j]-.8)^2/sigz^2)
        MY[i,j] = sin(2*pi*(x[i]-.5)^3)*cos(4*pi*z[j])
    }

    ##########################
    ### Observed data ######
    ##########################
    sigma <- 1
    Y <- MY + sigma*rnorm(n1*n2,0,1)

    ##########################
    ### Estimation ######
    ##########################
    est <- fbps(Y,list(x=x,z=z))
    mse <- mean((est$Yhat-MY)^2)
    cat("mse of fbps is",mse,"\n")
    cat("The smoothing parameters are:","est$lambda","\n")

    ########################################################################
    ########## Compare the estimated surface with the true surface ##########
    ########################################################################
    par(mfrow=c(1,2))
    persp(x,z,MY,zlab="f(x,z)",zlim=c(-1,2.5), phi=30,theta=45,expand=0.8,r=4,
        col="blue",main="True surface")
    persp(x,z,est$Yhat,zlab="f(x,z)",zlim=c(-1,2.5),phi=30,theta=45,
        expand=0.8,r=4,col="red",main="Estimated surface")

    ##########################
    ### prediction ######
    ##########################

    # 1. make prediction with predict.fbps() for all pairs of x and z given in the original data
    # ( it's expected to have same results as Yhat obtained using fbps() above )
    newdata <- list(x= rep(x, length(z)), z = rep(z, each=length(x)))
    pred1 <- predict(est, newdata=newdata)$fitted.values
    pred1.mat <- matrix(pred1, nrow=length(x))
    par(mfrow=c(1,2))
    image(pred1.mat); image(est$Yhat)
    all.equal(as.numeric(pred1.mat), as.numeric(est$Yhat))

    # 2. predict for pairs of first 10 x values and first 5 z values
    newdata <- list(x= rep(x[1:10], 5), z = rep(z[1:5], each=10))
    pred2 <- predict(est, newdata=newdata)$fitted.values
    pred2.mat <- matrix(pred2, nrow=10)
    par(mfrow=c(1,2))
    image(pred2.mat); image(est$Yhat[1:10,1:5])
    all.equal(as.numeric(pred2.mat), as.numeric(est$Yhat[1:10,1:5]))

    # 3. predict for one pair
newdata <- list(x=x[5], z=z[3])
pred3 <- predict(est, newdata=newdata)$fitted.values
all.equal(as.numeric(pred3), as.numeric(est$Yhat[5,3]))

predict.fgam

Prediction from a fitted FGAM model

Description

Takes a fitted fgam-object produced by fgam and produces predictions given a new set of values for the model covariates or the original values used for the model fit. Predictions can be accompanied by standard errors, based on the posterior distribution of the model coefficients. This is a wrapper function for predict.gam()

Usage

## S3 method for class 'fgam'
predict(object, newdata, type = "response",
       se.fit = FALSE, terms = NULL, PredOutOfRange = FALSE, ...)

Arguments

object

a fitted fgam object as produced by fgam

ewndata

a named list containing the values of the model covariates at which predictions are required. If this is not provided then predictions corresponding to the original data are returned. All variables provided to newdata should be in the format supplied to fgam, i.e., functional predictors must be supplied as matrices with each row corresponding to one observed function. Index variables for the functional covariates are reused from the fitted model object or alternatively can be supplied as attributes of the matrix of functional predictor values. Any variables in the model not specified in newdata are set to their average values from the data supplied during fitting the model

type

character; see predict.gam for details

se.fit

logical; see predict.gam for details

terms

character see predict.gam for details

PredOutOfRange

logical; if this argument is true then any functional predictor values in newdata corresponding to fgam terms that are greater[less] than the maximum[minimum] of the domain of the marginal basis for the rows of the tensor product smooth are set to the maximum[minimum] of the domain. If this argument is false, attempting to predict a value of the functional predictor outside the range of this basis produces an error

...

additional arguments passed on to predict.gam
predict.fosr.vs

Prediction for Function-on Scalar Regression with variable selection

Value
If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se == TRUE, a list with entries fit and se.fit containing fits and standard errors, respectively. If type == "terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response for newdata containing the linear predictor and its se for each term

Author(s)
Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

See Also
fgam, predict.gam

Examples
######### Octane data example #########
data(gasoline)
N <- length(gasoline$octane)
wavelengths = 2*450:850
nir = matrix(NA, 60,401)
test <- sample(60,20)
for (i in 1:60) nir[i,] = gasoline$NIR[i,] # changes class from AsIs to matrix
y <- gasoline$octane
fit <- fgam(y~af(nir,xind=wavelengths,splinepars=list(k=c(6,6),m=list(c(2,2),c(2,2)))),
            subset=(1:N)[-test])
preds <- predict(fit,newdata=list(nir=nir[test,]),type='response')
plot(preds,y[test])
abline(a=0,b=1)

predict.fosr.vs

Prediction for Function-on Scalar Regression with variable selection

Description
Given a "fosr.vs" object and new data, produces fitted values.

Usage
## S3 method for class 'fosr.vs'
predict(object, newdata = NULL, ...)

Arguments
object an object of class "fosr.vs".
newdata a data frame that contains the values of the model covariates at which predictors are required.
... additional arguments.
predict.fosr.vs

Value
fitted values.

Author(s)
Yakuan Chen <yc2641@cumc.columbia.edu>

See Also
fosr.vs

Examples

```r
Not run:
I = 100
p = 20
D = 50
grid = seq(0, 1, length = D)

beta.true = matrix(0, p, D)
beta.true[1,] = sin(2*grid*pi)
beta.true[2,] = cos(2*grid*pi)
beta.true[3,] = 2

psi.true = matrix(NA, 2, D)
psi.true[1,] = sin(4*grid*pi)
psi.true[2,] = cos(4*grid*pi)
lambda = c(3,1)

set.seed(100)
X = matrix(rnorm(I*p), I, p)
C = cbind(rnorm(I, mean = 0, sd = lambda[1]), rnorm(I, mean = 0, sd = lambda[2]))

fixef = X%*%beta.true
pcaef = C %*% psi.true
error = matrix(rnorm(I*D), I, D)

Yi.true = fixef
Yi.pca = fixef + pcaef
Yi.obs = fixef + pcaef + error

data = as.data.frame(X)
data$Y = Yi.obs
fit.mcp = fosr.vs(Y~., data = data[1:80,], method="grMCP")
predicted.value = predict(fit.mcp, data[81:100,])
```

## End(Not run)
Predict.matrix.dt.smooth

*Predict.matrix method for dt basis*

**Description**

Predict.matrix method for dt basis

**Usage**

```r
S3 method for class 'dt.smooth'
Predict.matrix(object, data)
```

**Arguments**

- `object`: a `dt.smooth` object created by `smooth.construct.dt.smooth.spec`, see `smooth.construct`
- `data`: see `smooth.construct`

**Value**

design matrix for domain-transformed terms

**Author(s)**

Jonathan Gellar

---

Predict.matrix.fpc.smooth

*mgev-style constructor for prediction of FPC terms*

**Description**

mgev-style constructor for prediction of FPC terms

**Usage**

```r
S3 method for class 'fpc.smooth'
Predict.matrix(object, data)
```

**Arguments**

- `object`: a `fpc.smooth` object created by `smooth.construct.fpc.smooth.spec`, see `smooth.construct`
- `data`: see `smooth.construct`
Predict.matrix.pcre.random.effect

Value

design matrix for FPC terms

Author(s)

Jonathan Gellar

mgcv-style constructor for prediction of PC-basis functional random effects

Usage

## S3 method for class 'pcre.random.effect'
Predict.matrix(object, data)

Arguments

object a smooth specification object, see smooth.construct
data see smooth.construct

Value

design matrix for PC-based functional random effects

Author(s)

Fabian Scheipl; adapted from 'Predict.matrix.random.effect' by S.N. Wood.
Predict.matrix.peer.smooth

mgcv-style constructor for prediction of PEER terms

Description

mgcv-style constructor for prediction of PEER terms

Usage

## S3 method for class 'peer.smooth'
Predict.matrix(object, data)

Arguments

  object         a peer.smooth object created by smooth.construct.peer.smooth.spec, see smooth.construct
  data           see smooth.construct

Value

design matrix for PEER terms

Author(s)

Jonathan Gellar

Predict.matrix.pi.smooth

Predict.matrix method for pi basis

Description

Predict.matrix method for pi basis

Usage

## S3 method for class 'pi.smooth'
Predict.matrix(object, data)

Arguments

  object         a pi.smooth object created by smooth.construct.pi.smooth.spec, see smooth.construct
  data           see smooth.construct
Value

design matrix for PEER terms

Author(s)

Jonathan Gellar

predict.pffr  Prediction for penalized function-on-function regression

Description

Takes a fitted pffr-object produced by pffr() and produces predictions given a new set of values for the model covariates or the original values used for the model fit. Predictions can be accompanied by standard errors, based on the posterior distribution of the model coefficients. This is a wrapper function for predict.gam().

Usage

```r
S3 method for class 'pffr'
predict(object, newdata, reformat = TRUE, type = "link",
 se.fit = FALSE, ...)
```

Arguments

- **object**: a fitted pffr-object
- **newdata**: A named list (or a data.frame) containing the values of the model covariates at which predictions are required. If no newdata is provided then predictions corresponding to the original data are returned. If newdata is provided then it must contain all the variables needed for prediction, in the format supplied to pffr, i.e., functional predictors must be supplied as matrices with each row corresponding to one observed function. See Details for more on index variables and prediction for models fit on irregular or sparse data.
- **reformat**: logical, defaults to TRUE. Should predictions be returned in matrix form (default) or in the long vector shape returned by predict.gam()?
- **type**: see predict.gam() for details. Note that type == "lpmatrix" will force reformat to FALSE.
- **se.fit**: see predict.gam()
- **...**: additional arguments passed on to predict.gam()
Index variables (i.e., evaluation points) for the functional covariates are reused from the fitted model object and cannot be supplied with newdata. Prediction is always for the entire index range of the responses as defined in the original fit. If the original fit was performed on sparse or irregular, non-gridded response data supplied via pfr’s ydata-argument and no newdata was supplied, this function will simply return fitted values for the original evaluation points of the response (in list form). If the original fit was performed on sparse or irregular data and newdata was supplied, the function will return predictions on the grid of evaluation points given in object$pffr$yind.

Value

If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se == TRUE, a list with entries fit and se.fit containing fits and standard errors, respectively. If type == "terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response for newdata containing the linear predictor and its se for each term.

Author(s)

Fabian Scheipl

See Also

predict.gam()

Description

Takes a fitted pfr-object produced by pfr and produces predictions given a new set of values for the model covariates or the original values used for the model fit. Predictions can be accompanied by standard errors, based on the posterior distribution of the model coefficients. This is a wrapper function for predict.gam()

Usage

## S3 method for class 'pfr'
predict(object, newdata, type = "response",
    se.fit = FALSE, terms = NULL, PredOutOfRange = FALSE, ...)

Arguments

object a fitted pfr object as produced by pfr
newdata a named list containing the values of the model covariates at which predictions are required. If this is not provided then predictions corresponding to the original data are returned. All variables provided to newdata should be in the format supplied to pfr, i.e., functional predictors must be supplied as matrices with each row corresponding to one observed function. Index variables for the functional covariates are reused from the fitted model object or alternatively can be supplied as attributes of the matrix of functional predictor values. Any variables in the model not specified in newdata are set to their average values from the data supplied during fitting the model.

type character; see predict.gam for details

se.fit logical; see predict.gam for details

terms character see predict.gam for details

PredOutOfRange logical; if this argument is true then any functional predictor values in newdata corresponding to pfr terms that are greater[less] than the maximum[minimum] of the domain of the marginal basis for the rows of the tensor product smooth are set to the maximum[minimum] of the domain. If this argument is false, attempting to predict a value of the functional predictor outside the range of this basis produces an error

... additional arguments passed on to predict.gam

Value

If type == "lpmatrix", the design matrix for the supplied covariate values in long format. If se == TRUE, a list with entries fit and se.fit containing fits and standard errors, respectively. If type == "terms" or "iterms" each of these lists is a list of matrices of the same dimension as the response for newdata containing the linear predictor and its se for each term.

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com> and Fabian Scheipl

See Also

pfr, predict.gam

Examples

######### Octane data example #########

data(gasoline)
N <- length(gasoline$octane)
wavelengths = 2*450:850
nir = matrix(NA, 60,401)
test <- sample(60,20)
for (i in 1:60) nir[i,] = gasoline$NIR[i, ] # changes class from AsIs to matrix
y <- gasoline$octane
fit <- pfr(y~af(nir,argvals=wavelengths,k=c(6,6), m=list(c(2,2),c(2,2))),
           subset=(1:N)[-test])
preds <- predict(fit,newdata=list(nir=nir[test,]),type='response')
plot(preds,y[test])
abline(a=0,b=1)
print.summary.pffr  Print method for summary of a pffr fit

Description

Pretty printing for a summary.pffr-object. See print.summary.gam() for details.

Usage

## S3 method for class 'summary.pffr'
print(x, digits = max(3, getOption("digits") - 3),
   signif.stars = getOption("show.signif.stars"), ...)

Arguments

x  a fitted pffr-object
digits  controls number of digits printed in output.
signif.stars  Should significance stars be printed alongside output?
...  not used

Value

A summary.pffr object

Author(s)

Fabian Scheipl, adapted from print.summary.gam() by Simon Wood, Henric Nilsson

pwcv  Pointwise cross-validation for function-on-scalar regression

Description

Estimates prediction error for a function-on-scalar regression model by leave-one-function-out cross-validation (CV), at each of a specified set of points.

Usage

pwcv(fdobj, Z, L = NULL, lambda, eval.pts = seq(min(fdobj$basis$range),
   max(fdobj$basis$range), length.out = 201), scale = FALSE)
Arguments

- **fdobj**: a functional data object (class fd) giving the functional responses.
- **Z**: the model matrix, whose columns represent scalar predictors.
- **L**: a row vector or matrix of linear contrasts of the coefficient functions, to be restricted to equal zero.
- **lambda**: smoothing parameter: either a nonnegative scalar or a vector, of length ncol(Z), of nonnegative values.
- **eval.pts**: argument values at which the CV score is to be evaluated.
- **scale**: logical value or vector determining scaling of the matrix Z (see scale, to which the value of this argument is passed).

Details

Integrating the pointwise CV estimate over the function domain yields the cross-validated integrated squared error, the standard overall model fit score returned by `lofocv`.

It may be desirable to derive the value of lambda from an appropriate call to `fosr`, as in the example below.

Value

A vector of the same length as `eval.pts` giving the CV scores.

Author(s)

Philip Reiss <phil.reiss@nyumc.org>

References


See Also

- `fosr`, `lofocv`

Examples

```r
require(fda)
Canadian weather example from Reiss et al. (2010).
The first two lines are taken from the fRegress.CV help file (package fda)
smallbasis <- create.fourier.basis(c(0, 365), 25)
tempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[, , "Temperature.C"], smallbasis)$fd

Model matrices for "latitude" and "region" models
Xreg = cbind(1, model.matrix(~factor(CanadianWeather$region)-1))
```
Xlat = model.matrix(~CanadianWeather$coord[,1])

# Fit each model using fosr() to obtain lambda values for pwcv()
Lreg = matrix(c(0,1,1,1,1), 1)  # constraint for region model
regionmod = fosr(fdobj=tempfd, X=Xreg, con=Lreg, method="OLS")
cv.region = pwcv(tempfd, Xreg, Lreg, regionmod$lambda)

latmod = fosr(fdobj=tempfd, X=Xlat, method="OLS")
cv.lat = pwcv(tempfd, Xlat, lambda=latmod$lambda)

# The following plots may require a wide graphics window to show up correctly
par(mfrow=1:2)
# Plot the functional data
plot(tempfd, col=1, lty=1, axes=list("axesIntervals"), xlab="", ylab="Mean temperature", main="Temperatures at 35 stations")
box()

# Plot the two models' pointwise CV
matplot(regionmod$argvals, cbind(cv.region, cv.lat), type="l", col=1, axes=FALSE, xlab="", ylab="MSE.CV", main="Pointwise CV for two models")
legend(250, 40, c("Region", "Latitude"), lty=1:2)
box()
axis(2)
axisIntervals(1)

## S3 method for class 'pffr'
qq(object, rep = 0, level = 0.9, s.rep = 10,
   type = c("deviance", "pearson", "response"), pch = ".", rl.col = 2,
   rep.col = "gray80", ...)
quadWeights

how many times to randomize uniform quantiles to data under direct computation.

what sort of residuals should be plotted? See residuals.gam.

plot character to use. 19 is good.

color for the reference line on the plot.

color for reference bands or replicate reference plots.

extra graphics parameters to pass to plotting functions.

quadWeights  Compute quadrature weights

Description

Utility function for numerical integration.

Usage

quadWeights(argvals, method = "trapezoidal")

Arguments

argvals  function arguments.

method  quadrature method. Can be either trapezoidal or midpoint.

Value

a vector of quadrature weights for the points supplied in argvals.

Author(s)

Clara Happ, with modifications by Philip Reiss

re  Random effects constructor for fgam

Description

Sets up a random effect for the levels of x. Use the by-argument to request random slopes.

Usage

re(x, ...)
Arguments

x  a grouping variable: must be a factor
... further arguments handed over to s, see random.effects

Details

See random.effects in mgcv.

See Also

random.effects

refund-internal  Internal functions for the refund package

Description

These functions are ordinarily not to be called by the user, but if you contact the package authors with any questions about them, we’ll do our best to clarify matters.

residuals.pffr  Obtain residuals and fitted values for a pffr models

Description

See predict.pffr for alternative options to extract estimated values from a pffr object. "Fitted values" here refers to the estimated additive predictor values, these will not be on the scale of the response for models with link functions.

Usage

## S3 method for class 'pffr'
residuals(object, reformat = TRUE, ...)

## S3 method for class 'pffr'
fitted(object, reformat = TRUE, ...)

Arguments

object  a fitted pffr-object
reformat  logical, defaults to TRUE. Should residuals be returned in n x yindex matrix form (regular grid data) or, respectively, in the shape of the originally supplied ydata argument (sparse/irregular data), or, if FALSE, simply as a long vector as returned by resid.gam()?
... other arguments, passed to residuals.gam.
Value

A matrix or ydata-like data.frame or a vector of residuals / fitted values (see reformat-argument)

Author(s)

Fabian Scheipl

Description

NOTE: this function is designed to work with pfr_old() rather than pfr(). Given a pfr object of family="gaussian", tests whether the function is identically equal to its mean (constancy), or whether the functional predictor significantly improves the model (inclusion). Based on zero-variance-component work of Crainiceanu et al. (2004), Scheipl et al. (2008), and Swihart et al. (2012).

Usage

rlrt.pfr(pfr.obj = pfr.obj, test = NULL, ...)

Arguments

pfr.obj an object returned by pfr_old()

test "constancy" will test functional form of the coefficient function of the last function listed in funcs in pfr.obj against the null of a constant line: the average of the functional predictor. "inclusion" will test functional form of the coefficient function of the last function listed in funcs in pfr.obj against the null of 0: that is, whether the functional predictor should be included in the model.

... additional arguments

Details

A Penalized Functional Regression of family="gaussian" can be represented as a linear mixed model dependent on variance components. Testing whether certain variance components and (potentially) fixed effect coefficients are 0 correspond to tests of constancy and inclusion of functional predictors. For rlrt.pfr, Restricted Likelihood Ratio Test is preferred for the constancy test as under the special B-splines implementation of pfr for the coefficient function basis the test involves only the variance component. Therefore, the constancy test is best for pfr objects with method="REML": if the method was something else, a warning is printed and the model refit with "REML" and a test is then conducted.

For rlrt.pfr, the Likelihood Ratio Test is preferred for the inclusion test as under the special B-splines implementation of pfr for the coefficient function basis the test involves both the variance component and a fixed effect coefficient in the linear mixed model representation. Therefore, the inclusion test is best for pfr objects with method="ML": if the method was something else, a warning is printed and the model refit with "ML" and a test is then conducted.
Value

- **p.val**: the p-value for the full model (alternative) against the null specified by the test
- **test.stat**: the test statistic, see Scheipl et al. 2008 and Swihart et al 2012
- **ma**: the alternative model as fit with mgcv::gam
- **m0**: the null model as fit with mgcv::gam
- **m**: the model containing only the parameters being tested as fit with mgcv::gam

Author(s)

Jeff Goldsmith <jeff.goldsmith@columbia.edu> and Bruce Swihart <bswhart@jhsph.edu>

References


See Also

- `pfr`, `predict.pfr`, package `RLRsim`

Examples

```r
Not run:
mock data
DTI Data Example

For more about this example, see Swihart et al. 2012
Testing for Functional Effects

load and reassign the data;
```
data(DTI2)
O <- DTI2$pasat ## PASAT outcome
id <- DTI2$id ## subject id
W1 <- DTI2$cca ## Corpus Callosum
W2 <- DTI2$rcst ## Right corticospinal
V <- DTI2$visit ## visit

## prep scalar covariate
visit.1.rest <- matrix(as.numeric(V > 1), ncol=1)
covar.in <- visit.1.rest

## note there is missingness in the functional predictors
apply(is.na(W1), 2, mean)
apply(is.na(W2), 2, mean)

## fit two univariate models, then one model with both functional predictors
pfr.obj.t1 <- pfr_old(Y = O, covariates=covar.in, funcs = list(W1), subj = id, kz = 10, kb = 50)
pfr.obj.t2 <- pfr_old(Y = O, covariates=covar.in, funcs = list(W2), subj = id, kz = 10, kb = 50)
pfr.obj.t3 <- pfr_old(Y = O, covariates=covar.in, funcs = list(W1, W2), subj = id, kz = 10, kb = 50)

## plot the coefficient function and bounds
dev.new()
par(mfrow=c(2,2))
ran <- c(-2,.5)
matplot(cbind(pfr.obj.t1$BetaHat[[1]], pfr.obj.t1$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
        main = "CCA", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t2$BetaHat[[1]], pfr.obj.t2$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
        main = "RCST", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[1]], pfr.obj.t3$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
        main = "CCA - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[2]], pfr.obj.t3$Bounds[[2]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat",
        main = "RCST - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")

## do some testing
t1 <- rlrt.pfr(pfr.obj.t1, "constancy")
t2 <- rlrt.pfr(pfr.obj.t2, "constancy")
t3 <- rlrt.pfr(pfr.obj.t3, "inclusion")

t1$test.stat
t1$p.val

t2$test.stat
t2$p.val
## do some testing with rlrt.pfr(); same as above but subj = NULL

```r
pfr.obj.t1 <- pfr(Y = O, covariates=covar.in, funcs = list(W1), subj = NULL, kz = 10, kb = 50)
pfr.obj.t2 <- pfr(Y = O, covariates=covar.in, funcs = list(W2), subj = NULL, kz = 10, kb = 50)
pfr.obj.t3 <- pfr(Y = O, covariates=covar.in, funcs = list(W1, W2), subj = NULL, kz = 10, kb = 50)
```

t1 <- rlrt.pfr(pfr.obj.t1, "constancy")
t2 <- rlrt.pfr(pfr.obj.t2, "constancy")
t3 <- rlrt.pfr(pfr.obj.t3, "inclusion")

## End(Not run)

---

**sff**

Construct a smooth function-on-function regression term

---

**Description**

Defines a term \( \int_{s_{hi,i}}^{s_{lo,i}} f(X_i(s), s, t) ds \) for inclusion in an mgcv::gam-formula (or bam or gamm or gamm4::gamm) as constructed by `pffr`. Defaults to a cubic tensor product B-spline with marginal second differences penalties for \( f(X_i(s), s, t) \) and integration over the entire range \([s_{lo,i}, s_{hi,i}] = [\min(s_i), \max(s_i)]\). Can't deal with any missing \( X(s) \), unequal lengths of \( X_i(s) \) not (yet?) possible. Unequal ranges for different \( X_i(s) \) should work. \( X_i(s) \) is assumed to be numeric.

`sff()` **IS AN EXPERIMENTAL FEATURE AND NOT WELL TESTED YET – USE AT YOUR OWN RISK.**

**Usage**

```r
sff(X, yind, xind = seq(0, 1, l = ncol(X)), basistype = c("te", "t2", "s"), integration = c("simpson", "trapezoidal"), L = NULL, limits = NULL, splinepars = list(bs = "ps", m = c(2, 2, 2)))
```

**Arguments**

- **X**: an \( n \) by \( ncol(xind) \) matrix of function evaluations \( X_i(s_{i1}), \ldots, X_i(s_{iS}); i = 1, \ldots, n \).
- **yind**: **DEPRECATED** matrix (or vector) of indices of evaluations of \( Y_i(t) \); i.e. matrix with rows \( (t_{i1}, \ldots, t_{iT}); \) no longer used.
xind  vector of indices of evaluations of $X_i(s)$, i.e. $(s_1, \ldots, s_S)$
basistype  defaults to "te", i.e. a tensor product spline to represent $f(X_i(s), t)$. Alternatively, use "s" for bivariate basis functions (see s) or "t2" for an alternative parameterization of tensor product splines (see t2).
integration  method used for numerical integration. Defaults to "simpson"'s rule. Alternatively and for non-equidistant grids, "trapezoidal".
L  optional: an n by ncol(xind) giving the weights for the numerical integration over s.
limits  defaults to NULL for integration across the entire range of $X(s)$, otherwise specifies the integration limits $s_{hi,i}, s_{lo,i}$: either one of "s<t" or "s<=t" for $(s_{hi,i}, s_{lo,i}) = (0, t)$ or a function that takes s as the first and t as the second argument and returns TRUE for combinations of values (s, t) if s falls into the integration range for the given t. This is an experimental feature and not well tested yet; use at your own risk.
splinepars  optional arguments supplied to the basistype-term. Defaults to a cubic tensor product B-spline with marginal second differences, i.e. list(bs="ps",m=c(2,2,2)). See te or s for details

Value

a list containing

- call a "call" to te (or s, t2) using the appropriately constructed covariate and weight matrices (see linear.functional.terms)
- data a list containing the necessary covariate and weight matrices

Author(s)

Fabian Scheipl, based on Sonja Greven’s trick for fitting functional responses.

---

smooth.construct.dt.smooth.spec

Domain Transformation basis constructor

Description

The dt basis allows for any of the standard mgcv (or user-defined) bases to be applied to a transformed version of the original terms. Smooths may be of any number of terms. Transformations are specified by supplying a function of any or all of the original terms. "by" variables are not transformed.

Usage

```r
S3 method for class 'dt.smooth.spec'
smooth.construct(object, data, knots)
```
Arguments

- **object**: a smooth specification object, generated by `s()`, `te()`, `ti()`, or `t2()`, with `bs="dt"
- **data**: a list containing just the data (including any by variable) required by this term, with names corresponding to `object$term` (and `object$by`). The by variable is the last element.
- **knots**: a list containing any knots supplied for basis setup - in same order and with same names as data. Can be NULL.

Details

object should be created with an xt argument. For non-tensor-product smooths, this will be a list with the following elements:

1. **tf** (required): a function or character string (or list of functions and/or character strings) defining the coordinate transformations; see further details below.
2. **bs** (optional): character string indicating the bs for the basis applied to the transformed coordinates; if empty, the appropriate defaults are used.
3. **basistype** (optional): character string indicating type of bivariate basis used. Options include "s" (the default), "te", "ti", and "t2", which correspond to `s`, `te`, `ti`, and `t2`.
4. **...** (optional): for tensor product smooths, additional arguments to the function specified by basistype that are not available in s() can be included here, e.g. d, np, etc.

For tensor product smooths, we recommend using `s()` to set up the basis, and specifying the tensor product using `xt$basistype` as described above. If the basis is set up using `te()`, then the variables in `object$term` will be split up, meaning all transformation functions would have to be univariate.

Value

An object of class "dt.smooth". This will contain all the elements associated with the `smooth.construct` object from the inner smooth (defined by `xt$bs`), in addition to an xt element used by the `Predict.matrix` method.

Transformation Functions

Let `nterms = length(object$term)`. The `tf` element can take one of the following forms:

1. a function of `nargs` arguments, where `nargs <= nterms`. If `nterms > 1`, it is assumed that this function will be applied to the first term of `object$term`. If all argument names of the function are term names, then those arguments will correspond to those terms; otherwise, they will correspond to the first `nargs` terms in `object$term`.
2. a character string corresponding to one of the built-in transformations (listed below).
3. A list of length `ntfuncs`, where `ntfuncs<=nterms`, containing either the functions or character strings described above. If this list is named with term names, then the transformation functions will be applied to those terms; otherwise, they will be applied to the first `ntfuncs` terms in `object$term`.

The following character strings are recognized as built-in transformations:
• "log": log transformation (univariate)
• "ecdf": empirical cumulative distribution function (univariate)
• "linear01": linearly rescale from 0 to 1 (univariate)
• "s-t": first term ("s") minus the second term ("t") (bivariate)
• "s/t": first term ("s") divided by the second term ("t") (bivariate)
• "QTransform": performs a time-specific ecdf transformation for a bivariate smooth, where time is indicated by the first term, and x by the second term. Primarily for use with refund::af.

Some transformations rely on a fixed "pivot point" based on the data used to fit the model, e.g. quantiles (such as the min or max) of this data. When making predictions based on these transformations, the transformation function will need to know what the pivot points are, based on the original (not prediction) data. In order to accomplish this, we allow the user to specify that they want their transformation function to refer to the original data (as opposed to whatever the "current" data is). This is done by appending a zero ("0") to the argument name.

For example, suppose you want to scale the term linearly so that the data used to define the basis ranges from 0 to 1. The wrong way to define this transformation function: function(x) {(x-min(x))/(max(x)-min(x))}. This function will result in incorrect predictions if the range of data for which predictions are being made is not the same as the range of data that was used to define the basis. The proper way to define this function: function(x) {(x-min(x0))/(max(x0)-min(x0))}. By referring to x0 instead of x, you are indicating that you want to use the original data instead of the current data. This may seem strange to refer to a variable that is not one of the arguments, but the "dt" constructor explicitly places these variables in the environment of the transformation function to make them available.

Author(s)
Jonathan Gellar

See Also
smooth.construct

smooth.construct.fpc.smooth.spec

Basis constructor for FPC terms

Description
Basis constructor for FPC terms

Usage
## S3 method for class 'fpc.smooth.spec'
smooth.construct(object, data, knots)
Arguments

object a fpc.smooth.spec object, usually generated by a term s(x, bs="fpc"); see Details.
data a list containing the data (including any by variable) required by this term, with names corresponding to object$term (and object$by). Only the first element of this list is used.
knots not used, but required by the generic smooth.construct.

Details

object must contain an xt element. This is a list that can contain the following elements:

X (required) matrix of functional predictors
method (required) the method of finding principal components; options include "svd" (unconstrained), "fpca.sc", "fpca.face", or "fpca.ssvd"
npc (optional) the number of PC’s to retain
pve (only needed if npc not supplied) the percent variance explained used to determine npc
penalize (required) if FALSE, the smoothing parameter is set to 0
bs the basis class used to pre-smooth X; default is "ps"

Any additional options for the pre-smoothing basis (e.g. k, m, etc.) can be supplied in the corresponding elements of object. See s for a full list of options.

Value

An object of class "fpc.smooth". In addition to the elements listed in smooth.construct, the object will contain

sm the smooth that is fit in order to generate the basis matrix over object$term
V.A the matrix of principal components

Author(s)

Jonathan Gellar <JGellar@mathematica-mpr.com>

References


See Also

fpcr
**smooth.construct.pco.smooth.spec**

*Principal coordinate ridge regression*

**Description**

Smooth constructor function for principal coordinate ridge regression fitted by `gam`. When the principal coordinates are defined by a relevant distance among functional predictors, this is a form of nonparametric scalar-on-function regression. Reiss et al. (2016) describe the approach and apply it to dynamic time warping distances among functional predictors.

**Usage**

```r
S3 method for class 'pco.smooth.spec'
smooth.construct(object, data, knots)
```

**Arguments**

- **object**: a smooth specification object, usually generated by a term of the form `s(dummy, bs="pco", k, xt)`; see Details.
- **data**: a list containing just the data.
- **knots**: IGNORED!

**Value**

An object of class `pco.smooth`. The resulting object has an `xt` element which contains details of the multidimensional scaling, which may be interesting.

**Details**

The constructor is not normally called directly, but is rather used internally by `gam`.

In a `gam` term of the above form `s(dummy, bs="pco", k, xt),`

- `dummy` is an arbitrary vector (or name of a column in `data`) whose length is the number of observations. This is not actually used, but is required as part of the input to `s`. Note that if multiple `pco` terms are used in the model, there must be multiple unique term names (e.g., "dummy1", "dummy2", etc).
- `k` is the number of principal coordinates (e.g., `k=9` will give a 9-dimensional projection of the data).
- `xt` is a list supplying the distance information, in one of two ways. (i) A matrix `Dmat` of distances can be supplied directly via `xt=list(D=Dmat,...)`. (ii) Alternatively, one can use `xt=list(realdata=..., dist_fn=..., ...)` to specify a data matrix `realdata` and distance function `dist_fn`, whereupon a distance matrix `dist_fn(realdata)` is created.

The list `xt` also has the following optional elements:
• add: Passed to `cmdscale` when performing multidimensional scaling; for details, see the help for that function. (Default FALSE.)

• fastcmd: if TRUE, multidimensional scaling is performed by `cmdscale_lanczos`, which uses Lanczos iteration to eigendecompose the distance matrix; if FALSE, MDS is carried out by `cmdscale`. Default is FALSE, to use cmdscale.

Author(s)
David L Miller, based on code from Lan Huo and Phil Reiss

References

Examples
```r
Not run:
a simulated example
library(refund)
library(mgcv)
require(dtw)

First generate the data
Xnl <- matrix(0, 30, 101)
set.seed(813)
tt <- sort(sample(1:90, 30))
for(i in 1:30){
 Xnl[i, tt[i]:(tt[i]+4)] <- -1
 Xnl[i, (tt[i]+5):(tt[i]+9)] <- 1
}
X.toy <- Xnl + matrix(rnorm(30*101, 0,0.05), 30)
y.toy <- tt + rnorm(30, 0.05)
y.rainbow <- rainbow(30, end=0.9)[(y.toy-min(y.toy))/
 diff(range(y.toy))*29+1]

Display the toy data
par(mfrow=c(2, 2))
matplot((0:100)/100, t(Xnl[c(4, 25),]), type="l", xlab="t", ylab="",
ylim=range(X.toy), main="Noiseless functions")
matplot((0:100)/100, t(X.toy[c(4, 25),]), type="l", xlab="t", ylab="",
ylim=range(X.toy), main="Observed functions")
matplot((0:100)/100, t(X.toy), type="l", lty=1, col=y.rainbow, xlab="t",
 ylab="", main="Rainbow plot")

Obtain DTW distances
D.dtw <- dist(X.toy, method="dtw", window.type="sakoechiba", window.size=5)

Compare PC vs. PCo ridge regression
```
# matrix to store results
GCVmat <- matrix(NA, 15, 2)
# dummy response variable
dummy <- rep(1, 30)

# loop over possible projection dimensions
for (k. in 1:15){
  # fit PC (m1) and PCo (m2) ridge regression
  m1 <- gam(y.toy ~ s(dummy, bs="pco", k=k.,
           xt=list(realdata=X.toy, dist_fn=dist)), method="REML")
  m2 <- gam(y.toy ~ s(dummy, bs="pco", k=k., xt=list(D=D.dtw)), method="REML")
  # calculate and store GCV scores
  GCVmat[k., ] <- length(y.toy) * c(sum(m1$residuals^2)/m1$df.residual^2,
                                   sum(m2$residuals^2)/m2$df.residual^2)
}

## plot the GCV scores per dimension for each model
matplot(GCVmat, lty=1:2, col=1, pch=16:17, type="o", ylab="GCV",
        xlab="Number of principal components / coordinates",
        main="GCV score")
legend("right", c("PC ridge regression", "DTW-based PCoRR"), lty=1:2, pch=16:17)

## example of making a prediction
# fit a model to the toy data
m <- gam(y.toy ~ s(dummy, bs="pco", k=2, xt=list(D=D.dtw)), method="REML")

# first build the distance matrix
# in this case we just subsample the original matrix
# see ?pco.predict_preprocess for more information on formatting this data
dist_list <- list(dummy = as.matrix(D.dtw)[, c(1:5,10:15)])

# preprocess the prediction data
pred_data <- pco.predict_preprocess(m, newdata=NULL, dist_list)

# make the prediction
p <- predict(m, pred_data)

# check that these are the same as the corresponding fitted values
print(cbind(fitted(m)[ c(1:5,10:15)],p))

## End(Not run)
smooth.construct.peer.smooth.spec

Description
Sets up design matrix for functional random effects based on the PC scores of the covariance operator of the random effect process. See smooth.construct.re.smooth.spec for more details on mgcv-style smoother specification and pcre for the corresponding pffr()-formula wrapper.

Usage
## S3 method for class 'pcre.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a smooth specification object, see smooth.construct
data see smooth.construct
knots see smooth.construct

Value
An object of class "random.effect". See smooth.construct for the elements that this object will contain.

Author(s)
Fabian Scheipl; adapted from 're' constructor by S.N. Wood.

smooth.construct.peer.smooth.spec

Basis constructor for PEER terms

Description
Smooth basis constructor to define structured penalties (Randolph et al., 2012) for smooth terms.

Usage
## S3 method for class 'peer.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object a peer.smooth.spec object, usually generated by a term s(x, bs="peer"); see Details.
data a list containing the data (including any by variable) required by this term, with names corresponding to object$term (and object$by). Only the first element of this list is used.
knots not used, but required by the generic smooth.construct.
Details

The smooth specification object, defined using s(), should contain an xt element. xt will be a list that contains additional information needed to specify the penalty. The type of penalty is indicated by xt$pentype. There are four types of penalties available:

1. xt$pentype=="RIDGE" for a ridge penalty, the default
2. xt$pentype=="D" for a difference penalty. The order of the difference penalty is specified by the m argument of s().
3. xt$pentype=="DECOMP" for a decomposition-based penalty, $bP_Q + a(I - P_Q)$, where $P_Q = Q' (QQ')^{-1} Q$. The $Q$ matrix must be specified by xt$Q, and the scalar $a$ by xt$phi.a. The number of columns of $Q$ must be equal to the length of the data. Each row represents a basis function where the functional predictor is expected to lie, according to prior belief.
4. xt$pentype=="USER" for a user-specified penalty matrix $L$, supplied by xt$L.

Value

An object of class "peer.smooth". See smooth.construct for the elements that this object will contain.

Author(s)

Madan Gopal Kundu <mgkundu@iupui.edu> and Jonathan Gellar

References


See Also

peer

Description

The pi basis is appropriate for smooths of multiple variables. Its purpose is to parameterize the way in which the basis changes with one of those variables. For example, suppose the smooth is over three variables, $x$, $y$, and $t$, and we want to parameterize the effect of $t$. Then the pi basis will assume $f(x, y, t) = \sum_k g_k(t) \ast f_k(x, y)$, where the $g_k(t)$ functions are pre-specified and the $f_k(x, y)$ functions are estimated using a bivariate basis. An example of a parametric interaction is a linear interaction, which would take the form $f(x, y, t) = f_1(x, y) + t \ast f_2(x, y)$. 
 smooth.construct.pi.smooth.spec

Usage

## S3 method for class 'pi.smooth.spec'
smooth.construct(object, data, knots)

Arguments

object  
a smooth specification object, generated by, e.g., \( s(x, y, t, bs="pi", xt=list(g=list(g1,g2,g3))) \). For transformation functions \( g1, g2, \) and \( g3 \), see Details below.

data  
a list containing the variables of the smooth (\( x, y, \) and \( t \) above), as well as any by variable.

knots  
a list containing any knots supplied for basis setup - in same order and with same names as data. Can be NULL.

Details

All functions \( f_k() \) are defined using the same basis set. Accordingly, they are penalized using a single block-diagonal penalty matrix and one smoothing parameter. Future versions of this function may be able to relax this assumption.

object should be defined (using \( s() \)) with an \( xt \) argument. This argument is a list that could contain any of the following elements:

1. \( g \): the functions \( g_k(t) \), specified as described below.
2. \( bs \): the basis code used for the functions \( f_k() \); defaults to thin-plate regression splines, which is mgcv’s default. The same basis will be used for all \( k \).
3. \( idx \): an integer index indicating which variable from \( \text{object$term} \) is to be parameterized, i.e., the \( t \) variable; defaults to \( \text{length(object$term)} \)
4. \( mp \): flag to indicate whether multiple penalties should be estimated, one for each \( f_k() \). Defaults to TRUE. If FALSE, the penalties for each \( k \) are combined into a single block-diagonal penalty matrix (with one smoothing parameter).
5. \( ... \): further \( xt \) options to be passed onto the basis for \( f_k() \).

\( xt$g \) can be entered in one of the following forms:

1. a list of functions of length \( k \), where each function is of one argument (assumed to be \( t \))
2. one of the following recognized character strings: \text{code"linear"}, indicating a linear interaction, i.e. \( f(x, t) = f_1(x) + t \ast f_2(x) \); "quadratic", indicating a quadratic interaction, i.e. \( f(x, t) = f_1(x) + t \ast f_2(x) + t^2 \ast f_3(x) \); or "none", indicating no interaction with \( t \), i.e. \( f(x, t) = f_1(x) \).

The only one of the above elements that is required is \( xt \). If default values for \( bs, idx, \) and \( mp \) are desired, \( xt \) may also be entered as the \( g \) element itself; i.e. \( xt=g \), where \( g \) is either the list of functions or an acceptable character string.

Additional arguments for the lower-dimensional basis over \( f_k \) may be entered using the corresponding arguments of \( s() \), e.g. \( k, m, sp, \) etc. For example, \( s(x, t, bs="pi", k=15, xt=list(g="linear", bs="ps")) \) will define a linear interaction with \( t \) of a univariate p-spline basis of dimension 15 over \( x \).

Value

An object of class "pi.smooth". See \text{smooth.construct} for the elements it will contain.
**smooth.construct.pss.smooth.spec**

*P-spline constructor with modified 'shrinkage' penalty*

---

**Author(s)**

Fabian Scheipl and Jonathan Gellar

---

**Description**

Construct a B-spline basis with a modified difference penalty of full rank (i.e., that also penalizes low-order polynomials).

**Usage**

```r
S3 method for class 'pss.smooth.spec'
smooth.construct(object, data, knots)
```

**Arguments**

- `object` see `smooth.construct`. The shrinkage factor can be specified via `object$xt$shrink`
- `data` see `smooth.construct`.
- `knots` see `smooth.construct`.

**Details**

This penalty-basis combination is useful to avoid non-identifiability issues for `ff` terms. See 'ts' or 'cs' in `smooth.terms` for similar "shrinkage penalties" for thin plate and cubic regression splines. The basic idea is to replace the k-th zero eigenvalue of the original penalty by \( s^k \nu_m \), where \( s \) is the shrinkage factor (defaults to 0.1) and \( \nu_m \) is the smallest non-zero eigenvalue. See reference for the original idea, implementation follows that in the 'ts' and 'cs' constructors (see `smooth.terms`).

**Author(s)**

Fabian Scheipl; adapted from 'ts' and 'cs' constructors by S.N. Wood.

**References**

SOFA (Sequential Organ Failure Assessment) Data

Description

A dataset containing the SOFA scores (Vincent et al, 1996). for 520 patients, hospitalized in the intensive care unit (ICU) with Acute Lung Injury. Daily measurements are available for as long as each one remains in the ICU. This is an example of variable-domain functional data, as described by Gellar et al. (2014).

Usage

sofa

Format

A data frame with 520 rows (subjects) and 7 variables:

- **death** binary indicator that the subject died in the ICU
- **SOFA** 520 x 173 matrix in variable-domain format (a ragged array). Each column represents an ICU day. Each row contains the SOFA scores for a subject, one per day, for as long as the subject remained in the ICU. The remaining cells of each row are padded with NAs. SOFA scores range from 0 to 24, increasing with severity of organ failure. Missing values during one’s ICU stay have been imputed using LOCF.
- **SOFA_raw** Identical to the SOFA element, except that it contains some missing values during one’s hospitalization. These missing values arise when a subject leaves the ICU temporarily, only to be re-admitted. SOFA scores are not monitored outside the ICU.
- **los** ICU length of stay, i.e., the number of days the patient remained in the ICU prior to death or final discharge.
- **age** Patient age
- **male** Binary indicator for male gender
- **Charlson** Charlson co-morbidity index, a measure of baseline health status (before hospitalization and ALI).

Details

The data was collected as part of the Improving Care of ALI Patients (ICAP) study (Needham et al., 2006). If you use this dataset as an example in written work, please cite the study protocol.

References


### summary.pffr

**Summary for a pffr fit**

#### Description

Take a fitted pffr-object and produce summaries from it. See `summary.gam()` for details.

#### Usage

```r
S3 method for class 'pffr'
summary(object, ...)
```

#### Arguments

- `object` a fitted pffr-object
- `...` see `summary.gam()` for options.

#### Value

A list with summary information, see `summary.gam()`

#### Author(s)

Fabian Scheipl, adapted from `summary.gam()` by Simon Wood, Henric Nilsson

### summary.pfr

**Summary for a pfr fit**

#### Description

Take a fitted pfr-object and produce summaries from it. See `summary.gam()` for details.

#### Usage

```r
S3 method for class 'pfr'
summary(object, ...)
```
vb_cs_fpca

Arguments

object a fitted pfr-object

... see summary.gam() for options.

Details

This function currently simply strips the "pfr" class label and calls summary.gam.

Value

A list with summary information, see summary.gam()

Author(s)

Jonathan Gellar <JGellar@mathematica-mpr.com>, Fabian Scheipl

---

vb_cs_fpca  Cross-sectional FoSR using Variational Bayes and FPCA

Description

Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using a VB and estimates the residual covariance surface using FPCA.

Usage

vb_cs_fpca(formula, data = NULL, verbose = TRUE, Kt = 5, Kp = 2,
alpha = 0.1, Aw = NULL, Bw = NULL, Apsi = NULL, Bpsi = NULL,
argvals = NULL)

Arguments

formula a formula indicating the structure of the proposed model.
data an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
verbose logical defaulting to TRUE – should updates on progress be printed?
Kt number of spline basis functions used to estimate coefficient functions
Kp number of FPCA basis functions to be estimated
alpha tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = 0 is all second-derivative penalty)
Aw hyperparameter for inverse gamma controlling variance of spline terms for population-level effects
Bw hyperparameter for inverse gamma controlling variance of spline terms for population-level effects
vb_cs_wish

Apsi  hyperparameter for inverse gamma controlling variance of spline terms for FPC effects
Bpsi  hyperparameter for inverse gamma controlling variance of spline terms for FPC effects
argvals not currently implemented

Author(s)
Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References

---

vb_cs_wish  Cross-sectional FoSR using Variational Bayes and Wishart prior

Description
Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using VB and estimates the residual covariance surface using a Wishart prior.

Usage
vb_cs_wish(formula, data = NULL, verbose = TRUE, Kt = 5,
alpha = 0.1, min.iter = 10, max.iter = 50, Aw = NULL,
Bw = NULL, v = NULL)

Arguments
formula  a formula indicating the structure of the proposed model.
data  an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
verbose  logical defaulting to TRUE – should updates on progress be printed?
Kt  number of spline basis functions used to estimate coefficient functions
alpha  tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = 0 is all second-derivative penalty)
min.iter  minimum number of iterations of VB algorithm
max.iter  maximum number of iterations of VB algorithm
Aw  hyperparameter for inverse gamma controlling variance of spline terms for population-level effects; if NULL, defaults to Kt/2.
\textbf{Bw} hyperparameter for inverse gamma controlling variance of spline terms for population-level effects; if NULL, defaults to 1/2 tr(mu.q.beta of the model.

\textbf{v} hyperparameter for inverse Wishart prior on residual covariance; if NULL, \(\Psi\) defaults to an FPCA decomposition of the residual covariance in which residuals are estimated based on an OLS fit of the model (note the "nugget effect" on this covariance is assumed to be constant over the time domain).

\section*{Author(s)}
Jeff Goldsmith <ajg2202@cumc.columbia.edu>

\section*{References}

\begin{verbatim}
\textbf{vb_mult_fpca} \hspace{2cm} \textit{Multilevel FoSR using Variational Bayes and FPCA}
\end{verbatim}

\section*{Description}
Fitting function for function-on-scalar regression for multilevel data. This function estimates model parameters using a VB and estimates the residual covariance surface using FPCA.

\section*{Usage}
\texttt{vb_mult_fpca(formula, data = NULL, verbose = TRUE, Kt = 5, Kp = 2, alpha = 0.1, argvals = NULL)}

\section*{Arguments}
\begin{description}
\item[formula] a formula indicating the structure of the proposed model.
\item[data] an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
\item[verbose] logical defaulting to TRUE – should updates on progress be printed?
\item[Kt] number of spline basis functions used to estimate coefficient functions
\item[Kp] number of FPCA basis functions to be estimated
\item[alpha] tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = 0 is all second-derivative penalty)
\item[argvals] not currently implemented
\end{description}

\section*{Author(s)}
Jeff Goldsmith <ajg2202@cumc.columbia.edu>
References

---

vb_mult_wish  
*Multilevel FoSR using Variational Bayes and Wishart prior*

**Description**
Fitting function for function-on-scalar regression for cross-sectional data. This function estimates model parameters using VB and estimates the residual covariance surface using a Wishart prior. If prior hyperparameters are NULL they are estimated using the data.

**Usage**

vb_mult_wish(formula, data = NULL, verbose = TRUE, Kt = 5, alpha = 0.1, min.iter = 10, max.iter = 50, Az = NULL, Bz = NULL, Aw = NULL, Bw = NULL, v = NULL)

**Arguments**
- **formula**: a formula indicating the structure of the proposed model.
- **data**: an optional data frame, list or environment containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which the function is called.
- **verbose**: logical defaulting to TRUE – should updates on progress be printed?
- **Kt**: number of spline basis functions used to estimate coefficient functions
- **alpha**: tuning parameter balancing second-derivative penalty and zeroth-derivative penalty (alpha = 0 is all second-derivative penalty)
- **min.iter**: minimum number of iterations of VB algorithm
- **max.iter**: maximum number of iterations of VB algorithm
- **Az**: hyperparameter for inverse gamma controlling variance of spline terms for subject-level effects
- **Bz**: hyperparameter for inverse gamma controlling variance of spline terms for subject-level effects
- **Aw**: hyperparameter for inverse gamma controlling variance of spline terms for population-level effects
- **Bw**: hyperparameter for inverse gamma controlling variance of spline terms for population-level effects
- **v**: hyperparameter for inverse Wishart prior on residual covariance
vis.fgam

Author(s)

Jeff Goldsmith <ajg2202@cumc.columbia.edu>

References


vis.fgam

*Visualization of FGAM objects*

Description

Produces perspective or contour plot views of an estimated surface corresponding to af terms fit using fgam or plots “slices” of the estimated surface or estimated second derivative surface with one of its arguments fixed and corresponding twice-standard error “Bayesian” confidence bands constructed using the method in Marra and Wood (2012). See the details.

Usage

```r
vis.fgam(object, af.term, xval = NULL, tval = NULL, deriv2 = FALSE, theta = 50, plot.type = "persp", ticktype = "detailed", ...)
```

Arguments

- **object**: an fgam object, produced by fgam
- **af.term**: character; the name of the functional predictor to be plotted. Only important if multiple af terms are fit. Defaults to the first af term in object$call
- **xval**: a number in the range of functional predictor to be plotted. The surface will be plotted with the first argument of the estimated surface fixed at this value
- **tval**: a number in the domain of the functional predictor to be plotted. The surface will be plotted with the second argument of the estimated surface fixed at this value. Ignored if xval is specified
- **deriv2**: logical; if TRUE, plot the estimated second derivative surface along with Bayesian confidence bands. Only implemented for the "slices" plot from either xval or tval being specified
- **theta**: numeric; viewing angle; see persp
- **plot.type**: one of "contour" (to use levelplot) or "persp" (to use persp). Ignored if either xval or tval is specified
- **ticktype**: how to draw the tick marks if plot.type="persp". Defaults to "detailed"
- **...**: other options to be passed to persp, levelplot, or plot
Details

The confidence bands used when plotting slices of the estimated surface or second derivative surface are the ones proposed in Marra and Wood (2012). These are a generalization of the “Bayesian” intervals of Wahba (1983) with an adjustment for the uncertainty about the model intercept. The estimated covariance matrix of the model parameters is obtained from assuming a particular Bayesian model on the parameters.

Value

Simply produces a plot

Author(s)

Mathew W. McLean &lt;mathew.w.mclean@gmail.com&gt;

References


See Also

`vis.gam`, `plot.gam`, `fgam`, `persp`, `levelplot`

Examples

```
################# DTI Example ####################
data(DTI)

only consider first visit and cases (since no PASAT scores for controls)
y <- DTI$pasat[DTI$visit==1 & DTI$case==1]
X <- DTI$cca[DTI$visit==1 & DTI$case==1,]

remove samples containing missing data
ind <- rowSums(is.na(X))>0
y <- y[ind]
X <- X[ind,]

fit the fgam using FA measurements along corpus
callousm as functional predictor with PASAT as response
using 8 cubic B-splines for each marginal bases with
third order marginal difference penalties
specifying gamma>1 enforces more smoothing when using GCV
to choose smoothing parameters
```
fit <- fgam(y~af(X,splinepars=list(k=c(8,8),m=list(c(2,3),c(2,3)))),gamma=1.2)

## contour plot of the fitted surface
vis.fgam(fit,plot.type='contour')

## similar to Figure 5 from McLean et al.
## Bands seem too conservative in some cases
xval <- runif(1, min(fit$fgam$ft[[1]]$xrange), max(fit$fgam$ft[[1]]$xrange))
tval <- runif(1, min(fit$fgam$ft[[1]]$xind), max(fit$fgam$ft[[1]]$xind))
par(mfrow=c(4, 1))
vis.fgam(fit, af.term='X', deriv2=FALSE, xval=xval)
vis.fgam(fit, af.term='X', deriv2=FALSE, tval=tval)
vis.fgam(fit, af.term='X', deriv2=TRUE, xval=xval)
vis.fgam(fit, af.term='X', deriv2=TRUE, tval=tval)

---

**vis.pfr**  
*Visualization of PFR objects*

**Description**

Produces perspective or contour plot views of an estimated surface corresponding smooths over two or more dimensions. Alternatively plots “slices” of the estimated surface or estimated second derivative surface with one of its arguments fixed. Corresponding twice-standard error “Bayesian” confidence bands are constructed using the method in Marra and Wood (2012). See the details.

**Usage**

```
vis.pfr(object, select = 1, xval = NULL, tval = NULL, deriv2 = FALSE, theta = 50, plot.type = "persp", ticktype = "detailed", ...)```

Arguments

- `object` : an `pfr` object, produced by `pfr`
- `select` : index for the smooth term to be plotted, according to its position in the model formula (and in `object$smooth`). Not needed if only one multivariate term is present.
- `xval` : a number in the range of functional predictor to be plotted. The surface will be plotted with the first argument of the estimated surface fixed at this value.
- `tval` : a number in the domain of the functional predictor to be plotted. The surface will be plotted with the second argument of the estimated surface fixed at this value. Ignored if `xval` is specified.
- `deriv2` : logical; if TRUE, plot the estimated second derivative surface along with Bayesian confidence bands. Only implemented for the "slices" plot from either `xval` or `tval` being specified.
- `theta` : numeric; viewing angle; see `persp`
plot.type one of "contour" (to use levelplot) or "persp" (to use persp). Ignored if either xval or tval is specified

ticktype how to draw the tick marks if plot.type="persp". Defaults to "detailed"

... other options to be passed to persp, levelplot, or plot

Details

The confidence bands used when plotting slices of the estimated surface or second derivative surface are the ones proposed in Marra and Wood (2012). These are a generalization of the "Bayesian" intervals of Wahba (1983) with an adjustment for the uncertainty about the model intercept. The estimated covariance matrix of the model parameters is obtained from assuming a particular Bayesian model on the parameters.

Value

Simply produces a plot

Author(s)

Mathew W. McLean <mathew.w.mclean@gmail.com>

References

See Also

vis.gam, plot.gam, pfr, persp, levelplot

Examples

```
# DTI Example

data(DTI)

## only consider first visit and cases (since no PASAT scores for controls),
## and remove missing data
DTI <- DTI[DTI$visit==1 & DTI$case==1 & complete.cases(DTI$cca),]

## Fit the PFR using FA measurements along corpus
## callosum as functional predictor with PASAT as response
## using 8 cubic B-splines for each marginal bases with
## third order marginal difference penalties.
## Specifying gamma>1 enforces more smoothing when using GCV
## to choose smoothing parameters
```
fit <- pfr(pasat ~ af(cca, basistype="te", k=c(8,8), m=list(c(2,3),c(2,3)), bs="ps"),
method="GCV.Cp", gamma=1.2, data=DTI)

contour plot of the fitted surface
vis.pfr(fit, plot.type='contour')

similar to Figure 5 from McLean et al.
Bands seem too conservative in some cases
xval <- runif(1, min(fitpfrft[[1]]$Xrange), max(fit$pfr$ft[[1]]$Xrange))
tval <- runif(1, min(fitpfrft[[1]]$xind), max(fit$pfr$ft[[1]]$xind))
par(mfrow=c(2, 2))
vis.pfr(fit, deriv2=FALSE, xval=xval)
vis.pfr(fit, deriv2=FALSE, tval=tval)
vis.pfr(fit, deriv2=TRUE, xval=xval)
vis.pfr(fit, deriv2=TRUE, tval=tval)

Xt_siginv_X

Internal computation function

Description

Internal function used compute the products ‘(X \otimes \Theta)^t (I \otimes \Sigma^{-1}) (X \otimes \Theta)’ and ‘(X \otimes \Theta)^t (I \otimes \Sigma^{-1}) (y)’ in cross-sectional VB algorithm and Gibbs sampler.

Usage

Xt_siginv_X(tx, siginv, y = NULL)

Arguments

- **tx**: transpose of the X design matrix
- **siginv**: inverse variance matrix
- **y**: outcome matrix. if NULL, function computes first product; if not, function computes second product.

Author(s)

Jeff Goldsmith <ajg2202@columbia.edu>
Index

Topic datasets
- cd4, 14
- DTI2, 21
- gasoline, 68
- sofa, 152

Topic package
- refund-package, 5

<table>
<thead>
<tr>
<th>Topic</th>
<th>Packages/Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>af, 5, 30, 31, 75, 80, 106, 107, 120, 158</td>
<td>af, 5, 30, 31, 75, 80, 106, 107</td>
</tr>
<tr>
<td>af_old, 8</td>
<td>af_old, 8</td>
</tr>
<tr>
<td>amc, 34</td>
<td>amc, 34</td>
</tr>
<tr>
<td>bam, 5, 8, 30, 42, 74, 76, 79, 100, 104, 106, 107</td>
<td>bam, 5, 8, 30, 42, 74, 76, 79, 100, 104, 106, 107</td>
</tr>
<tr>
<td>basisfd, 41</td>
<td>basisfd, 41</td>
</tr>
<tr>
<td>bayes_fosr, 10</td>
<td>bayes_fosr, 10</td>
</tr>
<tr>
<td>boot, 17</td>
<td>boot, 17</td>
</tr>
<tr>
<td>boot.ci, 18</td>
<td>boot.ci, 18</td>
</tr>
<tr>
<td>call, 23</td>
<td>call, 23</td>
</tr>
<tr>
<td>ccb.fpc, 12</td>
<td>ccb.fpc, 12</td>
</tr>
<tr>
<td>cd4, 14</td>
<td>cd4, 14</td>
</tr>
<tr>
<td>checkError (refund-internal), 136</td>
<td>checkError (refund-internal), 136</td>
</tr>
<tr>
<td>cmdscale, 14, 15, 146</td>
<td>cmdscale, 14, 15, 146</td>
</tr>
<tr>
<td>cmdscale_lanczos, 14, 146</td>
<td>cmdscale_lanczos, 14, 146</td>
</tr>
<tr>
<td>coef.pffr, 15, 17, 18, 100</td>
<td>coef.pffr, 15, 17, 18, 100</td>
</tr>
<tr>
<td>coef.pfr (coefficients.pfr), 18</td>
<td>coef.pfr (coefficients.pfr), 18</td>
</tr>
<tr>
<td>coeffboot.pffr, 17</td>
<td>coeffboot.pffr, 17</td>
</tr>
<tr>
<td>coefficients.pfr, 18</td>
<td>coefficients.pfr, 18</td>
</tr>
<tr>
<td>create.prep.func, 6, 7, 19, 74, 75</td>
<td>create.prep.func, 6, 7, 19, 74, 75</td>
</tr>
<tr>
<td>data.frame, 91</td>
<td>data.frame, 91</td>
</tr>
<tr>
<td>decorrelate (refund-internal), 136</td>
<td>decorrelate (refund-internal), 136</td>
</tr>
<tr>
<td>dist, 15</td>
<td>dist, 15</td>
</tr>
<tr>
<td>DTI, 20</td>
<td>DTI, 20</td>
</tr>
<tr>
<td>DTI2, 21</td>
<td>DTI2, 21</td>
</tr>
<tr>
<td>ecdf, 9</td>
<td>ecdf, 9</td>
</tr>
<tr>
<td>expand.call, 22</td>
<td>expand.call, 22</td>
</tr>
<tr>
<td>f_sum, 66</td>
<td>f_sum, 66</td>
</tr>
<tr>
<td>f_sum2, 66</td>
<td>f_sum2, 66</td>
</tr>
<tr>
<td>f_sum4, 67</td>
<td>f_sum4, 67</td>
</tr>
<tr>
<td>f_trace, 67</td>
<td>f_trace, 67</td>
</tr>
<tr>
<td>family.mgcv, 102</td>
<td>family.mgcv, 102</td>
</tr>
<tr>
<td>fd, 6, 9, 33, 34, 36, 41, 42, 62, 74, 80, 94</td>
<td>fd, 6, 9, 33, 34, 36, 41, 42, 62, 74, 80, 94</td>
</tr>
<tr>
<td>fpc, 26, 27, 99, 100</td>
<td>fpc, 26, 27, 99, 100</td>
</tr>
<tr>
<td>fpcplot, 29</td>
<td>fpcplot, 29</td>
</tr>
<tr>
<td>fgam, 8, 10, 30, 79, 80, 123, 124, 158, 159</td>
<td>fgam, 8, 10, 30, 79, 80, 123, 124, 158, 159</td>
</tr>
<tr>
<td>first.last_test (refund-internal), 136</td>
<td>first.last_test (refund-internal), 136</td>
</tr>
<tr>
<td>fitted.pffr, 100</td>
<td>fitted.pffr, 100</td>
</tr>
<tr>
<td>fitted.pffr (residuals.pffr), 136</td>
<td>fitted.pffr (residuals.pffr), 136</td>
</tr>
<tr>
<td>formula, 38, 39</td>
<td>formula, 38, 39</td>
</tr>
<tr>
<td>fosr, 5, 32, 36–38, 41, 114, 133</td>
<td>fosr, 5, 32, 36–38, 41, 114, 133</td>
</tr>
<tr>
<td>fosr.perm, 36</td>
<td>fosr.perm, 36</td>
</tr>
<tr>
<td>fosr.vs, 38, 115, 124, 125</td>
<td>fosr.vs, 38, 115, 124, 125</td>
</tr>
<tr>
<td>fosr2s, 5, 40</td>
<td>fosr2s, 5, 40</td>
</tr>
<tr>
<td>fpc, 42, 106, 107</td>
<td>fpc, 42, 106, 107</td>
</tr>
<tr>
<td>fpca.face, 20, 45, 59, 61</td>
<td>fpca.face, 20, 45, 59, 61</td>
</tr>
<tr>
<td>fpca.lfda, 48</td>
<td>fpca.lfda, 48</td>
</tr>
<tr>
<td>fpca.sc, 20, 27, 34, 46, 54, 59–61, 105</td>
<td>fpca.sc, 20, 27, 34, 46, 54, 59–61, 105</td>
</tr>
<tr>
<td>fpca.ssvd, 20, 46, 57, 61</td>
<td>fpca.ssvd, 20, 46, 57, 61</td>
</tr>
<tr>
<td>fpca2s, 46, 59, 60</td>
<td>fpca2s, 46, 59, 60</td>
</tr>
<tr>
<td>fpcr, 5, 43, 62, 68, 116, 117, 144</td>
<td>fpcr, 5, 43, 62, 68, 116, 117, 144</td>
</tr>
<tr>
<td>fpcr.setup (refund-internal), 136</td>
<td>fpcr.setup (refund-internal), 136</td>
</tr>
<tr>
<td>gam.check, 103</td>
<td>gam.check, 103</td>
</tr>
<tr>
<td>gamm, 5, 8, 30, 42, 74, 76, 79, 100, 104, 106</td>
<td>gamm, 5, 8, 30, 42, 74, 76, 79, 100, 104, 106</td>
</tr>
<tr>
<td>gamm4, 30, 54, 79, 100, 104, 106</td>
<td>gamm4, 30, 54, 79, 100, 104, 106</td>
</tr>
<tr>
<td>gamObject, 16, 64</td>
<td>gamObject, 16, 64</td>
</tr>
<tr>
<td>gasoline, 68</td>
<td>gasoline, 68</td>
</tr>
<tr>
<td>getNPC.DonohoGavish (refund-internal), 136</td>
<td>getNPC.DonohoGavish (refund-internal), 136</td>
</tr>
<tr>
<td>getRsq (refund-internal), 136</td>
<td>getRsq (refund-internal), 136</td>
</tr>
<tr>
<td>getShrtlbls (refund-internal), 136</td>
<td>getShrtlbls (refund-internal), 136</td>
</tr>
<tr>
<td>getSpandDist (refund-internal), 136</td>
<td>getSpandDist (refund-internal), 136</td>
</tr>
<tr>
<td>gibbs_cs_fpc, 68</td>
<td>gibbs_cs_fpc, 68</td>
</tr>
<tr>
<td>gibbs_cs_wish, 69</td>
<td>gibbs_cs_wish, 69</td>
</tr>
</tbody>
</table>
gibbs_mult_fpca, 71
gibbs_mult_wish, 72
gls_cs, 73
ggrpreg, 39
imwd_test (refund-internal), 136
irreg2mat (refund-internal), 136
jagam, 100
levelplot, 158, 159, 161
lf, 7, 10, 30, 31, 43, 44, 74, 77, 78, 94, 106, 107
lf.vd, 76, 106, 107
lf_old, 79
linear.functional.terms, 7, 10, 27, 75, 78, 80, 141
list2df (refund-internal), 136
lme, 81, 97
lofocv, 33, 133
lpeer, 5, 80, 117
lfr, 85
lw.test (refund-internal), 136
match.call, 22, 23
mf pca.sc, 87
model.matrix.pffr, 89, 100
mrf, 101
nearPD, 104
ols.cs, 90
Omega s (refund-internal), 136
optim, 45, 46
optimize, 58
ossplinepen2d (refund-internal), 136
par, 37, 114
parse.predict.pfr (refund-internal), 136
pca.fd, 34
pco, 90, 91
pco (smooth.construct.pco.smooth.spec), 145
pco.predict_preprocess, 90
pcre, 92, 99, 148
peer, 5, 93, 106, 107, 118, 119, 149
PEER.Sim, 95
peer_old, 94, 96
persp, 29, 158–161
pffr, 5, 17, 25, 27, 28, 41, 99, 103–105, 129, 134, 140
pffr.check, 100, 103
pffrGLS, 104
pffrSim, 105
pfr, 5, 7, 18, 20, 42, 74–76, 78, 93, 95, 106, 120, 130, 131, 138, 160, 161
pfr_old, 109
plot, 117, 118, 158, 161
plot.fosr, 35, 114
plot.fosr.perm (fosr.perm), 36
plot.fosr.vs, 115
plot.fp cr, 116
plot.gam, 17, 119, 120, 159, 161
plot.lpeer, 117
plot.peer, 118
plot.pffr, 100, 119
plot.pfr, 120
poridge
(smooth.construct.pco.smooth.spec), 145
postprocess.pfr (refund-internal), 136
predict.fbps, 121
predict.fgam, 31, 123
predict.fosr.vs, 124
predict.gam, 16, 17, 89, 91, 123, 124, 129–131
Predict.matrix.dt.smooth, 126
Predict.matrix.fpc.smooth, 126
Predict.matrix.pco.smooth
(smooth.construct.pco.smooth.spec), 145
Predict.matrix.pcre.random.effect, 127
Predict.matrix.peer.smooth, 128
Predict.matrix.pi.smooth, 128
Predict.matrix.pss.smooth (refund-internal), 136
predict.pffr, 100, 129, 136
predict.pfr, 20, 111, 130, 138
preprocess.pfr (refund-internal), 136
print.summary.gam, 132
print.summary.pffr, 132
ps spline.setting (refund-internal), 136
pwcv, 132
Q (PEER.Sim), 95
qq.gam, 104, 134
qq.pffr, 100, 134
quadWeights, 135
random.effects, 136
re, 10, 30, 106, 107, 135
refund (refund-package), 5
refund-internal, 136
refund-package, 5
residuals.gam, 103, 135, 136
residuals.pffr, 100, 136
rlrt.pfr, 111, 137
s, 6, 9, 25, 26, 28, 43, 74, 76, 77, 79, 106, 136,
141, 142, 144, 145
safeDeparse (refund-internal), 136
scale, 33, 133
sff, 99, 100, 140
slanczos, 14
smooth.basisPar, 9, 79, 80
smooth.construct, 126–128, 142–144,
148–151
smooth.construct.dt.smooth.spec, 77,
126, 141
smooth.construct.fpc.smooth.spec, 44,
126, 143
smooth.construct.pco.smooth.spec, 14,
15, 91, 145
smooth.construct.pcre.smooth.spec, 147
smooth.construct.peer.smooth.spec, 95,
128, 148
smooth.construct.pi.smooth.spec, 77,
128, 149
smooth.construct.pss.smooth.spec, 151
smooth.construct.re.smooth.spec, 148
smooth.terms, 5, 74, 75, 102, 151
sofa, 152
summary.gam, 153, 154
summary.pffr, 100, 132, 153
summary.pfr, 153
svd, 43
t2, 6, 9, 25, 26, 30, 100, 106, 141, 142
te, 6, 9, 25, 26, 30, 76, 77, 79, 106, 141, 142
ti, 100, 101, 142
vb_cs_fPCA, 154
vb_cs_wish, 155
vb_mult_fPCA, 156
vb_mult_wish, 157
vis.fgam, 31, 158
vis.gam, 159, 161
vis.pfr, 160
Xt_siginv_X, 162