Package ‘regrrr’

October 14, 2022

Type Package

Title Toolkit for Compiling, (Post-Hoc) Testing, and Plotting Regression Results

Version 0.1.3

Description Compiling regression results into a publishable format, conducting post-hoc hypothesis testing, and plotting moderating effects (the effect of X on Y becomes stronger/weaker as Z increases).

Depends R (>= 3.5.0)

Maintainer Rui K. Yang <rkzyang@gmail.com>

License GPL-3

Encoding UTF-8

Suggests testthat

RoxygenNote 7.0.2

Imports stats, purrr, dplyr, magrittr, tidyr, usdm, scales, robustbase, stringr, MuMIn, ggplot2, lspline

BugReports https://github.com/RkzYang/regrrr/issues

NeedsCompilation no

Author Rui K. Yang [aut, cre], Luyao Peng [aut]

Repository CRAN

Date/Publication 2021-08-13 14:00:05 UTC

R topics documented:

- add.nr ... 2
- add.pr ... 2
- add.sig .. 3
- check_cor .. 3
- check_na_in ... 4
- check_vif ... 4
add.pr

Add approximate p-value based on t score or z score, when sample size is large

Description
Add approximate p-value based on t score or z score, when sample size is large

Usage
add.pr(df, z.col = 3, p.already = FALSE)

Arguments
- df a data.frame of regression result
- z.col the column number of t score or z score
- p.already whether the regression result already contains p.value
add.sig

Add significance level marks to the regression result

Description
Add significance level marks to the regression result

Usage
```r
add.sig(df, Pr.col = 5)
```

Arguments
- **df**: a data.frame of regression result, e.g. `summary(a_lm_model)$coefficients`
- **Pr.col**: the column number of p.value

check_cor

quickly check correlation matrix, or the correlation between a particular X and all other vars could be useful for looking for relevant instrument

Description
quickly check correlation matrix, or the correlation between a particular X and all other vars could be useful for looking for relevant instrument

Usage
```r
check_cor(data, var_name_select = NULL, d = 3)
```

Arguments
- **data**: a data.frame used in regression model
- **var_name_select**: to specify the variable names to be included in the table, default is NULL—all variables are included
- **d**: number of digits retained after the decimal point

Examples
```r
data(mtcars)
check_cor(mtcars)
```
check_na_in

quickly check the proportion of NAs in each columns of a dataframe

Description

quickly check the proportion of NAs in each columns of a dataframe

Usage

```
check_na_in(data, true_total = FALSE)
```

Arguments

- `data`: a data.frame
- `true_total`: FALSE to show the percentage, TRUE to show the true number of missing values

Examples

```
data(mtcars)
check_na_in(mtcars)
```

check_vif

quickly check the vifs in a regression model; for checking multi-collinearity

Description

quickly check the vifs in a regression model; for checking multi-collinearity

Usage

```
check_vif(data)
```

Arguments

- `data`: a data.frame used in regression model

Examples

```
data(mtcars)
model <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
check_vif(data = model$model)
```
combine_long_tab
Combine regression results from different models by columns

Description

Combine regression results from different models by columns

Usage

```r
combine_long_tab(
  tbl_1,
  tbl_2,
  tbl_3 = NULL,
  tbl_4 = NULL,
  tbl_5 = NULL,
  tbl_6 = NULL,
  tbl_7 = NULL,
  tbl_8 = NULL,
  tbl_9 = NULL,
  tbl_10 = NULL,
  tbl_11 = NULL,
  tbl_12 = NULL,
  tbl_13 = NULL,
  tbl_14 = NULL,
  tbl_15 = NULL,
  tbl_16 = NULL,
  tbl_17 = NULL,
  tbl_18 = NULL,
  tbl_19 = NULL,
  tbl_20 = NULL
)
```

Arguments

- `tbl_1` : the 1st data.frame of regression result
- `tbl_2` : the 2nd data.frame of regression result
- `tbl_3` : the 3rd data.frame of regression result
- `tbl_4` : the 4th data.frame of regression result
- `tbl_5` : the 5th data.frame of regression result
- `tbl_6` : the 6th data.frame of regression result
- `tbl_7` : the 7th data.frame of regression result
- `tbl_8` : the 8th data.frame of regression result
- `tbl_9` : the 9th data.frame of regression result
- `tbl_10` : the 10th data.frame of regression result
compare_models

Examples

data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
m2 <- update(m1, . ~ . + wt * vs)
summary(m1)
summary(m2)
combine_long_tab(to_long_tab(summary(m1)$coef),
 to_long_tab(summary(m2)$coef))

Description

Compare regression models, which is compatible with the reg.table output # updated 9/13/2018 #

Usage

compare_models(
 model1,
 model2,
 model3 = NULL,
 model4 = NULL,
 model5 = NULL,
 model6 = NULL,
 model7 = NULL,
 model8 = NULL,
 model9 = NULL,
 model10 = NULL,
 model11 = NULL,
 model12 = NULL,
model13 = NULL,
model14 = NULL,
model15 = NULL,
model16 = NULL,
model17 = NULL,
model18 = NULL,
model19 = NULL,
model20 = NULL,
likelihood.only = FALSE,
round.digit = 3,
main.effect.only = NULL,
intn.effect.only = NULL
)

Arguments

model1 the 1st regression model
model2 the 2nd regression model
model3 the 3rd regression model
model4 the 4th regression model
model5 the 5th regression model
model6 the 6th regression model
model7 the 7th regression model
model8 the 8th regression model
model9 the 9th regression model
model10 the 10th regression model
model11 the 11th regression model
model12 the 12th regression model
model13 the 13th regression model
model14 the 14th regression model
model15 the 15th regression model
model16 the 16th regression model
model17 the 17th regression model
model18 the 18th regression model
model19 the 19th regression model
model20 the 20th regression model
likelihood.only whether or not to output the likelihood
round.digit number of decimal places to retain
main.effect.only specify col number of alternative main-effect models, if any
intn.effect.only specify col number of alternative moderator models, if any
Examples

```r
data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
m2 <- update(m1, . ~ . + wt * vs)
compare_models(m1, m2)
```

cor.table
make the correlation matrix from the data.frame used in regression

Description

make the correlation matrix from the data.frame used in regression

Usage

```r
cor.table(
  data,
  data_to_combine = NULL,
  var_name_select = NULL,
  all.var.names = NULL,
  d = 2
)
```

Arguments

- **data**: a data.frame used in regression model, e.g. `model$model`
- **data_to_combine**: another data.frame used for regression model, e.g. when you have similar set of X’s but different Y’s
- **var_name_select**: optional: to specify the variable names used in regression to be included in the correlation matrix
- **all.var.names**: optional: to rename all variable names, a string vector
- **d**: number of decimal places to retain

Examples

```r
data(mtcars)
model <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
cor.table(data = model$model)
```
load.pkgs

load multiple packages

Description

load multiple packages

Usage

load.pkgs(pkg_name_vec)

Arguments

pkg_name_vec a string vector of package names

Examples

Not run:
load.pkgs(c("dplyr", "car", "purrr"))

End(Not run)

plot_effect

plotting the marginal effect of X on Y, with or without one or multiple interaction terms

Description

plotting the marginal effect of X on Y, with or without one or multiple interaction terms

Usage

plot_effect(
 reg.coef,
 data,
 model,
 by_color = FALSE,
 x_var.name = NULL,
 y_var.name = NULL,
 moderator.name = NULL,
 min_x = 0.001,
 max_x = 0.999,
 mdrt_quantile_05 = NULL,
 mdrt_quantile_50 = NULL,
 mdrt_quantile_95 = NULL,
)
plot_effect

mod.n.sd = 1,
confidence_interval = FALSE,
v = NULL,
CI_Ribbon = FALSE,
title = NULL,
xlab = "X_Var.name",
ylab = "Y_Var.name",
moderator.lab = "Moderator_name",
mdrt.low.name = "Low",
mdrt.mid.name = NULL,
mdrt.high.name = "High",
y.high.lim = NULL,
y.low.lim = NULL,
spline_labels = c("LHS", "RHS")
)

Arguments

reg.coef a coefficient matrix of regression result, e.g. summary(lm_model)$coef
data the data used in regression, a data frame
model the model object, such as a "lm" object
by_color plot interactions by colors, otherwise by line types
x_var.name x name in the regression model, a string
y_var.name y name in the regression model, a string
moderator.name moderating variable name in the regression model, a string
min_x the min of x scale, in percentile of x
max_x the max of x scale, in percentile of x
mdrt_quantile_05 set the low level of moderator, in percentile
mdrt_quantile_50 set the middle level of moderator, in percentile
mdrt_quantile_95 set the high level of moderator, in percentile
mod.n.sd set the moderating strength, in the number of s.d. units, which can take negative values
confidence_interval if TRUE, plot confidence intervals
v a customized variance-covariance matrix
CI_Ribbon if TRUE, plot confidence interval ribbons, if FALSE, plot error bars
title the title of the plot
xlab label of X
ylab label of Y
moderator.lab label of moderator
Examples

```r
## Not run:
data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
plot_effect(reg.coef = summary(m1)$coefficients,
data = mtcars, model = m1,
x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = TRUE,
xlab = "Weight", ylab = "MPG", moderator.lab = "Horsepower")
## End(Not run)

# @examples
## Not run:
data(mtcars)
m2 <- lm(mpg ~ vs + carb + hp + wt + wt * hp + wt * vs, data = mtcars)
plot_effect(reg.coef = summary(m2)$coefficients,
data = mtcars, model = m2,
x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = FALSE,
xlab = "Weight", ylab = "MPG", moderator.lab = "Horsepower")
## End(Not run)

# @examples
## Not run:
data(mtcars)
m3 <- lm(mpg ~ vs + carb + hp + lspline(wt, knots = 4, marginal = FALSE) * hp, data = mtcars)
plot_effect(reg.coef=summary(m3)$coefficients,
data = mtcars, model = m3, x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
xlab="Weight", ylab="MPG", moderator.lab="Horsepower")
## End(Not run)

## Not run:
# this shows the function is compatible with ggplot2 customization
library(extrafont)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
plot_effect(reg.coef = summary(m1)$coefficients,
data = mtcars, model = m1,
x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = TRUE,

```
regrrr

regrrr: a toolkit for compiling regression results

Description

Compiling, Testing, Plotting Regression Results

Author(s)

Rui K. Yang <rkzyang@gmail.com>
Luyao Peng <luyaopeng.cn@gmail.com>

See Also

Useful links:

- Report bugs at https://github.com/RkzYang/regrrr/issues

scale_01

Scale a vector into the 0-1 scale

Description

Scale a vector into the 0-1 scale

Usage

cscale_01(x)

Arguments

x a vector
test_coef_equality

testing equality of two coefficients (difference between coefficients of regressors), a Wald test note: if v is not alternatively specified, use car::linearHypothesis(lm_model, "X1 = X2")

Description

testing equality of two coefficients (difference between coefficients of regressors), a Wald test note: if v is not alternatively specified, use car::linearHypothesis(lm_model, "X1 = X2")

Usage

test_coef_equality(model, var1.name, var2.name, v = NULL)

Arguments

model the model object, such as a "lm" object
var1.name X1 name in model, a string
var2.name X2 name in model, a string
v a customized variance-covariance matrix

data(mtcars) m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
summary(m1) test_coef_equality(model = m1, var1.name = "carb", var2.name = "hp")

test_tilted_slopes

significance of regression slope (the marginal effect) under moderation testing restriction: the sig. of beta_x under the moderation of z1, with or without additional interaction terms (z2, z3, etc.)

Description

significance of regression slope (the marginal effect) under moderation testing restriction: the sig. of beta_x under the moderation of z1, with or without additional interaction terms (z2, z3, etc.)

Usage

test_tilted_slopes(
 reg.coef,
 v = NULL,
 model,
 x.var.name,
 moderator.name,
 mod.n.sd = 1,
 data,
 t.value.col = 3,
 Pr.col = 4
)
Arguments

- **reg.coef**: a data.frame (or matrix) of regression result or a coeftest object, e.g. `summary(lm_model)$coef`, `coeftest(lm_model, cluster.vcov(lm_model, cbind(data$group1, data$group2)))`
- **v**: a customized variance-covariance matrix
- **model**: the model object, such as a "lm" object
- **x_var.name**: main independent variable name in model, a string
- **moderator.name**: moderator name in model, a string
- **mod.n.sd**: specify the strength of the moderating effects, in the unit of s.d.s of the moderator, which can take negative values
- **data**: data used for regression
- **t.value.col**: col number of the t-score in reg.coef
- **Pr.col**: col number of the Prob.(>|t|)) in reg.coef

Examples

```r
data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
test_tilted_slopes(reg.coef = summary(m1)$coef, model = m1, x_var.name = "wt", moderator.name = "hp", data = mtcars)
```

Description

Convert the regression result to the long format: the standard errors are in parentheses and beneath the betas

Usage

```r
to_long_tab(reg.coef, d = 3, t.value.col = 3, Pr.col = 4)
```

Arguments

- **reg.coef**: a data.frame (or matrix) of regression result or a coeftest object, e.g. `summary(lm_model)$coef`, `coeftest(lm_model, cluster.vcov(lm_model, cbind(data$group1, data$group2)))`
- **d**: number of decimal places to retain
- **t.value.col**: col number of the t-score in the reg.coef data.frame
- **Pr.col**: col number of the Prob.(>|t|)) in the reg.coef data.frame
to_long_tab

Examples

```r
data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
to_long_tab(reg.coef = summary(m1)$coef)
```
Index

add.n.r, 2
add.pr, 2
add.sig, 3
check.cor, 3
check_na_in, 4
check_vif, 4
combine_long_tab, 5
corr.models, 6
cor.table, 8
load.pkgs, 9
plot_effect, 9
regrrr, 12
regrrr-package (regrrr), 12
scale_01, 12
test_coef_equality, 13
test_tilted_slopes, 13
to_long_tab, 14