Package ‘regrrr’

February 2, 2020

Type Package
Title Toolkit for Compiling, (Post-Hoc) Testing, and Plotting Regression Results
Version 0.1.1
Description Compiling regression results into a publishable format, conducting post-hoc hypothesis testing, and plotting moderating effects (the effect of X on Y becomes stronger/weaker as Z increases).
Depends R (>= 3.5.0)
Maintainer Rui K. Yang <rkzyang@gmail.com>
License GPL-3
Encoding UTF-8
LazyData true
Suggests testthat
RoxygenNote 7.0.2
Imports stats, purrr, dplyr, magrittr, tidyr, usdm, scales, robustbase, stringr, MuMIn, ggplot2, lspline
BugReports https://github.com/RayKYang/regrrr/issues
NeedsCompilation no
Author Rui K. Yang [aut, cre], Luyao Peng [aut]
Repository CRAN
Date/Publication 2020-02-02 21:30:02 UTC

R topics documented:

add.n.r .. 2
add.pr .. 2
add.sig ... 3
check_cor ... 3
check_na_in .. 4
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>check_vif</td>
<td>4</td>
</tr>
<tr>
<td>combine_long_tab</td>
<td>5</td>
</tr>
<tr>
<td>compare_models</td>
<td>6</td>
</tr>
<tr>
<td>cor.table</td>
<td>8</td>
</tr>
<tr>
<td>load.pkgs</td>
<td>9</td>
</tr>
<tr>
<td>plot_effect</td>
<td>9</td>
</tr>
<tr>
<td>regrrr</td>
<td>11</td>
</tr>
<tr>
<td>scale_01</td>
<td>12</td>
</tr>
<tr>
<td>test_coef_equality</td>
<td>12</td>
</tr>
<tr>
<td>test_tilted_slopes</td>
<td>13</td>
</tr>
<tr>
<td>to_long_tab</td>
<td>14</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>add.n.r</td>
<td>15</td>
</tr>
</tbody>
</table>

add.n.r

Description

Add row numbers to regression result data.frame

Usage

```r
add.n.r(df)
```

Arguments

- `df`: a data.frame of regression result

add.pr

Description

Add approximate p-value based on t score or z score, when sample size is large

Usage

```r
add.pr(df, z.col = 3, p.already = FALSE)
```

Arguments

- `df`: a data.frame of regression result
- `z.col`: the column number of t score or z score
- `p.already`: whether the regression result already contains p.value
add.sig

Add significance level marks to the regression result

Description

Add significance level marks to the regression result

Usage

add.sig(df, Pr.col = 5)

Arguments

df : a data.frame of regression result, e.g. summary(a_lm_model)$coefficients
Pr.col : the column number of p.value

check_cor

quickly check correlation matrix, or the correlation between a particular X and all other vars could be useful for looking for relevant instrument

Description

quickly check correlation matrix, or the correlation between a particular X and all other vars could be useful for looking for relevant instrument

Usage

check_cor(data, var_name_select = NULL, d = 3)

Arguments

data : a data.frame used in regression model
var_name_select : to specify the variable names to be included in the table, default is NULL—all variables are included
d : number of digits retained after the decimal point

Examples

data(mtcars)
check_cor(mtcars)
check_na_in

quickly check the proportion of NAs in each columns of a dataframe

Description
quickly check the proportion of NAs in each columns of a dataframe

Usage
check_na_in(data, true_total = FALSE)

Arguments
data a data.frame
true_total FALSE to show the percentage, TRUE to show the true number of missing values

Examples
data(mtcars)
check_na_in(mtcars)

check_vif

quickly check the vifs in a regression model; for checking multi-collinearity

Description
quickly check the vifs in a regression model; for checking multi-collinearity

Usage
check_vif(data)

Arguments
data a data.frame used in regression model

Examples
data(mtcars)
model <- lm(mpg ~ vs + carb + hp + wt + wt * hp , data = mtcars)
check_vif(data = model$model)
combine_long_tab Combine regression results from different models by columns

Description
Combine regression results from different models by columns

Usage
```r
combine_long_tab(
  tbl_1,
  tbl_2,
  tbl_3 = NULL,
  tbl_4 = NULL,
  tbl_5 = NULL,
  tbl_6 = NULL,
  tbl_7 = NULL,
  tbl_8 = NULL,
  tbl_9 = NULL,
  tbl_10 = NULL,
  tbl_11 = NULL,
  tbl_12 = NULL,
  tbl_13 = NULL,
  tbl_14 = NULL,
  tbl_15 = NULL,
  tbl_16 = NULL,
  tbl_17 = NULL,
  tbl_18 = NULL,
  tbl_19 = NULL,
  tbl_20 = NULL
)
```

Arguments
- `tbl_1` the 1st data.frame of regression result
- `tbl_2` the 2nd data.frame of regression result
- `tbl_3` the 3rd data.frame of regression result
- `tbl_4` the 4th data.frame of regression result
- `tbl_5` the 5th data.frame of regression result
- `tbl_6` the 6th data.frame of regression result
- `tbl_7` the 7th data.frame of regression result
- `tbl_8` the 8th data.frame of regression result
- `tbl_9` the 9th data.frame of regression result
- `tbl_10` the 10th data.frame of regression result
Examples

data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
m2 <- update(m1, . ~ . + wt * vs)
summary(m1)
summary(m2)
combine_long_tab(to_long_tab(summary(m1)$coef),
 to_long_tab(summary(m2)$coef))

compare_models

Compare regression models, which is compatible with the reg.table output # updated 9/13/2018 #

Description

Compare regression models, which is compatible with the reg.table output # updated 9/13/2018 #

Usage

```r
compare_models(
    model1,  # the 11th data.frame of regression result
    model2,  # the 12th data.frame of regression result
    model3 = NULL,  # the 13th data.frame of regression result
    model4 = NULL,  # the 14th data.frame of regression result
    model5 = NULL,  # the 15th data.frame of regression result
    model6 = NULL,  # the 16th data.frame of regression result
    model7 = NULL,  # the 17th data.frame of regression result
    model8 = NULL,  # the 18th data.frame of regression result
    model9 = NULL,  # the 19th data.frame of regression result
    model10 = NULL,  # the 20th data.frame of regression result
    model11 = NULL,
    model12 = NULL,
)```
model13 = NULL,
model14 = NULL,
model15 = NULL,
model16 = NULL,
model17 = NULL,
model18 = NULL,
model19 = NULL,
model20 = NULL,
likelihood.only = FALSE,
round.digit = 3,
main.effect.only = NULL,
intn.effect.only = NULL
)

Arguments

model1  the 1st regression model
model2  the 2nd regression model
model3  the 3rd regression model
model4  the 4th regression model
model5  the 5th regression model
model6  the 6th regression model
model7  the 7th regression model
model8  the 8th regression model
model9  the 9th regression model
model10 the 10th regression model
model11 the 11th regression model
model12 the 12th regression model
model13 the 13th regression model
model14 the 14th regression model
model15 the 15th regression model
model16 the 16th regression model
model17 the 17th regression model
model18 the 18th regression model
model19 the 19th regression model
model20 the 20th regression model
likelihood.only  whether or not to output the likelihood
round.digit  number of decimal places to retain
main.effect.only  specify col number of alternative main-effect models, if any
intn.effect.only  specify col number of alternative moderator models, if any
Examples

data(mtcars)
ml <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
m2 <- update(ml, . ~ . + wt * vs)
compare_models(ml, m2)

cor.table

make the correlation matrix from the data.frame used in regression

Description

make the correlation matrix from the data.frame used in regression

Usage

cor.table(
  data,
  data_to_combine = NULL,
  var_name_select = NULL,
  all.var.names = NULL,
  d = 2
)

Arguments

data a data.frame used in regression model, e.g. model$model
data_to_combine another data.frame used for regression model, e.g. when you have similar set of X's but different Y's
var_name_select optional: to specify the variable names used in regression to be included in the correlation matrix
all.var.names optional: to rename all variable names, a string vector
d number of decimal places to retain

Examples

data(mtcars)
model <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
cor.table(data = model$model)
**load.pkgs**  
*load multiple packages*

**Description**
load multiple packages

**Usage**

```r
load.pkgs(pkg_name_vec)
```

**Arguments**

- `pkg_name_vec`: a string vector of package names

**Examples**

```r
Not run:
load.pkgs(c("dplyr", "car", "purrr"))
End(Not run)
```

---

**plot_effect**  
*plotting the marginal effect of X on Y, with or without one or multiple interaction terms*

**Description**
plotting the marginal effect of X on Y, with or without one or multiple interaction terms

**Usage**

```r
plot_effect(
 reg.coef,
 data,
 model,
 by_color = FALSE,
 x_var.name = NULL,
 y_var.name = NULL,
 moderator.name = NULL,
 min_x = 0.001,
 max_x = 0.999,
 mdrt_quantile_05 = NULL,
 mdrt_quantile_50 = NULL,
 mdrt_quantile_95 = NULL,
)```
mod.n.sd = 1,
confidence_interval = FALSE,
v = NULL,
CI_Ribbon = FALSE,
title = NULL,
xlab = "X_Var.name",
ylab = "Y_Var.name",
moderator.lab = "Moderator_name",
mdrt.low.name = "Low",
mdrt.mid.name = NULL,
mdrt.high.name = "High",
y.high.lim = NULL,
y.low.lim = NULL,
spline_labels = c("LHS", "RHS")
}

Arguments

reg.coef a coefficient matrix of regression result, e.g. summary(lm_model)$coef
data the data used in regression, a data frame
model the model object, such as a "lm" object
by_color plot interactions by colors, otherwise by line types
x_var.name x name in the regression model, a string
y_var.name y name in the regression model, a string
moderator.name moderating variable name in the regression model, a string
min_x the min of x scale, in percentile of x
max_x the max of x scale, in percentile of x
mdrt_quantile_05 set the low level of moderator, in percentile
mdrt_quantile_50 set the middle level of moderator, in percentile
mdrt_quantile_95 set the high level of moderator, in percentile
mod.n.sd set the moderating strength, in the number of s.d. units, which can take negative values
confidence_interval if TRUE, plot confidence intervals
v a customized variance-covariance matrix
CI_Ribbon if TRUE, plot confidence interval ribbons, if FALSE, plot error bars
title the title of the plot
xlab label of X
ylab label of Y
moderator.lab label of moderator
mdrt.low.name the label of low-level moderator
mdrt.mid.name the label of mid-level moderator
mdrt.high.name the label of high-level moderator
y.high.lim specify the upper limit of y
y.low.lim specify the lower limit of y
spline_labels label of the spline variable

Examples

```r
data(mtcars)
ml <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
plot_effect(reg.coef = summary(ml)$coefficients,
data = mtcars, model = ml,
x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = TRUE,
xlab = "Weight", ylab = "MPG", moderator.lab = "Horsepower")
```

```
# @examples
data(mtcars)
m2 <- lm(mpg ~ vs + carb + hp + wt + wt * hp + wt * vs, data = mtcars)
plot_effect(reg.coef = summary(m2)$coefficients,
data = mtcars, model = m2,
x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = FALSE,
xlab = "Weight", ylab = "MPG", moderator.lab = "Horsepower")

## Not run:
# this shows the function is compatible with ggplot2 customization
library(extrafont)
ml <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
plot_effect(reg.coef = summary(ml)$coefficients,
data = mtcars, model = ml,
x_var.name = "wt", y_var.name = "mpg", moderator.name = "hp",
confidence_interval = TRUE, CI_Ribbon = TRUE,
xlab = "Weight", ylab = "MPG", moderator.lab = "Horsepower") +
ggplot2::theme(text=ggplot2::element_text(family="Times New Roman", size = 16))

## End(Not run)
```

Description

Compiling, Testing, Plotting Regression Results
Author(s)
Rui K. Yang <rkzyang@gmail.com>
Luyao Peng <luyaopeng.cn@gmail.com>

See Also
Useful links:
- Report bugs at https://github.com/RayKYang/regrrr/issues

scale_01 *Scale a vector into the 0-1 scale*

Description
Scale a vector into the 0-1 scale

Usage
scale_01(x)

Arguments
- x a vector

test_coef_equality *testing equality of two coefficients (difference between coefficients of regressors), a Wald test note: if v is not alternatively specified, use car::linearHypothesis(lm_model, "X1 = X2")*

Description
testing equality of two coefficients (difference between coefficients of regressors), a Wald test note: if v is not alternatively specified, use car::linearHypothesis(lm_model, "X1 = X2")

Usage
test_coef_equality(model, var1.name, var2.name, v = NULL)

Arguments
- model the model object, such as a "lm" object
- var1.name X1 name in model, a string
- var2.name X2 name in model, a string
- v a customized variance-covariance matrix
data(mtcars) m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
summary(m1) test_coef_equality(model = m1, var1.name = "carb", var2.name = "hp")
test_tilted_slopes

significance of regression slope (the marginal effect) under moderation testing restriction: the sig. of beta_x under the moderation of z1, with or without additional interaction terms (z2, z3, etc.)

Description

significance of regression slope (the marginal effect) under moderation testing restriction: the sig. of beta_x under the moderation of z1, with or without additional interaction terms (z2, z3, etc.)

Usage

test_tilted_slopes(
 reg.coef,
 v = NULL,
 model,
 x_var.name,
 moderator.name,
 mod.n.sd = 1,
 data,
 t.value.col = 3,
 Pr.col = 4
)

Arguments

reg.coef a data.frame (or matrix) of regression result or a coeftest object, e.g. summary(lm_model)$coef, coeftest(lm_model, cluster.vcov(lm_model, cbind(data$group1, data$group2)))
v a customized variance-covariance matrix
model the model object, such as a "lm" object
x_var.name main independent variable name in model, a string
moderator.name moderator name in model, a string
mod.n.sd specify the strength of the moderating effects, in the unit of s.d.s of the moderator, which can take negative values
data data used for regression
t.value.col col number of the t-score in reg.coef
Pr.col col number of the Prob.(>|t|)) in reg.coef

Examples

data(mtcars)
ml <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
test_tilted_slopes(reg.coef = summary(ml)$coef, model = ml,
 x_var.name = "wt", moderator.name = "hp", data = mtcars)
to_long_tab

Convert the regression result to the long format: the standard errors are in parentheses and beneath the betas

Description

Convert the regression result to the long format: the standard errors are in parentheses and beneath the betas

Usage

to_long_tab(reg.coef, d = 3, t.value.col = 3, Pr.col = 4)

Arguments

- **reg.coef**: a data.frame (or matrix) of regression result or a coeftest object, e.g. summary(lm_model)$coef, coeftest(lm_model, cluster.vcov(lm_model, cbind(data$group1, data$group2)))
- **d**: number of decimal places to retain
- **t.value.col**: col number of the t-score in the reg.coef data.frame
- **Pr.col**: col number of the Prob.(>|t|)) in the reg.coef data.frame

Examples

data(mtcars)
m1 <- lm(mpg ~ vs + carb + hp + wt + wt * hp, data = mtcars)
to_long_tab(reg.coef = summary(m1)$coef)
Index

add.n.r, 2
add.pr, 2
add.sig, 3
check_cor, 3
check_na_in, 4
check_vif, 4
combine_long_tab, 5
compare_models, 6
cor.table, 8
load.pkgs, 9
plot_effect, 9
regrrr, 11
regrrr-package (regrrr), 11
scale_01, 12
test_coef_equality, 12
test_tilted_slopes, 13
to_long_tab, 14