Package ‘rehh’

February 13, 2019

Maintainer Mathieu Gautier <mathieu.gautier@inra.fr>
Author Mathieu Gautier, Alexander Klassmann and Renaud Vitalis
Version 2.0.4
License GPL (>= 2)
Title Searching for Footprints of Selection using `Extended Haplotype Homozygosity` Based Tests
Description Population genetic data in form of `Single Nucleotide Polymorphisms` (SNPs) is often used to identify genomic regions that have been under recent natural or artificial selection and might provide clues about the molecular mechanisms of adaptation. The concept of an `Extended Haplotype Homozygosity` (EHH), introduced by (Sabeti 2002) <doi:10.1038/nature01140>, has given rise to several derived statistics designed for whole genome scans. The package provides functions to compute three of these, namely: `iHS` (Voight 2006) <doi:10.1371/journal.pbio.0040072> for detecting selection within a single population as well as `Rsb` (Tang 2007) <doi:10.1371/journal.pbio.0050171> and `XP-EHH` (Sabeti 2007) <doi:10.1038/nature06250> to detect (differential) selection between two populations. Various plotting functions are also included to facilitate visualization and interpretation of these statistics.

Depends R (>= 2.10), rehh.data, gplots, methods
Suggests knitr, rmarkdown, bookdown
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN

Date/Publication 2019-02-13 16:20:11 UTC

R topics documented:

rehh-package .. 2
bifurcation.diagram .. 3
Search for footprints of selection using "Extended Haplotype Homozygosity" based statistics

Description

Population genetic data in form of "Single Nucleotide Polymorphisms" (SNPs) is often used to identify genomic regions that have been under recent natural or artificial selection and might provide clues about the molecular mechanisms of adaptation. The concept of an "Extended Haplotype Homozygosity" (EHH), introduced by (Sabeti 2002), has given rise to several derived statistics designed for whole genome scans. The package provides functions to compute three of these, namely: "iHS" (Voight 2006) for detecting selection within a single population as well as "Rsb" (Tang 2007) and "XP-EHH" (Sabeti 2007) to detect (differential) selection between two populations. Various plotting functions are also included to facilitate visualization and interpretation of these statistics.

Details

Package: rehh
Version: 2.0.4
License: GPL(>=2)
Depends: gplots, methods

Index:

bifurcation.diagram Plot of an haplotype bifurcation diagram
calc_ehh EHH and iHH computations at a given core SNP
calc_ehhs EHHS and iES computations at a
bifurcation.diagram plot of an haplotype bifurcation diagram

Description

A haplotype bifurcation diagram visualizes the decay of EHH of a "core" allele of a focal SNP at increasing distances.
Usage

bifurcation.diagram(haplohh, mrk_foc, all_foc=1, nmrk_l=10, nmrk_r=10, limhapcount = 10, refsize = 0.1, linecol = "blue", main_leg = NA, xlab_leg = "Position")

Arguments

haplohh An object of class haplohh (see dataRhaplohh).

mrk_foc Either the number of the marker in the haplohh object (as integer) or its name (as string) to specify the focal marker

all_foc either 1 or 2 depending on the chosen core allele (resp. ancestral or derived)

nmrk_l Number of markers to be considered upstream of the focal SNP

nmrk_r Number of markers to be considered downstream of the focal SNP

limhapcount Minimal number of haplotypes containing the core allele at the focal SNP

refsize Controls the relative width of the diagram lines on the plot

linecol Color of the lines on the diagram

main_leg Main legend of the diagram. By default, the name of the SNP together with the allele considered

xlab_leg Legend on the xaxis of the diagram

Details

The function ‘bifurcation.diagram()’ draws haplotype bifurcation diagrams [@Sabeti2002] that visualize the decay of EHH around a focal SNP. A stark contrast of ancestral and derived bifurcation diagrams should correspond to outlier values of ihs. In the plot the root (focal SNP) is identified by a vertical dashed line. The diagram is bi-directional, portraying decay along both sides of the focal SNP. Moving in one direction, each marker is an opportunity for a bifurcation further differentiating (extended) haplotypes. The thickness of the lines corresponds to the number of chromosomes with the same extended haplotype.

Value

The function returns a plot.

References

calc_ehh

Examples

```r
# example haplohh object (280 haplotypes, 1424 SNPs)
# see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
# plotting bifurcation diagram for both ancestral and derived allele
# from the focal SNP at position 456
# which display a strong signal of selection
layout(matrix(1:2,2,1))
# ancestral allele
bifurcation.diagram(haplohh_cgu_bta12,mrk_foc=456,all_foc=1,
nmrk_l=20,nmrk_r=20)
# derived allele
bifurcation.diagram(haplohh_cgu_bta12,mrk_foc=456,all_foc=2,
nmrk_l=20,nmrk_r=20)
##
dev.off()
```

Description

Compute Extended Haplotype Homozygosity (EHH) and integrated EHH (iHH) for a given focal SNP.

Usage

```r
calc_ehh(haplohh, mrk, limhaplo = 2, limehh = 0.05, 
    scalegap = NA, maxgap = NA, 
    discard_integration_at_border = TRUE, plotehh = TRUE, 
    lty = 1, lwd = 1.5, col = c("blue", "red"), xlab = "Position", 
    ylab = expression(Extended ~ haplotype ~ homozygosity ~ (italic(EHH))), 
    cex.lab = 1.25, main = NA, cex.main = 1.5)
```

Arguments

- **haplohh**: An object of class haplohh (see data2haplohh).
- **mrk**: Either the number of the marker in the haplohh object (as integer) or its name (as string) to specify the focal marker.
- **limhaplo**: Minimal number of haplotypes to continue computing EHH away from the core SNP. Useless, if no missing data. However, when some data are missing, haplotypes with missing data are removed from the computation. Hence as we compute EHH further from the core SNP, less haplotypes are expected.
- **limehh**: Limit at which EHH stops to be evaluated.
- **scalegap**: Scales gaps larger than the specified size to the specified size (default=NA, i.e. no scaling).
calc_ehh

maxgap

Maximum allowed gap in bp between two SNPs below which EHH stops to be evaluated (default=NA, i.e., no limitation)

discard_integration_at_border

If TRUE and if first or last marker or a gap (larger than maxgap) is reached and EHH is greater than \text{limehh}, then \text{iHH} is set to NA

plotehh

If TRUE, EHH values for both ancestral and derived allele are plotted for each position

lty

Line type for the ancestral and derived allele \text{iHH} (respectively) curves

lwd

Line width for the ancestral and derived allele \text{iHH} (respectively) curves

col

Color for the ancestral and derived allele \text{iHH} (respectively) curves

xlab

Legend for the x-axis

ylab

Legend for the y-axis

cex.lab

Size of the axis legend

main

Main legend of the EHHS plot

cex.main

Size of the main legend

Details

EHH are computed at each position upstream and downstream of the focal SNP for both derived and ancestral allele. This allows in turn the computation of the integrated EHH relative to map distances (iHH).

Value

The returned value is a list containing the following elements:

\text{ehh}

A matrix of two rows and \text{nsnps} columns containing EHH estimates at each chromosome position relative to the focal SNP for the ancestral (first row) and derived (second row) alleles.

\text{nhaplo_eval}

A matrix of two rows and \text{nsnps} columns containing the number of evaluated haplotypes at each chromosome position relative to the focal SNP for the ancestral (first row) and derived (second row) alleles.

\text{freq_al1}

the frequency of the ancestral allele of the focal SNP.

\text{ihh}

A vector of two elements corresponding respectively to the \text{iHH} (integrated EHH) for the ancestral and derived allele.

References

See Also

calc_ehhs, data2haploh, scan_hh

Examples

```r
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)

#computing EHH statistics for the focal SNP at position 456
# which displays a strong signal of selection
res.ehh<-calc_ehh(haplohh_cgu_bta12, mrk=456)
```

Description

Compute site-specific Extended Haplotype Homozygosity (EHHS) and integrated EHHS (iES) for a given focal SNP.

Usage

```r
calc_ehhs(haplohh, mrk, limhaplo = 2, limehhs = 0.05,
    scalegap = NA, maxgap = NA,
    discard_integration_at_border = TRUE, plotehhs = TRUE,
    lty = 1, lwd = 1.5, col = c("blue", "red"), xlab = "Position",
    ylab = expression(Site ~ specific ~ italic(EHH) ~ (italic(EHHS))),
    cex.lab = 1.25, main = NA, cex.main = 1.5)
```

Arguments

- **haplohh**: An object of class haplohh (see data2haploh).
- **mrk**: Either the number of the marker in the haplohh object (as integer) or its name (as string) to specify the focal marker.
- **limhaplo**: Minimal number of haplotypes to continue computing EHHS away from the core SNP. Useless, if no missing data. However, when some data are missing, haplotypes with missing data are removed from the computation. Hence as we compute EHH further from the core SNP, less haplotypes are expected.
- **limehhs**: Limit at which EHHS stops to be evaluated.
calc_ehhs

scalegap
Scales gaps larger than the specified size to the specified size (default=NA, i.e. no scaling)

maxgap
Maximum allowed gap in bp between two SNPs below which EHHS stops to be evaluated (default=NA, i.e., no limitation)

discard_integration_at_border
If TRUE and if first or last marker or a gap (larger than maxgap) is reached and EHHS is greater than lmehh, then IES is set to NA

plotehhs
If TRUE, EHHS estimates are plotted for each position

lty
Line type for the EHHS_Sabeti_et_al_2007 and EHHS_Tang_et_al_2007 (respectively) curves

lwd
Line width for the EHHS_Sabeti_et_al_2007 and EHHS_Tang_et_al_2007 (respectively) curves

col
Color for the EHHS_Sabeti_et_al_2007 and EHHS_Tang_et_al_2007 (respectively) curves

xlab
Legend for the x–axis

ylab
Legend for the y–axis

cex.lab
Size of the axis legend

main
Main legend of the EHHS plot

cex.main
Size of the main legend

Details

EHHS are computed at each position upstream and downstream of the focal SNP. This allows in turn the computation of the integrated EHHS relative to map distances (iES).

Value

The returned value is a list containing the following elements:

EHHS_Tang_et_al_2007
A vector of nsnps columns containing EHHS estimates at each chromosome position relative to the focal SNP computed as described in the Tang et al. (2007).

EHHS_Sabeti_et_al_2007
A vector of nsnps columns containing EHHS estimates at each chromosome position relative to the focal SNP computed as described in the Sabeti et al. (2007).

nhaplo_eval
A matrix of two rows and nsnps columns containing the number of evaluated haplotypes at each chromosome position relative to the focal SNP for the ancestral (first row) and derived (second row) alleles.

IES_Sabeti_et_al_2007
Integrated EHHS (computed using the estimator by Sabeti et al. (2007)) over the chromosome.

IES_Tang_et_al_2007
Integrated EHHS (computed using the estimator by Tang et al. (2007)) over the chromosome.
References

See Also

calc_ehh, data2haplohh, scan_hh

Examples

```r
# example haplohh object (280 haplotypes, 1424 SNPs)
# see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
# computing EHH statistics for the focal SNP at position 456
# which displays a strong signal of selection
res.ehhs<-calc_ehhs(haplohh_cgu_bta12, mrk=456)
```

data2haplohh

Converting data into an object of class haplohh

Description

Converts input data files to an object of class haplohh.

Usage

```r
data2haplohh(hap_file, map_file, min_maf = 0, min_perc_geno.hap = 100, 
min_perc_geno.snp = 100, chr.name = NA, popsel = NA, 
recode.allele = FALSE, haplotype.in.columns = FALSE)
```

Arguments

- **hap_file**
 - Path to the file containing haplotype data (see details section below for information about input file format)

- **map_file**
 - Path to the file containing map information (see details section below for information about input file format)

- **min_maf**
 - Threshold on Minor Allele Frequency (SNPs displaying a MAF lower than `min_maf` are discarded)

- **min_perc_geno.hap**
 - Threshold on percentage of missing data for haplotypes (Haplotypes with less than `min_perc_geno.hap` percent SNPs genotyped are discarded). By default, `min_perc_geno.hap=100`, hence only fully genotyped haplotypes are retained.
min_perc_geno.snp
Threshold on percentage of missing data for SNPs (SNPs genotyped on less than min_perc_geno.snp percent haplotypes are discarded). By default, min_perc_geno.snp = 100, hence only fully genotyped SNPs are retained.

chr.name
Name of the chromosome considered (relevant if several chromosomes are represented in the map file).

popsel
Code of the population considered in the fastPHASE output haplotype file (relevant if hap_file is a fastPHASE output and haplotypes originate from different population).

recode.allele
If TRUE, allele in the haplotypes are recoded according to the map file information. If FALSE a rough verification is performed to check only 0 (code for missing data), 1 (code for ancestral allele) or 2 (code for derived allele) are present in the haplotype file.

haplotype.in.columns
If TRUE, phased input haplotypes are assumed to be in columns (as produced by the SHAPEIT2 program (O'Connell et al., 2014)).

Details

Three haplotype input formats are supported:

- a standard format with haplotypes in rows and snps in columns (with no header, but a haplotype id).
- a (transposed) format similar to the one produced by the phasing program SHAPEIT2 program (O’Connell et al., 2014) in which haplotypes are in columns and snps in rows (with no header and no snp id).
- output files from fastPHASE program (Sheet and Stephens, 2006). If the input haplotypes are not in transposed format (i.e., haplotype.in.columns is FALSE, as by default), the function automatically checks if the file is in fastPHASE output format. In this latter case, if haplotypes from several different population were phased simultaneously (-u fastPHASE option was used), the function ask interactively which population should be considered (a list of population number are proposed) unless specified with the popsel argument.

The map file contains SNP information in five columns:

- SNP name/id
- chromosome
- position (physical or genetic)
- ancestral allele encoding
- derived allele encoding

The SNPs must be in the same order as in the haplotype for the chromosome considered. If several chromosomes are represented in the map file, one can provide the name of the chromosome of interest (corresponding to the haplotype under study) with the chr.name argument. Haplotypes are recoded (if the recode.allele option is activated) according to the ancestral and derived allele definition available in the map file (fourth and fifth columns) as: 0 = missing data, 1 = ancestral allele, 2 = derived allele. If the latter encoding is detected in the haplotype data, no recoding is
performed. Note that the cross populations statistics such as Rsb and XP-EHH do not need information about ancestral and derived allele status. Finally, the arguments `min_perc_genohap`, `min_perc_genosnp` and `min_maf` are evaluated in this order.

Value

The returned value is an object of class `haplohh`.

References

See Also

`calc_ehh`, `calc_ehhs`, `scan_hh`, `make.example.files`

Examples

```r
# Copy example files in the current working directory.
make.example.files()
# using the fastPHASE output haplotype example file
hap<-data2haplohh(hap_file="bta12_hapguess_switch.out", map_file="map.inp", min_maf=0.05, popsel=7, chr.name=12, recode.allele=TRUE)
# using the standard output haplotype example file
hap<-data2haplohh(hap_file="bta12_cgu.hap", map_file="map.inp", min_maf=0.05, chr.name=12, recode.allele=TRUE)
```

distribplot

Distribution of standardized iHS, Rsb or XP-EHH values

Description

Plot the observed distribution of standardized iHS, Rsb or XP-EHH values together with the expected standard Gaussian distribution.

Usage

```r
distribplot(data, lty = 1, lwd = 1.5, col = c("blue", "red"), main = "Genome-wide distribution", xlab = "", cex.main = 1.5, cex.lab = 1.25, qqplot = TRUE)
```
Arguments

data A vector of iHS, Rsb or XPEHH values.
col A vector describing color of the Observed and expected Gaussian distribution
main Character string for the plot legend
xlab Character string for the X-axis legend
cex.lab Size of axis legends
cex.main Size of the main legend
lty Line Type
lwd Line Width
qqplot If TRUE a qq-plot is drawn

Value

The function returns a plot.

See Also

scan_hh, ihh2ihs, ies2rsb, ihsplot, rsbplot, ies2xpehh, xpehhplot

Examples

data(wgscan.cgu)
results from a genome scan (44,057 SNPs) see ?wgscan.eut for details
val.ihs<-ihh2ihs(wgscan.cgu)$iHS[,3]
standardize
distribplot(val.ihs, main="iHS (CGU population)"
dev.off()

 haplohh-class Class "haplohh"

Description

An object of class haplohh contains all relevant haplotype information (see below).

Objects from the Class

Objects can be created by calls of the form new("haplohh", ...).
Slots

- haplo: Object of class "matrix": haplotypes with alleles coded as 0 (missing data), 1 (ancestral allele) or 2 (derived allele)
- position: Object of class "numeric": position of the SNPs in the chromosome
- snp.name: Object of class "character": names of the SNP
- chr.name: Object of class "character": name of the chromosome SNPs are mapping to
- nhap: Object of class "numeric": number of haplotypes
- nsnp: Object of class "numeric": number of SNPs in the haplotypes

See Also

data2haplohh

Examples

showClass("haplohh")

Description

The object contains haplotype data for 140 cattle individuals (280 haplotypes) belonging to the Creole breed from Guadeloupe (CGU) and 1424 SNPs (mapping to chromosome BTA12).

Usage

data(haplohh_cgu_bta12)

References

See Also

data2haplohh
ies2rsb

ies2rsb
Compute Rsb (standardized ratio of iES between two populations)

Description

Compute Rsb (standardized ratio of iES between two populations).

Usage

```r
ies2rsb(hh_pop1, hh_pop2, popname1 = NA, popname2 = NA,
        method = "bilateral")
```

Arguments

- `hh_pop1`: A matrix with nsnps rows and six columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele and iES) obtained after performing a scan on the first population.
- `hh_pop2`: A matrix with nsnps rows and six columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele and iES) obtained after performing a scan on the second population.
- `popname1`: Name of the first population compared (character string).
- `popname2`: Name of the second population compared (character string).
- `method`: Either "bilateral" or "unilateral". If bilateral (resp. unilateral), the pvalue (assuming Rsb follows a standard Gaussian distribution under neutrality) corresponds to a bilateral (resp. unilateral) tests.

Details

Ratio of iES (population 1 over population 2) computed and standardized as described in Tang et al. (2007)

Value

The returned value is a matrix with nsnps rows and four columns (Chromosome name, position of the SNP, Rsb and Pvalue)

References

See Also

calc_ehhs,scan_hh,distribplot,rsbplot
Examples

data(wgscan.cgu); data(wgscan.eut)
results from a genome scan (44,057 SNPs)
see ?wgscan.eut and ?wgscan.cgu for details
res.rsb<-ies2rsb(wgscan.cgu,wgscan.eut,"CGU","EUT")

ies2xpehh

\[Compute \text{ XP-EHH (standardized ratio of iES from two populations) as described in Sabeti et al. (2007)} \]

Description

Compute XP-EHH (standardized ratio of iES from two populations) as described in Sabeti et al. (2007).

Usage

ies2xpehh(hh_pop1, hh_pop2, popname1 = NA, popname2 = NA, method = "bilateral")

Arguments

hh_pop1 A matrix with nsnps rows and six columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele and iES) obtained after performing a scan on the first population.

hh_pop2 A matrix with nsnps rows and six columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele and iES) obtained after performing a scan on the second population.

popname1 Name of the first population compared (character string).

popname2 Name of the second population compared (character string).

method Either "bilateral" or "unilateral". If bilateral (resp. unilateral), the pvalue (assuming XP-EHH follows a standard Gaussian distribution under neutrality) corresponds to a bilateral (resp. unilateral) tests

Details

Ratio of iES (population 1 over population 2) computed and standardized as described in Sabeti et al. (2007)

Value

The returned value is a matrix with nsnps rows and four columns (Chromosome name, position of the SNP, XP-EHH and Pvalue)
References

See Also
calc_ehhs, scan_hh, distribplot, rsbplot

Examples

data(wgscan.cgu); data(wgscan.eut)
n# results from a genome scan (44,057 SNPs)
n## see ?wgscan.eut and ?wgscan.cgu for details
xxpehh<-ies2xpehh(wgscan.cgu, wgscan.eut, "CGU","EUT")

ihh2ihs

Compute iHS (standardized iHH)

Description

Compute iHS (standardized iHH).

Usage

`ihh2ihs(res_ihh, freqbin = 0.025, minmaf = 0.05)`

Arguments

- `res_ihh` A dataframe with nsnps rows and seven columns as obtained from the `scan_hh` function applied to the population of interest.
- `freqbin` Size of the bin to standardize log(iHHA/iHHD) according to the underlying "core" allele frequency at the focal SNP. Allele frequency bins are built from minmaf to 1-minmaf in steps of size freqbin. If freqbin is set to 0, standardization is performed considering each observed frequency as a discrete frequency class (useful in case of a large number of SNPs and few different haplotypes). If freqbin is set to an integer of 1 or greater, a corresponding number of equally sized bins are used.
- `minmaf` SNPs with a MAF (Minor Allele Frequency) lower than minmaf are discarded from the analysis

Details

iHS is calculated as described in Voight et al. (2006)
Value

The returned value is a list containing two elements:

- `res.ihs` is a dataframe with `nSNPs` rows and four columns (Chromosome name, position of the SNP, iHS and Pvalue in a log10 scale).
- `summary.class` is a matrix with `nClasses` rows and three columns (Number of SNPs belonging to this class, position of the SNP, mean iHH in this class, standard deviation of iHH in this class).

References

See Also

calc_ehh, scan_hh, distribplot, ihsplot

Examples

data(wgscan.cgu)

```r
## results from a genome scan (44,857 SNPs)
## see ?wgscan.eut and ?wgscan.cgu for details
res.ihs <- ihh2ihs(wgscan.cgu)
```

ihsplot

Plot iHS over a genome

Description

Plot iHS over a genome.

Usage

```r
ihsplot(ihsdata, plot.pval = TRUE, ylim.scan = 2, pch = 16, cex = 0.5,
        cex.lab = 1.25, main = NA, cex.main = 1.5, cex.axis=1.)
```

Arguments

- `ihsdata`:
 A list obtained with the `ihh2ihs` function.
- `plot.pval`:
 Either TRUE or FALSE if Pvalue should not be plotted.
- `ylim.scan`:
 An horizontal line is added at the corresponding coordinate, for instance to represent a significance threshold.
- `pch`:
 Type of the points representing SNPs in the plot(s).
cex Size of the points representing SNPs in the plot(s)
cex.lab Size of axis legends
main Main Legend of the plot
cex.main Size of the main legend
cex.axis Size of the axis annotations

Value

The function returns a plot

References

See Also

ihh2ihs

Examples

data(wgscan.cgu)
results from a genome scan (44,057 SNPs)
see ?wgscan.eut and ?wgscan.cgu for details
res.ihs<-ihh2ihs(wgscan.cgu)
ihsplot(res.ihs)

make.example.files Creating example input files

Description

This function copies the following example files to the working directory:

- bta12_cgu.hap an haplotype input file in standard format
- bta12_cgu.thap an haplotype input file in transposed format
- bta12_hapguess_switch.out an haplotype input file in fastphase output format
- map.inp a SNP information input file

These files contain data for 280 haplotypes (originating from 140 individuals belonging to the Creole cattle breed from Guadeloupe) of 1,424 SNPs mapping to bovine chromosome 12 (BTA12) (see reference below).
Usage

make.example.files()

References

See Also

data2haplohh

Examples

make.example.files()

rsbplot

Plot Rsb over a genome

Description

Plot Rsb over a genome.

Usage

```r
rsbplot(data, plot.pval = TRUE, ylim.scan = 2, pch = 16, cex = 0.5, cex.lab = 1.25, main = NA, cex.main = 1.5, cex.axis = 1.)
```

Arguments

- `data`: A dataframe obtained using `ies2rsb` function.
- `plot.pval`: Either `TRUE` or `FALSE` if Pvalue should not be plotted.
- `ylim.scan`: An horizontal line is added at the corresponding coordinate, for instance to represent a significance threshold.
- `pch`: Type of the points representing SNPs in the plot(s).
- `cex`: Size of the points representing SNPs in the plot(s).
- `cex.lab`: Size of axis legends.
- `main`: Main Legend of the plot.
- `cex.main`: Size of the main legend.
- `cex.axis`: Size of the axis annotations.

Value

The function returns a plot.
References

See Also

ies2rsb

Examples

data(wgscan.cgu) ; data(wgscan.eut)
results from a genome scan (44,057 SNPs)
#see ?wgscan.eut and ?wgscan.cgu for details
res.rsb<ies2rsb(wgscan.cgu,wgscan.eut,"CGU","EUT")
rsbplot(res.rsb)

scan_hh

Computing EHH based statistics over a whole chromosome

Description

Compute Extended Haplotype Homozygosity (EHH), site-specific EHH (EHHS), integrated EHH (iHH) and integrated EHHS (iES) for all SNPs of a chromosome (or linkage group).

Usage

```r
scan_hh(haplohh, limhaplo = 2, limehh = 0.05, limehhs = 0.05,
        scalegap = NA, maxgap = NA,
        discard_integration_at_border = TRUE, threads = 1)
```

Arguments

- **haplohh**: An object of class haplohh (see data2haplohh).
- **limhaplo**: Minimal number of haplotypes to continue computing EHH away from the core SNP. Useless, if no missing data. However, when some data are missing, haplotypes with missing data are removed from the computation. Hence as we compute EHH further from the core SNP, less haplotypes are expected.
- **limehh**: Limit at which EHH stops to be evaluated
- **limehhs**: Limit at which EHHS stops to be evaluated
- **scalegap**: Scales gaps larger than the specified size to the specified size (default=NA, i.e. no scaling)
- **maxgap**: Maximum allowed gap in bp between two SNPs below which EHH and EHHS stop to be evaluated (default=NA, i.e., no limitation)
Details

Extended Haplotype Homozygosity (EHH), site-specific EHH (EHHS), integrated EHH (iHH) and integrated EHHS (iES) are computed for all SNPs of the chromosome (or linkage group). This function is several times faster as a procedure calling in turn `calc_ehh` and `calc_ehhs` for all SNPs. To perform a whole genome-scan this function needs to be called for each chromosome and the results concatenated.

Value

The returned value is a dataframe with `haplohh@nsnps` rows and seven columns (Chromosome name, position of the SNP, Frequency of the ancestral allele, iHH for the ancestral allele, iHH for the derived allele, iES using the estimator by Sabeti et al. (2007) estimator and iES using the estimator by Tang et al. (2007))

References

See Also

`calc_ehh`, `calc_ehhs`, `data2haplohh`, `ihh2ihs`, `ies2rsb`

Examples

```r
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
res.scan<-scan_hh(haplohh_cgu_bta12)
```
xpehhplot

Plot XP-EHH over a genome

Description

Plot XP-EHH over a genome.

Usage

```r
xpehhplot(data, plot.pval = TRUE, ylim.scan = 2, pch = 16,
           cex = 0.5, cex.lab = 1.25, main = NA, cex.main = 1.5,
           cex.axis=1.)
```

Arguments

- `data`: A dataframe obtained using `iesRxpehh` function.
- `plot.pval`: Either `TRUE` or `FALSE` if Pvalue should not be plotted
- `ylim.scan`: An horizontal line is added at the corresponding coordinate, for instance to represent a significance threshold
- `pch`: Type of the points representing SNPs in the plot(s)
- `cex`: Size of the points representing SNPs in the plot(s)
- `cex.lab`: Size of axis legends
- `main`: Main Legend of the plot
- `cex.main`: Size of the main legend
- `cex.axis`: Size of the axis annotations

Value

The function returns a plot

References

See Also

`iesRxpehh`
Examples

data(wgscan.cgu); data(wgscan.eut)
results from a genome scan (44,057 SNPs)
see ?wgscan.eut and ?wgscan.cgu for details
res.xpehh<-ies2xpehh(wgscan.cgu,wgscan.eut,"CGU","EUT")
xpehhplot(res.xpehh)
Index

∗Topic classes
haplohh-class, 12
∗Topic package
rehh-package, 2

bifurcation.diagram, 3
calc_ehh, 5
calc_ehhs, 7
data2haplohh, 9
distribplot, 11
haplohh-class, 12
haplohh_cgu_bta12, 13
ies2rsb, 14
ies2xpehh, 15
ihs2ihs, 16
ihsplot, 17
make.example.files, 18
rehh (rehh-package), 2
rehh-package, 2
rsbplot, 19
scan_hh, 20
xpehhplot, 22