Package ‘rehh’

October 14, 2022

Version 3.2.2
License GPL (>= 2)
Title Searching for Footprints of Selection using 'Extended Haplotype Homozygosity' Based Tests
Description Population genetic data such as 'Single Nucleotide Polymorphisms' (SNPs) is often used to identify genomic regions that have been under recent natural or artificial selection and might provide clues about the molecular mechanisms of adaptation. One approach, the concept of an 'Extended Haplotype Homozygosity' (EHH), introduced by (Sabeti 2002) <doi:10.1038/nature01140>, has given rise to several statistics designed for whole genome scans. The package provides functions to compute three of these, namely: 'iHS' (Voight 2006) <doi:10.1371/journal.pbio.0040072> for detecting positive or 'Darwinian' selection within a single population as well as 'Rsb' (Tang 2007) <doi:10.1371/journal.pbio.0050171> and 'XP-EHH' (Sabeti 2007) <doi:10.1038/nature06250>, targeted at differential selection between two populations. Various plotting functions are included to facilitate visualization and interpretation of these statistics.

Depends R (>= 2.10)
Imports methods, rehh.data
Suggests ape, bookdown, data.table, gap, knitr, qqman, rmarkdown, R.utils, testthat, vcfR
VignetteBuilder knitr
NeedsCompilation yes
RoxygenNote 7.1.1
BugReports https://gitlab.com/oneoverx/rehh/-/issues
Author Alexander Klassmann [aut, cre], Mathieu Gautier [aut], Renaud Vitalis [aut]
Maintainer Alexander Klassmann <rehh@oneoverx.eu>
Repository CRAN
Date/Publication 2021-09-15 13:40:02 UTC

R topics documented:

rehh-package ... 3
allelefurcation-class 4
as.newick ... 4
calc_candidate_regions 5
calc_ehh .. 7
calc_ehhs ... 9
calc_furcation ... 11
calc_haplen .. 13
calc_pairwise_haplen 14
calc_region_stats 15
calc_sfs_tests ... 16
data2haplohh ... 18
distribplot ... 21
extract_regions .. 23
defqbinplot .. 23
ftree-class ... 25
furcation-class 25
haplen-class .. 26
haplohh-class ... 27
haplohh2sweepfinder 28
haplohh_cgu_bta12 29
ies2xpehh .. 30
ihh2lhs ... 31
ines2rsb ... 33
make.example.files 35
manhattanplot .. 36
plot.ehh ... 38
plot.ehhs ... 40
plot.furcation ... 41
plot.haplen ... 42
plot.haplohh .. 44
remove.example.files 46
scan_hh .. 46
scan_hh_full .. 49
subset.haplohh .. 52
update_haplohh 53

Index 55
Description

Population genetic data such as 'Single Nucleotide Polymorphisms' (SNPs) is often used to identify genomic regions that have been under recent natural or artificial selection and might provide clues about the molecular mechanisms of adaptation. One approach, the concept of an 'Extended Haplotype Homozygosity' (EHH), introduced by (Sabeti 2002) <doi:10.1038/nature01140>, has given rise to several statistics designed for whole genome scans. The package provides functions to compute three of these, namely: ‘iHS’ (Voight 2006) <doi:10.1371/journal.pbio.0040072> for detecting positive or 'Darwinian' selection within a single population as well as 'Rsb' (Tang 2007) <doi:10.1371/journal.pbio.0050171> and 'XP-EHH' (Sabeti 2007) <doi:10.1038/nature06250>, targeted at differential selection between two populations. Various plotting functions are included to facilitate visualization and interpretation of these statistics.

Details

See vignette("rehh", package = "rehh") for an overview of the package and vignette("examples", package = "rehh") for a more detailed discussion of two small example data sets.

Author(s)

Maintainer: Alexander Klassmann <rehh@oneoverx.eu>

Authors:

• Mathieu Gautier <mathieu.gautier@inrae.fr>
• Renaud Vitalis

References

See Also
Useful links:
- https://CRAN.R-project.org/package=rehh
- https://gitlab.com/oneoverx/rehh
- Report bugs at https://gitlab.com/oneoverx/rehh/-/issues

allelefurcation-class An S4 class containing furcation trees for one allele of a focal marker

Description
An S4 class containing the furcation trees for both sides of a focal marker for one allele.

Slots
- `allele` the allele of the focal marker.
- `description` "ancestral", "derived", "major", "minor", etc.
- `count` the number of chromosomes with that allele.
- `left` furcation tree to the left of the marker.
- `right` furcation tree to the right of the marker.

See Also
- `ftree`, `furcation`

as.newick Convert a furcation tree into Newick format

Description
Convert a furcation tree into Newick format.

Usage

```r
as.newick(furcation, allele = 0, side, hap.names = seq_len(furcation@nhap))
```
Arguments

- **furcation**
 - an object of `furcation-class`.
- **allele**
 - the allele to be considered (default 0).
- **side**
 - side (either "left" or "right").
- **hap.names**
 - names/labels of chromosomes in haplotype data file. Per default haplotypes are numbered by their order in the input file.

See Also

- `ftree-class`, `calc_furcation`, `plot.furcation`

Examples

```r
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#calculate furcation for the marker "F1205400"
#which displays a strong signal of selection
f <- calc_furcation(haplohh_cgu_bta12, mrk = "F1205400")
#get left tree of ancestral allele (coded as '0')
as.newick(f, 0, "left")
```

calc_candidate_regions

Determine candidate regions of selection

Description

Determine candidate regions of selection.

Usage

```r
calc_candidate_regions(
  scan,
  threshold = NA,
  pval = FALSE,
  ignore_sign = FALSE,
  window_size = 1e+06,
  overlap = 0,
  right = TRUE,
  min_n_mrk = 1,
  min_n_extr_mrk = 1,
  min_perc_extr_mrk = 0,
  join_neighbors = TRUE
)
```
Arguments

- **scan**
 a data frame containing scores (output of `ihh2ihs`, `ines2rsb` or `ies2xpehh`).

- **threshold**
 boundary score above which markers are defined as "extreme".

- **pval**
 logical. If `TRUE` use the (negative log-) p-value instead of the score.

- **ignore_sign**
 logical. If `TRUE` (default), take absolute values of score.

- **window_size**
 size of sliding windows. If set to 1, no windows are constructed and only the individual extremal markers are reported.

- **overlap**
 size of window overlap (default 0, i.e. no overlap).

- **right**
 logical, indicating if the windows should be closed on the right (and open on the left) or vice versa.

- **min_n_mrk**
 minimum number of markers per window.

- **min_n_extr_mrk**
 minimum number of markers with extreme value in a window.

- **min_perc_extr_mrk**
 minimum percentage of extremal markers among all markers.

- **join_neighbors**
 logical. If `TRUE` (default), merge neighboring windows with extreme values.

Details

There is no generally agreed method how to determine genomic regions which might have been under recent selection. Since selection tends to yield clusters of markers with outlier values, a common approach is to search for regions with an elevated number or fraction of outlier or extremal markers. This function allows to set three conditions a window must fulfill in order to classify as candidate region:

- **min_n_mrk** a minimum number of (any) markers.
- **min_n_extr_mrk** a minimum number of markers with outlier / extreme value.
- **min_perc_extr_mrk** a minimum percentage of extremal markers among all markers.

"Extreme" markers are defined by having a score above the specified `threshold`.

Value

A data frame with chromosomal regions, i.e. windows that fulfill the necessary conditions to qualify as candidate regions under selection. For each region the overall number of markers, their mean and maximum, the number of markers with extremal values, their percentage of all markers and their average are reported.

See Also

- `calc_region_stats`
Description

Compute Extended Haplotype Homozygosity (EHH) and integrated EHH (iHH) for a given focal marker.

Usage

```r
calc_ehh(
  haplohh,
  mrk,
  limhaplo = 2,
  limhomohaplo = 2,
  limehh = 0.05,
  include_zero_values = FALSE,
  include_nhaplo = FALSE,
  phased = TRUE,
  polarized = TRUE,
  scalegap = NA,
  maxgap = NA,
  discard_integration_at_border = TRUE,
  lower_y_bound = limehh,
  interpolate = TRUE
)
```

Arguments

- `haplohh` an object of class `haplohh` (see `data2haplohh`).
- `mrk` integer representing the number of the focal marker within the `haplohh` object or string representing its ID/name.
- `limhaplo` if there are less than `limhaplo` chromosomes that can be used for the calculation of EHH, the calculation is stopped. The option is intended for the case of missing data, which leads to the successive exclusion of haplotypes: the further away from the focal marker the less haplotypes contribute to EHH.
- `limhomohaplo` if there are less than `limhomohaplo` homozygous chromosomes, the calculation is stopped. This option is intended for unphased data and should be invoked only if relatively low frequency variants are not filtered subsequently (see main vignette and Klassmann et al. 2020).
- `limehh` limit at which EHH stops to be evaluated
- `include_zero_values` logical. If `FALSE`, return values only for those positions where the calculation is actually performed, i.e. until stopped by reaching either `limehh` or `limhaplo`. If `TRUE`, report EHH values for all markers, the additional ones being zero.
include_nhaplo logical. If TRUE, report the number of evaluated haplotypes at each marker (only informative, if missing data leads to a decrease of evaluated haplotypes).

phased logical. If TRUE (default) chromosomes are expected to be phased. If FALSE, the haplotype data is assumed to consist of pairwise ordered chromosomes belonging to diploid individuals. EHH is then estimated over individuals which are homozygous at the focal marker.

polarized logical. TRUE by default. If FALSE, use major and minor allele instead of ancestral and derived. If there are more than two alleles then the minor allele refers to the second-most frequent allele.

scalegap scale or cap gaps larger than the specified size to the specified size (default=NA, i.e. no scaling).

maxgap maximum allowed gap in bp between two markers. If exceeded, further calculation of EHH is stopped at the gap (default=NA, i.e no limitation).

discard_integration_at_border logical. If TRUE (default) and computation reaches first or last marker or a gap larger than maxgap, iHH is set to NA.

lower_y_bound lower y boundary of the area to be integrated over (default: limehh). Can be set to zero for compatibility with the program hapbin.

interpolate logical. Affects only iHH values. If TRUE (default), integration is performed over a continuous EHH curve (values are interpolated linearly between consecutive markers), otherwise the EHH curve decreases stepwise at markers.

Details

Values for allele-specific Extended Haplotype Homozygosity (EHH) are computed upstream and downstream of the focal marker for each of its alleles. These values are integrated with respect to their genomic positions to yield an ‘integrated EHH’ (iHH) value for each allele.

Value

The returned value is a list containing the following elements:

mrk.name The name/identifier of the focal marker.

freq A vector with the frequencies of the alleles of the focal marker.

ehh A data frame with EHH values for each allele of the focal marker.

ihh A vector with iHH (integrated EHH) values for each allele of the focal marker.

References

See Also
data2haplohh, plot.ehh, calc_ehhs, scan hh.

Examples

```r
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#computing EHH statistics for the marker "F1205400"
#which displays a strong signal of selection
ehh <- calc_ehh(haplohh_cgu_bta12, mrk = "F1205400")
```

calc_ehhs

EHHS and iES computation for a given focal marker

Description

Compute site-specific Extended Haplotype Homozygosity (EHHS) and integrated EHHS (iES) for a given focal marker.

Usage

```r
calc_ehhs(haplohh, mrk,
limhaplo = 2,
limhomohaplo = 2,
limehhs = 0.05,
include_zero_values = FALSE,
include_nhaplo = FALSE,
phased = TRUE,
scalegap = NA,
maxgap = NA,
discard_integration_at_border = TRUE,
lower_y_bound = limehhs,
interpolate = TRUE
)
```
Arguments

- **haplohh**: an object of class haplohh (see `data2haplohh`).
- **mrk**: integer representing the number of the focal marker within the haplohh object or string representing its ID/name.

- **limhaplo**: if there are less than `limhaplo` chromosomes that can be used for the calculation of EHH, the calculation is stopped. The option is intended for the case of missing data, which leads to the successive exclusion of haplotypes: the further away from the focal marker the less haplotypes contribute to EHH.

- **limhomohaplo**: if there are less than `limhomohaplo` homozygous chromosomes, the calculation is stopped. This option is intended for unphased data and should be invoked only if relatively low frequency variants are not filtered subsequently (see main vignette and Klassmann et al. 2020).

- **limehhs**: limit at which EHHS stops to be evaluated.

- **include_zero_values**: logical. If `FALSE`, return values only for those positions where the calculation is actually performed, i.e. until stopped by reaching either `limehhs` or `limhaplo`. If `TRUE`, report EHH values for all markers, the additional ones being zero.

- **include_nhaplo**: logical. If `TRUE`, report the number of evaluated haplotypes at each marker (only informative, if missing data leads to a decrease of evaluated haplotypes).

- **phased**: logical. If `TRUE` (default) chromosomes are expected to be phased. If `FALSE`, the haplotype data is assumed to consist of pairwise ordered chromosomes belonging to diploid individuals. EHHS is then estimated over individuals which are homozygous at the focal marker.

- **scalegap**: scale or cap gaps larger than the specified size to the specified size (default=`NA`, i.e. no scaling).

- **maxgap**: maximum allowed gap in bp between two markers. If exceeded, further calculation of EHHS is stopped at the gap (default=`NA`, i.e no limitation).

- **discard_integration_at_border**: logical. If `TRUE` (default) and computation reaches first or last marker or a gap larger than `maxgap`, iHH is set to `NA`.

- **lower_y_bound**: lower y boundary of the area to be integrated over (default: `limehhs`). Can be set to zero for compatibility with the program hapbin.

- **interpolate**: logical. Affects only IES and INES values. If `TRUE` (default), integration is performed over a continuous EHHS curve (values are interpolated linearly between consecutive markers), otherwise the EHHS curve decreases stepwise at markers.

Details

Values for site-specific Extended Haplotype Homozygosity (EHHS) are computed at each position upstream and downstream of the focal marker. These values are integrated with respect to their genomic position to yield an 'integrated EHHS' (iES) value.
Value

The returned value is a list containing the following elements:

- **mrk.name** The name/identifier of the focal marker.
- **ehhs** A table containing EHHS values as used by Sabeti et al. (2007), resp. the same values normalized to 1 at the focal marker (nEHHS) as used by Tang et al. (2007).
- **IES** Integrated EHHS.
- **INES** Integrated normalized EHHS.

References

See Also

data2haplohh, plot.ehhs, calc_ehh, scan_hh.

Examples

```r
#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#computing EHHS statistics for the marker "F1205400"
#which displays a strong signal of selection
ehhs <- calc_ehhs(haplohh_cgu_bta12, mrk = "F1205400")
```

Description

Calculate furcation trees around a focal marker. A furcation tree captures in greater detail than EHH values the decrease of extended haplotype homozygosity at increasing distances from the selected focal marker.
Usage

calc_furcation(
 haplohh,
 mrk,
 allele = NA,
 limhaplo = 2,
 phased = TRUE,
 polarized = TRUE
)

Arguments

- **haplohh**: an object of class haplohh (see data2haplohh).
- **mrk**: integer representing the number of the focal marker within the haplohh object or string representing its ID/name.
- **allele**: a vector of alleles as coded internally, i.e. in case of polarized alleles, 0 represents the ancestral, 1 or higher the derived alleles. If NULL, all alleles of the focal marker are considered.
- **limhaplo**: if there are less than limhaplo chromosomes that can be used for the calculation, it is stopped. This is useful in case of missing data, which lead to a successive exclusion of haplotypes: the further away from the focal marker the less haplotypes are evaluated.
- **phased**: logical. If TRUE (default), chromosomes are expected to be phased. If FALSE, consecutive chromosomes are assumed to belong to diploid individuals and furcation trees are limited to within individuals which are homozygous at the focal marker.
- **polarized**: logical. Affects only the order of furcations. If TRUE (default), the ancestral allele becomes the first furcation and derived alleles are sorted by their internal coding. Otherwise all alleles are sorted by their internal coding.

Details

A haplotype furcation tree visualizes the breakdown of LD at increasing distances from the focal marker. The root of each tree is an allele of the focal marker, which in turn is identified by a vertical dashed line. Moving either to the "left" or to the "right" of the focal marker, each further marker is an opportunity for a node; the tree either divides or does not, based on whether alleles at that marker distinguish between hitherto identical extended haplotypes. The thickness of the lines corresponds to the number of chromosomes sharing an extended haplotype.

Value

An object of class furcation, containing the furcation structure of the specified alleles at the focal marker.

References

See Also

plot.furcation, calc_haplen.

Examples

#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#plotting a furcation diagram for both ancestral and derived allele
#from the marker "F1205400"
#which display a strong signal of selection
f <- calc_furcation(haplohh_cgu_bta12, mrk = "F1205400")
plot(f)

calc_haplen

Calculate length of longest shared haplotypes around a focal marker

Description

Calculate for each chromosome the maximum length of its extended haplotype homozygosity.

Usage

calc_haplen(furcation)

Arguments

furcation an object of class furcation calculated by calc_furcation.

Details

Extended haplotype homozygosity is defined as the region around a focal marker in which a particular chromosome shares a haplotype with (its sequence is identical to) another chromosome. The function calculates for each chromosome the boundaries of its longest shared haplotype. These correspond to the last furcations of a chromosome in a furcation diagram. Note that the calculation is performed independently upstream and downstream of the focal marker and hence upper and lower boundaries do not necessarily arise from the same chromosomal pair.
calc_pairwise_haplen

The function returns a list containing four elements:

- **mrk.name**: name/identifier of the focal marker.
- **position**: position of the focal marker.
- **xlim**: positions of left- and rightmost markers covered by extended haplotypes.
- **haplen**: a data frame with the coordinates of extended haplotypes around the focal marker.

Examples

```r
# Example haplohh object (280 haplotypes, 1424 SNPs)
# See ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)

# Plotting haplotype lengths for both ancestral and derived allele
# of the marker "F1205400"
# Which displays a strong signal of selection
f <- calc_furcation(haplohh_cgu_bta12, mrk = "F1205400")
h <- calc_haplen(f)
plot(h)
```

Description

Calculate pairwise shared haplotype length between all chromosomes at a focal marker.

Usage

```r
calc_pairwise_haplen(
  haplohh,  # an object of class haplohh (see data2haplohh).
  mrk,      # integer representing the number of the focal marker within the haplohh object or string representing its ID/name.
  phased = TRUE,  # logical. If TRUE (default) chromosomes are expected to be phased. If FALSE, the haplotype data is assumed to consist of pairwise ordered chromosomes belonging to diploid individuals and only the two chromosomes of each individual are compared.
  maxgap = NA,
  max_extend = NA,
  side = "both"
)
```

Arguments

- **haplohh**: an object of class haplohh (see data2haplohh).
- **mrk**: integer representing the number of the focal marker within the haplohh object or string representing its ID/name.
- **phased**: logical. If TRUE (default) chromosomes are expected to be phased. If FALSE, the haplotype data is assumed to consist of pairwise ordered chromosomes belonging to diploid individuals and only the two chromosomes of each individual are compared.
calc_region_stats

Calculate score statistics for given regions

Description

Calculate score statistics (extremal values) for given regions. This function is intended for the comparison of different scores for the same chromosomal regions.

Usage

calc_region_stats(
 scan,
 regions,
 threshold = NA,
 pval = FALSE,
 ignore_sign = FALSE,
 right = TRUE
)
Arguments

- **scan**: a data frame containing scores (output of `ihh2ihs`, `ines2rsb` or `ies2xpehh`).
- **regions**: a data frame with column names `CHR`, `START` and `END`, specifying chromosomal regions (e.g. as obtained by function `calc_candidate_regions`).
- **threshold**: boundary score above which markers are defined as "extreme".
- **pval**: logical. If TRUE use the (negative log-) p-value instead of the score.
- **ignore_sign**: logical. If TRUE (default), take absolute values of score.
- **right**: logical, indicating if the regions should be closed on the right (and open on the left) or vice versa.

Value

A data frame with chromosomal regions. For each region the overall number of markers, their mean and maximum, the number of markers with extremal values, their percentage of all markers and their average are reported.

See Also

- `calc_candidate_regions`

calc_sfs_tests | Calculate site frequency spectrum test statistics

Description

Calculate site frequency spectrum (SFS) tests Tajima’s D, Fay & Wu’s H and Zeng’s E.

Usage

calc_sfs_tests(
 haplohh,
 polarized = TRUE,
 window_size = NA,
 overlap = 0,
 right = TRUE,
 min_n_mrk = 1,
 verbose = TRUE
)

Arguments

- **haplohh**: an object of class haplohh (see `data2haplohh`
polarized logical. TRUE by default. If FALSE, use major and minor allele instead of ancestral and derived. If there are more than two alleles then the minor allele refers to the second-most frequent allele. Note that Tajima’s D remains unchanged, Fay & Wu’s H is always zero for folded spectra and Zeng’s E becomes equal to Tajima’s D.

window_size size of sliding windows. If NA (default), there will be only one window covering the whole length of the chromosome.

overlap size of window overlap (default 0, i.e. no overlap).

right logical, indicating if the windows should be closed on the right and open on the left (default) or vice versa.

min_n_mrk minimum number of (polymorphic) markers per window.

verbose logical. TRUE by default; reports if multi-allelic sites are removed.

Details

Neutrality tests based on the site frequency spectrum (SFS) are largely unrelated to EHH-based methods. The tests provided here are implemented elsewhere, too (e.g. in package PopGenome).

Each test compares two estimations of the scaled mutation rate theta, which all have the same expected value under neutrality. Deviations from zero indicate violations of the neutral null model, typically population size changes, population subdivision or selection. Tajima’s D and Fay & Wu’s H become negative in presence of an almost completed sweep, Zeng’s E becomes positive for some time after it. Significance can typically be assigned only by simulations.

The standard definition of the tests cannot cope with missing values and typically markers with missing genotypes must be discarded. Ferretti (2012) provides an extension that can handle missing values (without discarding any non-missing values). In this package, only the first moments (the theta-estimators themselves) are adapted accordingly, but not the second moments (their variances), because the latter is computationally demanding and the resulting bias relatively small. It is recommended, though, to discard markers or haplotypes with more than 20% missing values.

Multi-allelic markers are always removed since the tests rely on the "infinite sites model" which implies that all polymorphic markers are bi-allelic. Monomorphic markers can be present, but are irrelevant for the tests.

Value

A data frame with window coordinates, the number of contained (polymorphic) markers, Watterson’s, Tajima’s and Zeng’s estimators of theta and the test statistics of Tajima’s D, Fay & Wu’s H and Zeng’s E.

References

Examples

```r
make.example.files()
# neutral evolution
hh <- data2haplohh("example_neutral.vcf", verbose = FALSE)
calc_sfs_tests(hh)
# strong selective sweep
hh <- data2haplohh("example_sweep.vcf", verbose = FALSE)
calc_sfs_tests(hh)
remove.example.files()
```

data2haplohh

Convert data from input file to an object of class haplohh

Description

Convert input data files to an object of *haplohh-class*.

Usage

data2haplohh(
 hap_file,
 map_file = NA,
 min_perc_geno.hap = NA,
 min_perc_geno.mrk = 100,
 min_maf = NA,
 chr.name = NA,
 popsel = NA,
 recode.allele = FALSE,
 allele_coding = "12",
 haplotype.in.columns = FALSE,
 remove_multiple_markers = FALSE,
 polarize_vcf = TRUE,
 capitalize_AA = TRUE,
 vcf_reader = "data.table",
 position_scaling_factor = NA,
 verbose = TRUE
)

Arguments

hap_file file containing haplotype data (see details below).
map_file file containing map information (see details below).
min_perc_genome.hap threshold on percentage of missing data for haplotypes (haplotypes with less than \texttt{min_perc_genome.hap} percent of markers genotyped are discarded). Default is \texttt{NA}, hence no constraint.
min_perc_genome.mrk threshold on percentage of missing data for markers (markers genotyped on less than \texttt{min_perc_genome.mrk} percent of haplotypes are discarded). By default, \texttt{min_perc_genome.mrk}=100, hence only fully genotyped markers are retained. This value cannot be set to \texttt{NA} or zero.
min_maf threshold on the Minor Allele Frequency. Markers having a MAF lower than or equal to \texttt{min_maf} are discarded. In case of multi-allelic markers the second-most frequent allele is referred to as minor allele. Setting this value to zero eliminates monomorphic sites. Default is \texttt{NA}, hence no constraint.
chr.name name of the chromosome considered (relevant if data for several chromosomes is contained in the haplotype or map file).
popsel code of the population considered (relevant for fastPHASE output which can contain haplotypes from various populations).
recode.allele *Deprecated*. logical. \texttt{FALSE} by default. \texttt{TRUE} forces parameter \texttt{allele_coding} to "map", \texttt{FALSE} leaves it unchanged.
allele_coding the allele coding provided by the user. Either "12" (default), "01", "map" or "none". The option is irrelevant for vcf files and ms output.
haplotype.in.columns logical. If \texttt{TRUE}, phased input haplotypes are assumed to be in columns (as produced by the SHAPEIT2 program (O’Connell et al., 2014)).
remove_multiple_markers logical. If \texttt{FALSE} (default), conversion stops, if multiple markers with the same chromosomal position are encountered. If \texttt{TRUE}, duplicated markers are removed (all but the first marker with identical positions).
polarize_vcf logical. Only of relevance for vcf files. If \texttt{TRUE} (default), tries to polarize variants with help of the AA entry in the INFO field. Unpolarized alleles are discarded. If \texttt{FALSE}, allele coding of vcf file is used unchanged as internal coding.
capitalize_AA logical. Only of relevance for vcf files with ancestral allele information. Low confidence ancestral alleles are usually coded by lower-case letters. If \texttt{TRUE} (default), these are changed to upper case before the alleles of the sample are matched for polarization.
vcf_reader library used to read vcf. By default, low-level parsing is performed using the generic package \texttt{data.table}. In order to read compressed files, the package \texttt{R.utils} must be installed, too. If the specialized package \texttt{vcfR} is available, set this parameter to "vcfR".
position_scaling_factor intended primarily for output of ms where positions lie in the interval \([0,1]\). These can be rescaled to sizes of typical markers in real data.
verbose logical. If \texttt{TRUE} (default), report verbose progress.
Details

Five haplotype input formats are supported:

- a "standard format" with haplotypes in rows and markers in columns (with no header, but a haplotype ID/name in the first column).
- a "transposed format" similar to the one produced by the phasing program SHAPEIT2 (O’Connell et al., 2014) in which haplotypes are in columns and markers in rows (with neither header nor marker IDs nor haplotype IDs).
- output files from the fastPHASE program (Sheet and Stephens, 2006). If haplotypes from several different population were phased simultaneously (-u fastPHASE option was used), it is necessary to specify the population of interest by parameter popsel (if this parameter is not or wrongly set, the error message will provide a list of the population numbers contained in the file).
- files in variant call format (vcf). No mapfile is needed is this case. If the file contains several chromosomes, it is necessary to choose one by parameter chr.name.
- output of the simulation program ‘ms’. No mapfile is needed in this case. If the file contains several ‘runs’, a specific number has to be specified by the parameter chr.name.

The "transposed format" has to be explicitly set while the other formats are recognized automatically.

The map file contains marker information in three, or, if it is used for polarization (see below), five columns:

- marker name/id
- chromosome
- position (physical or genetic)
- ancestral allele encoding
- derived allele encoding

The markers must be in the same order as in the haplotype file. If several chromosomes are represented in the map file, it is necessary to choose that which corresponds to the haplotype file by parameter chr.name.

Haplotypes can be given either with alleles already coded as numbers (in two possible ways) or with the actual alleles (e.g. nucleotides) which can be translated into numbers either using the fourth and fifth column of the map file or by their alpha-numeric order. Correspondingly, the parameter allele_coding has to be set to either "12", "01", "map" or "none":

- "12": 0 represents missing values, 1 the ancestral allele and 2 (or higher integers) derived allele(s).
- "01": NA or '.' (a point) represent missing values, 0 the ancestral and 1 (or higher integers) derived allele(s).
- "map": for each marker, the fourth column of the map file defines the ancestral allele and the fifth column derived alleles. In case of multiple derived alleles, they must be separated by commas without space. Alleles in the haplotype file which do not appear in neither of the two columns of the map file are regarded as missing values (NA).
• “none”: NA or ‘.’ (a point) represent missing values, otherwise for each marker the allele that
comes first in alpha-numeric order is coded by 0, the next by 1, etc. Evidently, this coding
does not convey any information about allele status as ancestral or derived, hence the alleles
cannot be regarded as polarized.

The information of allelic ancestry is exploited only in the frequency-bin-wise standardization of
iHS (see `ihh2ihs`). However, although ancestry status does not figure in the formulas of the cross
populations statistics Rsb and XP-EHH, their values do depend on the assigned status.

The arguments `min_perc_geno.hap`, `min_perc_geno.mrk` and `min_maf` are evaluated in this order.

Value

The returned value is an object of `haplohh-class`.

References

data: applications to inferring missing genotypes and haplotypic phase. *Am J Hum Genet*, 78, 629-
644.

Examples

copy example files into the current working directory.
make.example.files()
create object using a haplotype file in "standard format"
hap <- data2haplohh(hap_file = "bta12_cgu.hap",
 map_file = "map.inp",
 chr.name = 12,
 allele_coding = "map")
create object using fastPHASE output
hap <- data2haplohh(hap_file = "bta12_hapguess_switch.out",
 map_file = "map.inp",
 chr.name = 12,
 popsel = 7,
 allele_coding = "map")
clean up demo files
remove.example.files()

Usage

distribplot(
 data,
 lty = 1,
 lwd = 1.5,
 col = c("blue", "red"),
 qqplot = FALSE,
 resolution = 0.01,
 ...
)

Arguments

da data a vector of iHS, Rsb or XPEHH values.
lty line type.
lwd line width.
col a vector describing the colors of the observed and Gaussian distribution, respectively.
qqplot logical. If TRUE a qq-plot is drawn instead of the distribution density curve.
resolution affects only qqplot. Rasterize data points to a quadratic grid with the specified resolution and remove duplicate points. Defaults to 0.01.
... further arguments passed to plot.default.

Value

The function returns a plot.

See Also

ihh2ihs, ines2rsb, ies2xpehh, manhattanplot.

Examples

library(rehh.data)
#results from a genome scan (44,057 SNPs) see ?wgscan.cgu for details
data(wgscan.cgu)
#extract vector with iHS values from data frame
IHS <- ihh2ihs(wgscan.cgu)$ihs[["IHS"]]
distribplot(IHS, main = "iHS (CGU population)")
distribplot(IHS, main = "iHS (CGU population)", qqplot = TRUE)
extract_regions

Extract regions from a scan data frame.

Usage

extract_regions(scan, regions, right = TRUE)

Arguments

- `scan`: A data frame with chromosomal positions like obtained by `scan_hh, ihh2ihs, ines2rsb` or `ies2xpehh`
- `regions`: A data frame with genomic regions like the output of `calc_candidate_regions`
- `right`: logical, indicating if the intervals should be closed on the right (and open on the left) or vice versa.

Value

A subset of data frame `scan`, retaining only positions belonging to the regions specified in data frame `regions`.

Examples

```r
library(rehh.data)
data(wgscan.cgu)
regions <- data.frame(CHR = 12, START = 2.88e+7, END = 2.92e+7)
extract_regions(wgscan.cgu, regions)
```

freqbinplot

Plot of unstandardized iHS within frequency bins.

Description

Plot of unstandardized iHS within frequency bins.
freqbinplot

Usage

freqbinplot(
 x,
 spectrum = FALSE,
 main = NA,
 xlab = "Derived allele frequency",
 ylab = NA,
 xlim = c(0, 1),
 ylim = NULL,
 pch = 20,
 ...
)

Arguments

 x data (output of function `ihh2ihs`)
 spectrum logical. If TRUE, plot frequency spectrum instead of iHS.
 main an overall title for the plot.
 xlab a title for the x axis.
 ylab a title for the y axis.
 xlim the x coordinate range of the plot.
 ylim the y coordinate range of the plot.
 pch plotting 'character' see `points`.
 ... further arguments to be passed to plot resp. points.

Details

The plot shows the mean and the quantiles calculated by function `ihh2ihs` for the unstandardized iHS in each frequency bin. Note that the standardization of iHS is performed bin-wise in order to reduce the frequency-dependence of iHS values (expected under neutrality). An implicit assumption of this procedure is that each bin is dominated by neutral markers.

See Also

 `ihh2ihs`

Examples

```
library(rehh.data)
data(wgscan.cgu)
#results from a genome scan (44,057 SNPs)
#see ?wgscan.eut and ?wgscan.cgu for details
wgscan.cgu.ihs <- ihh2ihs(wgscan.cgu)
freqbinplot(wgscan.cgu.ihs)
```
An S4 class to represent a furcation tree on one side of one allele of a focal marker

Description

An S4 class to represent a furcation tree on one side of one allele of a focal marker.

Details

A furcation structure consists of two trees ("left" and "right") for each allele of a focal marker. If there are only bi-allelic markers and no missing values, the trees are bifurcating.

Missing values are treated similarly to an extra allele in so far as they cause a furcation. However, the resulting daughter node is marked accordingly and the chromosomes excluded from further calculations. If all chromosomes of a parent node have missing values, the "furcation" is degenerated and yields a single daughter node.

Note that a tree with n leaves can have at most 2n-1 nodes.

In a furcation tree, the leaves do not necessarily represent single chromosomes, either due to multiple missing data or because the first/last marker was reached before all extended haplotypes were distinct.

Slots

- node_parent: a vector, representing the tree structure. Each node (number) is assigned its parent node (number).
- node_pos: a vector, assigning to each node (number) its position in the chromosome, i.e. at which marker position the furcation occurred.
- node_with_missing_data: a vector of type logical. Pseudo-furcations arise due to missing data at a marker. The daughter node (number) is marked accordingly.
- label_parent: a vector, that attaches an "extra leave", representing the haplotype number (defined by the order in the haplotype data file) to leaves of the tree. This is necessary because in general not all leaves of the original tree represent a single haplotype/chromosome.

An S4 class representing the complete furcation pattern around a focal marker.

Description

An S4 class representing the complete furcation pattern around a focal marker.
Slots

.Data a list containing for each allele an object of allelefurcation-class.

mrk.name the name/identifier of the focal marker.

position the chromosomal position of the focal marker.

xlim the range of marker positions.

nhap the number of haplotypes in the sample.

See Also

calc_furcation

Examples

copy example files into working directory
make.example.files()

read first example file
hh <- data2haplohh(hap_file = "example1.hap", map_file = "example1.map", allele_coding = "01")

remove example files
remove.example.files()

calculate furcation structure around marker "rs6"
f <- calc_furcation(hh, mrk = "rs6")

extract left side tree of ancestral allele (which is coded by '0')
f[['0']]@left

the tree consists of seven nodes, '1' being the root node
nodes 2 and 3 have the root node as parent, etc.
the first chromosome is attached as a label node to node 7, etc.
For comparison, a plot of the complete furcation structure:
plot(f)

Description

An object of this class contains the information needed for computation of EHH based statistics.

Usage

```r
## S4 method for signature 'haplohh'
chr.name(x)
```

```r
## S4 method for signature 'haplohh'
positions(x)
```

```r
## S4 method for signature 'haplohh'
haplo(x)
```

```r
## S4 method for signature 'haplohh'
mrk(x)
```

```r
## S4 method for signature 'haplohh'
mrk.names(x)
```

```r
## S4 method for signature 'haplohh'
hhap(x)
```

```r
## S4 method for signature 'haplohh'
hap.names(x)
```

Arguments

- `x` an object of this class.

Details

This class is the basis for all calculations done by this package. Note that the matrix in slot haplo has to be of type integer, not numeric. Objects built by versions of rehh up to 2.0.4 coded this matrix as numeric and used a different coding scheme. They can be converted e.g. by haplohh <- update_haplohh(old_haplohh) in order be used with the present version.

Slots

- `chr.name` name of the chromosome/scaffold to which the markers belong.
- `positions` vector of type numeric containing the marker positions within the chromosome.
- `haplo` matrix of type integer containing haplotypes in rows and markers in columns.
See Also

data2haplohh, update_haplohh

Examples

showClass("haplohh")

\[
\text{haplohh2sweepfinder} \quad \text{\textit{Translate object of \texttt{haplohh-class} into SweepFinder format}}
\]

Description

Extract allele frequencies of an object of class \texttt{haplohh-class} and returns a table in SweepFinder input format.

Usage

\[
\text{haplohh2sweepfinder}(\text{haplohh, polarized = TRUE, verbose = TRUE})
\]

Arguments

- \texttt{haplohh} \quad \text{object of class \texttt{haplohh-class}.}
- \texttt{polarized} \quad \text{logical. If \textbf{TRUE} (default), flag "folded" is set to 0, otherwise to 1.}
- \texttt{verbose} \quad \text{logical. If \textbf{TRUE} (default), prints filter statements.}

Details

SweepFinder and SweeD are two stand-alone programs which implement the same method to detect selective sweeps using the allele frequency at each site. This function calculates these frequencies from a \texttt{haplohh-class} and returns a table which can be saved into a file (with tabs as separators, without row names and quotes) that can be used as input for the two programs.

Sites with less than two haplotypes genotyped or with more than two alleles are removed. If \texttt{polarized}, sites monomorphic for the ancestral allele are removed, too.

Value

A dataframe with four columns:

- \textbf{position} marker position
- \textbf{x} (absolute) frequency of the alternative (derived) variant
- \textbf{n} number of non-missing genotypes
- \textbf{folded} a flag marking polarization
haploh_cgu_bta12

References

See Also

haploh-class, data2haploh

Examples

```r
#example
# sweepfinder example from vignette
make.example.files()
hh <- data2haploh("example_sweep_with_recombination.vcf")
haplohh2sweepfinder(hh)
remove.example.files()
```

 haploh_cgu_bta12
 Example of an haploh object

Description

The object contains haplotype data for 140 cattle individuals (280 haplotypes) belonging to the Creole breed from Guadeloupe (CGU) and 1424 markers (mapping to chromosome BTA12).

Usage

```r
data(haploh_cgu_bta12)
```

Format

An object of *haploh-class*.

References

See Also

data2haploh
ies2xpehh

Compute XP-EHH

Description

Compute XP-EHH (standardized ratio of iES of two populations).

Usage

```r
ies2xpehh(
    scan_pop1,
    scan_pop2,
    popname1 = NA,
    popname2 = NA,
    min_nhaplo = NA,
    standardize = TRUE,
    include_freq = FALSE,
    p.side = NA,
    p.adjust.method = "none",
    verbose = TRUE
)
```

Arguments

- **scan_pop1**: a data frame with markers in rows and columns with chromosome name, position of the marker, frequency of the ancestral allele and iES as obtained by `scan_hh` on the first population.
- **scan_pop2**: a data frame with markers in rows and columns with chromosome name, position of the marker, frequency of the ancestral allele and iES as obtained by `scan_hh` on the second population.
- **popname1**: short ID/name of the first population; to be added to an output column name.
- **popname2**: short ID/name of the second population; to be added to an output column name.
- **min_nhaplo**: discard positions where in at least one of the populations fewer than `min_nhaplo` haplotypes have been evaluated (default NA).
- **standardize**: logical. If TRUE (default), then standardize XP-EHH, else report unstandardized XP-EHH.
- **include_freq**: logical. If TRUE include columns with allele frequencies into result.
- **p.side**: side to which refers the p-value. Default NA, meaning two-sided. Can be set to "left" or "right".
- **p.adjust.method**: method passed to function `p.adjust` to correct the p-value for multiple testing. Default "none".
- **verbose**: logical. If TRUE (default), report number of markers of the two source data frames and result data frame.
Details

Log ratio of iES (population 1 over population 2) computed as described in Sabeti et al. (2007). Note that the two data frames are merged on the basis of chromosome and position. Marker names are kept, if they are identical and unique in both data frames.

Since the standardized XP-EHH values follow, if markers evolve predominantly neutrally, approximately a standard Gaussian distribution, it is practical to assign to the values a p-value relative to the null-hypothesis of neutral evolution. The parameter p.side determines if the p-value is assigned to both sides of the distribution or to one side of interest.

Value

The returned value is a data frame with markers in rows and columns for chromosome name, marker position, XP-EHH and, if standardized, p-value in a negative log10 scale. Optionally, allele frequencies are included.

References

See Also

scan_hh, distribplot, manhattanplot

Examples

```r
library(rehh.data)
data(wgscan.cgu); data(wgscan.eut)
## results from a genome scan (44,057 SNPs)
## see ?wgscan.eut and ?wgscan.cgu for details
wgscan.xpehh <- ies2xpehh(wgscan.cgu, wgscan.eut, "CGU", "EUT")
```

ihh2ihs

Description

Compute iHS (standardized ratio of iHH values of two alleles).
Usage

ihh2ihs(
 scan,
 freqbin = 0.025,
 min_maf = 0.05,
 min_nhaplo = NA,
 standardize = TRUE,
 include_freq = FALSE,
 right = FALSE,
 alpha = 0.05,
 p.side = NA,
 p.adjust.method = "none",
 verbose = TRUE
)

Arguments

scan a data frame with chromosome name, marker position, frequency of ancestral (resp. major) allele, frequency of derived (resp. minor) allele, and iHH for both alleles, as obtained from function scan_hh.

freqbin size of the bins to standardize log(iHH_A/iHH_D). Markers are binned with respect to the derived allele frequency at the focal marker. The bins are built from min_maf to 1-min_maf in steps of size freqbin. If set to 0, standardization is performed considering each observed frequency as a discrete frequency class (useful in case of a large number of markers and few different haplotypes). If set to an integer of 1 or greater, a corresponding number of equally sized bins are created.

min_maf focal markers with a MAF (Minor Allele Frequency) lower than or equal to min_maf are discarded from the analysis (default 0.05).

min_nhaplo focal markers with least one of the two compared alleles carried by fewer than min_nhaplo haplotypes, are discarded (default NA).

standardize logical. If TRUE (default), then standardize iHS, else report unstandardized iHS.

include_freq logical. If TRUE include columns with allele frequencies into result.

right logical. If TRUE the bin intervals are closed on the right (and open on the left).

alpha calculate quantiles alpha/2 and (1-alpha/2) for unstandardized binned iHS.

p.side side to which refers the p-value. Default NA, meaning two-sided. Can be set to "left" or "right".

p.adjust.method method passed to function p.adjust to correct the p-value for multiple testing. Default "none".

verbose logical. If TRUE (default), report number of markers of the source data frame and result data frame.
Ines2rsb

Details

Computes log ratio of iHH of two focal alleles as described in Voight et al. (2006). The standardization is performed within each bins separately because of the frequency-dependence of expected iHS values under neutrality. An implicit assumption of this approach is that each bin is dominated by neutral markers.

Since the standardized iHS values follow, if markers evolve predominantly neutrally, approximately a standard Gaussian distribution, it is practical to assign to the values a p-value relative to the null-hypothesis of neutral evolution. The parameter p.side determines if the p-value is assigned to both sides of the distribution or to one side of interest.

Value

The returned value is a list containing two elements

- ihs: a data frame with markers in rows and the columns for chromosome name, marker position, iHS and, if standardized, p-value in a negative log10 scale. Optionally, allele frequencies are included.
- frequency.class: a data frame with bins in rows and columns for the number of markers, mean uniHS, standard deviation uniHS, lower quantile uniHS, upper quantile uniHS.

References

See Also

scan_hh, distribplot, freqbinplot, manhattanplot

Examples

```r
library(rehh.data)
data(wgscan.cgu)
# results from a genome scan (44,057 SNPs)
# see ?wgscan.eut and ?wgscan.cgu for details
wgscan.cgu.ihs <- ihh2ihs(wgscan.cgu)
```

Compute Rsb

Description

Compute Rsb (standardized ratio of inES of two populations).
Usage

ines2rsb(
 scan_pop1,
 scan_pop2,
 popname1 = NA,
 popname2 = NA,
 min_nhaplo = NA,
 standardize = TRUE,
 include_freq = FALSE,
 p.side = NA,
 p.adjust.method = "none",
 verbose = TRUE
)

Arguments

scan_pop1 a data frame with markers in rows and columns with chromosome name, position of the marker, frequency of the ancestral allele and inES as obtained by scan_hh on the first population.

scan_pop2 a data frame with markers in rows and columns with chromosome name, position of the marker, frequency of the ancestral allele and inES as obtained by scan_hh on the second population.

popname1 short ID/name of the first population; to be added to an output column name.

popname2 short ID/name of the second population; to be added to an output column name.

min_nhaplo discard positions where in at least one of the populations fewer than min_nhaplo haplotypes have been evaluated (default NA).

standardize logical. If TRUE (default), then standardize Rsb, else report unstandardized Rsb.

include_freq logical. If TRUE include columns with allele frequencies into result.

p.side side to which refers the p-value. Default NA, meaning two-sided. Can be set to "left" or "right".

p.adjust.method method passed to function p.adjust to correct the p-value for multiple testing. Default "none".

verbose logical. If TRUE (default), report number of markers of the two source data frames and result data frame.

Details

Log ratio of inES (population 1 over population 2) computed as described in Tang et al. (2007). Note that the two data frames are merged on the basis of chromosome and position. Marker names are kept, if they are identical and unique in both data frames.

Since the standardized Rsb values follow, if markers evolve predominantly neutrally, approximately a standard Gaussian distribution, it is practical to assign to the values a p-value relative to the null-hypothesis of neutral evolution. The parameter p.side determines if the p-value is assigned to both sides of the distribution or to one side of interest.
Value

The returned value is a data frame with markers in rows and columns for chromosome name, marker position, Rsb and, if standardized, p-value in a negative log10 scale. Optionally, allele frequencies are included.

References

See Also

scan_hh, distribplot, manhattanplot

Examples

library(rehh.data)
data(wgscan.cgu) ; data(wgscan.eut)
results from a genome scan (44,057 SNPs)
##see ?wgscan.eut and ?wgscan.cgu for details
wgscan.rsb <- ines2rsb(wgscan.cgu, wgscan.eut, "CGU", "EUT")

Description

This function copies the following example files to the current working directory:

- example1.hap "example 1" haplotype file in "standard format"
- example1.map "example 1" marker information file
- example1.vcf "example 1" as vcf file
- example2.hap "example 2" haplotype file in "standard format"
- example2.map "example 2" marker information file
- example2.vcf "example 2" as vcf file
- example_neutral.vcf "example neutral evolution" as vcf file
- example_sweep.vcf "example for a selective sweep (without recombination)"
- example_sweep_with_recombination.vcf "example for a selective sweep with recombination"
- ms.out output from a small simulation by the program 'ms'
- bta12_cgu.hap an haplotype file in "standard format"
- bta12_cgu.thap an haplotype file in "transposed format"
Example 1 was used in (Gautier 2017) to explain the various EHH derived statistics calculated by this package. Example 2 is an extension containing multi-allelic markers and missing values. Examples for neutral data and sweeps are discussed in a supplement of Klassmann (2020).

The bta12 files contain data for 280 haplotypes, originating from 140 individuals belonging to the Creole cattle breed from Guadeloupe, at 1,424 markers mapping to bovine chromosome 12 (BTA12) (Gautier 2011).

Usage

make.example.files()

References

See Also

data2haplohh, remove.example.files

manhattanplot

* Manhattan plot of iHS, XP-EHH or Rsb over a genome.

Description

Manhattan plot of iHS, XP-EHH or Rsb over a genome.

Usage

manhattanplot(
 data,
 pval = FALSE,
 threshold = c(-2, 2),
 chr.name = NA,
 cr = NULL,
 cr.col = "gray",
 cr.opacity = 0.5,
 cr.lab.cex = 0.6,
 cr.lab.offset = 0,
Arguments

- **data**
 output of either `ihh2ihs`, `ies2xpehh` or `ines2rsb`.

- **pval**
 logical. If TRUE, the p-value is plotted, otherwise the score itself.

- **threshold**
 a horizontal line is added at the corresponding value(s), for instance to represent a significance threshold. A single value (upper or lower threshold) or two values (upper and lower) can be specified.

- **chr.name**
 if NA (default), all chromosomes are plotted, otherwise only those specified.

- **cr**
 highlight "candidate regions" specified by a data.frame with columns CHR, START and END as obtained by the function `calc_candidate_regions`.

- **cr.col**
 the color for highlighting

- **cr.opacity**
 a value between 0 (invisible) and 1 (opaque).

- **cr.lab.cex**
 text size of candidate region labels.

- **cr.lab.offset**
 offset of candidate region labels.

- **cr.lab.pos**
 if "top" (default) or "bottom", candidate regions are labeled by numbers; to turn off, use "none".

- **mrk**
 highlight marker specified by a data.frame containing the columns CHR and POSITION. The row names of that data frame are taken as labels. Alternatively a vector with marker IDs can be specified. In the latter case the ID is used as label.

- **mrk.cex**
 size of marker label.

- **mrk.col**
 color of the highlighted points.

- **mrk.pch**
 type of the highlighted points.

- **mrk.lab.cex**
 text size of marker label. If zero, no labels are printed.

- **mrk.lab.pos**
 a position specifier for the text. Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of, above and to the right of the highlighted marker.

- **ignore_sign**
 logical. If TRUE, absolute values are plotted.

- **cex**
 size of the points representing markers in the plot(s) (see `par`).
plot.ehh

- **las**: orientation of axis labels (see `par`).
- **pch**: type of the points representing markers in the plot(s) (see `points`).
- **inset**: inset (in bases) between chromosomes to avoid overlap of data points. Default: 5,000,000 bases.
- **resolution**: Rasterize data points to the specified resolution and remove duplicate points. Defaults to NULL, i.e. no rasterization. A typical value might be `c(1E5, 0.01)`, meaning that resolution on the x-axis (chromosomal position) is 100000 and on the y-axis (score or p-value) is 0.01.

Further arguments to be passed to `plot.default`.

Details

The color of chromosomes is taken from the "Graphics Palette", see `palette`.

If a single chromosome is plotted, a genomic region can be specified by argument `xlim`.

Other statistics can be plotted as well, although a warning is issued. They must be given by a data.frame with columns `CHR` and `POSITION` and the statistic in the third column.

Value

The function returns a plot.

See Also

`ihh2ihs`, `ies2xpehh`, `ines2rsb`, `calc_candidate_regions`.

Examples

```r
library(rehh.data)
data(wgscan.cgu)
## results from a genome scan (44,057 SNPs)
## see ?wgscan.eut and ?wgscan.cgu for details
wgscan.ihs <- ihh2ihs(wgscan.cgu)
manhattanplot(wgscan.ihs)
```

plot.ehh: Plot EHH around a focal marker

Description

Plot curve of EHH values around a focal marker.
plot.ehh

Usage

```r
## S3 method for class 'ehh'
plot(
  x,
  ylim = c(0, 1),
  type = "l",
  main = paste0("EHH around ", x$mrk.name, "),
  xlab = "Position",
  ylab = "Extended Haplotype Homozygosity",
  col = c("blue", "red", "violet", "orange"),
  mrk.col = "gray",
  bty = "n",
  legend = NA,
  legend.xy.coords = "automatic",
  ...
)
```

Arguments

- `x`: data (output of `calc_ehh`).
- `ylim`: the y limits of the plot.
- `type`: plot type (see code `plot.default` and `matplot`). Type "s" or "S" yield both (the same) piecewise constant curve.
- `main`: title for the plot (default NA, i.e. none).
- `xlab`: title for the x-axis.
- `ylab`: title for the y-axis.
- `col`: color for the ancestral and derived alleles (respectively) curves.
- `mrk.col`: color of the vertical line at the focal marker position.
- `bty`: box type around plot (see `par`).
- `legend`: legend text.
- `legend.xy.coords`: if "automatic" (default) places legend either top left or top right; if "none", no legend is drawn; otherwise the argument is passed to `legend`.
- `...`: further arguments to be passed to function `matplot`.

See Also

- `data2haplohh`
- `calc_ehh`
- `plot.ehhs`
- `scan_hh`

Examples

```r
# example haplohh object (280 haplotypes, 1424 SNPs)
# see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
# computing EHH statistics for the marker "F1205400"
# which displays a strong signal of selection
```
ehh <- calc_ehh(haplohh_cgu_bta12, mrk = "F1205400")
plot(ehh)

plot.ehhs

Plot curve of EHHS values around a focal marker.

Usage

S3 method for class 'ehhs'
plot(
 x,
 nehhs = FALSE,
 ylim = c(0, 1),
 type = "l",
 main = paste0("EHHS around ", x$mrk.name, ", "),
 xlab = "Position",
 ylab = "Extended Haplotype Homozygosity per Site",
 bty = "n",
 mrk.col = "gray",
 ...
)

Arguments

x data (output of calc_ehhs).
nehhs logical. If TRUE, plot normalized EHHS.
ylim the y limits of the plot
type plot type (see codeplot.default. Type "s" or "S" yield both (the same) piecewise constant curve.
main title for the plot (default NA, i.e. none).
xlab title for the x-axis.
ylab title for the y-axis.
bty box type around plot (see par).
mrk.col color of the vertical line at the focal marker position.
... further arguments to be passed to function plot.default.

See Also
data2haplohh, plot.ehh, calc_ehhs, scan_hh.
Examples

```r
# example haplohh object (280 haplotypes, 1424 SNPs)
# see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
# computing EHHS statistics for the marker "F1205400"
# which displays a strong signal of selection
ehhs <- calc_ehhs(haplohh_cgu_bta12, mrk = "F1205400")
plot(ehhs)
```

plot.furcation

Plots furcation trees around a focal marker

Description

Plots furcation trees around a focal marker

Usage

```r
## S3 method for class 'furcation'
plot(
  x,
  allele = NA,
  col = c("blue", "red", "violet", "orange"),
  mrk.col = "gray",
  lwd = 0.1,
  hap.names = NULL,
  cex.lab = 1,
  family.lab = "",
  offset.lab = 0.5,
  legend = NA,
  legend.xy.coords = "automatic",
  ...
)
```

Arguments

- `x`: an object of class furcation (see `calc_furcation`).
- `allele`: If NA (default), furcation trees for all alleles of the focal marker are plotted, otherwise for the specified alleles. Alleles must be specified by their internal coding, i.e. '0' for ancestral resp. major allele, etc.
- `col`: color for each allele (as coded internally).
- `mrk.col`: color of the vertical line at the focal marker position.
- `lwd`: controls the relative width of the diagram lines on the plot (default 0.1).
- `hap.names`: a vector containing names of chromosomes.
- `cex.lab`: relative size of labels. See `par`.
family.lab font family for labels. See par.
offset.lab offset of labels. See par.
legend legend text.
legend.xy.coords if "automatic" (default) places legend either top left or top right; if "none", no
legend is drawn; otherwise argument is passed to legend.

See Also

plot.haplen.

Examples

#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#plotting furcation diagram for both ancestral and derived allele
#from the marker "F1205400"
#which display a strong signal of selection
f <- calc_furcation(haplohh_cgu_bta12, mrk = "F1205400")
plot(f)
plot(f, xlim = c(2e+07,3.5e+07))
plot(f, xlim = c(2.7e+07,3.1e+07))
plot(f, xlim = c(2.7e+07,3.1e+07), hap.names = hap.names(haplohh_cgu_bta12), cex.lab=0.3)

plot.haplen Plot the length of extended haplotypes around a focal marker

Description

Plot the length of extended haplotype around a focal marker.

Usage

S3 method for class 'haplen'
plot(
x,
allele = NA,
group_by_allele = TRUE,
order_by_length = FALSE,
col = c("blue", "red", "violet", "orange"),
mrk.col = "gray",
lwd = 1,
hap.names = NULL,
cex.lab = 1,
family.lab = "",

Arguments

x an object of class haplen generated by `calc_haplen`.

allele if NA (default), haplotypes of all alleles are plotted, otherwise for the specified alleles. Alleles must be specified by their internal coding, i.e. '0' for ancestral resp. major allele, etc.

group_by_allele logical. If TRUE (default), group chromosomes by their allele at the focal marker; alleles are ordered by their internal coding unless parameter alleles is specified. If FALSE, haplotypes are drawn by their order in the input file.

order_by_length if TRUE, chromosomes are ordered by their shared haplotype length.

col color for each allele (as coded internally).

mrk.col color of the vertical line at the focal marker position.

lwd line width.

hap.names a vector containing the names of chromosomes.

cex.lab relative letter size of labels. See `par`.

family.lab font family for labels. See `par`.

offset.lab offset of labels. See `par`.

pos.lab position of haplotype labels. Either "left", "right" or "both".

legend legend text.

legend.xy.coords

... other parameters to be passed to `plot.default`.

See Also

`calc_haplen`, `plot.furcation`.

Examples

```r
# example haplohh object (280 haplotypes, 1424 SNPs)
# see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
# plotting length of extended haplotypes for both ancestral and derived allele
# of the marker "F1205400"
# which displays a strong signal of selection
f <- calc_furcation(haplohh_cgu_bta12, mrk = "F1205400")
```
h <- calc_haplen(f)
plot(h)
plot(h, hap.names = hap.names(haplohh_cgu_bta12), cex.lab = 0.3)

plot.haplohh

Plot the variants of a haplohh object

Description

Plot the variants of a haplohh object. This method is intended for visualization of very small data sets such as the examples provided by the package.

Usage

S3 method for class 'haplohh'
plot(
 x,
 mrk = NA,
 allele = NA,
 group_by_allele = FALSE,
 ignore.distances = FALSE,
 col = c("blue", "red", "violet", "orange"),
 linecol = "gray",
 mrk.col = "gray",
 pch = 19,
 cex = 1,
 lwd = 1,
 hap.names = NULL,
 mrk.names = NULL,
 cex.lab.hap = 0.8,
 cex.lab.mrk = 0.8,
 family.lab = "",
 offset.lab.hap = 0.5,
 offset.lab.mrk = 0.25,
 pos.lab.hap = "left",
 pos.lab.mrk = "top",
 srt.hap = 0,
 srt.mrk = 0,
 highlight.mrk = NULL,
 highlight.mrk.col = c("lightgray", "black", "darkgray"),
 ...
)

Arguments

x an object of class haplo-hh generated by data2haplohh.
mrk the focal marker. Used only, if alleles are grouped or (de-)selected.
allele if NA (default), haplotypes of all alleles are plotted, otherwise for the specified alleles. Alleles must be specified by their internal coding, i.e. '0' for ancestral resp. major allele, etc. Haplotypes with missing values at the focal marker can only be selected in combination with genotyped alleles, e.g. as c(1, NA).

group_by_allele logical. If TRUE, group chromosomes by their allele at the focal marker; alleles are ordered by their internal coding unless parameter alleles is specified. If FALSE (default), haplotypes are drawn by their order in the input file.

ignore.distances logical. If TRUE, markers are drawn equally-spaced.

col color for each allele (as coded internally).

linecol the color of the background lines. If more than one color is specified and sequences sorted by the marker allele, the specified colors are used to distinguish the alleles; otherwise consecutive sequences are set into the specified colors.

mrk.col color of the vertical line at the focal marker position.
pch symbol used for markers. See points.
cex relative size of marker symbol. See points.
lwd line width.

hap.names a vector containing the names of chromosomes.

mrk.names a vector containing the names of markers.
cex.lab.hap relative letter size of haplotype labels. See par.
cex.lab.mrk relative letter size of marker labels. See par.
family.lab font family for labels. See par.

offset.lab.hap offset of haplotype labels. See par.

offset.lab.mrk offset of marker labels. See par.

pos.lab.hap position of haplotype labels. Either "left" (default), "right", "none" or "both".
pos.lab.mrk position of marker labels. Either "top" (default) or "none".
srt.hap rotation of haplotype labels (see par).
srt.mrk rotation of marker labels (see par).

highlight.mrk vector of markers to be highlighted

highlight.mrk.col color for each allele (as coded internally) at highlighted markers.

... other parameters to be passed to plot.default.

Details
Specifying a haplohh-object with more than 4096 haplotypes or markers produces an error.

See Also

calc_haplen, plot.furcation.
Examples

```r
# example haplohh object
make.example.files()
hh <- data2haplohh(hap_file = "example1.hap",
                  map_file = "example1.map",
                  allele_coding = "01")
plot(hh)

hh <- data2haplohh(hap_file = "example2.hap",
                  map_file = "example2.map",
                  allele_coding = "01",
                  min_perc_geno.mrk = 50)
plot(hh)
remove.example.files()
```

remove.example.files

Remove example files from current working directory.

Description

Remove example files from current working directory.

Usage

```r
remove.example.files()
```

Details

Removes the files created by `make.example.files()`. No error is thrown, if files do not exist.

See Also

`make.example.files`

scan_hh

Compute \(iHH \), \(iES \) and \(inES \) over a whole chromosome

Description

Compute integrated EHH (iHH), integrated EHHS (iES) and integrated normalized EHHS (inES) for all markers of a chromosome (or linkage group).
Usage

scan hh(
 haplohh,
 limhaplo = 2,
 limhomohaplo = 2,
 limehh = 0.05,
 limehhs = 0.05,
 phased = TRUE,
 polarized = TRUE,
 scalegap = NA,
 maxgap = NA,
 discard_integration_at_border = TRUE,
 lower_ehh_y_bound = limehh,
 lower_ehhs_y_bound = limehhs,
 interpolate = TRUE,
 threads = 1
)

Arguments

haplohh an object of class haplohh (see data2haplohh)
limhaplo if there are less than limhaplo chromosomes that can be used for the calculation of EHH(S), the calculation is stopped. The option is intended for the case of missing data, which leads to the successive exclusion of haplotypes: the further away from the focal marker the less haplotypes contribute to EHH(S).
limhomohaplo if there are less than limhomohaplo homozygous chromosomes, the calculation is stopped. This option is intended for unphased data and should be invoked only if relatively low frequency variants are not filtered subsequently (see main vignette and Klassmann et al. 2020).
limehh limit at which EHH stops to be evaluated.
limehhs limit at which EHHS stops to be evaluated.
phased logical. If TRUE (default) chromosomes are expected to be phased. If FALSE, the haplotype data is assumed to consist of pairwise ordered chromosomes belonging to diploid individuals. EHH(S) is then estimated over individuals which are homozygous at the focal marker.
polarized logical. TRUE by default. If FALSE, use major and minor allele instead of ancestral and derived. If there are more than two alleles then the minor allele refers to the second-most frequent allele.
scalegap scale or cap gaps larger than the specified size to the specified size (default=NA, i.e. no scaling).
maxgap maximum allowed gap in bp between two markers. If exceeded, further calculation of EHH(S) is stopped at the gap (default=NA, i.e no limitation).
discard_integration_at_border logical. If TRUE (default) and computation reaches first or last marker or a gap larger than maxgap, iHH, iES and inES are set to NA.
lower_ehh_y_bound
 lower y boundary of the area to be integrated over (default: limehh). Can be set to zero for compatibility with the program hapbin.

lower_ehhs_y_bound
 lower y boundary of the area to be integrated (default: limehhs). Can be set to zero for compatibility with the program hapbin.

interpolate
 logical. If TRUE (default), integration is performed over a continuous EHH(S) curve (values are interpolated linearly between consecutive markers), otherwise the EHH(S) curve decreases stepwise at markers.

threads
 number of threads to parallelize computation

Details
Integrated EHH (iHH), integrated EHHS (iES) and integrated normalized EHHS (inES) are computed for all markers of the chromosome (or linkage group). This function is several times faster as a procedure calling in turn calc_ehh and calc_ehhs for all markers. To perform a whole genome-scan this function needs to be called for each chromosome and results concatenated.

Note that setting limehh or limehhs to zero is likely to reduce power, since even under neutrality a tiny fraction (<0.05) of extremely long shared haplotypes is expected which, if fully accounted for, would obfuscate the signal at selected sites.

Value
The returned value is a dataframe with markers in rows and the following columns

1. chromosome name
2. position in the chromosome
3. sample frequency of the ancestral / major allele
4. sample frequency of the second-most frequent remaining allele
5. number of evaluated haplotypes at the focal marker for the ancestral / major allele
6. number of evaluated haplotypes at the focal marker for the second-most frequent remaining allele
7. iHH of the ancestral / major allele
8. iHH of the second-most frequent remaining allele
9. iES (used by Sabeti et al 2007)
10. inES (used by Tang et al 2007)

Note that in case of unphased data the evaluation is restricted to haplotypes of homozygous individuals which reduces the power to detect selection, particularly for iHS (for appropriate parameter setting see the main vignette and Klassmann et al (2020)).

References

See Also
data2haplohh, calc_ehh, calc_ehhs ihh2ihs, ines2rsb, ies2xpehh

Examples

example haplohh object (280 haplotypes, 1424 SNPs)
see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
scan <- scan_hh(haplohh_cgu_bta12)

scan_hh_full

Compute iHH, iES and inES over a whole chromosome without cut-offs

Description

Compute integrated EHH (iHH), integrated EHHS (iES) and integrated normalized EHHS (inES) for all markers of a chromosome (or linkage group). This function computes the statistics by a slightly different algorithm than scan_hh: it sidesteps the calculation of EHH and EHHS values and their subsequent integration and consequently no cut-offs relying on these values can be specified. Instead, it computes the (full) lengths of pairwise shared haplotypes and averages them afterwards.
This function is primarily intended for the study of general properties of these statistics using simulated data.

Usage

scan_hh_full(
 haplohh,
 phased = TRUE,
 polarized = TRUE,
 maxgap = NA,
 max_extend = NA,
 discard_integration_at_border = TRUE,
 geometric.mean = FALSE,
 threads = 1
)
Arguments

- **haplohh**: an object of class haplohh (see data2haplohh)
- **phased**: logical. If TRUE (default) chromosomes are expected to be phased. If FALSE, the haplotype data is assumed to consist of pairwise ordered chromosomes belonging to diploid individuals. EHH(S) is then estimated over individuals which are homozygous at the focal marker.
- **polarized**: logical. TRUE by default. If FALSE, use major and minor allele instead of ancestral and derived. If there are more than two alleles then the minor allele refers to the second-most frequent allele.
- **maxgap**: maximum allowed gap in bp between two markers. If exceeded, further calculation of EHH(S) is stopped at the gap (default = NA, i.e. no limitation).
- **max_extend**: maximum distance in bp to extend shared haplotypes away from the focal marker. (default NA, i.e. no limitation).
- **discard_integration_at_border**: logical. If TRUE (default) and computation of any of the statistics reaches first or last marker or a gap larger than maxgap, iHH, iES and inES are set to NA.
- **geometric.mean**: logical. If FALSE (default), the standard arithmetic mean is used to average shared haplotype lengths. If TRUE the geometric mean is used instead (IES values are undefined in this case). Note that usage of the geometric mean has not yet been studied formally and should be considered experimental!
- **threads**: number of threads to parallelize computation

Details

Integrated EHH (iHH), integrated EHHS (iES) and integrated normalized EHHS (inES) are computed for all markers of the chromosome (or linkage group). This function sidesteps the computation of EHH and EHHS values and their stepwise integration. Instead, the length of all shared haplotypes is computed and afterwards averaged. In the absence of missing values the statistics are identical to those calculated by scan hh with settings limeeh = 0, limehhs = 0, lower_ehh_y_bound = 0 and interpolate = FALSE, yet this function is faster.

Application of a cut-off is necessary for reducing the spurious signals of selection caused by single shared haplotypes of extreme length. Hence, e.g. for human experimental data it might be reasonable to set max_extend to 1 or 2 Mb.

scan hh computes the statistics iHH_A, ihh_D and iES/inES separately, while this function calculates them simultaneously. Hence, if discard_integration_at_border is set to TRUE and the extension of shared haplotypes reaches a border (i.e. chromosomal boundaries or a gap larger than maxgap), this function discards all statistics.

The handling of missing values is different, too: scan hh "removes" chromosomes with missing values from further calculations. EHH and EHHS are then calculated for the remaining chromosomes which can accidentally yield an increase in EHH or EHHS. This can not happen with scan hh_full() which treats each missing value of a marker as if it were a new allele - terminating any shared haplotype, but does changing the set of considered chromosomes. Thus, missing values cause a faster decay of EHH(S) with function scan hh_full().
Value

The returned value is a dataframe with markers in rows and the following columns

1. chromosome name
2. position in the chromosome
3. sample frequency of the ancestral / major allele
4. sample frequency of the second-most frequent remaining allele
5. number of evaluated haplotypes at the focal marker for the ancestral / major allele
6. number of evaluated haplotypes at the focal marker for the second-most frequent remaining allele
7. iHH of the ancestral / major allele
8. iHH of the second-most frequent remaining allele
9. iES (used by Sabeti et al 2007)
10. inES (used by Tang et al 2007)

Note that in case of unphased data the evaluation is restricted to haplotypes of homozygous individuals which reduces the power to detect selection, particularly for iHS (for appropriate parameter setting see the main vignette and Klassmann et al (2020)).

References

See Also
data2haplohh, scan_hh, ihh2ihs, ines2rsb, ies2xpehh

Examples

#example haplohh object (280 haplotypes, 1424 SNPs)
#see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
#using function scan_hh() with no cut-offs
scan <- scan_hh(haplohh_cgu_bta12, discard_integration_at_border = FALSE,
subset.haploh

Subsets object of haploh-class

Description
Subsets the data of an object of class haploh-class, meeting certain conditions.

Usage
```r
## S3 method for class 'haploh'
subset(
  x,
  select.hap = NULL,
  select.mrk = NULL,
  min_perc_geno.hap = NA,
  min_perc_geno.mrk = 100,
  min_maf = NA,
  max_alleles = NA,
  verbose = TRUE,
  ...
)
```

Arguments
- `x`: object of class haploh-class to be subset.
- `select.hap`: expression, indicating haplotypes to select.
- `select.mrk`: expression, indicating markers to select.
- `min_perc_geno.hap`: threshold on percentage of missing data for haplotypes (haplotypes with less than `min_perc_geno.hap` percent of markers genotyped are discarded). Default is NA, hence no constraint.
- `min_perc_geno.mrk`: threshold on percentage of missing data for markers (markers genotyped on less than `min_perc_geno.mrk` percent of haplotypes are discarded). By default, `min_perc_geno.mrk`=100, hence only fully genotyped markers are retained. This value cannot be set to NA or zero.
- `min_maf`: threshold on the Minor Allele Frequency. Markers having a MAF lower than or equal to `min_maf` are discarded. In case of multi-allelic markers the second-most frequent allele is referred to as minor allele. Setting this value to zero eliminates monomorphic sites. Default is NA, hence no constraint.
update_haplohh

max_alleles threshold for the maximum number of different alleles at a site. Default is NA, hence no restriction. In order to retain only bi-allelic markers, set this parameter to 2.

verbose logical. If TRUE (default), report verbose progress.

... further arguments are ignored.

See Also

haplohh-class, data2haplohh

Examples

example haplohh object (280 haplotypes, 1424 SNPs)
see ?haplohh_cgu_bta12 for details
data(haplohh_cgu_bta12)
select subset of first 10 hyplotypes and first 5 markers
subset(haplohh_cgu_bta12, select.hap = 1:10, select.mrk = 1:5)

update_haplohh Update object of class haplohh

Description

Update object of class haplohh-class constructed by rehh versions up to version 2.0.4.

Usage

update_haplohh(haplohh)

Arguments

haplohh an object of an old version of haplohh-class.

Details

This function is intended to update haplohh objects that have been built by rehh versions up to 2.0.4. These objects cannot be used in functions of the current version. The following changes have been made to the class definition: The internal representation of the haplotype matrix followed the encoding

- 0 missing value
- 1 ancestral allele
- 2 derived allele

and has been replaced by a vcf-like encoding:

- NA missing value
- 0 ancestral allele
• 1 derived allele.

Furthermore the slots nsnp, snp.name and nhap have been removed and slot position renamed to positions. An update of an old haplohh object is done as follows:
new_haplohh = update_haplohh(old_haplohh).

See Also

haplohh-class, data2haplohh.
Index

* datasets
 - haplohh_cgu_bta12, 29

allelefurcation
 - (allelefurcation-class), 4
allelefurcation-class, 4
as.newick, 4

calc_candidate_regions, 5, 16, 23, 37, 38

calc_ahh, 7, 11, 39, 49

calc_ehhs, 11, 13, 15, 43, 45

calc_region_stats, 6, 15

calc_sfs_tests, 16

chr.name (haplohh-class), 27
chr.name, (haplohh-class), 27
chr.name,haplohh-method (haplohh-class), 27

data2haplohh, 7, 9–12, 14–16, 18, 28, 29, 36, 39, 40, 44, 47, 49–51, 53, 54

distribplot, 21, 31, 33, 35

ehh (calc_ahh), 7
ehh-class (calc_ahh), 7
ehhs (calc_ehhs), 9
ehhs-class (calc_ehhs), 9

extract_regions, 23

freqbinplot, 23, 33
ftrue, 4
ftrue (ftrue-class), 25
ftrue-class, 25
furcation, 4
furcation (furcation-class), 25
furcation-class, 25

hap.names (haplohh-class), 27
hap.names, (haplohh-class), 27

haplo (haplohh-class), 26
haplo, (haplohh-class), 27
haplo, haplohh-method (haplohh-class), 27

haplohh-class, 27, 28, 52

haplohh2sweepfinder, 28

haplohh_cgu_bta12, 29

ies2xpehh, 6, 16, 22, 23, 30, 37, 38, 49, 51

ihh2ihs, 6, 16, 21–24, 31, 37, 38, 49, 51

ines2rsb, 6, 16, 22, 23, 33, 37, 38, 49, 51

legend, 39, 42, 43

make.example.files, 35, 46

manhattanplot, 22, 31, 33, 35, 36

matplot, 39

mrk.names (haplohh-class), 27

mrk.names, (haplohh-class), 27

mrk.names,haplohh-method (haplohh-class), 27

nhap (haplohh-class), 27

nhap, (haplohh-class), 27

nhap, haplohh-method (haplohh-class), 27

nmrk (haplohh-class), 27

nmrk, (haplohh-class), 27

nmrk, haplohh-method (haplohh-class), 27

p.adjust, 30, 32, 34

palette, 38

par, 37–43, 45

plot.default, 22, 38–40, 42, 43, 45

plot.ehh, 9, 38, 40

plot.ehhs, 11, 39, 40

plot.furcation, 5, 13, 41, 43, 45

plot.haplen, 42, 42

plot.haplohh, 44
points, 38, 45
positions (haplohh-class), 27
positions, (haplohh-class), 27
positions, haplohh-method
 (haplohh-class), 27
rehh (rehh-package), 3
rehh-package, 3
remove.example.files, 36, 46

scan_hh, 9, 11, 23, 30–35, 39, 40, 46, 49–51
scan_hh_full, 15, 49
subset.haplohh, 52

update_haplohh, 28, 53