Package ‘remiod’

November 18, 2022

Type Package

Title Reference-Based Multiple Imputation for Ordinal/Binary Response

Version 1.0.2

Description Reference-based multiple imputation of ordinal and binary responses under Bayesian framework, as described in Wang and Liu (2022) <arXiv:2203.02771>. Methods for missing-not-at-random include Jump-to-Reference (J2R), Copy Reference (CR), and Delta Adjustment which can generate tipping point analysis.

License GPL (>= 2)

URL https://github.com/xsswang/remiod

RoxygenNote 7.2.2

LazyData true

Imports JointAI, rjags, coda, foreach, data.table, future, doFuture, mathjaxr, survival, ggplot2, ordinal, progressr, Matrix, mcmcse

SystemRequirements JAGS (http://mcmc-jags.sourceforge.net/)

Suggests knitr, rmarkdown, bookdown, R.rsp, ggpubr, testthat (>= 3.0.0), spelling

VignetteBuilder knitr, R.rsp

Encoding UTF-8

Config/testthat/edition 3

Language en-US

Depends R (>= 2.10)

NeedsCompilation no

Author Ying Liu [aut],
Tony Wang [aut, cre] (<https://orcid.org/0000-0002-6760-5456>)

Maintainer Tony Wang <xwang@imedacs.com>

Repository CRAN

Date/Publication 2022-11-18 17:20:02 UTC
R topics documented:

antidep 2
clm_MI_CR 3
clm_MI_delta 4
clm_MI_J2R 5
extract_M1data 6
get_MI_RB 7
get_Mlist 8
get_subset 8
glm_MI_CR 9
glm_MI_delta 10
glm_MI_J2R 11
list.models 12
mcmcpplot 13
miAnalyze 14
opm_MI_CR 15
opm_MI_delta 16
opm_MI_J2R 17
remiod 18
schizo 20
schizob 21
schizow 22
summary 22
tang_MI_RB 25

Index 26

antidep wide format of continuous response of antidepressant data.

Description

A data set containing the treatment and continuous responses measured at baseline and 4 post-baseline visits

Usage

antidep

Format

A data frame with 172 rows and 6 variables:

- **PID** Patient ID
- **tx** Treatment, 1 for treated and 0 for placebo
- **y0** HADM-17 measurement at the baseline
- **y1, y2, y4, y6** Change score of HADM-17 measurement at the post-baseline week 1, 2, 4, and 6.

clm_MI_CR

Source
https://www.lshtm.ac.uk/research/centres-projects-groups/missing-data#dia-missing-data

clm_MI_CR

Apply Copy-Reference(CR) Method to Update JAGS MCMC outputs under MAR for Cumulative Logistic Model

Description

Internal function to obtain Copy-Reference(CR) MCMC from an MAR object.

Usage

```r
clm_MI_CR(object, treatment, start = NULL, end = NULL, thin = NULL,
exclude_chains = NULL, subset = FALSE, ord_cov_dummy = TRUE,
seed = NULL, mess = FALSE, ...)
```

Arguments

- **object**: an object of class `remoid`
- **treatment**: the variable name of treatment. Reference level of treatment should be coded as 0.
- **start**: first iteration to be used.
- **end**: last iteration to be used.
- **thin**: thinning to be applied.
- **exclude_chains**: optional vector of numbers, indexing MCMC chains to be excluded from the output.
- **subset**: subset of parameters (columns of the mcmc object) to be used.
- **ord_cov_dummy**: optional. Specify whether ordinal variables should be treated as categorical variables or continuous variables when they are included as covariates in the sequential imputation models. Default is `TRUE`, dummy variables will be created accordingly.
- **seed**: optional seed value.
- **mess**: logical, should messages be displayed?
- **...**: optional arguments pass from main function.

Value

A matrix of MCMC samples with all monitored parameters. A subset of the MCMC sample can be selected using `start`, `end` and `thin`.

clm_MI_delta

Apply Delta adjustment to Update JAGS MCMC outputs under MAR for Cumulative Logistic Model

Description

Internal function to obtain delta-adjusted MCMC from an MAR object.

Usage

clm_MI_delta(object, treatment, delta = 0, start = NULL, end = NULL, exclude_chains = NULL, thin = NULL, subset = FALSE, ord_cov_dummy = TRUE, seed = NULL, mess = FALSE, ...)

Arguments

object
an object of class remiod

treatment
the variable name of treatment. Reference level of treatment should be coded as 0.

delta
specific value used for Delta adjustment, applicable only for method="delta".

start
first iteration to be used.

end
last iteration to be used.

exclude_chains
optional vector of numbers, indexing MCMC chains to be excluded from the output.

thin
thinning to be applied.

subset
subset of parameters (columns of the mcmc object) to be used.

ord_cov_dummy
optional. specify whether ordinal variables should be treated as categorical variables or continuous variables when they are included as covariates in the sequential imputation models. Default is TRUE, dummy variables will be created accordingly.

seed
optional seed value.

mess
logical, should messages be displayed?

...
optional arguments pass from main function.

Value

A matrix of MCMC samples with all monitored parameters. A subset of the MCMC sample can be selected using start, end and thin.
Apply Jump-to-Reference (J2R) Method to Update JAGS MCMC outputs under MAR for Cumulative Logistic Model

Description

Internal function to obtain Jump-to-Reference (J2R) MCMC from an MAR object.

Usage

clm MI J2R(object, treatment, start = NULL, end = NULL, thin = NULL,
exclude_chains = NULL, subset = FALSE, ord_cov_dummy = TRUE,
seed = NULL, mess = FALSE, ...)

Arguments

object an object of class remiod

treatment the variable name of treatment. Reference level of treatment should be coded as 0.

start first iteration to be used.

date last iteration to be used.

thin thinning to be applied.

exclude_chains optional vector of numbers, indexing MCMC chains to be excluded from the output.

subset subset of parameters (columns of the mcmc object) to be used.

ord_cov_dummy optional, specify whether ordinal variables should be treated as categorical variables or continuous variables when they are included as covariates in the sequential imputation models. Default is TRUE, dummy variables will be created accordingly.

seed optional seed value.

mess logical, should messages be displayed?

... optional arguments pass from main function.

Value

A matrix of MCMC samples with all monitored parameters. A subset of the MCMC sample can be selected using start, end and thin.
extract_MIdata

Extract a specified number of multiple imputed datasets

Description

Extract a specified number of multiple imputed datasets

Usage

```r
extract_MIdata(object, method = c("MAR", "J2R", "CR", "delta"), delta = 0,
               mi.setting = NULL, M = 10, minspace = 2, mess = FALSE)
```

Arguments

- **object**: object inheriting from class 'remoid'
- **method**: a method for obtaining multiple-imputed dataset. Options include MAR, J2R, CR, and delta adjustment. Default is MAR.
- **delta**: specific value used for Delta adjustment, applicable only for method="delta".
- **mi.setting**: a list of arguments related to multiple imputation, including trtvar, algorithm, method, include, exclude_chains, thin, start, end, and seed.
- **M**: number of imputed datasets
- **minspace**: minimum number of iterations between iterations to be chosen as imputed values (to prevent strong correlation between imputed datasets in the case of high autocorrelation of the MCMC chains).
- **mess**: logical; should messages be given? Default is TRUE.

Value

A data.frame in which the imputed datasets are stacked onto each other. The variable Imp_indexes the imputation, while .rownr links the rows to the rows of the original data. In cross-sectional datasets the variable .id is added as subject identifier.

Examples

```r
# data(schizow)

test = remiod(formula = y6 ~ tx + y0 + y1 + y3, data = schizow,
              trtvar = 'tx', algorithm = 'jags', method="MAR",
              ord_cov_dummy = FALSE, n.adapt = 10, n.chains = 1,
              n.iter = 100, thin = 2, warn = FALSE, seed = 1234)

extdt = extract_MIdata(object=test, method="J2R",mi.setting=NULL, M=10, minspace=2)
```
get_MI_RB Create multiple imputed datasets based on assigned imputation method.

Description

Internal function, creates multiple imputed datasets based on assigned imputation method returns multiple imputed datasets stacked onto each other (i.e., long format; optionally including the original, incomplete data).

Usage

get_MI_RB(object, treatment, method = c("MAR", "J2R", "CR", "delta"),
delta = 0, exclude_chains = NULL, start = NULL, end = NULL,
seed = NULL, thin = NULL, subset = FALSE, include = TRUE,
ord_cov_dummy = TRUE, mess = TRUE, ...)

Arguments

object an object of class JointAI
treatment the variable name of treatment. Reference level of treatment should be coded as 0.
method a method for obtaining multiple-imputed dataset. Options include MAR, J2R, CR, and Delta adjustment.
delta specific value used for Delta adjustment, applicable only for method="delta".
exclude_chains optional vector of numbers, indexing MCMC chains to be excluded from the output.
start first iteration to be used.
end last iteration to be used.
seed optional seed value.
thin thinning to be applied.
subset subset of parameters (columns of the mcmc object) to be used.
include should the original, incomplete data be included? Default is TRUE.
ord_cov_dummy optional. specify whether ordinal variables should be treated as categorical variables or continuous variables when they are included as covariates in the sequential imputation models. Default is TRUE, dummy variables will be created accordingly.
mess logical, should messages be displayed?
... optional arguments pass from main function.
get_subset

Value

A `data.frame` in which the original data (if `include = TRUE`) and the imputed datasets are stacked onto each other. The variable `Imputation_index` indexes the imputation, while `.rownr` links the rows to the rows of the original data. In cross-sectional datasets the variable `.id` is added as subject identifier.

get_Mlist
Prepare imputation-model-related information

Description

Internal function to extract information of imputation models.

Usage

```r
get_Mlist(object)
```

Arguments

- `object`
 object inheriting from class `remoid`.

Value

a list include raw data, imputation models, model types, fixed effects, random effects if any, reference categories corresponding to categorical variables in models, and interaction terms.

get_subset
Extract specific parameters from MCMC samples

Description

Extract specific parameters from MCMC samples

Usage

```r
get_subset(object, subset, warn = TRUE, mess = TRUE)
```

Arguments

- `object`
 an object of class `MCMC`.
- `subset`
 subset of parameters (columns of the mcmc object) to be used. See https://nerler.github.io/JointAI/articles/SelectingParameters.html for key-words of subsetting parameters. Besides, `selected_parms` and `selected_vars` are new key-words for arbitrarily selecting parameters.
- `warn`
 logical, should warning messages be displayed?
- `mess`
 logical, should messages be displayed?
Examples

data(schizow)

test = remiod(formula = y6 ~ tx + y0 + y1 + y3, data = schizow,
 trtvar = 'tx', algorithm = 'jags', method="MAR",
 ord_cov_dummy = FALSE, n.adapt = 10, n.chains = 1,
 n.iter = 0, thin = 1, warn = FALSE, seed = 1234)

pms = c("beta[2]","alpha[2]","alpha[6]","alpha[9]")
mcsub = get_subset(object = test$mc.mar, subset=c(selected_parms = list(pms)))

glm_MI_CR

Apply Copy-Reference(CR) Method to Update JAGS MCMC outputs under MAR for Generalized Linear Model

Description

Internal function to obtain Copy-Reference(CR) MCMC from an MAR object.

Usage

```r
glm_MI_CR(object, treatment, start = NULL, end = NULL, thin = NULL,
          exclude_chains = NULL, subset = FALSE, seed = 5432, mess = FALSE,
          ...)```

Arguments

- **object**: an object of class remiod
- **treatment**: the variable name of treatment. Reference level of treatment should be coded as 0.
- **start**: first iteration to be used
- **end**: last iteration to be used
- **thin**: thinning to be applied
- **exclude_chains**: optional vector of numbers, indexing MCMC chains to be excluded from the output
- **subset**: subset of parameters (columns of the mcmc object) to be used
- **seed**: optional seed value.
- **mess**: logical, should messages be displayed?
- **...**: optional arguments pass from main function.

Value

A matrix of MCMC samples with all monitored parameters. A subset of the MCMC sample can be selected using start, end and thin.
DESCRIPTION

Internal function to obtain delta-adjusted MCMC from an MAR object.

USAGE

```r
glm_MI_delta(object, treatment, delta = 0, start = NULL, end = NULL,
 thin = NULL, exclude_chains = NULL, subset = FALSE, seed = 5432,
 mess = FALSE, ...)```

ARGUMENTS

- `object`: an object of class `remiod`
- `treatment`: the variable name of treatment. Reference level of treatment should be coded as 0.
- `delta`: specific value used for Delta adjustment, applicable only for method="delta".
- `start`: first iteration to be used
- `end`: last iteration to be used
- `thin`: thinning to be applied
- `exclude_chains`: optional vector of numbers, indexing MCMC chains to be excluded from the output
- `subset`: subset of parameters (columns of the mcmc object) to be used
- `seed`: optional seed value.
- `mess`: logical, should messages be displayed?
- `...`: optional arguments pass from main function.

VALUE

A matrix of MCMC samples with all monitored parameters. A subset of the MCMC sample can be selected using `start`, `end` and `thin`.
glm_MI_J2R
Apply Jump-to-Reference(J2R) Method to Update JAGS MCMC outputs under MAR for Generalized Linear Model

Description

Internal function to obtain Jump-to-Reference(J2R) MCMC from an MAR object.

Usage

```r
glm_MI_J2R(object, treatment, start = NULL, end = NULL, thin = NULL,
exclude_chains = NULL, subset = FALSE, seed = 5432, mess = FALSE,
...)
```

Arguments

- `object`: an object of class remiod
- `treatment`: the variable name of treatment. Reference level of treatment should be coded as 0.
- `start`: first iteration to be used
- `end`: last iteration to be used
- `thin`: thinning to be applied
- `exclude_chains`: optional vector of numbers, indexing MCMC chains to be excluded from the output
- `subset`: subset of parameters (columns of the mcmc object) to be used
- `seed`: optional seed value.
- `mess`: logical, should messages be displayed?
- `...`: optional arguments pass from main function.

Value

A matrix of MCMC samples with all monitored parameters. A subset of the MCMC sample can be selected using `start`, `end` and `thin`.
list.models

Listing the sequence of models used for imputation

Description

Listing the sequence of models used for imputation

Usage

list.models(object, details = FALSE, print = TRUE)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>an object of class remiod</td>
</tr>
<tr>
<td>details</td>
<td>logical. Default is FALSE, where listing all models in formula format. If TRUE, details of each models will be presented.</td>
</tr>
<tr>
<td>print</td>
<td>logical. Default is TRUE to print all imputation models or detailed imputation models.</td>
</tr>
</tbody>
</table>

Value

a list of formula of imputation models. If details=TRUE, information on the conditional distributions of the covariates in each imputation models. Note: the sequence of conditional models together specifies the joint distribution.

Examples

```r
# data(schizow)

test = remiod(formula = y6 ~ tx + y0 + y1 + y3, data = schizow, 
  trtvar = 'tx', algorithm = 'jags', method="MAR", 
  ord_cov_dummy = FALSE, n.adapt = 10, n.chains = 1, 
  n.iter = 10, thin = 2, warn = FALSE, seed = 1234)

list.models(test)
```
mcmcplot

Visualizing the posterior sample Creates a set of plots for visually evaluating convergence and mixing of the chains from the MCMC sample of an object of class 'remiod'.

Description

Visualizing the posterior sample Creates a set of plots for visually evaluating convergence and mixing of the chains from the MCMC sample of an object of class 'remiod'.

Usage

mcmcplot(object, what = c("trace", "density"), subset = c(analysis_main = TRUE), outcome = NULL, mi.setting = NULL, nrow = NULL, ncol = NULL, use_ggplot = TRUE, mess = TRUE, warn = FALSE, ...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>an object inheriting from class 'remoid'</td>
</tr>
<tr>
<td>what</td>
<td>select either trace or density plots from MCMC samples</td>
</tr>
<tr>
<td>subset</td>
<td>subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument monitor_params in *_imp.</td>
</tr>
<tr>
<td>outcome</td>
<td>optional; vector identifying a subset of sub-models included in the output, either by specifying their indices (using the order used in the list of model formulas), or their names (LHS of the respective model formula as character string)</td>
</tr>
<tr>
<td>mi.setting</td>
<td>a list of arguments for extracting MI data set, which will be used to update the one in remoid object. Default is NULL, meaning no update to the mi.setting in remoid object.</td>
</tr>
<tr>
<td>nrow</td>
<td>optional; number of rows in the plot layout; automatically chosen if unspecified</td>
</tr>
<tr>
<td>ncol</td>
<td>optional; number of columns in the plot layout; automatically chosen if unspecified</td>
</tr>
<tr>
<td>use_ggplot</td>
<td>logical; Should ggplot be used instead of the base graphics?</td>
</tr>
<tr>
<td>mess</td>
<td>logical; should messages be given? Default is TRUE.</td>
</tr>
<tr>
<td>warn</td>
<td>logical; should warnings be given? Default is TRUE.</td>
</tr>
<tr>
<td>...</td>
<td>Arguments passed on to graphics::matplot</td>
</tr>
</tbody>
</table>

Arguments for plots:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lty, lwd, lend</td>
<td>vector of line types, widths, and end styles. The first element is for the first column, the second element for the second column, etc., even if lines are not plotted for all columns. Line types will be used cyclically until all plots are drawn.</td>
</tr>
<tr>
<td>col</td>
<td>vector of colors. Colors are used cyclically.</td>
</tr>
<tr>
<td>cex</td>
<td>vector of character expansion sizes, used cyclically. This works as a multiple of par("cex"). NULL is equivalent to 1.0.</td>
</tr>
</tbody>
</table>
bg vector of background (fill) colors for the open plot symbols given by pch = 21:25 as in points. The default NA corresponds to the one of the underlying function plot.xy.

add logical. If TRUE, plots are added to current one, using points and lines.

verbose logical. If TRUE, write one line of what is done.

Value

plots of traces or densities of MCMC samples for selected parameters in imputation models.

Examples

data(schizow)

test = remiod(formula = y6 ~ tx + y0 + y1 + y3, data = schizow,
 trtvar = 'tx', algorithm = 'jags', method="MAR",
 ord_cov_dummy = FALSE, n.adapt = 10, n.chains = 1,
 n.iter = 10, thin = 2, warn = FALSE, seed = 1234)

pl = mcmcplot(object=test, what="trace")

miAnalyze

Takes multiply imputed datasets (as generated by the extract_MIdata() function) and runs an analysis function on each of them.

Description

Takes multiply imputed datasets (as generated by the extract_MIdata() function) and runs an analysis function on each of them.

Usage

miAnalyze(formula, family = NULL, data, pool = TRUE)

Arguments

formula a two sided model formula (see formula).
family only for glm: a description of the distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (For more details see below and family.)
data the output object of extract_MIdata() function.
pool logical. If TRUE, estimates from each imputed data set will be pooled together according to Rubin’s rules. Default is TRUE.

rubin_rules applies Rubin’s rules (Rubin, 1987) for pooling together the results from a multiple imputation procedure. The pooled point Estimate is the average across the point estimates from the complete-data analyses. The SE is the square-root of the sum of two terms representing the within-variance and the between-variance (see Little-Rubin (2002)). The function also returns 95% confidence interval, based on the estimated pooled degrees of freedom that can be used for inference based on the t-distribution.

Value

A list containing

- list of estimated coefficients and standard error from each imputed data.
- pooled estimates based Rubin’s rule if pool = TRUE.

opm_MI_CR
Apply Copy-Reference(CR) Method to Update JAGS MCMC outputs under MAR for probit Model

Description

Internal function to obtain Copy-Reference(CR) MCMC from an MAR object.

Usage

```r
opm_MI_CR(object, treatment, start = NULL, end = NULL, thin = NULL,
          exclude_chains = NULL, subset = FALSE, seed = NULL, mess = FALSE,
          ...)"```

**Arguments**

- `object`: an object of class remoid
- `treatment`: the variable name of treatment. Reference level of treatment should be coded as 0.
- `start`: first iteration to be used.
- `end`: last iteration to be used.
- `thin`: thinning to be applied.
- `exclude_chains`: optional vector of numbers, indexing MCMC chains to be excluded from the output.
- `subset`: subset of parameters (columns of the mcmc object) to be used.
- `seed`: optional seed value.
- `mess`: logical, should messages be displayed?
- `...`: optional arguments pass from main function.
opm_MI_delta

Apply Delta adjustment to Update JAGS MCMC outputs under MAR for Cumulative Logistic Model

Description

Internal function to obtain delta-adjusted MCMC from an MAR object.

Usage

```r
opm_MI_delta(object, treatment, delta = 0, start = NULL, end = NULL, thin = NULL, exclude_chains = NULL, subset = FALSE, seed = NULL, mess = FALSE, ...)
```

Arguments

- `object`: an object of class remiod
- `treatment`: the variable name of treatment. Reference level of treatment should be coded as 0.
- `delta`: specific value used for Delta adjustment, applicable only for method="delta".
- `start`: first iteration to be used.
- `end`: last iteration to be used.
- `thin`: thinning to be applied.
- `exclude_chains`: optional vector of numbers, indexing MCMC chains to be excluded from the output.
- `subset`: subset of parameters (columns of the mcmc object) to be used.
- `seed`: optional seed value.
- `mess`: logical, should messages be displayed?
- `...`: optional arguments pass from main function.

Value

A matrix of MCMC samples with all monitored parameters. A subset of the MCMC sample can be selected using start, end and thin.
Apply Jump-to-Reference(J2R) Method to Update JAGS MCMC outputs under MAR for Cumulative Logistic Model

Description

Internal function to obtain Jump-to-Reference(J2R) MCMC from an MAR object.

Usage

opm_MI_J2R(object, treatment, start = NULL, end = NULL, thin = NULL, 
exclude_chains = NULL, subset = FALSE, seed = NULL, mess = FALSE, 
...)
remiod

Reference-Based Multiple Imputation for Ordinal/Binary Response

Description
Reference-Based Multiple Imputation for Ordinal/Binary Response

Usage

remiod(formula, data, trtvar, refcats = NULL, family = NULL, method = "MAR", delta = 0, algorithm = c("tang_seq", "jags"), rinv = 1e-04, scheme = 2, model_order = NULL, models = NULL, ord_cov_dummy = TRUE, n.chains = 2, n.adapt = 100, n.iter = 1000, thin = 2, start = NULL, end = NULL, seed = 1234, exclude_chains = NULL, subset = NULL, include = FALSE, mess = TRUE, warn = FALSE, progress.bar = TRUE, ...)

Arguments

formula a two sided model formula (see formula) or a list of such formulas; (more details below).
data a data.frame containing the original data (more details below)
trtvar the name of treatment variable. When necessary, its reference category, i.e. control arm, can be set in refcats argument.
refcats optional; either one of "first", "last", "largest" (which sets the category for all categorical variables) or a named list specifying which category should be used as reference category per categorical variable. Options are the category label, the category number, or one of "first" (the first category), "last" (the last category) or "largest" (chooses the category with the most observations). Default is "first". If reference categories are specified for a subset of the categorical variables the default will be used for the remaining variables. (See also set_refcat)
family only for glm_imp and glmm_imp/glmer_imp: a description of the distribution and link function to be used in the model. This can be a character string naming a family function, a family function or the result of a call to a family function. (For more details see below and family.)
method a method for obtaining multiple-imputed dataset. Options include MAR, J2R, CR, and delta adjustment. Default is MAR.
delta specific value used for Delta adjustment, applicable only for method="delta".
algorithm either algorithm tang_seq proposed by Tang (2018) or jags the original method inherited in JAGS (Plummer 2003).
rinv a small number used to adjusting Fish information matrix
scheme scheme of distribution used for proposing coefficients of imputation models. scheme=1: beta ~ N( mean + inv(I)*score, inv(I)); scheme=2: beta ~ N( mean , inv(I)).
model_order: optional, manually specify an order for imputation models.

models: optional; named vector specifying the types of models for (incomplete) covariates. This argument replaces the argument meth used in earlier versions. If NULL (default) models will be determined automatically based on the class of the respective columns of data.

ord_cov_dummy: optional. specify whether ordinal variables should be treated as categorical variables or continuous variables when they are included as covariates in the sequential imputation models. Default is TRUE, dummy variables will be created accordingly.

n.chains: number of MCMC chains

n.adapt: number of iterations for adaptation of the MCMC samplers (see adapt)

n.iter: number of iterations of the MCMC chain (after adaptation; see coda.samples)

thin: thinning interval (integer; see window.mcmc). For example, thin = 1 (default) will keep the MCMC samples from all iterations; thin = 5 would only keep every 5th iteration.

start: the first iteration of interest (see window.mcmc)

end: the last iteration of interest (see window.mcmc)

seed: optional; seed value (for reproducibility)

exclude_chains: optional vector of the index numbers of chains that should be excluded

subset: subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument monitor.params and selected_parms.

include: logical, if TRUE, raw data will be included in imputed data sets with imputation ID = 0.

mess: logical; should messages be given? Default is TRUE.

warn: logical; should warnings be given? Default is TRUE.

progress.bar: character string specifying the type of progress bar. Possible values are "text" (default), "gui", and "none" (see update). Note: when sampling is performed in parallel it is not possible to display a progress bar.

... additional, optional arguments

trunc: named list specifying limits of truncation for the distribution of the named incomplete variables (see the vignette ModelSpecification)

hyperpars: list of hyper-parameters, as obtained by default_hyperpars()

scale_vars: named vector of (continuous) variables that will be centred and scaled (such that mean = 0 and sd = 1) when they enter a linear predictor to improve convergence of the MCMC sampling. Default is that all numeric variables and integer variables with >20 different values will be scaled. If set to FALSE no scaling will be done.

custom: named list of JAGS model chunks (character strings) that replace the model for the given variable.

append_data_list: list that will be appended to the list containing the data that is passed to rjags (data_list). This may be necessary if additional data / variables are needed for custom (covariate) models.
progress.bar character string specifying the type of progress bar. Possible values are "text" (default), "gui", and "none" (see update). Note: when sampling is performed in parallel it is not possible to display a progress bar.

quiet logical; if TRUE then messages generated by rjags during compilation as well as the progress bar for the adaptive phase will be suppressed, (see jags.model)

keep_scaled_mcmc should the "original" MCMC sample (i.e., the scaled version returned by coda.samples()) be kept? (The MCMC sample that is re-scaled to the scale of the data is always kept.)

modelname character string specifying the name of the model file (including the ending, either .R or .txt). If unspecified a random name will be generated.

modeldir directory containing the model file or directory in which the model file should be written. If unspecified a temporary directory will be created.

overwrite logical; whether an existing model file with the specified <modeldir>/<modelname> should be overwritten. If set to FALSE and a model already exists, that model will be used. If unspecified (NULL) and a file exists, the user is asked for input on how to proceed.

keep_model logical; whether the created JAGS model file should be saved or removed from (FALSE; default) when the sampling has finished.

Value
A list includes (1) Information from JAGS modeling and MCMC samples and (2) A data.frame in which the original data (if include = TRUE) and the imputed datasets are stacked onto each other. The variable Imputation_ indexes the imputation, while .rownr links the rows to the rows of the original data. In cross-sectional datasets the variable .id is added as subject identifier.

Examples

data(schizow)

test = remiod(formula = y6 ~ tx + y0 + y1 + y3, data = schizow,
trtvar = 'tx', algorithm = 'jags', method="MAR",
ord_cov_dummy = FALSE, n.adapt = 10, n.chains = 1,
n.iter = 10, thin = 2, warn = FALSE, seed = 1234)

schizo National Institute of Mental Health schizophrenia study

Description
Schizophrenia data from a randomized controlled trial with patients assigned to either drug or placebo group. "Severity of Illness" was measured, at weeks 0, 1, ..., 6, on a four category ordered scale. Most of the observations where made on weeks 0, 1, 3, and 6.
Usage

data(schizo)

Format

A data frame with 1603 observations on 437 subjects. Five vectors contain information on

- **id**: patient ID.
- **imps79**: original response measurements on a numerical scale.
- **imps79b**: binary response based on the cut-off value of 3.5 to the measurements on a numerical scale: 0 = normal to mildly ill and 1 = moderately to extremely ill.
- **imps79o**: ordinal response on a 4 category scale, "normal or borderline mentally ill" < "mildly or moderately ill", "markedly ill", "severely or among the most extremely ill".
- **tx**: treatment indicator: 1 for drug, 0 for placebo.
- **week**: week.

Details

The documentation file was copied from the **mixcat** package and slightly modified.

Source

https://hedeker.people.uic.edu/ml.html

References


---

schizob  

**wide format of binary response of Schizophrenia data.**

Description

A dataset containing the treatment and binary responses measured at baseline and 3 post-baseline visits.

Usage

schizob

Format

A data frame with 437 rows and 5 variables:

- **tx**: treatment, 1 for treated and 0 for placebo
- **y0**: binary response at the baseline
- **y1, y3, y6**: binary response at the post-baseline week 1, 3, and 6.
Source

long-to-wise transformation of schizo data, i.e. schizob = data.table::dcast(schizo, id + tx ~ week, value.var = "imps79b")

schizow

wide format of ordinal response of Schizophrenia data.

Description

A dataset containing the treatment and ordinal responses measured at baseline and 3 post-baseline visits.

Usage

schizow

Format

A data frame with 437 rows and 5 variables:

tx  treatment, 1 for treated and 0 for placebo
y0  ordinal response at the baseline
y1, y3, y6  ordinal response at the post-baseline week 1, 3, and 6.

Source

long-to-wise tranformation of schizo data, i.e. schizow = data.table::dcast(schizo, id + tx ~ week, value.var = "imps79o")

summary

Summarize the results from an object of class remiod

Description

Obtain and print the summary, (fixed effects) coefficients (coef) and credible interval (confint).
Usage

summary(object, ...)

## S3 method for class 'remoid'
summary(object, start = NULL, end = NULL, thin = NULL,
quantiles = c(0.025, 0.975), outcome = NULL, exclude_chains = NULL,
warn = TRUE, mess = TRUE, ...)

## S3 method for class 'summary.remiod'
print(x, digits = 3, ...)

## S3 method for class 'summary.remiod'
coef(object, start = NULL, end = NULL,
thin = NULL, subset = NULL, exclude_chains = NULL, warn = TRUE,
mess = TRUE, ...)

Arguments

object object inheriting from class 'remoid'
...
additonal, optional arguments
trunc named list specifying limits of truncation for the distribution of the named
incomplete variables (see the vignette ModelSpecification)
hyperpars list of hyper-parameters, as obtained by default_hyperpars()
scale_vars named vector of (continuous) variables that will be centred and
scaled (such that mean = 0 and sd = 1) when they enter a linear predictor to
improve convergence of the MCMC sampling. Default is that all numeric
variables and integer variables with >20 different values will be scaled. If
set to FALSE no scaling will be done.
custom named list of JAGS model chunks (character strings) that replace the
model for the given variable.
append_data_list list that will be appended to the list containing the data that
is passed to rjags (data_list). This may be necessary if additional data /
variables are needed for custom (covariate) models.
progress.bar character string specifying the type of progress bar. Possible
values are "text" (default), "gui", and "none" (see update). Note: when
sampling is performed in parallel it is not possible to display a progress bar.
quiet logical; if TRUE then messages generated by rjags during compilation
as well as the progress bar for the adaptive phase will be suppressed, (see
jags.model)
keep_scaled_mcmc should the "original" MCMC sample (i.e., the scaled ver-
sion returned by coda.samples()) be kept? (The MCMC sample that is
re-scaled to the scale of the data is always kept.)
modelname character string specifying the name of the model file (including the
ending, either .R or .txt). If unspecified a random name will be generated.
modeldir directory containing the model file or directory in which the model
file should be written. If unspecified a temporary directory will be created.
overwrite logical; whether an existing model file with the specified `<modeldir>/<modelname>` should be overwritten. If set to FALSE and a model already exists, that model will be used. If unspecified (NULL) and a file exists, the user is asked for input on how to proceed.

keep_model logical; whether the created JAGS model file should be saved or removed from (FALSE; default) when the sampling has finished.

start the first iteration of interest (see `window.mcmc`)

end the last iteration of interest (see `window.mcmc`)

thin thinning interval (integer; see `window.mcmc`). For example, thin = 1 (default) will keep the MCMC samples from all iterations; thin = 5 would only keep every 5th iteration.

quantiles posterior quantiles

outcome specify outcome variable to select imputation model(s) to summarize. Default generates summaries for all models.

exclude_chains optional vector of the index numbers of chains that should be excluded

warn logical; should warnings be given? Default is TRUE.

mess logical; should messages be given? Default is TRUE.

x an object of class `summary.remiod`

digits the minimum number of significant digits to be printed in values.

subset subset of parameters/variables/nodes (columns in the MCMC sample). Follows the same principle as the argument `monitor_params` and `selected_parms`.

Value

summary information, including parameter posterior mean, posterior SD, quantiles, tail probability `tail-prob`, Gelman-Rubin criterion `GR-crit`, the ratio of the Monte Carlo error and posterior standard deviation) for specified parameters MCE/SD.

Examples

```r
data(schizow)

test = remiod(formula = y6 ~ tx + y0 + y1 + y3, data = schizow,
 trtvar = 'tx', algorithm = 'jags', method="MAR",
 ord_cov_dummy = FALSE, n.adapt = 50, n.chains = 1,
 n.iter = 50, thin = 2, warn = FALSE, seed = 1234)

summary(object = test, outcome = c("y6","y3"))
```
Implement controlled multiple imputation algorithms proposed by Tang

Description

Internal function, creates multiple imputed datasets based on assigned imputation method with the algorithm of Tang’s sequential modeling.

Usage

tang_MI_RB(object, dtimp, treatment, method = "MAR", delta = 0, ord_cov_dummy = FALSE, exclude_chains = NULL, include = FALSE, thin = 1)

Arguments

- **object**: object inheriting from class ‘remoid’
- **dtimp**: imputed complete data sets from remiod function.
- **treatment**: name of the treatment variable.
- **method**: a method for obtaining multiple-imputed dataset. Options include MAR, J2R, CR, and delta adjustment. Default is MAR.
- **delta**: specific value used for Delta adjustment, applicable only for method="delta".
- **ord_cov_dummy**: optional. specify whether ordinal variables should be treated as categorical variables or continuous variables when they are included as covariates in the sequential imputation models. Default is TRUE, dummy variables will be created accordingly.
- **exclude_chains**: optional vector of the index numbers of chains that should be excluded
- **include**: logical, if TRUE, raw data will be included in imputed data sets with imputation ID = 0.
- **thin**: thinning to be applied.

Value

- multiple imputed datasets stacked onto each other (i.e., long format; optionally including the original incomplete data).
- The variable `Imputation_index` indexes the imputation, while `.rownr` links the rows to the rows of the original data. In cross-sectional datasets the variable `.id` is added as subject identifier.
Index

* datasets
  - antidep, 2
  - schizo, 20
  - schizob, 21
  - schizow, 22
  *_imp, 13

  adapt, 19
  antidep, 2

  clm_MI.CR, 3
  clm_MI.delta, 4
  clm_MI.J2R, 5
  coda.samples, 19
  coef.summary.remiod(summary), 22

  default_hyperpars, 19, 23

  extract_MIdata, 6

  family, 14, 18
  formula, 14, 18

  get_MI_RB, 7
  get_Mlist, 8
  get_subset, 8
  glm_MI.CR, 9
  glm_MI.delta, 10
  glm_MI.J2R, 11
  graphics::matplot, 13

  jags.model, 20, 23

  lines, 14
  list.models, 12

  mcmcplot, 13
  miAnalyze, 14

  opm_MI.CR, 15
  opm_MI.delta, 16

  opm_MI.J2R, 17

  par, 13
  plot.xy, 14
  points, 14
  print.summary.remiod(summary), 22

  remiod, 18

  schizo, 20
  schizob, 21
  schizow, 22
  set_refcat, 18
  summary, 22

  tang_MI_RB, 25

  update, 19, 20, 23

  window.mcmc, 19, 24