Package ‘remotePARTS’

September 15, 2023

Title Spatiotemporal Autoregression Analyses for Large Data Sets
Version 1.0.4
Description These tools were created to test map-scale hypotheses about trends in large remotely sensed data sets but any data with spatial and temporal variation can be analyzed. Tests are conducted using the PARTS method for analyzing spatially autocorrelated time series (Ives et al., 2021: <doi:10.1016/j.rse.2021.112678>). The method’s unique approach can handle extremely large data sets that other spatiotemporal models cannot, while still appropriately accounting for spatial and temporal autocorrelation. This is done by partitioning the data into smaller chunks, analyzing chunks separately and then combining the separate analyses into a single, correlated test of the map-scale hypotheses.

URL https://github.com/morrowcj/remotePARTS
BugReports https://github.com/morrowcj/remotePARTS/issues
License GPL (>= 3)
Encoding UTF-8
LazyData TRUE
RoxygenNote 7.2.3
Depends R (>= 4.0)
Imports stats, geosphere (>= 1.5.10), Rcpp (>= 1.0.5), CompQuadForm, foreach, parallel, iterators, doParallel
Suggests dplyr (>= 1.0.0), data.table, knitr, rmarkdown, markdown, sqldf, devtools, ggplot2, reshape2, sf
LinkingTo Rcpp, RcppEigen
VignetteBuilder knitr
NeedsCompilation yes
Author Clay Morrow [aut, cre] (<https://orcid.org/0000-0002-3069-3296>), Anthony Ives [aut] (<https://orcid.org/0000-0001-9375-9523>)
Maintainer Clay Morrow <morrowcj@outlook.com>
Repository CRAN
Date/Publication 2023-09-15 19:52:13 UTC
R topics documented:

- `calc_dfpart` 2
- `check_posdef` 3
- `chisqr` 4
- `chisqr.partGLS` 4
- `covar_taper` 5
- `crosspart_GLS` 6
- `distrm_km` 8
- `fitAR` 9
- `fitAR_map` 11
- `fitCLS` 13
- `fitCLS_map` 15
- `fitCor` 18
- `fitGLS` 21
- `fitGLS_opt` 24
- `fitGLS_opt_FUN` 27
- `invert_chol` 28
- `max_dist` 29
- `MC_GLSpart` 30
- `ndvi_AK10000` 36
- `optimize_nugget` 37
- `partGLS_ndviAK` 38
- `part_chisqr` 38
- `part_ttest` 39
- `print.partGLS` 39
- `print.remoteCor` 40
- `print.remoteGLS` 40
- `print.remoteTS` 41
- `remoteGLS` 43
- `sample_partitions` 44
- `t.test.partGLS` 45
- `test_c covar fun` 46

Index

- `calc_dfpart` calculate degrees of freedom for partitioned GLS

Description

calculate degrees of freedom for partitioned GLS

Usage

```r
calc_dfpart(partsize, p, p0)
```
check_posdef

Arguments
partsize number of pixels in each partition
p number of predictors in alternate model
p0 number of parameters in null model

Value
a named vector containing the first and second degrees of freedom ("df1" and "df2", respectively)

Description
Check if a matrix is positive definite

Usage
check_posdef(M)

Arguments
M numeric matrix

Details
check if a matrix is 1) square, 2) symmetric, and 3) positive definite

Value
returns a named logical vector with the following elements:

sqr logical: indicating whether M is square
sym logical: indicating whether M is symmetric
posdef logical: indicating whether M is positive-definitive

Examples

distance matrix
M = distm_scaled(expand.grid(x = 1:3, y = 1:3))

check if it is positive definitive
check_posdef(M)

check if the covariance matrix is positive definitive
check_posdef(covar_exp(M, .1))
chisqr

Conduct a chi-squared test

Description

generic S3 method for a chi-squared test

Usage

chisqr(x, ...)

Arguments

x

object on which to conduct the test

...

additional arguments

Value

results of the chi-squared test (generic)

chisqr.partGLS

Conduct a chisqr test of "partGLS" object

Description

Conduct a correlated chi-square test on a partitioned GLS

Usage

S3 method for class 'partGLS'
chisqr(x, ...)

Arguments

x

"remoteGLS" object

...

additional arguments passed to print

Value

a p-value for the correlated chisqr test
covar_taper

Tapered-spherical distance-based covariance function

Description
Tapered-spherical distance-based covariance function
Exponential distance-based covariance function
Exponential-power distance-based covariance function

Usage
covar_taper(d, theta, cor = NULL)
covar_exp(d, range)
covar_exppow(d, range, shape)

Arguments
d
theta
cor
range
shape

Details
covar_taper calculates covariance v as follows:
if d <= theta, then v = ((1 - (d/theta))^2) * (1 + (d/(2 * theta)))
if d > theta, then v = 0
covar_exp calculates covariance v as follows:
\[v = \exp\left(-\frac{d}{\text{range}}\right) \]
covar_exppow calculates covariance v as follows:
\[v = \exp\left(-\left(\frac{d}{\text{range}}\right)^2\right) \]
Note that covar_exppow(\ldots, shape = 1) is equivalent to covar_exp() but is needed as a separate function for use with fitCor.

Value
a tapered-spherical transformation of d is returned.
the exponential covariance (v)
exponential-power covariance (v)
Examples

simulate dummy data
map.width = 5 # square map width
coords = expand.grid(x = 1:map.width, y = 1:map.width) # coordinate matrix

calculate distance
D = geosphere::distm(coords) # distance matrix

visualize covariance matrix
image(covar_taper(D, theta = .5*max(D)))

plot tapered covariance function
curve(covar_taper(x, theta = .5), from = 0, to = 1);abline(v = 0.5, lty = 2, col = "grey80")

visualize covariance matrix
image(covar_exp(D, range = .2*max(D)))

plot exponential function with different ranges
curve(covar_exp(x, range = .2), from = 0, to = 1)
curve(covar_exp(x, range = .1), from = 0, to = 1, col = "blue", add = TRUE)
legend("topright", legend = c("range = 0.2", "range = 0.1"), col = c("black", "blue"), lty = 1)

visualize Exponential covariance matrix
image(covar_exppow(D, range = .2*max(D), shape = 1))

visualize Exponential-power covariance matrix
image(covar_exppow(D, range = .2*max(D), shape = .5))

plot exponential power function with different shapes
curve(covar_exppow(x, range = .2, shape = 1), from = 0, to = 1)
curve(covar_exppow(x, range = .2, shape = .5), from = 0, to = 1, col = "blue", add = TRUE)
legend("topright", legend = c("shape = 1.0", "shape = 0.5"), col = c("black", "blue"), lty = 1)

crosspart_GLS

Calculate cross-partition statistics in a partitioned GLS

description

Calculate cross-partition statistics between two GLS partitions

usage

crosspart_GLS(
 xx1,
 xxj,
crosspart_GLS

xxi0, xxj0, invChol_i, invChol_j, Vsub, nug_i, nug_j, df1, df2, small = TRUE, ncores = NA

Arguments

xxi numeric matrix xx from partition i
xxj numeric matrix xx from partition j
xxi0 numeric matrix xx0 from partition i
xxj0 numeric matrix xx0 from partition j
invChol_i numeric matrix invcholV from partition i
invChol_j numeric matrix invcholV from partition j
Vsub numeric variance matrix for Xij (upper block)
nug_i nugget from partition i
nug_j nugget from partition j
df1 first degree of freedom
df2 second degree of freedom
small logical: if TRUE, only return rcoefij, rSSRij, and rSSEij
ncores an optional integer indicating how many CPU threads to use for matrix calculations.

Value

crosspart_GLS returns a list of cross-partition statistics.
If small = FALSE, the list contains the following elements

Rij
Hi
Hj
Hi0
Hj0
SiR
SjR
rcoefij
If small = FALSE, the list only contains the necessary elements rcoefij, rSSRij, and rSSEij.

See Also

Other partitionedGLS: MC_GLSpart(), sample_partitions()

distm_km

Calculate a distance matrix from coordinates

Description

Calc{u00eate} the distances among points from a single coordinate matrix or

Usage

distm_km(coords, coords2 = NULL)
distm_scaled(coords, coords2 = NULL, distm_FUN = "distm_km")

Arguments

coords a coordinate matrix with 2 columns and rows corresponding to each location.
coords2 an optional coordinate matrix
distm_FUN function used to calculate the distance matrix. This function dictates the units
 of "max.dist"

Details

distm_km is simply a wrapper for geosphere::distm()

Value

distm_km returns a distance matrix in km
A distance matrix is returned.
If coords2 = NULL, then distances among points in coords are calculated. Otherwise, distances are
 calculated between points in coords and coords2
distm_km returns a distance matrix in km and distm_scaled returns relative distances (between 0
 and 1). The resulting matrix has the attribute "max.dist" which stores the maximum distance of the
 map. "max.dist" is in km for distm_km and in the units of distm_FUN for distm_scaled.

See Also

?geosphere::distm()
Examples
map.width = 3 # square map width
cords = expand.grid(x = 1:map.width, y = 1:map.width) # coordinate matrix
distm_scaled(cords) # calculate relative distance matrix

fitAR

AR regressions by REML

Description

fitAR is used to fit AR(1) time series regression analysis using restricted maximum likelihood

Usage

fitAR(formula, data = NULL)

AR_fun(par, y, X, logLik.only = TRUE)

Arguments

formula a model formula, as used by stats::lm()
data optional data environment to search for variables in formula. As used by lm()
par AR parameter value
y vector of time series (response)
X model matrix (predictors)
logLik.only logical: should only the partial log-likelihood be computed

Details

This function finds the restricted maximum likelihood (REML) to estimate parameters for the regression model with AR(1) random error terms

\[y(t) = X(t)β + ε(t) \]
\[ε(t) = ρε(t - 1) + δ(t) \]

where \(y(t) \) is the response at time \(t \);
\(X(t) \) is a model matrix containing covariates;
\(β \) is a vector of effects of \(X(t) \); \(ε(t) \) is the autocorrelated random error;
\(δ \sim N(0, σ) \) is a temporally independent Gaussian random variable with mean zero and standard deviation \(σ \);
and \(ρ \) is the AR(1) autoregression parameter

fitAR estimates the parameter via mathematical optimization of the restricted log-likelihood function.

AR_fun is the work horse behind fitAR that is called by optim to estimate the autoregression parameter \(ρ \).
Value

`fitAR` returns a list object of class "remoteTS", which contains the following elements.

- **call** the function call
- **coefficients** a named vector of coefficients
- **SE** the standard errors of parameter estimates
- **tstat** the t-statistics for coefficients
- **pval** the p-values corresponding to t-tests of coefficients
- **MSE** the model mean squared error
- **logLik** the log-likelihood of the model fit
- **residuals** the residuals: response minus fitted values
- **fitted.values** the fitted mean values
- **rho** The AR parameter, determined via REML
- **rank** the numeric rank of the fitted model
- **df.residual** the residual degrees of freedom
- **terms** the `stats::terms` object used

Output is structured similarly to an "lm" object.

When `logLik.only == F`, `AR_fun` returns the output described in `?fitAR`. When `logLik.only == T`, it returns a quantity that is linearly and negatively related to the restricted log likelihood (i.e., partial log-likelihood).

References

See Also

- `fitAR_map` to easily apply `fit_AR` to many pixels; `fitCLS` and `fitCLS_map` for conditional least squares time series analyses.
- Other remoteTS: `fitAR_map()`, `fitCLS_map()`, `fitCLS()`

Examples

```r
# simulate dummy data
t = 1:30 # times series
Z = rnorm(30) # random independent variable
x = .2*Z + (.05*t) # generate dependent effects

# fit the AR model, using Z as a covariate
(AR = fitAR(x ~ Z))
```
get specific components
AR$residuals
AR$coefficients
AR$pval

now using time as a covariate
(AR.time <- fitAR(x ~ t))

source variable from a dataframe
def = data.frame(y = x, t.scaled = t/30, Z = Z)
fitAR(y ~ t.scaled + Z, data = df)

Methods
summary(AR)
residuals(AR)
coefficients(AR)

fitAR_map
Map-level AR REML

Description

`fitAR_map` is used to fit AR REML regression to each spatial location (pixel) within spatiotemporal data.

Usage

```r
fitAR_map(
  Y, coords, formula = "y ~ t", X.list = list(t = 1:ncol(Y)),
  resids.only = FALSE
)
```

Arguments

- **Y**
 A spatiotemporal response variable: a numeric matrix or data frame where columns correspond to time points and rows correspond to pixels.

- **coords**
 A numeric coordinate matrix or data frame, with two columns and rows corresponding to each pixel.

- **formula**
 A model formula, passed to `fitAR()`: the left side of the formula should always be "y" and the right hand side should refer to variables in `X.list`.

- **X.list**
 A named list of temporal or spatiotemporal predictor variables: elements must be either numeric vectors with one element for each time point or a matrix/data frame with rows corresponding to pixels and columns corresponding to time point. These elements must be named and referred to in `formula`.
resids.only logical: should output beyond coordinates and residuals be withheld? Useful when passing output to fitCor()

Details

fitAR_map is a wrapper function that applies fitAR to many pixels.

The function loops through the rows of \(Y \), matched with rows of spatiotemporal predictor matrices.
Purely temporal predictors, given by vectors, are used for all pixels. These predictor variables,
given by the right side of formula are sourced from named elements in \(X\list\).

Value

fitCLS_map returns a list object of class "mapTS".

The output will always contain at least these elements:

- call the function call
- coords the coordinate matrix or dataframe
- residuals time series residuals: rows correspond to pixels (coords)

When \texttt{resids.only = FALSE}, the output will also contain the following components. Matrices have rows that correspond to pixels and columns that correspond to time points and vector elements correspond to pixels.

- coefficients a numeric matrix of coefficients
- SEs a numeric matrix of coefficient standard errors
- tstats a numeric matrix of t-statistics for coefficients
- pvals a numeric matrix of p-values for coefficients t-tests
- rhos a vector of rho values for each pixel
- MSEs a numeric vector of MSEs
- logLik a numeric vector of log-likelihoods
- fitted.values a numeric matrix of fitted values

An attribute called "resids.only" is also set to match the value of \texttt{resids.only}

See Also

fitAR for fitting AR REML to individual time series and fitCLS & fitCLS_map for time series analysis based on conditional least squares.

Other remoteTS: fitAR(), fitCLS_map(), fitCLS()
Examples

simulate dummy data
time.points = 9 # time series length
time.width = 5 # square map width
coords = expand.grid(x = 1:time.width, y = 1:time.width) # coordinate matrix
create empty spatiotemporal variables:
X <- matrix(NA, nrow = nrow(coords), ncol = time.points) # response
Z <- matrix(NA, nrow = nrow(coords), ncol = time.points) # predictor
setup first time point:
Z[, 1] <- .05*coords[, "x"] + .2*coords[, "y"]
X[, 1] <- .5*Z[, 1] + rnorm(nrow(coords), 0, .05) #x at time t
project through time:
for(t in 2:time.points){
 Z[, t] <- Z[, t-1] + rnorm(time.width^2)
 X[, t] <- .2*X[, t-1] + .1*Z[, t] + .05*t + rnorm(nrow(coords), 0, .25)
}
visualize dummy data (NOT RUN)
library(ggplot2);library(dplyr)
data.frame(coords, X) %>%
reshape2::melt(id.vars = c("x", "y")) %>%
ggplot(aes(x = x, y = y, fill = value)) +
geom_tile() +
facet_wrap(~variable)
fit AR, showing all output
fitAR(X, coords, formula = y ~ t, resids.only = TRUE)
fit AR with temporal and spatiotemporal predictors
(AR.map <- fitAR(X, coords, formula = y ~ t + Z, X.list = list(t = 1:ncol(X),
 Z = Z), resids.only = FALSE))
extract some values
AR.map$coefficients # coefficients
AR.map$logLik # log-likelihoods
Methods
summary(AR.map)
residuals(AR.map)
coefficients(AR.map)

Description

fitCLS is used to fit conditional least squares regression to time series data.
Usage

```r
fitCLS(
  formula,
  data = NULL,
  lag.y = 1,
  lag.x = 1,
  debug = FALSE,
  model = FALSE,
  y = FALSE
)
```

Arguments

- `formula`: a model formula, as used by `stats::lm()`
- `data`: optional data environment to search for variables in `formula`. As used by `lm()`
- `lag.y`: an integer indicating the lag (in time steps) between `y` and `y.0`
- `lag.x`: an integer indicating the lag (in time steps) between `y` and the independent variables (except `y.0`).
- `debug`: logical debug mode
- `model`: logical, should the used model matrix be returned? As used by `lm()`
- `y`: logical, should the used response variable be returned? As used by `lm()`

Details

This function regresses the response variable (`y`) at time `t`, conditional on the response at time `t-1`, `lag.y` and the specified dependent variables (`X`) at time `t-1`, `lag.x`:

\[
y(t) = y(t-\text{lag.y}) + X(t-\text{lag.x}) + \varepsilon
\]

where `y(t)` is the response at time `t`;
`X(t)` is a model matrix containing covariates;
\(\beta \) is a vector of effects of `X(t)`;
and \(\varepsilon(t) \) is a temporally independent Gaussian random variable with mean zero and standard deviation \(\sigma \).

`stats::lm()` is then called, using the above equation.

Value

`fitCLS` returns a list object of class "remoteTS", which inherits from "lm". In addition to the default "lm" components, the output contains these additional list elements:

- `tstat` the t-statistics for coefficients
- `pval` the p-values corresponding to t-tests of coefficients
- `MSE` the model mean squared error
- `logLik` the log-likelihood of the model fit
See Also

fitCLS_map to easily apply fitCLS to many pixels; fitAR and fitAR_map for AR time series analyses.
Other remoteTS: fitAR_map(), fitAR(), fitCLS_map()

Examples

simulate dummy data
t = 1:30 # times series
Z = rnorm(30) # random independent variable
x = .2*z + (.05*t) # generate dependent effects
x = x + rnorm(30, 0, .01)
df = data.frame(x, t, Z) # collect in data frame

fit a CLS model with previous x, t, and Z as predictors
note, this model does not follow the underlying process.
See below for a better fit.
(CLS <- fitCLS(x ~ t + Z, data = df))

extract other values
CLS$MSE #MSE
CLS$logLik #log-likelihood

fit with no lag in independent variables (as simulated):
(CLS2 <- fitCLS(x ~ t + Z, df, lag.x = 0))
summary(CLS2)

no lag in x
fitCLS(x ~ t + Z, df, lag.y = 0)

visualize the lag
large lag in x
fitCLS(x ~ t + Z, df, lag.y = 2, lag.x = 0, debug = TRUE)$lag
large lag in Z
fitCLS(x ~ t + Z, df, lag.y = 0, lag.x = 2, debug = TRUE)$lag

throws errors (NOT RUN)
fitCLS(x ~ t + Z, df, lag.y = 28) # longer lag than time
fitCLS(cbind(x, rnorm(30)) ~ t + Z, df) # matrix response

Methods
summary(CLS)
residuals(CLS)
Description

fitCLS_map is used to fit conditional least squares regression to each spatial location (pixel) within spatiotemporal data.

Usage

```r
fitCLS_map(
  Y,
  coords,
  formula = "y ~ t",
  X.list = list(t = 1:ncol(Y)),
  lag.y = 1,
  lag.x = 0,
  resids.only = FALSE
)
```

Arguments

- **Y**: a spatiotemporal response variable: a numeric matrix or data frame where columns correspond to time points and rows correspond to pixels.
- **coords**: a numeric coordinate matrix or data frame, with two columns and rows corresponding to each pixel.
- **formula**: a model formula, passed to fitCLS(): the left side of the formula should always be "y" and the right hand side should refer to variables in X.list.
- **X.list**: a named list of temporal or spatiotemporal predictor variables: elements must be either numeric vectors with one element for each time point or a matrix/data frame with rows corresponding to pixels and columns corresponding to time point. These elements must be named and referred to in formula.
- **lag.y**: the lag between y and y.0, passed to fitCLS()
- **lag.x**: the lag between y and predictor variables, passed to fitCLS()
- **resids.only**: logical: should output beyond coordinates and residuals be withheld? Useful when passing output to fitCor()

Details

fitCLS_map is a wrapper function that applies fitCLS() to many pixels.

The function loops through the rows of Y, matched with rows of spatiotemporal predictor matrices. Purely temporal predictors, given by vectors, are used for all pixels. These predictor variables, given by the right side of formula are sourced from named elements in X.list.

Value

fitCLS_map returns a list object of class "mapTS".

The output will always contain at least these elements:

- **call**: the function call
coords the coordinate matrix or dataframe
residuals time series residuals: rows correspond to pixels (coords)

When resids.only = FALSE, the output will also contain the following components. Matrices have rows that correspond to pixels and columns that correspond to time points and vector elements correspond to pixels.

coefficients a numeric matrix of coefficients
SEs a numeric matrix of coefficient standard errors
tstats a numeric matrix of t-statistics for coefficients
pvals a numeric matrix of p-values for coefficients t-tests
MSEs a numeric vector of MSEs
logLiks a numeric vector of log-likelihoods
fitted.values a numeric matrix of fitted values

An attribute called "resids.only" is also set to match the value of resids.only

See Also
fitCLS for fitting CLS on individual time series and fitAR and fitAR_map for AR REML time series analysis.
Other remoteTS: fitAR_map(), fitAR(), fitCLS()

Examples

simulate dummy data
time.points = 9 # time series length
map.width = 5 # square map width
coords = expand.grid(x = 1:map.width, y = 1:map.width) # coordinate matrix
create empty spatiotemporal variables:
X <- matrix(NA, nrow = nrow(coords), ncol = time.points) # response
Z <- matrix(NA, nrow = nrow(coords), ncol = time.points) # predictor
setup first time point:
Z[, 1] <- .05*coords[,"x"] + .2*coords[,"y"]
X[, 1] <- .5*Z[, 1] + rnorm(nrow(coords), 0, .05) # x at time t
project through time:
for(t in 2:time.points){
 Z[, t] <- Z[, t-1] + rnorm(map.width^2)
 X[, t] <- .2*X[, t-1] + .1*Z[, t] + .05*t + rnorm(nrow(coords), 0 , .25)
}
visualize dummy data (NOT RUN)
library(ggplot2);library(dplyr)
data.frame(coords, X) %>%
reshape2::melt(id.vars = c("x", "y")) %>%
ggplot(aes(x = x, y = y, fill = value)) +
geom_tile() +
facet_wrap(~variable)
fit CLS, showing all output
fitCLS_map(X, coords, formula = y ~ t, resids.only = TRUE)

fit CLS with temporal and spatiotemporal predictors
(CLSS.map <- fitCLS_map(X, coords, formula = y ~ t + Z,
 X.list = list(t = 1:ncol(X), Z = Z),
 resids.only = FALSE))

extract some values
CLS.map$coefficients # coefficients
CLS.map$logLik # log-likelihoods

Methods
summary(CLS.map)
residuals(CLS.map)
coefficients(CLS.map)

fitCor

Estimate spatial parameters from time series residuals

Description

fitCor() estimates parameter values of a distance-based variance function from the pixel-wise correlations among time series residuals.

Usage

```r
fitCor(
  resids,
  coords,
  distm_FUN = "distm_scaled",
  covar_FUN = "covar_exp",
  start = list(r = 0.1),
  fit.n = 1000,
  index, 
  save_mod = TRUE,
  ...
)
```

Arguments

- `resids` a matrix of time series residuals, with rows corresponding to pixels and columns to time points
- `coords` a numeric coordinate matrix or data frame, with two columns and rows corresponding to each pixel
- `distm_FUN` a function to calculate a distance matrix from `coords`
- `covar_FUN` a function to estimate distance-based covariances
fitCor

start
fit.n
index
save_mod
...

a named list of starting parameter values for covar_FUN, passed to nls
an integer indicating how many pixels should be used to estimate parameters.
an optional index of pixels to use for parameter estimation
logical: should the nls model be saved in the output?
additional arguments passed to nls.

Details

For accurate results, resids and coords must be paired matrices. Rows of both matrices should correspond to the same pixels.

Distances between sampled pixels are calculated with the function specified by distm_FUN. This function can be any that takes a coordinate matrix as input and returns a distance matrix between points. Some options provided by remotePARTS are distm_km(), which returns distances in kilometers and distm_scaled(), which returns distances scaled between 0 and 1.

covar_FUN can be any function that takes a vector of distances as its first argument, and at least one parameter as additional arguments. remotePARTS provides three suitable functions: covar_exp, covar_exppow, and covar_taper; but user-defined functions are also possible.

Parameters are estimated with stats::nls() by regressing correlations among time series residuals on a function of distances specified by covar_FUN.

start is used by nls to determine how many parameters need estimating, and starting values for those parameters. As such, it is important that start has named elements for each parameter in covar_FUN.

The fit will be performed for all pixels specified in index, if provided. Otherwise, a random sample of length fit.n is used. If fit.n exceeds the number of pixels, all pixels are used. When random pixels are used, parameter estimates will be different for each call of the function. For reproducible results, we recommend taking a random sample of pixels manually and passing in those values as index.

Caution: Note that a distance matrix, of size n × n must be fit to the sampled data where n is either fit.n or length(index). Take your computer's memory and processing time into consideration when choosing this size.

Parameter estimates are always returned in the same scale of distances calculated by distm_FUN. It is very important that these estimates are re-scaled by users if output of distm_FUN use units different from the desired scale. For example, if the function covar_FUN = function(d, r, a){-(d/r)^a} is used with distm_FUN = "distm_scaled", the estimated range parameter r will be based on a unit-map. Users will likely want to re-scaled it to map units by multiplying r by the maximum distance among points on your map.

If the distm_FUN is on the scale of your map (e.g., "distm_km"), re-scaling is not needed but may be preferable, since it is scaled to the maximum distance among the sampled data rather than the true maximum distance. For example, dividing the range parameter by max.distance and then multiplying it by the true max distance may provide a better range estimate.

Value

fitCor returns a list object of class "remoteCor", which contains these elements:

call the function call
mod the nls fit object, if save_mod=TRUE
spcor a vector of the estimated spatial correlation parameters
max.distance the maximum distance among the sampled pixels, as calculated by dist_FUN.
logLik the log-likelihood of the fit

Examples

simulate dummy data
set.seed(19)
time.points = 30 # time series length
map.width = 8 # square map width
coords = expand.grid(x = 1:map.width, y = 1:map.width) # coordinate matrix

create empty spatiotemporal variables:
X <- matrix(NA, nrow = nrow(coords), ncol = time.points) # response
Z <- matrix(NA, nrow = nrow(coords), ncol = time.points) # predictor

setup first time point:
Z[, 1] <- .05*coords[, "x"] + .2*coords[, "y"]
X[, 1] <- .5*Z[, 1] + rnorm(nrow(coords), 0, .05) #x at time t

project through time:
for(t in 2:time.points){
 Z[, t] <- Z[, t-1] + rnorm(map.width^2)
 X[, t] <- 2*X[, t-1] + .1*Z[, t] + .05*t + rnorm(nrow(coords), 0 , .25)
}

AR.map = fitAR_map(X, coords, formula = y ~ Z, X.list = list(Z = Z), resids.only = FALSE)

using pre-defined covariance function
exponential covariance
fitCor(AR.map$residuals, coords, covar_FUN = "covar_exp", start = list(range = .1))

exponential-power covariance
fitCor(AR.map$residuals, coords, covar_FUN = "covar_exppow", start = list(range = .1, shape = .2))

user-specified covariance function
fitCor(AR.map$residuals, coords, covar_FUN = function(d, r){d^r}, start = list(r = .1))

un-scaled distances:
fitCor(AR.map$residuals, coords, distm_FUN = "distm_km", start = list(r = 106))

specify which pixels to use, for reproducibility
fitCor(AR.map$residuals, coords, index = 1:64)$spcor #all
fitCor(AR.map$residuals, coords, index = 1:20)$spcor #first 20
fitCor(AR.map$residuals, coords, index = 21:64)$spcor # last 43
randomly select pixels
fitCor(AR.map$residuals, coords, fit.n = 20)$spcor #random 20
fitCor(AR.map$residuals, coords, fit.n = 20)$spcor # different random 20
fitGLS

Fit a PARTS GLS model.

Description

Fit a PARTS GLS model.

Usage

```r
fitGLS(
  formula,
  data,
  V,
  nugget = 0,
  formula0 = NULL,
  save.xx = FALSE,
  save.invchol = FALSE,
  logLik.only = FALSE,
  no.F = FALSE,
  coords,
  distm_FUN,
  covar_FUN,
  covar.pars,
  invCholV,
  ncores = NA,
  suppress_compare_warning = FALSE,
  ...
)
```

Arguments

- `formula`: a model formula
- `data`: an optional data frame environment in which to search for variables given by `formula`
- `V`: a covariance matrix, which must be positive definitive. This argument is optional if `coords`, `distm_FUN`, `covar_FUN`, and `covar.pars` are given instead.
- `nugget`: an optional numeric nugget, must be positive
- `formula0`: an optional formula for the null model to be compared with `formula` by an F-test
- `save.xx`: logical: should information needed for cross-partition comparisons be returned?
- `save.invchol`: logical: should the inverse of the Cholesky matrix be returned?
- `logLik.only`: logical: should calculations stop after calculating parital log-likelihood?
- `no.F`: logical: should F-test calculations be made?
- `coords`: optional coordinate matrix for calculating V internally
fitGLS

distm_FUN optional function for calculating a distance matrix from coords, when calculating V internally
covar_FUN optional distance-based covariance function for calculating V internally
covar.pars an optional named list of parameters passed to covar_FUN when calculating V internally
invCholV optional pre-calculated inverse cholesky matrix to use in place of V
ncores an optional integer indicating how many CPU threads to use for matrix calculations.
suppress_compare_warning an optional variable to suppress warning that arises from identical formula and formula0.
... additional arguments passed to optimize_nugget, which are only used if if nugget = NA

Details

conduct generalized least-squares regression of spatiotemporal trends

fitGLS fits a GLS model, using terms specified in formula. In the PARTS method, generally the left side of formula should be pixel-level trend estimates and the right side should be spatial predictors. The errors of the GLS are correlated according to covariance matrix V.

If nugget = NA, an ML nugget is estimated from the data using the optimize_nugget() function. Arguments additional arguments (...) are passed to optimize_nugget in this case. V must be provided for nugget optimization.

If formula0 is not specified, the default is to fit an intercept-only null model.

save.xx is included to allow for manually conducting a partitioned GLS analyses. Because most users will not need this feature, opting instead to use fitGLS_partition(), save.xx = FALSE by default.

Similarly, save.invchol is included to allow for recycling of the inverse cholesky matrix. Often, inverting the large cholesky matrix (i.e., invert_chol(V)) is the slowest part of GLS. This argument exists to allow users to recycle this process, though no remotePARTS function currently exists that can use invert_chol(V) to fit the GLS.

logLik.only = TRUE will return only the partial log-likelihood, which can minimized to obtain the maximum likelihood for a given set of data.

If no.F = TRUE, then the model given by formula is not compared to the model given by formula0.

If V is not provided, it can be fit internally by specifying all of coords, distm_FUN, covar_FUN, and covar.pars. The function given by distm_FUN will calculate a distance matrix from coords, which is then transformed into a distance-based covariance matrix with covar_FUN and parameters given by covar.pars.

This function uses C++ code that uses the Eigen matrix library (RcppEigen package) to fit models as efficiently as possible. As such, all available CPU cores are used for matrix calculations on systems with OpenMP support.

ncores is passed to the C++ code Eigen::setNpThreads() which sets the number of cores used for compatible Eigen matrix operations (when OpenMP is used).
fitGLS

Value

fitGLS returns a list object of class "remoteGLS", if logLik.only = FALSE. The list contains at least the following elements:

- **coefficients** coefficient estimates for predictor variables
- **SSE** sum of squares error
- **MSE** mean squared error
- **SE** standard errors
- **df_t** degrees of freedom for the t-test
- **logDetV** log-determinant of V
- **tstat** t-test statistic
- **pval_t** p-value of the t-statistic
- **logLik** the Log-likelihood of the model
- **nugget** the nugget used in fitting
- **covar_coef** the covariance matrix of the coefficients

If no.F = FALSE, the following elements, corresponding to the null model and F-test are also calculated:

- **coefficients0** coefficient estimates for the null model
- **SSE0** sum of squares error for the null model
- **MSE0** mean squared error for the null model
- **SE0** the standard errors for null coefficients
- **MSR** the regression mean square
- **df0** the null model F-test degrees of freedom
- **LL0** the log-likelihood of the null model
- **df_F** the F-test degrees of freedom, for the main model
- **Fstat** the F-statistic
- **pval_F** the F-test p-value
- **formula** the alternate formula used
- **formula0** the null formula used

An attribute called also set to "no.F" is set to the value of argument no.F, which signals to generic methods how to handle the output.

If save.invchol = TRUE, output also includes

- **invcholV** the inverse of the Cholesky decomposition of the covariance matrix obtained with invert_chol(V, nugget)

If save.xx = TRUE, output also includes the following elements

- **xx** the predictor variables X, from the right side of formula, transformed by the inverse cholesky matrix: xx = invcholV %*% X
xx0 the predictor variables \(X_0\), from the right side of formula \(0\), transformed by the inverse cholesky matrix: \(xx0 = \text{invcholV} \times X_0\)

The primary use of \(xx\) and \(xx0\) is for use with fitGLS_partition().
If logLik.only = TRUE, a single numeric output containing the log-likelihood is returned.

Examples

```r
## read data
data(ndvi_AK10000)
df = ndvi_AK10000[seq_len(200), ] # first 200 rows

## fit covariance matrix
V = covar_exp(distm_scaled(cbind(df$lng, df$lat)), range = .01)

## run GLS
(GLS = fitGLS(CLS_coef ~ 0 + land, data = df, V = V))

## with F-test calculations to compare with the NULL model
(GLS.F = fitGLS(CLS_coef ~ 0 + land, data = df, V = V, no.F = FALSE))

## find ML nugget
fitGLS(CLS_coef ~ 0 + land, data = df, V = V, no.F = FALSE, nugget = NA)

## calculate V internally
coords = cbind(df$lng, df$lat)
fitGLS(CLS_coef ~ 0 + land, data = df, logLik.only = FALSE, coords = coords,
distm_FUN = "distm_scaled", covar_FUN = "covar_exp", covar.pars = list(range = .01))

## use inverse cholesky
fitGLS(CLS_coef ~ 0 + land, data = df, invCholV = invert_chol(V))

## save inverse cholesky matrix
invchol = fitGLS(CLS_coef ~ 0 + land, data = df, V = V, save.invchol = TRUE)$invcholV

## re-use inverse cholesky instead of V
fitGLS(CLS_coef ~ 0 + land, data = df, invCholV = invchol)

## Log-likelihood (fast)
fitGLS(CLS_coef ~ 0 + land, data = df, V = V, logLik.only = TRUE)
```

Description

Fit a PARTS GLS model, with maximum likelihood spatial parameters
Usage

fitGLS_opt(
 formula,
 data = NULL,
 coords,
 distm_FUN = "distm_scaled",
 covar_FUN = "covar_exp",
 start = c(range = 0.01, nugget = 0),
 fixed = c(),
 opt.only = FALSE,
 formula0 = NULL,
 save.xx = FALSE,
 save.invchol = FALSE,
 no.F = TRUE,
 trans = list(),
 backtrans = list(),
 debug = TRUE,
 ncores = NA,
 ...
)

Arguments

formula a model formula, passed to fitGLS

data an optional data frame environment in which to search for variables given by
 formula; passed to fitGLS

coords a numeric coordinate matrix or data frame, with two columns and rows corre-
 sponding to each pixel

distm_FUN a function to calculate a distance matrix from coords

covar_FUN a function to estimate distance-based covariances

start a named vector of starting values for each parameter to be estimated; names
 must match the names of arguments in covar_FUN or "nugget"

fixed an optional named vector of fixed parameter values; names must match the
 names of arguments in covar_FUN or "nugget"

opt.only logical: if TRUE, execution will halt after estimating the parameters; a final
 GLS will not be fit with the estimated parameters

formula0, save.xx, save.invchol, no.F arguments passed to fitGLS for final GLS output

trans optional list of functions for transforming the values in start or fixed in order
 to constrain the parameter space within optim

backtrans optional list of functions for back-transforming parameters to their correct scale
 (for use with trans)

debug logical: debug mode (for use with trans and backtrans)

ncores an optional integer indicating how many CPU threads to use for calculations.

... additional arguments passed to stats::optim()
Details

Estimate spatial parameters, via maximum likelihood, from data rather than from time series residuals; Fit a GLS with these specifications.

\texttt{fitGLS_opt} fits a GLS by estimating spatial parameters from data. \texttt{fitCor}, combined with \texttt{fitGLS(nugget = NA)}, gives better estimates of spatial parameters, but time-series residuals may not be available in all cases. In these cases, spatial parameters can be estimated from distances among points and a response vector. Mathematical optimization of the log likelihood of different GLS models are computed by calling \texttt{optim()} on \texttt{fitGLS}.

Distances are calculated with \texttt{distm_FUN} and a covariance matrix is calculated from these distances with \texttt{covar_FUN}. Arguments to to \texttt{covar_FUN}, except distances, are given by \texttt{start} and \texttt{fixed}. Parameters specified in \texttt{start} will be be estimated while those given by \texttt{fixed} will remain constant throughout fitting. Parameter names in \texttt{start} and \texttt{fixed} should exactly match the names of arguments in \texttt{covar_FUN} and should not overlap (though, \texttt{fixed} takes precedence).

In addition to arguments of \texttt{covar_FUN} a "nugget" component can also be occur in \texttt{start or fixed}. If "nugget" does not occur in either vector, the GLS are fit with \texttt{nugget = 0}. A zero nugget also allows much faster computation, through recycling the common inverse cholesky matrix in each GLS computation. A non-zero nugget requires inversion of a different matrix at each iteration, which can be substantially slower.

If \texttt{opt_only = FALSE}, the estimated parameters are used to fit the final maximum likelihood GLS solution with \texttt{fitGLS()} and arguments \texttt{formula0}, \texttt{save.xx}, \texttt{save.invchol}, and \texttt{no.F}.

Some parameter combinations may not produce valid covariance matrices. During the optimization step messages about non-positive definitive \texttt{V} may result on some iterations. These warnings are produced by \texttt{fitGLS} and NA log-likelihoods are returned in those cases.

Note that \texttt{fitGLS_opt} fits multiple GLS models, which requires inverting a large matrix for each one (unless a fixed 0 nugget is used). This process is very computationally intensive and may take a long time to finish depending upon your machine and the size of the data.

Sometimes \texttt{optim} can have a difficult time finding a reasonable solution and without any constraints on parameter space (with certain algorithms), results may even be nonsensical. To combat this, \texttt{fitGLS_opt} has the arguments \texttt{trans} and \texttt{backtrans} which allow you to transform (and back-transform) parameters to a different scale. For example, you may want to force the 'range' parameter between 0 and 1. The logit function can do just that, as its limits are \(-\infty\) and \(\infty\) as \(x\) approaches 0 and 1, respectively. So, we can set \texttt{trans} to the logit function: \texttt{trans = list(range = function(x)log(x/(1-x)))}. Then we need to set \texttt{backtrans} to the inverse logit function to return a parameter value between 0 and 1: \texttt{backtrans = list(range = function(x)1/(1+exp(-x)))}. This will force the optimizer to only search for the range parameter in the space from 0 to 1. Any other constraint function can be used for \texttt{trans} provided that there is a matching back-transformation.

Value

If \texttt{opt_only = TRUE}, \texttt{fitGLS_opt} returns the output from \texttt{stats::optim(): see it's documentation for more details.}

Otherwise, a list with two elements is returned:

- \texttt{opt} output from \texttt{optim}, as above
- \texttt{GLS} a "remoteGLS" object. See \texttt{fitGLS} for more details.
See Also

`fitCor` for estimating spatial parameters from time series residuals; `fitGLS` for fitting GLS and with the option of estimating the maximum-likelihood nugget component only.

Examples

```r
## read data
data(ndvi_AK10000)
df = ndvi_AK10000[seq_len(200), ] # first 200 rows

## estimate nugget and range (very slow)
fitGLS_opt(formula = CLS_coef ~ 0 + land, data = df,
   coords = df[, c("lng", "lat")], start = c(range = .1, nugget = 0),
   opt.only = TRUE)

## estimate range only, fixed nugget at 0, and fit full GLS (slow)
fitGLS_opt(formula = CLS_coef ~ 0 + land, data = df,
   coords = df[, c("lng", "lat")],
   start = c(range = .1), fixed = c("nugget" = 0),
   method = "Brent", lower = 0, upper = 1)

## constrain nugget to 0 and 1
logit <- function(p) {log(p / (1 - p))}
inv_logit <- function(l) {1 / (1 + exp(-l))}

fitGLS_opt(formula = CLS_coef ~ 0 + land, data = df,
   coords = df[, c("lng", "lat")],
   start = c(range = .1, nugget = 1e-10),
   trans = list(nugget = logit), backtrans = list(nugget = inv_logit),
   opt.only = TRUE)
```

fitGLS_opt_FUN

Function that fitGLS_opt optimizes over

Description

Function that fitGLS_opt optimizes over

Usage

```r
fitGLS_opt_FUN(
  op,
  fp,
  formula,
  data = NULL,
  coords,
  covar_FUN = "covar_exp",
```
invert_chol(M, nugget = 0, ncores = NA)

Arguments

M numeric (double), positive definite matrix
nugget numeric (double) nugget to add to M
ncores optional integer indicating how many cores to use during the inversion calculation

Details

Calculates the inverse of the Cholesky decomposition of M which should not be confused with the inverse of M *derived* from the Cholesky decomposition (i.e. ‘chol2inv(M)’).
max_dist

Value

numeric matrix: inverse of the Cholesky decomposition (lower triangle)

Examples

M <- crossprod(matrix(1:6, 3))

without a nugget:
invert_chol(M)

with a nugget:
invert_chol(M, nugget = 0.2)

max_dist(coords, dist_FUN = "distm_km")

Arguments

coords the coordinate matrix (or dataframe) from which a maximum distance is desired.
dist_FUN the distance function used to calculate distances

Details

First the outermost points are found by fitting a convex hull in Euclidean space. Then, the distances between these outer points is calculated with dist_FUN, and the maximum of these distances is returned.

This is a fast, simple way of determining the maximum distance.

Value

The maximum distance between two points (units determined by dist_FUN)
MC_GLSpart

fit a parallel partitioned GLS

Description

fit a GLS model to a large data set by partitioning the data into smaller pieces (partitions) and processing these pieces individually and summarizing output across partitions to conduct hypothesis tests.

Usage

```r
MC_GLSpart(
  formula,
  partmat,
  formula0 = NULL,
  part_FUN = "part_data",
  distm_FUN = "distm_scaled",
  covar_FUN = "covar_exp",
  covar.pars = c(range = 0.1),
  nugget = NA,
  ncross = 6,
  save.GLS = FALSE,
  ncores = parallel::detectCores(logical = FALSE) - 1,
  debug = FALSE,
  ...
)

MCGLS_partsummary(
  MCpartGLS,
  covar.pars = c(range = 0.1),
  save.GLS = FALSE,
  partsize
)

multicore_fitGLS_partition(
  formula,
  partmat,
  formula0 = NULL,
  part_FUN = "part_data",
  distm_FUN = "distm_scaled",
  covar_FUN = "covar_exp",
  covar.pars = c(range = 0.1),
  nugget = NA,
  ncross = 6,
  save.GLS = FALSE,
  ncores = parallel::detectCores(logical = FALSE) - 1,
  do.t.test = TRUE,
  ...)
```
do.chisqr.test = TRUE,
debug = FALSE,
...
)

fitGLS_partition(
 formula,
 partmat,
 formula0 = NULL,
 part_FUN = "part_data",
 distm_FUN = "distm_scaled",
 covar_FUN = "covar_exp",
 covar.pars = c(range = 0.1),
 nugget = NA,
 ncross = 6,
 save.GLS = FALSE,
 do.t.test = TRUE,
 do.chisqr.test = TRUE,
 progressbar = TRUE,
 debug = FALSE,
 ncores = NA,
 parallel = TRUE,
...
)

part_data(index, formula, data, formula0 = NULL, coord.names = c("lng", "lat"))

part_csv(index, formula, file, formula0 = NULL, coord.names = c("lng", "lat"))

Arguments

formula a formula for the GLS model
partmat a numeric partition matrix, with values containing indices of locations.
formula0 an optional formula for the null GLS model
part_FUN a function to partition individual data. See details for more information about requirements for this function.
distm_FUN a function to calculate distances from a coordinate matrix
covar_FUN a function to calculate covariances from a distance matrix
covar.pars a named list of parameters passed to covar_FUN
nugget a numeric fixed nugget component: if NA, the nugget is estimated for each partition
ncross an integer indicating the number of partitions used to calculate cross-partition statistics
save.GLS logical: should full GLS output be saved for each partition?
ncores an optional integer indicating how many CPU threads to use for calculations.
debug logical debug mode
arguments passed to part_FUN
MCpartGLS object resulting from MC_partGLS()
partsize number of locations per partition
do.t.test logical: should a t-test of the GLS coefficients be conducted?
do.chisqr.test logical: should a correlated chi-squared test of the model fit be conducted?
progressbar logical: should progress be tracked with a progress bar?
parallel logical: should all calculations be done in parallel? See details for more information
index a vector of pixels with which to subset the data
data a data frame
coord.names a vector containing names of spatial coordinate variables (x and y, respectively)
file a text string indicating the csv file from which to read data

Details

The function specified by part_FUN is called internally to obtain properly formatted subsets of the full data (i.e., partitions). Two functions are provided in the remotePARTs package for this purpose: part_data and part_csv. Both of these functions have required arguments that must be specified through the call to fitGLS_partition (via ...). Check each function’s argument list and see "part_FUN details" below for more information.

partmat is used to partition the data. partmat must be a complete matrix, without any missing or non-finite values. Columns of partmat are passed as the first argument part_FUN to obtain data, which is then passed to fitGLS. Users are encouraged to use sample_partitions() to obtain a valid partmat.

The specific dimensions of partmat can have a substantial effect on the efficiency of fitGLS_partition. For most systems, we do not recommend fitting with partitions exceeding 3000 locations or pixels (i.e., partmat(partsize = 3000, ...)). Any larger, and the covariance matrix inversions may become quite slow (or impossible for some machines). It may help performance to use smaller even partitions of around 1000-2000 locations.

ncross determines how many partitions are used to estimate cross-partition statistics. All partitions, up to ncross are compared with all others in a pairwise fashion. There is no hard rule for setting nncross. More crosses will ensure convergence, but we believe that the default of 6 (10 total comparisons) should be sufficient for most moderate-sized maps if 1500-3000 pixel partitions are used. This may require testing with each individual dataset to determine at what point convergence occurs.

Covariance matrices for each partition are calculated with covar_FUN from distances among points within the partition. Parameter values for covar_FUN are given by covar.pars.

The distances among points are calculated with distm_FUN. distm_FUN can be any function, modeled after geosphere::distm(), that satisfies both: 1) returns a distance matrix among points when a single coordinate matrix is given as first argument; and 2) returns a matrix containing distances between two coordinate matrices if given as the first and second arguments.

If nugget = NA, a ML nugget is obtained for each partition. Otherwise, a fixed nugget is used for all partitions.
It is not required to use all partitions for cross-partition calculations, nor is it recommended to do so for most large data sets.

If `progressbar = TRUE` a text progress bar shows the current status of the calculations in the console.

Value

- a "MC_partGLS", which is a precursor to a "partGLS" object
- a "partGLS" object
- "partGLS" object

`fitGLS_partition` returns a list object of class "partGLS" which contains at least the following elements:

 - **call** the function call
 - **GLS** an optional list of "remoteGLS" objects, one for each partition
 - **part** statistics calculated from each partition: see below for further details
 - **cross** statistics calculated from each pair of crossed partitions, determined by `ncross`: see below for further details
 - **overall** summary statistics of the overall model: see below for further details

part is a sub-list containing the following elements

 - **coefficients** a numeric matrix of GLS coefficients for each partition
 - **SEs** a numeric matrix of coefficient standard errors
 - **tstats** a numeric matrix of coefficient t-statistics
 - **pvals_t** a numeric matrix of t-test p-values
 - **nuggets** a numeric vector of nuggets for each partition
 - **covar.pars** `covar.pars` input vector
 - **modstats** a numeric matrix with rows corresponding to partitions and columns corresponding to log-likelihoods (logLik), sum of square error (SSE), mean-squared error (MSE), regression mean-square (MSR), F-statistics (Fstat), and p-values from F-tests (`pval_F`)

cross is a sub-list containing the following elements, which are used to calculate the combined (across partitions) standard errors of the coefficient estimates and statistical tests. See Ives et al. (2022).

 - **rcoefs** a numeric matrix of cross-partition correlations in the estimates of the coefficients
 - **rSSRs** a numeric vector of cross-partition correlations in the regression sum of squares
 - **rSSEs** a numeric vector of cross-partition correlations in the sum of squared errors

and **overall** is a sub-list containing the elements

 - **coefficients** a numeric vector of the average coefficient estimates across all partitions
 - **rcoefficients** a numeric vector of the average cross-partition coefficient from across all crosses
 - **rSSR** the average cross-partition correlation in the regression sum of squares
rSSE the average cross-partition correlation in the sum of squared errors

Fstat the average f-statistic across partitions

dfs degrees of freedom to be used with partitioned GLS f-test

partdims dimensions of partmat

pval.chisqr if chisqr.test = TRUE, a p-value for the correlated chi-squared test

t.test if do.t.test = TRUE, a table with t-test results, including the coefficient estimates, standard errors, t-statistics, and p-values

part_data and **part_csv** both return a list with two elements:

- **data** a dataframe, containing the data subset
- **coords** a coordinate matrix for the subset

parallel implementation

In order to be efficient and account for different user situations, parallel processing is available natively in fitGLS_partition. There are a few different specifications that will result in different behavior:

When **parallel = TRUE** and **ncores > 1**, all calculations are done completely in parallel (via multicore_fitGLS_partition()).

In this case, parallelization is implemented with the parallel, doParallel, and foreach packages. In this version, all matrix operations are serialized on each worker but multiple operations can occur simultaneously.

When **parallel = FALSE** and **ncores > 1**, then most calculations are done on a single core but matrix operations use multiple cores. In this case, **ncores** is passed to fitGLS. In this option, it is suggested to not exceed the number of physical cores (not threads).

When **ncores <= 1**, then the calculations are completely serialized

When **ncores = NA** (the default), only one core is used.

In the parallel implementation of this function, a progress bar is not possible, so **progressbar** is ignored.

part_FUN details

part_FUN can be any function that satisfies the following criteria

1. the first argument of **part_FUN** must accept an index of pixels by which to subset the data;
2. **part_FUN** must also accept **formula** and **formula0** from fitGLS_partition; and
3. the output of **part_FUN** must be a list with at least the following elements, which are passed to fitGLS:

- **data** a data frame containing all variables given by **formula**. Rows should correspond to pixels specified by the first argument
- **coords** a coordinate matrix or data frame. Rows should correspond to pixels specified by the first argument
Two functions that satisfy these criteria are provided by `remotePARTS`: `part_data` and `part_csv`. `part_data` uses an in-memory data frame (`data`) as a data source. `part_csv`, instead reads data from a csv file (`file`), one partition at a time, for efficient memory usage. `part_csv` internally calls `sqldf::read.csv.sql()` for fast and efficient row extraction.

Both functions use index to subset rows of data and `formula` and `formula0` (optional) to determine which variables to select.

Both functions also use `coord.names` to indicate which variables contain spatial coordinates. The name of the x-coordinate column should always precede the y-coordinate column: `c("x", "y")`

Users are encouraged to write their own `part_FUN` functions to meet their needs. For example, one might be interested in using data stored in a raster stack or any other file type. In this case, a user-defined `part_FUN` function allows access to `fitGLS_partition` without saving reformatted copies of data.

References

See Also

Other partitionedGLS: `crosspart_GLS()`, `sample_partitions()`

Examples

```r
## read data
data(ndvi_AK10000)
df = ndvi_AK10000[seq_len(1000),] # first 1000 rows

## create partition matrix
pm = sample_partitions(nrow(df), npart = 3)

## fit GLS with fixed nugget
partGLS = fitGLS_partition(formula = CLS_coef ~ 0 + land, partmat = pm,
data = df, nugget = 0, do.t.test = TRUE)

## hypothesis tests
chisqr(partGLS) # explanatory power of model
t.test(partGLS) # significance of predictors

## now with a numeric predictor
fitGLS_partition(formula = CLS_coef ~ lat, partmat = pm, data = df, nugget = 0)

## fit ML nugget for each partition (slow)
(partGLS.opt = fitGLS_partition(formula = CLS_coef ~ 0 + land, partmat = pm,
data = df, nugget = NA))
partGLS.opt$part$nuggets # ML nuggets
```
Certain model structures may not be useful:
0 intercept with numeric predictor (produces NAs) and gives a warning in statistical tests
```
fitGLS_partition(formula = CLS_coef ~ 0 + lat, partmat = pm, data = df, nugget = 0)
```
intercept-only, gives warning
```
fitGLS_partition(formula = CLS_coef ~ 1, partmat = pm, data = df, nugget = 0,
    do.chisqr.test = FALSE)
```
part_data examples
```
part_data(1:20, CLS_coef ~ 0 + land, data = ndvi_AK10000)
```
part_csv examples - ## CAUTION: examples for part_csv() include manipulation side-effects:
first, create a .csv file from ndviAK
data(ndvi_AK10000)
file.path = file.path(tempdir(), "ndviAK10000-remotePARTS.csv")
write.csv(ndvi_AK10000, file = file.path)
build a partition from the first 30 pixels in the file
part_csv(1:20, formula = CLS_coef ~ 0 + land, file = file.path)
now with a random 20 pixels
part_csv(sample(3000, 20), formula = CLS_coef ~ 0 + land, file = file.path)
remove the example csv file from disk
file.remove(file.path)

ndvi_AK10000

NDVI remote sensing data for 10,000 random pixels from Alaska, with rare land classes removed.

Description

NDVI remote sensing data for 10,000 random pixels from Alaska, with rare land classes removed.

Usage

```r
dvi_AK10000
```

Format

data frame with 10,000 rows corresponding to sites and 37 columns:

- **lng** longitude of the pixel
- **lat** latitude of the pixel
- **AR_coef** pre-calculated AR REML coefficient standardized by mean ndvi values for each pixel
optimize_nugget

CLS_coef pre-calculated CLS coefficient standardized by mean ndvi values for each pixel
land dominant land class of the pixel
land logical: is this land class rare?
ndvi<t> ndvi value of the pixel during the year <t>

Description

Find the maximum likelihood estimate of the nugget

Usage

```r
optimize_nugget(
  X,  
  y,  
  V,  
  lower = 0.001,  
  upper = 0.999,  
  tol = .Machine$double.eps^0.25,  
  debug = FALSE,  
  ncores = NA
)
```

Arguments

- **X**: numeric (double) nxp matrix
- **y**: numeric (double) nx1 column vector
- **V**: numeric (double) nxn matrix
- **lower**: lower boundary for nugget search
- **upper**: upper boundary for nugget search
- **tol**: desired accuracy of nugget search
- **debug**: logical: debug mode?
- **ncores**: an optional integer indicating how many CPU threads to use for matrix calculations.

Details

Finds the maximum likelihood nugget estimate via mathematical optimization.

To maximize efficiency, `optimize_nugget()` is implemented entirely in C++. Optimization takes place via a C++ version of the `fmin` routine (Forsythe et al 1977). Translated from http://www.netlib.org/fmm/fmin.f

The function `LogLikGLS()` is optimized for nugget. Once the `LogLikGLS()` functionality is absorbed by `fitGLS()`, it will be used instead.
Value
maximum likelihood nugget estimate

See Also
?stats::optimize()

partGLS_ndviAK
partitioned GLS results

Description
Example output from fitGLS_partition() fit to the ndvi_AK data set

Usage
partGLS_ndviAK

Format
an S3 class "partGLS" object. See ?fitGLS_partition() for further details

part_chisqr
Chisqr test for partitioned GLS

Description
Chisqr test for partitioned GLS

Usage
part_chisqr(Fmean, rSSR, df1, npart)

Arguments
Fmean mean value of F-statistic from correlated F-tests
rSSR correlation among partition regression sum of squares
df1 first degree of freedom for F-tests
npart number of partitions

Value
a p-value for the correlated chisqr test
part_ttest

Correlated t-test for partitioned GLS

Description

Correlated t-test for partitioned GLS

Usage

part_ttest(coefs, part.covar_coef, rcoefficients, df2, npart)

Arguments

coefs vector average GLS coefficients
part.covar_coef an array of covar_coef from each partition
rcoefficients an rcoefficients array, one for each partition
df2 second degree of freedom from partitioned GLS
npart number of partitions

Value

a list whose first element is a coefficient table with estimates, standard errors, t-statistics, and p-values and whose second element is a matrix of correlations among coefficients.

print.partGLS

S3 print method for "partGLS" objects

Description

S3 print method for "partGLS" objects

Usage

S3 method for class 'partGLS'
print(x, ...)

Arguments

x "partGLS" object
...
additional arguments passed to print

Value

a print-formatted version of key elements of the "partGLS" object.
Description

S3 print method for "remoteCor" class

Usage

```r
## S3 method for class 'remoteCor'
print(x, ...)
```

Arguments

- `x` remoteCor object to print
- `...` additional arguments passed to `print()`

Value

a print-formatted version of key elements of the "remoteCor" object.

Description

print method for remoteGLS

Usage

```r
## S3 method for class 'remoteGLS'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

Arguments

- `x` remoteGLS object
- `digits` digits to print
- `...` additional arguments

Value

formatted output for remoteGLS object
print.remoteTS

S3 print method for remoteTS class

Description

S3 print method for remoteTS class

S3 summary method for remoteTS class

S3 print method for mapTS class

S3 summary method for mapTS class

helper summary function (matrix)

helper summary function (vector)

Usage

```r
## S3 method for class 'remoteTS'
print(
  x,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

## S3 method for class 'remoteTS'
summary(
  object,
  digits = max(3L, getOption("digits") - 3L),
  signif.stars = getOption("show.signif.stars"),
  ...
)

## S3 method for class 'mapTS'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

## S3 method for class 'mapTS'
summary(
  object,
  digits = max(3L, getOption("digits") - 3L),
  CL = 0.95,
  na.rm = TRUE,
  ...
)

smry_funM(x, CL = 0.95, na.rm = TRUE)

smry_funV(x, CL = 0.95, na.rm = TRUE)
```
Arguments

x numeric matrix
digits significant digits to show
signif.stars logical, passed to stats::printCoefmat
..., additional parameters passed to further print methods
object mapTS object
CL confidence level (default = .95)
na.rm logical, should observations with NA be removed?

Value

returns formatted output
returns formatted output, including summary stats
returns formatted output
returns formatted summary stats
summary statistics for each column including quartiles, mean, and upper and lower confidence levels (given by CL)
summary statistics including quartiles, mean, and upper and lower confidence levels (given by CL)

Examples

simulate dummy data
time.points = 9 # time series length
map.width = 5 # square map width
coords = expand.grid(x = 1:map.width, y = 1:map.width) # coordinate matrix
create empty spatiotemporal variables:
X <- matrix(NA, nrow = nrow(coords), ncol = time.points) # response
Z <- matrix(NA, nrow = nrow(coords), ncol = time.points) # predictor
setup first time point:
Z[, 1] <- .05*coords[, "x"] + .2*coords[, "y"]
X[, 1] <- .5*Z[, 1] + rnorm(nrow(coords), 0, .05) # x at time t
project through time:
for(t in 2:time.points){
 Z[, t] <- Z[, t-1] + rnorm(map.width^2)
 X[, t] <- .2*X[, t-1] + .1*Z[, t] + .05*t + rnorm(nrow(coords), 0 , .25)
}
Pixel CLS
tmp.df = data.frame(x = X[1,], t = nrow(X), z = Z[1,])
CLS <- fitCLS(x ~ z, data = tmp.df)
print(CLS)
summary(CLS)
residuals(CLS)
coef(CLS)
logLik(CLS)
fitted(CLS)
plot(CLS) # doesn't work
Pixel AR

AR <- fitAR(x ~ z, data = tmp.df)
print(AR)
summary(AR)
coef(AR)
residuals(AR)
logLik(AR)
fitted(AR)
plot(AR) # doesn't work

Map CLS

CLS.map <- fitCLS_map(X, coords, y ~ Z, X.list = list(Z = Z), lag.x = 0, resids.only = TRUE)
print(CLS.map)
summary(CLS.map)
residuals(CLS.map)
plot(CLS.map) # doesn't work

CLS.map <- fitCLS_map(X, coords, y ~ Z, X.list = list(Z = Z), lag.x = 0, resids.only = FALSE)
print(CLS.map)
summary(CLS.map)
coef(CLS.map)
residuals(CLS.map)
logLik(CLS.map) # doesn't work
fitted(CLS.map)
plot(CLS.map) # doesn't work

Map AR

AR.map <- fitAR_map(X, coords, y ~ Z, X.list = list(Z = Z), resids.only = TRUE)
print(AR.map)
summary(AR.map)
residuals(AR.map)
plot(AR.map) # doesn't work

AR.map <- fitAR_map(X, coords, y ~ Z, X.list = list(Z = Z), resids.only = FALSE)
print(AR.map)
summary(AR.map)
coef(AR.map)
residuals(AR.map)
logLik(AR.map) # doesn't work
fitted(AR.map)
plot(AR.map) # doesn't work

remoteGLS constructor (S3)

Description

remoteGLS constructor (S3)
Usage

remoteGLS(formula, formula0, no.F = FALSE)

Arguments

formula optional argument specifying the GLS formula
formula0 optional argument specifying the null GLS formula
no.F optional argument specifying the no.F attribute

Value

an empty S3 object of class "remoteGLS"

sample_partitions

Randomly sample a partition matrix for partitioned GLS

Description

Create a matrix whose columns contain indices of non-overlapping random samples.

Usage

sample_partitions(
 npix,
 npart = 10,
 partsize = NA,
 pixels = NA,
 verbose = FALSE
)

Arguments

npix number of pixels in full dataset
npart number of partitions to create
partsize size of each partition
pixels vector of pixel indexes to sample from
verbose logical: TRUE prints additional info

Details

If both npart and partsize is specified, a partition matrix with these dimensions is returned. If only npart is specified, partsize is selected as the largest integer possible that creates equal sized partitions. Similarly, if only npart = NA, then npart is selected to obtain as many partitions as possible.
Value

sample_partitions returns a matrix with partsize rows and npart columns. Columns contain random, non-overlapping samples from 1:npx

See Also

Other partitionedGLS: MC_GLSpart(), crosspart_GLS()

Examples

dummy data with 100 pixels and 20 time points
dat.M <- matrix(rnorm(100*20), ncol = 20)

4 partitions (exhaustive)
sample_partitions(npix = nrow(dat.M), npart = 4)

partitions with 10 pixels each (exhaustive)
sample_partitions(npix = nrow(dat.M), partsize = 10)

4 partitions each with 10 pixels (non-exhaustive, produces warning)
sample_partitions(npix = nrow(dat.M), npart = 4, partsize = 10)

index of 50 pixels to use as subset
sub.indx <- c(1:10, 21:25, 30:62, 70:71)

5 partitions (exhaustive) from only the specified pixel subset
sample_partitions(npix = nrow(dat.M), npart = 5, pixels = sub.indx)

t.test.partGLS Conduct a t-test of "partGLS" object

Description

Conduct a correlated t-test of a partitioned GLS

Usage

S3 method for class 'partGLS'
t.test(x, ...)

Arguments

x "partGLS" object

... additional arguments passed to print

Value

a list whose first element is a coefficient table with estimates, standard errors, t-statistics, and p-values and whose second element is a matrix of correlations among coefficients.
test_covar_fun

test_covar_fun Test passing a covariance function and arguments

Description

Test passing a covariance function and arguments

Usage

```r
test_covar_fun(d, covar_FUN = "covar_exppow", covar.pars = list(range = 0.5))
```

Arguments

- `d` numeric vector or matrix of distances
- `covar_FUN` distance-based covariance function to use, which must take `d` as its first argument
- `covar.pars` vector or list of parameters (other than `d`) passed to the covar function
Index

* datasets
 - ndvi_AK10000, 36
 - partGLS_ndviAK, 38

* partitionedGLS
 - crosspart_GLs, 6
 - MC_GLSpart, 30
 - sample_partitions, 44

* remoteTS
 - fitAR, 9
 - fitAR_map, 11
 - fitCLS, 13
 - fitCLS_map, 15

 AR_fun (fitAR), 9

 calc_dfpart, 2

 check_posdef, 3

 chisqr, 4

 chisqr.partGLS, 4

 covar_exp (covar_taper), 5

 covar_exppow (covar_taper), 5

 covar_taper, 5

 crosspart_GLs, 6, 35, 45

 distm_km, 8

 distm_scaled (distm_km), 8

 fitAR, 9, 12, 15, 17

 fitAR_map, 10, 11, 15, 17

 fitCLS, 10, 12, 13, 17

 fitCLS_map, 10, 12, 15, 15

 fitCor, 18, 26, 27

 fitGLS, 21, 26, 27

 fitGLS_opt, 24

 fitGLS_opt_FUN, 27

 fitGLS_partition (MC_GLSpart), 30

 invert_chol, 28

 max_dist, 29

 MC_GLSpart, 8, 30, 45

MCGLS_partsummary (MC_GLSpart), 30

multicore_fitGLS_partition
 (MC_GLSpart), 30

ndvi_AK10000, 36

optimize_nugget, 37

part_chisqr, 38

part_csv (MC_GLSpart), 30

part_data (MC_GLSpart), 30

part_ttest, 39

partGLS_ndviAK, 38

print.mapTS (print.remoteTS), 41

print.partGLS, 39

print.remoteCor, 40

print.remoteGLS, 40

print.remoteTS, 41

remoteGLS, 43

sample_partitions, 8, 35, 44

smry_funM (print.remoteTS), 41

smry_funV (print.remoteTS), 41

summary.mapTS (print.remoteTS), 41

summary.remoteTS (print.remoteTS), 41

t.test.partGLS, 45

test_covar_fun, 46