Title Tidy Presentation of Clinical Reporting
Version 0.1.0
Date 2023-11-10
Description Streamlined statistical reporting in 'Rmarkdown' environments.
Facilitates the automated reporting of descriptive statistics, multiple univariate models, multivariable models and tables combining these outputs.
Plotting functions include customisable survival curves, forest plots from logistic and ordinal regression and bivariate comparison plots.
License MIT + file LICENSE
Suggests rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
RoxygenNote 7.2.3
Imports aod, cmprsk, cowplot, geepack, ggplot2, ggpbr, gridExtra, kableExtra, knitr, lifecycle, MASS, pander, plyr, rlang, rstatix, scales, survival
Collate 'helper.R' 'main.R' 'globals.R' 'data.R' 'lblCode.R'
Depends R (>= 4.2)
LazyData true
VignetteBuilder knitr, rmarkdown
NeedsCompilation no
Author Lisa Avery [cre, aut] (<https://orcid.org/0000-0002-8431-5143>),
 Ryan Del Bel [aut],
 Osvaldo Espin-Garcia [aut],
 Katherine Lajkosz [aut] (<https://orcid.org/0000-0003-3760-5401>),
 Tyler Pittman [aut] (<https://orcid.org/0000-0002-5013-6980>),
 Anna Santiago [aut],
 Yanning Wang [ctr],
 Jessica Weiss [aut],
 Wei Xu [aut]
Maintainer Lisa Avery <lisa.avery@uhn.ca>
Repository: CRAN
Date/Publication: 2023-11-16 17:00:03 UTC

R topics documented:

- addspace: 3
- boxcoxfitRx: 3
- cap: 4
- clear_labels: 4
- covsum: 5
- crrRx: 7
- ctDNA: 8
- excelCol: 8
- excelColLetters: 9
- extract_labels: 10
- forestplot2: 10
- forestplotMV: 11
- forestplotUV: 13
- forestplotUVMV: 14
- formatp: 16
- geoR_boxcoxfit: 16
- ggkmcif: 17
- ggkmcif2: 21
- ggkmcif2Parameters: 23
- ggkmcif_paste: 26
- hbld: 27
- lbld: 27
- lpvalue: 27
- mvsum: 28
- nestTable: 29
- niceName: 30
- niceNum: 31
- outTable: 31
- pembrolizumab: 33
- plotuv: 34
- psthr: 36
- pstprn: 36
- pvalue: 36
- rm_cifsum: 37
- rm_covsum: 39
- rm_mvsum: 42
- rm_survdiff: 44
- rm_survsum: 45
- rm_survtimes: 47
- rm_uvsum: 49
- rm_uv_mv: 52
Description
Add spaces to strings in LaTeX. Returns appends ~~~ before the string

Usage
addspace(x)

Arguments
x string

boxcoxfitRx fit box cox transformed linear model

Description
Wrapper function to fit fine and gray competing risk model using function crr from package cmprsk

Usage
boxcoxfitRx(f, data, lambda = FALSE)

Arguments
f formula for the model. Currently the formula only works by using the name of the column in a dataframe. It does not work by using $ or [] notation.
data dataframe containing data
lambda boolean indicating if you want to output the lambda used in the boxcox transformation. If so the function will return a list of length 2 with the model as the first element and a vector of length 2 as the second.

Value
a list containing the linear model (lm) object and, if requested, lambda
cap

Capitalize a string

Description
Capitalizing a string

Usage
cap(x)

Arguments
x string

clear_labels

Clear variable labels from a data frame

Description
This function will remove all label attributes from variables in the data.

Usage
clear_labels(data)

Arguments
data the data frame to remove labels from

Details
To change or remove individual labels use set_labels or set_var_labels

Examples
Set a few variable labels for ctDNA
ctDNA <- ctDNA |> set_var_labels(
 ctdna_status="detectable ctDNA",
 cohort="A cohort label")
Clear all variable data frames and check
clear_labels(ctDNA)
 covsum

Get covariate summary dataframe

Description

Returns a dataframe corresponding to a descriptive table.

Usage

covsum(
 data, # dataframe containing data
 covs, # character vector with the names of columns to include in table
 maincov = NULL, # covariate to stratify table by
 digits = 1, # number of digits for summarizing mean data, does not affect p-values
 numobs = NULL, # named list overriding the number of people you expect to have the covariate
 markup = TRUE, # boolean indicating if you want latex markup
 sanitize = TRUE, # boolean indicating if you want to sanitize all strings to not break LaTeX
 nicenames = TRUE, # boolean indicating if you want to replace . and _ in strings with a space
 IQR = FALSE, # boolean indicating if you want to display the inter quantile range (Q1,Q3) as opposed to (min,max) in the summary for continuous variables
 all.stats = FALSE, # boolean indicating if you want to show all statistics
 pvalue = TRUE, # boolean indicating if you want to show p-values
 effSize = FALSE, # boolean indicating if you want to show effect sizes
 show.tests = FALSE, # boolean indicating if you want to show significance tests
 dropLevels = TRUE, # boolean indicating if you want to drop levels
 excludeLevels = NULL, # named list of levels to exclude
 full = TRUE, # boolean indicating if you want to show all levels
 digits.cat = 0, # number of digits for summarizing categorical data
 testcont = c("rank-sum test", "ANOVA"), # test to use for continuous variables
 testcat = c("Chi-squared", "Fisher"), # test to use for categorical variables
 include_missing = FALSE, # boolean indicating if you want to include missing values
 percentage = c("column", "row") # how to calculate percentages
)

Arguments

data # dataframe containing data
covs # character vector with the names of columns to include in table
maincov # covariate to stratify table by
digits # number of digits for summarizing mean data, does not affect p-values
numobs # named list overriding the number of people you expect to have the covariate
markup # boolean indicating if you want latex markup
sanitize # boolean indicating if you want to sanitize all strings to not break LaTeX
nicenames # boolean indicating if you want to replace . and _ in strings with a space
IQR # boolean indicating if you want to display the inter quantile range (Q1,Q3) as opposed to (min,max) in the summary for continuous variables
all.stats # boolean indicating if you want to show all statistics
pvalue # boolean indicating if you want to show p-values
effSize # boolean indicating if you want to show effect sizes
show.tests # boolean indicating if you want to show significance tests
dropLevels # boolean indicating if you want to drop levels
excludeLevels # named list of levels to exclude
full # boolean indicating if you want to show all levels
digits.cat # number of digits for summarizing categorical data
testcont # test to use for continuous variables
testcat # test to use for categorical variables
include_missing # boolean indicating if you want to include missing values
percentage # how to calculate percentages
all.stats boolean indicating if all summary statistics (Q1,Q3 + min,max on a separate line) should be displayed. Overrides IQR.
pvalue boolean indicating if you want p-values included in the table
effSize boolean indicating if you want effect sizes included in the table. Can only be obtained if pvalue is also requested. Effect sizes calculated include Cramer’s V for categorical variables, Cohen’s d, Wilcoxon r, or Eta-squared for numeric/continuous variables.
show.tests boolean indicating if the type of statistical test and effect size used should be shown in a column beside the pvalues. Ignored if pvalue=FALSE.
dropLevels logical, indicating if empty factor levels be dropped from the output, default is TRUE.
excludeLevels a named list of covariate levels to exclude from statistical tests in the form list(varname=c('level1','level2')). These levels will be excluded from association tests, but not the table. This can be useful for levels where there is a logical skip (ie not missing, but not presented). Ignored if pvalue=FALSE.
full boolean indicating if you want the full sample included in the table, ignored if maincov is NULL
digits.cat number of digits for the proportions when summarizing categorical data (default: 0)
testcont test of choice for continuous variables, one of rank-sum (default) or ANOVA
testcat test of choice for categorical variables, one of Chi-squared (default) or Fisher
include.missing Option to include NA values of maincov. NAs will not be included in statistical tests
percentage choice of how percentages are presented, one of column (default) or row

Details

Comparisons for categorical variables default to chi-square tests, but if there are counts of <5 then the Fisher Exact test will be used and if this is unsuccessful then a second attempt will be made computing p-values using MC simulation. If testcont=’ANOVA’ then the t-test with unequal variance will be used for two groups and an ANOVA will be used for three or more. The statistical test used can be displayed by specifying show.tests=TRUE.

The number of decimals places to display the statistics can be changed with digits, but this will not change the display of p-values. If more significant digits are required for p-values then use tableOnly=TRUE and format as desired.

References

crrRx

See Also

- `fisher.test`, `chisq.test`, `wilcox.test`, `kruskal.test`, and `anova`

Description

Wrapper function to fit fine and gray competing risk model using function `crr` from package `cmprsk`.

Usage

```r
crrRx(f, data)
```

Arguments

- **f**: formula for the model. Currently the formula only works by using the name of the column in a dataframe. It does not work by using `$` or `[]` notation.
- **data**: dataframe containing data

Value

A competing risk model with the call appended to the list.

See Also

- `crr`

Examples

```r
# From the crr help file:
set.seed(10)
ftime <- rexp(200)
fstatus <- sample(0:2,200,replace=TRUE)
cov <- matrix(runif(600),nrow=200)
dimnames(cov)[[2]] <- c('x1','x2','x3')
df <- data.frame(ftime,fstatus,cov)
m1 <- crrRx(as.formula('ftime+fstatus~x1+x2+x3'),df)
# Nicely output to report:
rm_mvsum(m1,data=df,showN = TRUE,vif=TRUE)
```
Tumour size change over time
Longitudinal changes in tumour size since baseline for patients by changes in ctDNA status (clearance, decrease or increase) since baseline.

Usage

cDNA

Format

A data frame with 270 rows and 5 variables:

- **id** Patient ID
- **cohort** Study Cohort: A = Squamous cell carcinoma of soft palate, B = Triple negative breast cancer, C = Ovarian, high grade serous, D = Melanoma, E = Other Solid Tumor
- **ctdna_status** Change in ctDNA since baseline
- **time** Number of weeks on treatment
- **size_change** Percentage change in tumour measurement

Source

https://www.nature.com/articles/s43018-020-0096-5

Retrieve columns number from spreadsheet columns specified as unquoted letters

Description

Retrieve columns number from spreadsheet columns specified as unquoted letters

Usage

cexcelCol(...)

Arguments

... unquoted excel column headers (i.e. excelCol(A,CG,AA)) separated by commas
excelColLetters

Value

a numeric vector corresponding to columns in a spreadsheet

Examples

```r
## Find the column numbers for excel columns AB, CE and BB
excelCol(AB,CE,bb)
## Get the columns between A and K and Z
excelCol(A-K,Z)
```

excelColLetters

Retrieves spreadsheet column letter-names from column indices

Description

Creates a vector of spreadsheet-style letter-names corresponding to column numbers

Usage

```r
excelColLetters(columnIndices)
```

Arguments

- `columnIndices`: vector of integer column indices

Details

This is the inverse function of `excelCol`

Value

a character vector corresponding to the spreadsheet column headings

Examples

```r
## Find the column numbers for excel columns AB, CE and BB
colIndices <- excelCol(AB,CE,bb)
## Go back to the column names
excelColLetters(colIndices)
```
extract_labels
Extract variable labels from labelled data frame

Description

Extract variable labels from data and return a data frame with labels.

Usage

```r
extract_labels(data, sep = "_")
```

Arguments

- `data`: the data frame to extract labels from.
- `sep`: character used to separate multiple labels, defaults to "_".

Details

All variable names will be returned, even those with no labels. If the label attribute has length greater than one the values will be concatenated and returned as a single string separated by `sep`.

Examples

```r
# Set a few variable labels for ctDNA
ctDNA <- ctDNA |> set_var_labels(
  ctDNA_status="detectable ctDNA",
  cohort="A cohort label")
# Extract labels
extract_labels(ctDNA)
```

forestplot2
Create a forest plot using ggplot2

Description

This function will accept a log or logistic regression fit from `glm` or `geeglm`, and display the OR or RR for each variable on the appropriate log scale.

Usage

```r
forestplot2(
  model,
  conf.level = 0.95,
  orderByRisk = TRUE,
  colours = "default",
  showEst = TRUE,
)```


\begin{verbatim}
forestplotMV

  rmRef = FALSE,
  logScale =getOption("reportRmd.logScale", TRUE),
  nxTicks = 5
)

Arguments

  model an object output from the glm or geeglm function, must be from a logistic regression
  conf.level controls the width of the confidence interval
  orderByRisk logical, should the plot be ordered by risk
  colours can specify colours for risks less than, 1 and greater than 1.0. Default is red, black, green
  showEst logical, should the risks be displayed on the plot in text
  rmRef logical, should the reference levels be removed for the plot?
  logScale logical, should OR/RR be shown on log scale, defaults to TRUE, or reportRmd.logScale
    if set. See https://doi.org/10.1093/aje/kwr156 for why you may prefer a linear scale.
  nxTicks Number of tick marks supplied to the log_breaks function to produce

Value

  a plot object

Examples

  data("pembrolizumab")
  glm_fit = glm(orr~change_ctdna_group+sex+age+l_size,
    data=pembrolizumab,family = 'binomial')
  forestplot2(glm_fit)
\end{verbatim}

---

\textbf{forestplotMV} \hspace{1cm} \textit{Create a multivariable forest plot using ggplot2}

\section*{Description}

This function will send and take log or logistic regression fit from glm or geeglm from mvsum function, and display the OR or RR for each variable on the appropriate log scale.
Usage

```r
forestplotMV(
 model,
 data,
 conf.level = 0.95,
 orderByRisk = TRUE,
 colours = "default",
 showEst = TRUE,
 rmRef = FALSE,
 digits =getOption("reportRmd.digits", 2),
 logScale =getOption("reportRmd.logScale", TRUE),
 nxTicks = 5,
 showN = TRUE,
 showEvent = TRUE
)
```

**Arguments**

- `model`: an object output from the glm or geeglm function, must be from a logistic regression
- `data`: dataframe containing your data
- `conf.level`: controls the width of the confidence interval
- `orderByRisk`: logical, should the plot be ordered by risk
- `colours`: can specify colours for risks less than, 1 and greater than 1.0. Default is red, black, green
- `showEst`: logical, should the risks be displayed on the plot in text
- `rmRef`: logical, should the reference levels be removed for the plot?
- `digits`: number of digits to use displaying estimates
- `logScale`: logical, should OR/RR be shown on log scale, defaults to TRUE, or reportRmd.logScale if set. See https://doi.org/10.1093/aje/kwr156 for why you may prefer a linear scale.
- `nxTicks`: Number of tick marks supplied to the log_breaks function to produce
- `showN`: Show number of observations per variable and category
- `showEvent`: Show number of events per variable and category

**Value**

a plot object

**Examples**

```r
data("pembrolizumab")
glm_fit = glm(orr~change_ctdna_group+sex+age+l_size,
data=pembrolizumab,family = 'binomial')
forestplotMV(glm_fit)
```
Create an univariable forest plot using ggplot2

Description
This function will send and take log or logistic regression fit from glm or geeglm from uvsum function, and display the OR or RR for each variable on the appropriate log scale.

Usage
forestplotUV(
  response,
  covs,
  data,
  id = NULL,
  corstr = NULL,
  model = "glm",
  family = NULL,
  digits =getOption("reportRmd.digits", 2),
  conf.level = 0.95,
  orderByRisk = TRUE,
  colours = "default",
  showEst = TRUE,
  rmRef = FALSE,
  logScale =getOption("reportRmd.logScale", TRUE),
  nxTicks = 5,
  showN = TRUE,
  showEvent = TRUE
)

Arguments
response character vector with names of columns to use for response
covs character vector with names of columns to use for covariates
data dataframe containing your data
id character vector which identifies clusters. Only used for geeglm
corstr character string specifying the correlation structure. Only used for geeglm. The following are permitted: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"
model fitted model object
family description of the error distribution and link function to be used in the model. Only used for geeglm
digits number of digits to round to
conf.level controls the width of the confidence interval
forestplotUVMV

Combine an univariable and multivariable forest plot using ggplot2

Description

This function will take log or logistic regression fit forest plot output from forestplotUV and forestplotMV functions and display the combined adjusted and unadjusted OR or RR for each variable on the appropriate log scale. Please note that total N and reference-level N is taken from unadjusted model.

Usage

forestplotUVMV(
  UVmodel,
  MVmodel,
  model = "glm",
  family = NULL,
  digits =getOption("reportRmd.digits", 2),
  orderByRisk = TRUE,
  colours = "default",
  showEst = TRUE,
  rmRef = FALSE,
  logScale = FALSE,
)
Arguments

UVmodel  an UV model object output from the forestplotUV function
MVmodel  a MV model object output from the forestplotMV function
model    a fitted model object
family   description of the error distribution and link function to be used in the model.
         Only used for geeglm
digits   number of digits to round to
orderByRisk logical, should the plot be ordered by risk
colours  can specify colours for risks less than, 1 and greater than 1.0. Default is red, black, green
showEst  logical, should the risks be displayed on the plot in text
rmRef    logical, should the reference levels be removed for the plot?
logScale logical, should OR/RR be shown on log scale, defaults to TRUE. See https://doi.org/10.1093/aje/kwr156 for why you may prefer a linear scale.
nxTicks  Number of tick marks supplied to the log_breaks function to produce
showN    Show number of observations per variable and category
showEvent Show number of events per variable and category

Value

a plot object

Examples

data("pembrolizumab")
UVp = forestplotUV(response="orr", covs=c("change_ctdna_group", "sex", "age", "l_size"), data=pembrolizumab, family='binomial')
MVp = forestplotMV(glm(orr~change_ctdna_group+sex+age+l_size, data=pembrolizumab, family = 'binomial'))
forestplotUVMV(UVp, MVp)
formatp

Specific p-value formatting

Description
If p < 0.001 returns "<0.001", if p < 0.01 returns p to 3 decimal places otherwise returns p to 2 decimal places

Usage
formatp(pvalues)

Arguments
pvalues a vector of p values

geoR_boxcoxfit

Parameter Estimation for the Box-Cox Transformation

Description
This function is copied from the geoR package which has been removed from the CRAN repository.

Usage
geoR_boxcoxfit(object, xmat, lambda, lambda2 = NULL, add.to.data = 0)

Arguments
object a vector with the data
xmat a matrix with covariates values. Defaults to rep(1, length(y)).
lambda numerical value(s) for the transformation parameter lambda. Used as the initial value in the function for parameter estimation. If not provided default values are assumed. If multiple values are passed the one with highest likelihood is used as initial value.
lambda2 logical or numerical value(s) of the additional transformation (see DETAILS below). Defaults to NULL. If TRUE this parameter is also estimated and the initial value is set to the absolute value of the minimum data. A numerical value is provided it is used as the initial value. Multiple values are allowed as for lambda.
add.to.data a constant value to be added to the data.

Details
For more information see: https://cran.r-project.org/web/packages/geoR/index.html
ggkmcif

Plot KM and CIF curves with ggplot

Description

This function will plot a KM or CIF curve with option to add the number at risk. You can specify if you want confidence bands, the hazard ratio, and pvalues, as well as the units of time used.

Usage

```r
ggkmcif(
 response,
 cov = NULL,
 data,
 type = NULL,
 pval = TRUE,
 HR = FALSE,
 HR_pval = FALSE,
 conf.curves = FALSE,
 conf.type = "log",
 table = TRUE,
 times = NULL,
 xlab = "Time",
 ylab = NULL,
 main = NULL,
 stratalabs = NULL,
 strataname = nicename(cov),
 stratalabs.table = NULL,
 strataname.table = strataname,
 median.text = FALSE,
 median.lines = FALSE,
 median.CI = FALSE,
 set.time.text = NULL,
 set.time.line = FALSE,
 set.time = 5,
 set.time.CI = FALSE,
 censor.marks = TRUE,
 censor.size = 3,
 censor.stroke = 1.5,
 fsize = 10,
 nsize = 3,
 lsize = 1,
 psize = 3.5,
 median.size = 3,
 median.pos = NULL,
 median.lsize = 1,
 set.size = 3,
)```

set.pos = NULL,
set.lsize = 1,
ylim = c(0, 1),
col = NULL,
linetype = NULL,
xlim = NULL,
legend.pos = NULL,
pval.pos = NULL,
plot.event = 1,
event = c("col", "linetype"),
flip.CIF = FALSE,
cut = NULL,
eventlabs = NULL,
event.name = NULL,
Numbers_at_risk_text = "Numbers at risk",
HR.digits = 2,
HR.pval.digits = 3,
pval.digits = 3,
median.digits = 3,
set.time.digits = 3,
returns = FALSE,
print.n.missing = TRUE
)

Arguments

response character vector with names of columns to use for response
cov String specifying the column name of stratification variable
data dataframe containing your data
type string indicating the type of univariate model to fit. The function will try and guess what type you want based on your response. If you want to override this you can manually specify the type. Options include "KM", and "CIF"
pval boolean to specify if you want p-values in the plot (Log Rank test for KM and Gray’s test for CIF)
HR boolean to specify if you want hazard ratios included in the plot
HR_pval boolean to specify if you want HR p-values in the plot
conf.curves boolean to specify if you want confidence interval bands
conf.type One of "none"(the default), "plain", "log", "log-log" or "logit". Only enough of the string to uniquely identify it is necessary. The first option causes confidence intervals not to be generated. The second causes the standard intervals curve ± k *se(curve), where k is determined from conf.int. The log option calculates intervals based on the cumulative hazard or log(survival). The log-log option bases the intervals on the log hazard or log(-log(survival)), and the logit option on log(survival/(1-survival)).
table Logical value. If TRUE, includes the number at risk table
times Numeric vector of times for the x-axis
xlab String corresponding to xlabel. By default is "Time"

ylab String corresponding to ylabel. When NULL uses "Survival probability" for KM curves, and "Probability of an event" for CIF

main String corresponding to main title. When NULL uses Kaplan-Meier Plots, and "Cumulative Incidence Plot for CIF"

stratalabs string corresponding to the labels of the covariate, when NULL will use the levels of the covariate

strataname String of the covariate name default is nicename(cov)

stratalabs.table String corresponding to the levels of the covariate for the number at risk table, when NULL will use the levels of the covariate. Can use a string of "." when the labels are long

strataname.table String of the covariate name for the number at risk table default is nicename(cov)

median.text boolean to specify if you want the median values added to the legend (or as added text if there are no covariates), for KM only

median.lines boolean to specify if you want the median values added as lines to the plot, for KM only

median.CI boolean to specify if you want the 95\% interval with the median text (Only for KM)

set.time.text string for the text to add survival at a specified time (eg. year OS)

set.time.line boolean to specify if you want the survival added as lines to the plot at a specified point

set.time Numeric values of the specific time of interest, default is 5 (Multiple values can be entered)

set.time.CI boolean to specify if you want the 95\% interval with the set time text

censor.marks logical value. If TRUE, includes censor marks (only for KM curves)

censor.size size of censor marks, default is 3

censor.stroke stroke of censor marks, default is 1.5

fsize font size

nsize font size for numbers in the numbers at risk table

lsize line size

psize size of the pvalue

median.size size of the median text (Only when there are no covariates)

median.pos vector of length 2 corresponding to the median position (Only when there are no covariates)

median.lsize line size of the median lines

set.size size of the survival at a set time text (Only when there are no covariates)

set.pos vector of length 2 corresponding to the survival at a set point position (Only when there are no covariates)

set.lsize line size of the survival at set points
ylim
vector of length 2 corresponding to limits of y-axis. Default to NULL

col
vector of colours

linetype
vector of line types

xlim
vector of length 2 corresponding to limits of x-axis. Default to NULL

legend.pos
Can be either a string corresponding to the legend position ("left", "top", "right", "bottom", "none") or a vector of length 2 corresponding to the legend position (uses normalized units (ie the c(0.5,0.5) is the middle of the plot))

pval.pos
vector of length 2 corresponding to the p-value position

plot.event
Which event(s) to plot (1, 2, or c(1,2))

event
String specifying if the event should be mapped to the colour, or linetype when plotting both events to colour = "col", line type

flip.CIF
boolean to flip the CIF curve to start at 1

cut
numeric value indicating where to divide a continuous covariate (default is the median)

eventlabs
String corresponding to the event type names

event.name
String corresponding to the label of the event types

Numbers_at_risk_text
String for the label of the number at risk

HR.digits
Number of digits printed of the hazard ratio

HR.pval.digits
Number of digits printed of the hazard ratio pvalue

pval.digits
Number of digits printed of the Gray’s/log rank pvalue

median.digits
Number of digits printed of the median pvalue

set.time.digits
Number of digits printed of the probability at a specified time

returns
Logical value returns a list with all ggplot objects in a list

print.n.missing
Logical, should the number of missing be shown !Needs to be checked

Details

Note that for proper pdf output of special characters the following code needs to be included in the first chunk of the rmd knitr::opts_chunk$set(dev="cairo_pdf")

Value

Nothing is returned unless returns = TRUE is used. With returns = TRUE, if table=TRUE (the default) a table style graphic with survival plot and number at risk table is returned. Otherwise a plot with the survival curves is returned.
Examples

```r
data("pembrolizumab")
# Simple plot without confidence intervals
ggkmcif(response = c('os_time','os_status'),
cov='cohort',
data=pembrolizumab)

# Plot with median survival time
ggkmcif(response = c('os_time','os_status'),
cov='sex',
data=pembrolizumab,
median.text = TRUE,median.lines=TRUE,conf.curves=TRUE)

# Plot with specified survival times and log-log CI
ggkmcif(response = c('os_time','os_status'),
cov='sex',
data=pembrolizumab,
median.text = FALSE,set.time.text = 'mo OS',
set.time = c(12,24),conf.type = 'log-log',conf.curves=TRUE)

# KM plot with 95% CI and censor marks
ggkmcif(c('os_time','os_status'),'sex',data = pembrolizumab, type = 'KM',
HR=TRUE, HR_pval = TRUE, conf.curves = TRUE,conf.type='log-log',
set.time.CI = TRUE, censor.marks=TRUE)
```

ggkmcif2

Plot KM and CIF curves with ggplot

Description

This function will plot a KM or CIF curve with option to add the number at risk. You can specify if you want confidence bands, the hazard ratio, and pvalues, as well as the units of time used.

Usage

```r
 ggkmcif2(
   response,
   cov = NULL,
data,
pval = TRUE,
conf.curves = FALSE,
table = TRUE,
xlab = "Time",
ylab = NULL,
col = NULL,
times = NULL,
type = NULL,
plot.event = 1,
...)
```
Arguments

- **response**: character vector with names of columns to use for response
- **cov**: String specifying the column name of stratification variable
- **data**: dataframe containing your data
- **pval**: boolean to specify if you want p-values in the plot (Log Rank test for KM and Gray’s test for CIF)
- **conf.curves**: boolean to specify if you want confidence interval bands
- **table**: Logical value. If TRUE, includes the number at risk table
- **xlab**: String corresponding to xlabel. By default is "Time"
- **ylab**: String corresponding to ylabel. When NULL uses "Survival"
- **col**: vector of colours
- **times**: Numeric vector of times for the x-axis probability” for KM cuves, and ”Probability of an event” for CIF
- **type**: string indicating the type of univariate model to fit. The function will try and guess what type you want based on your response. If you want to override this you can manually specify the type. Options include ”KM”, and ’CIF”
- **plot.event**: Which event(s) to plot (1,2, or c(1,2))
- **...**: additional plotting arguments see `ggkmcif2Parameters`

Details

Note that for proper pdf output of special characters the following code needs to be included in the first chunk of the rmd `knitr::opts_chunk$set(dev="cairo_pdf")`

Value

ggplot object; if table = F then only curves are output; if table = T then curves and risk table are output together

Examples

```r
# Simple plot without confidence intervals
data("pembrolizumab")
ggkmcif2(response = c('os_time','os_status'),
           cov='cohort',
           data=pembrolizumab)

# Plot with median survival time
ggkmcif2(response = c('os_time','os_status'),
           cov='sex',
           data=pembrolizumab,
           median.text = TRUE,median.lines=TRUE,conf.curves=TRUE)

# Plot with specified survival times and log-log CI
ggkmcif2(response = c('os_time','os_status'),
           cov='sex',
```
ggkmcif2Parameters

Additional parameters passed to ggkmcif2

Description

Additional parameters passed to ggkmcif2

Usage

```r
ggkmcif2Parameters(
  table.height = NULL,
  HR = FALSE,
  HR_pval = FALSE,
  conf.type = "log",
  main = NULL,
  stratalabs = NULL,
  strataname,
  stratalabs.table = NULL,
  strataname.table = strataname,
  median.text = FALSE,
  median.lines = FALSE,
  median.CI = FALSE,
  set.time.text = NULL,
  set.time.line = FALSE,
  set.time = 5,
  set.time.CI = FALSE,
  censor.marks = TRUE,
  censor.size = 3,
  censor.stroke = 1.5,
  fsize = 11,
  nsize = 3,
  lsize = 1,
  psize = 3.5,
  median.size = 3,
  median.pos = NULL,
  median.lsize = 1,
  set.size = 3,
  set.pos = NULL,
  set.lsize = 1,
)```

```r
data=pembrolizumab,
median.text = FALSE,set.time.text = 'mo OS',
set.time = c(12,24),conf.type = 'log-log',conf.curves=TRUE)

KM plot with 95% CI and censor marks
ggkmcif2(c('os_time','os_status'),'sex',data = pembrolizumab, type = 'KM',
HR=TRUE, HR_pval = TRUE, conf.curves = TRUE,conf.type='log-log',
set.time.CI = TRUE, censor.marks=TRUE)
\begin{verbatim}
 ylim = c(0, 1),
 linetype = NULL,
 xlim = NULL,
 legend.pos = NULL,
 pval.pos = NULL,
 event = c("col", "linetype"),
 flip.CIF = FALSE,
 cut = NULL,
 eventlabs = NULL,
 event.name = NULL,
 Numbers_at_risk_text = "Number at risk",
 HR.digits = 2,
 HR.pval.digits = 3,
 pval.digits = 3,
 median.digits = 3,
 set.time.digits = 3,
 print.n.missing = TRUE

Arguments

 table.height Relative height of risk table (0-1)
 HR boolean to specify if you want hazard ratios included in the plot
 HR_pval boolean to specify if you want HR p-values in the plot
 conf.type One of "none" (the default), "plain", "log", "log-log" or "logit". Only enough of the string to uniquely identify it is necessary. The first option causes confidence intervals not to be generated. The second causes the standard intervals curve \(\pm k \times \text{se}(\text{curve}) \), where \(k \) is determined from \text{conf.int}. The log option calculates intervals based on the cumulative hazard or log(survival). The log-log option bases the intervals on the log hazard or log(-log(survival)), and the logit option on log(survival/(1-survival)).
 main String corresponding to main title. When NULL uses Kaplan-Meier Plots, and "Cumulative Incidence Plot for CIF"
 stratalabs string corresponding to the labels of the covariate, when NULL will use the levels of the covariate
 strataname String of the covariate name default is nicename(cov)
 stratalabs.table String corresponding to the levels of the covariate for the number at risk table, when NULL will use the levels of the covariate. Can use a string of "." when the labels are long
 strataname.table String of the covariate name for the number at risk table default is nicename(cov)
 median.text boolean to specify if you want the median values added to the legend (or as added text if there are no covariates), for KM only
 median.lines boolean to specify if you want the median values added as lines to the plot, for KM only
\end{verbatim}
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>median.CI</td>
<td>boolean to specify if you want the 95% with the median text (Only for KM)</td>
</tr>
<tr>
<td>set.time.text</td>
<td>string for the text to add survival at a specified time (eg. year OS)</td>
</tr>
<tr>
<td>set.time.line</td>
<td>boolean to specify if you want the survival added as lines to the plot at a specified point</td>
</tr>
<tr>
<td>set.time</td>
<td>Numeric values of the specific time of interest, default is 5 (Multiple values can be entered)</td>
</tr>
<tr>
<td>set.time.CI</td>
<td>boolean to specify if you want the 95% interval with the set time text</td>
</tr>
<tr>
<td>censor.marks</td>
<td>logical value. If TRUE, includes censor marks (only for KM curves)</td>
</tr>
<tr>
<td>censor.size</td>
<td>size of censor marks, default is 3</td>
</tr>
<tr>
<td>censor.stroke</td>
<td>stroke of censor marks, default is 1.5</td>
</tr>
<tr>
<td>fsize</td>
<td>font size</td>
</tr>
<tr>
<td>nsize</td>
<td>font size for numbers in the numbers at risk table</td>
</tr>
<tr>
<td>lsize</td>
<td>line size</td>
</tr>
<tr>
<td>psize</td>
<td>size of the pvalue</td>
</tr>
<tr>
<td>median.size</td>
<td>size of the median text (Only when there are no covariates)</td>
</tr>
<tr>
<td>median.pos</td>
<td>vector of length 2 corresponding to the median position (Only when there are no covariates)</td>
</tr>
<tr>
<td>median.lsize</td>
<td>line size of the median lines</td>
</tr>
<tr>
<td>set.size</td>
<td>size of the survival at a set time text (Only when there are no covariates)</td>
</tr>
<tr>
<td>set.pos</td>
<td>vector of length 2 corresponding to the survival at a set point position (Only when there are no covariates)</td>
</tr>
<tr>
<td>set.lsize</td>
<td>line size of the survival at set points</td>
</tr>
<tr>
<td>ylim</td>
<td>vector of length 2 corresponding to limits of y-axis. Default to NULL</td>
</tr>
<tr>
<td>linetype</td>
<td>vector of line types; default is solid for all lines</td>
</tr>
<tr>
<td>xlim</td>
<td>vector of length 2 corresponding to limits of x-axis. Default to NULL</td>
</tr>
<tr>
<td>legend.pos</td>
<td>Can be either a string corresponding to the legend position ("left","top", "right", "bottom", "none") or a vector of length 2 corresponding to the legend position (uses normalized units (ie the c(0.5,0.5) is the middle of the plot))</td>
</tr>
<tr>
<td>pval.pos</td>
<td>vector of length 2 corresponding to the p-value position</td>
</tr>
<tr>
<td>event</td>
<td>String specifying if the event should be mapped to the colour, or linetype when plotting both events to colour = "col", line type</td>
</tr>
<tr>
<td>flip.CIF</td>
<td>boolean to flip the CIF curve to start at 1</td>
</tr>
<tr>
<td>cut</td>
<td>numeric value indicating where to divide a continuous covariate (default is the median)</td>
</tr>
<tr>
<td>eventlabs</td>
<td>String corresponding to the event type names</td>
</tr>
<tr>
<td>event.name</td>
<td>String corresponding to the label of the event types</td>
</tr>
<tr>
<td>Numbers_at_risk_text</td>
<td>String for the label of the number at risk</td>
</tr>
<tr>
<td>HR.digits</td>
<td>Number of digits printed of the hazard ratio</td>
</tr>
</tbody>
</table>
GGKMCIF_PASTE

HR_pval.digits Number of digits printed of the hazard ratio pvalue
pval.digits Number of digits printed of the Gray’s/log rank pvalue
median.digits Number of digits printed of the median pvalue
set.time.digits Number of digits printed of the probability at a specified time
print.n.missing Logical, should the number of missing be shown? Needs to be checked

GGKMCIF_PASTE Plot KM and CIF curves with ggplot

Description
This function puts together a survival curve, and a number at risk table

Usage
ggkmcif_paste(list_gg)

Arguments
list_gg list containing the results of ggkmcif

Value
a gtable with three elements, the survival curve, a spacer and the number at risk table

Examples
data("pembrolizumab")
plot <- ggkmcif(response=c('pfs_time', 'pfs_status'),
data=pembrolizumab, returns = TRUE)

Highlighting a section of the curve
plot[[1]] <- plot[[1]] +
ggplot2::geom_rect(xmin=4, xmax=8, ymin=0.15, ymax=0.4, alpha=0.01, fill='yellow')

Putting the curve back together
ggkmcif_paste(plot)
hbld

Bold strings in HTML

Description

Bold strings in HTML.

Usage

hbld(strings)

Arguments

- **strings**
 A vector of strings to bold.

lbld

Bold strings in LaTeX

Description

Bold strings in LaTeX.

Usage

lbld(strings)

Arguments

- **strings**
 A vector of strings to bold.

lpvalue

Formats p-values for LaTeX

Description

Returns \(<0.001\) if pvalue is \(<0.001\). Else rounds the pvalue to specified significant digits. Will bold the p-value if it is \(\leq 0.05\).

Usage

lpvalue(x, sigdigits = 2)

Arguments

- **x**
 an integer
- **sigdigits**
 number of significant digit to report
Get multivariate summary dataframe

Description

Returns a dataframe with the model summary and global p-value for multi-level variables.

Usage

mvsum(
 model,
 data,
 digits = getOption("reportRmd.digits", 2),
 showN = TRUE,
 showEvent = TRUE,
 markup = TRUE,
 sanitize = TRUE,
 nicenames = TRUE,
 CIwidth = 0.95,
 vif = TRUE
)

Arguments

- **model**: fitted model object
- **data**: dataframe containing data
- **digits**: number of digits to round to
- **showN**: boolean indicating sample sizes should be shown for each comparison, can be useful for interactions
- **showEvent**: boolean indicating if number of events should be shown. Only available for logistic.
- **markup**: boolean indicating if you want latex markup
- **sanitize**: boolean indicating if you want to sanitize all strings to not break LaTeX
- **nicenames**: boolean indicating if you want to replace . and _ in strings with a space.
- **CIwidth**: width for confidence intervals, defaults to 0.95
- **vif**: boolean indicating if the variance inflation factor should be included. See details

Details

Global p-values are likelihood ratio tests for lm, glm and polr models. For lme models an attempt is made to re-fit the model using ML and if successful LRT is used to obtain a global p-value. For coxph models the model is re-run without robust variances with and without each variable and a LRT is presented. If unsuccessful a Wald p-value is returned. For GEE and CRR models Wald global p-values are returned.
If the variance inflation factor is requested (VIF=T) then a generalised VIF will be calculated in the same manner as the car package.

VIF for competing risk models is computed by fitting a linear model with a dependent variable comprised of the sum of the model independent variables and then calculating VIF from this linear model.

References

nestTable

Combine two table columns into a single column with levels of one nested within levels of the other.

Description

This function accepts a data frame (via the data argument) and combines two columns into a single column with values from the head_col serving as headers and values of the to_col displayed underneath each header. The resulting table is then passed to outTable for printing and output, to use the grouped table as a data frame specify tableOnly=TRUE. By default the headers will be bolded and the remaining values indented.

Usage

```r
nestTable(
  data,
  head_col,
  to_col,
  colHeader = "",
  caption = NULL,
  indent = TRUE,
  boldheaders = TRUE,
  hdr_prefix = "",
  hdr_suffix = "",
  digits = getOption("reportRmd.digits", 2),
  tableOnly = FALSE,
  fontsize
)
```

Arguments

- `data`: dataframe
- `head_col`: character value specifying the column name with the headers
to_col character value specifying the column name to add the headers into
colHeader character with the desired name of the first column. The default is to leave this empty for output or, for table only output to use the column name 'col1'.
caption table caption
indent Boolean should the original values in the to_col be indented
boldheaders Boolean should the header column values be bolded
hdr_prefix character value that will prefix headers
hdr_suffix character value that will suffix headers
digits number of digits to round numeric columns to, wither a single number or a vector corresponding to the number of numeric columns
tableOnly boolean indicating if the table should be formatted for printing or returned as a data frame
fontsize PDF/HTML output only, manually set the table fontsize

Details
Note that it is possible to combine multiple tables (more than two) with this function.

Value
A character vector of the table source code, unless tableOnly=TRUE in which case a data frame is returned

Examples
Investigate models to predict baseline ctDNA and tumour size and display together
(not clinically useful!)
data(pembrolizumab)
fit1 <- lm(baseline_ctdna~age+l_size+pdl1,data=pembrolizumab)
m1 <- rm_mvsum(fit1,tableOnly=TRUE)
m1$Response = 'ctDNA'
fit2 <- lm(l_size~age+baseline_ctdna+pdl1,data=pembrolizumab)
m2 <- rm_mvsum(fit2,tableOnly=TRUE)
m2$Response = 'Tumour Size'
estTable(rbind(m1,m2),head_col='Response',to_col='Covariate')

tocolumn

Description
Returns strings with . and _ replaced by a space. This is nice when printing column names of your dataframe in a report

nicename Lean strings for printing
niceNum

Usage
	nicename(strings, check.numbers = TRUE)

Arguments

strings vector of strings to give a nice name
check.numbers boolean indicating if numbers with decimals should be checked for and retained.

Description

Round retaining digits

Usage

niceNum(x, digits = 2)

Arguments

x a vector
digits numeric

outTable

Print tables to PDF/Latex HTML or Word

Description

Output the table nicely to whatever format is appropriate. This is the output function used by the rmarkdown printing functions.

Usage

outTable(
 tab,
 row.names = NULL,
 to_indent = numeric(0),
 bold.headers = TRUE,
 rows_bold = numeric(0),
 bold.cells = NULL,
 caption = NULL,
 digits =getOption("reportRmd.digits", 2),
 align,
 applyAttributes = TRUE,
 ...)
```r
keep.rownames = FALSE,
nicenames = TRUE,
fontsize,
chunk_label,
format = NULL
)
```

Arguments

- `tab`: a table to format
- `rownames`: a string specifying the column name to assign to the rownames. If NULL (the default) then rownames are removed.
- `to_indent`: numeric vector indicating which rows to indent in the first column.
- `bold_headers`: boolean indicating if the column headers should be bolded.
- `rows_bold`: numeric vector indicating which rows to bold.
- `bold_cells`: array indices indicating which cells to bold. These will be in addition to rows bolded by `rows_bold`.
- `caption`: table caption
- `digits`: number of digits to round numeric columns to, either a single number or a vector corresponding to the number of numeric columns in `tab`.
- `align`: string specifying column alignment, defaults to left alignment of the first column and right alignment of all other columns. The `align` argument accepts a single string with 'l' for left, 'c' for centre and 'r' for right, with no separations. For example, to set the left column to be centred, the middle column right-aligned and the right column left aligned use: `align='crl'`.
- `applyAttributes`: boolean indicating if the function should use `to_indent` and `bold_cells` formatting attributes. This will only work properly if the dimensions of the table output from `rm_covsum`, `rm_uvs` etc haven't changed.
- `keep.rownames`: should the row names be included in the output.
- `nicenames`: boolean indicating if you want to replace . and _ in strings with a space.
- `fontsize`: PDF/HTML output only, manually set the table fontsize.
- `chunk_label`: only used knitting to Word docs to allow cross-referencing.
- `format`: if specified ('html','latex') will override the global pandoc setting.

Details

Entire rows can be bolded, or specific cells. Currently indentation refers to the first column only. By default, underscores in column names are converted to spaces. To disable this set `rm_` to FALSE.

Value

A character vector of the table source code, unless `tableOnly=TRUE` in which case a data frame is returned.
Examples

To make custom changes or change the fontsize in PDF/HTML
data("pembrolizumab")
tab <- rm_covsum(data=pembrolizumab, maincov = 'change_ctdna_group',
covs=c('age', 'sex', 'pdl1', 'tmb', 'l_size'), show.tests=TRUE, tableOnly = TRUE)
outTable(tab, fontsize=7)

To bold columns with the variable names
rows_bold <- c(1, 4, 7, 10, 13)
outTable(tab, rows_bold = rows_bold)

To bold the estimates for male/female
bold_cells <- as.matrix(expand.grid(5:6, 1:ncol(tab)))
outTable(tab, bold_cells = bold_cells)

Output the above table to HTML or LaTeX
#cat(outTable(tab=tab))# Knits to specified global setting
#cat(outTable(tab, format="html"), file = "tab.html")# HTML output
#cat(outTable(tab, format="latex"), file = "tab.tex")# LaTeX output

pembrolizumab Survival data Survival status and ctDNA levels for patients receiving
pembrolizumab

Description

Survival data
Survival status and ctDNA levels for patients receiving pembrolizumab

Usage

pembrolizumab

Format

A data frame with 94 rows and 15 variables:

- **id** Patient ID
- **age** Age at study entry
- **sex** Patient Sex
- **cohort** Study Cohort: A = Squamous cell carcinoma of soft pallate, B = Triple negative breast cancer, C = Ovarian, high grade serous, D = Melanoma, E = Other Solid Tumor
- **l_size** Target lesion size at baseline
- **pdl1** PD L1 percent
- **tmb** log of TMB
- **baseline_ctdna** Baseline ctDNA
change_ctdna_group Did ctDNA increase or decrease from baseline to cycle 3
orr Objective Response
cbr Clinical Beneficial Response
os_status Overall survival status, 0 = alive, 1 = deceased
os_time Overall survival time in months
pfs_status Progression free survival status, 0 = progression free, 1 = progressed
pfs_time Progression free survival time in months

Source
https://www.nature.com/articles/s43018-020-0096-5

plotuv Plot multiple bivariate relationships in a single plot

Description
This function is designed to accompany uvsum as a means of visualising the results, and uses similar syntax.

Usage
plotuv(
 response,
 covs,
 data,
 showN = FALSE,
 showPoints = TRUE,
 na.rm = TRUE,
 response_title = NULL,
 return_plotlist = FALSE,
 ncol = 2,
 p_margins = c(0, 0.2, 1, 0.2),
 bpThreshold = 20,
 mixed = TRUE
)

Arguments
response character vector with names of columns to use for response
covs character vector with names of columns to use for covariates
data dataframe containing your data
showN boolean indicating whether sample sizes should be shown on the plots
showPoints boolean indicating whether individual data points should be shown when n>20 in a category
na.rm boolean indicating whether na values should be shown or removed
response_title character value with title of the plot
return_plotlist boolean indicating that the list of plots should be returned instead of a plot, useful for applying changes to the plot, see details
ncol the number of columns of plots to be display in the ggarrange call, defaults to 2
p_margins sets the TRBL margins of the individual plots, defaults to c(0,0.2,1,.2)
bpThreshold Default is 20, if there are fewer than 20 observations in a category then dotplots, as opposed to boxplots are shown.
mixed should a mix of dotplots and boxplots be shown based on sample size? If false then all categories will be shown as either dotplots, or boxplots according the bpThreshold and the smallest category size

Details
Plots are displayed as follows: If response is continuous For a numeric predictor scatterplot For a categorical predictor: If 20+ observations available boxplot, otherwise dotplot with median line If response is a factor For a numeric predictor: If 20+ observations available boxplot, otherwise dotplot with median line For a categorical predictor barplot Response variables are shown on the ordinate (y-axis) and covariates on the abscissa (x-axis)

Value
a list containing plots for each variable in covs
a plot object

See Also
ggplot and ggarrange

Examples
Run multiple univariate analyses on the pembrolizumab dataset to predict cbr and
then visualise the relationships.
data("pembrolizumab")
rm_uvsum(data=pembrolizumab,
response='cbr',covs=c('age','sex','l_size','baseline_ctdna'))
plotuv(data=pembrolizumab, response='cbr',
covs=c('age','sex','l_size','baseline_ctdna'),showN=TRUE)
psthpr
Round and paste with parentheses

Description
Round and paste with parentheses

Usage
```r
psthpr(x, y = 2)
```

Arguments
- `x`: a numeric vector
- `y`: integer corresponding to the number of digits to round by

pstice
Paste with parentheses

Description
Paste with parentheses

Usage
```r
pstice(x)
```

Arguments
- `x`: a vector

pvalue
Formats p-values

Description
Returns <0.001 if pvalue is <0.001. Else rounds the pvalue to specified significant digits

Usage
```r
pvalue(x, digits)
```

Arguments
- `x`: an integer
- `digits`: the number of significant digits to return
Description

Replace dollar signs with html for proper HTML output

Usage

rmds(s)

Arguments

s a character vector

Description

Displays event counts and event rates at specified time points for the entire cohort and by group. Gray’s test of differences in cumulative incidence is displayed.

Usage

rm_cifsum(
 data,
 time,
 status,
 group = NULL,
 eventcode = 1,
 cencode = 0,
 eventtimes,
 eventtimeunit,
 eventtimeLbls = NULL,
 CIwidth = 0.95,
 unformatteddp = FALSE,
 na.action = "na.omit",
 showCounts = TRUE,
 showGraystest = TRUE,
 digits = 2,
 caption = NULL,
 tableOnly = FALSE
)
Arguments

data data frame containing survival data

time string indicating survival time variable

status string indicating event status variable; must have at least 3 levels, e.g. 0 = censor, 1 = event, 2 = competing risk

group string or character vector indicating the variable to group observations by

eventcode numerical variable indicating event, default is 1

cencode numerical variable indicating censored observation, default is 0

eventtimes numeric vector specifying when event probabilities should be calculated

eventtimeunit unit of time to suffix to the time column label if event probabilities are requested, should be plural

eventtimeLbls if supplied, a vector the same length as eventtimes with descriptions (useful for displaying years with data provided in months)

CIwidth width of the event probabilities, default is 95%

unformattedp boolean indicating if you would like the p-value to be returned unformatted (ie not rounded or prefixed with '<'). Should be used in conjunction with the digits argument.

na.action default is to omit missing values, but can be set to throw and error using na.action='na.fail'

showCounts boolean indicating if the at risk, events and censored columns should be output, default is TRUE

showGraystest boolean indicating Gray's test should be included in the final table, default is TRUE

digits the number of digits to report in the event probabilities, default is 2.

caption table caption for markdown output

tableOnly should a dataframe or a formatted object be returned

Value

A character vector of the event table source code, unless tableOnly=TRUE in which case a data frame is returned

Examples

library(survival)
data(pbc)

Event probabilities at various time points with replacement time labels
rm_cifsum(data=pbc,time='time',status='status',
eventtimes=c(1825,3650),eventtimeLbls=c(5,10),eventtimeunit='yr')

Event probabilities by one group
rm_cifsum(data=pbc,time='time',status='status',group='trt',
eventtimes=c(1825,3650),eventtimeunit='day')
Event probabilities by multiple groups
rm_cifsum(data=pbc,time='time',status='status',group=c('trt','sex'),
eventtimes=c(1825,3650),eventtimeunit='day')

Description

Returns a data frame corresponding to a descriptive table.

Usage

```r
rms_covsum(
  data,
  covs,
  maincov = NULL,
  caption = NULL,
  tableOnly = FALSE,
  covTitle = "",
  digits = 1,
  digits.cat = 0,
  nicenames = TRUE,
  IQR = FALSE,
  all.stats = FALSE,
  pvalue = TRUE,
  effSize = FALSE,
  p.adjust = "none",
  unformattedp = FALSE,
  show.tests = FALSE,
  testcont = c("rank-sum test", "ANOVA"),
  testcat = c("Chi-squared", "Fisher"),
  full = TRUE,
  include_missing = FALSE,
  percentage = c("column", "row"),
  dropLevels = TRUE,
  excludeLevels = NULL,
  numobs = NULL,
  fontsize,
  chunk_label
)
```

Arguments

- `data` datafame containing data
rm_covsum

covs character vector with the names of columns to include in table
maincov covariate to stratify table by
caption character containing table caption (default is no caption)
tableOnly Logical, if TRUE then a dataframe is returned, otherwise a formatted printed object is returned (default).
covTitle character with the names of the covariate (predictor) column. The default is to leave this empty for output or, for table only output to use the column name 'Covariate'.
digits number of digits for summarizing mean data
digits.cat number of digits for the proportions when summarizing categorical data (default: 0)
nicenames boolean indicating if you want to replace . and _ in strings with a space
IQR boolean indicating if you want to display the inter quantile range (Q1,Q3) as opposed to (min,max) in the summary for continuous variables
all.stats boolean indicating if all summary statistics (Q1,Q3 + min,max on a separate line) should be displayed. Overrides IQR.
pvalue boolean indicating if you want p-values included in the table
effSize boolean indicating if you want effect sizes included in the table. Can only be obtained if pvalue is also requested. Effect sizes calculated include Cramer’s V for categorical variables, Cohen’s d, Wilcoxon r, or Eta-squared for numeric/continuous variables.
p.adjust p-adjustments to be performed
unformattedp boolean indicating if you would like the p-value to be returned unformatted (ie not rounded or prefixed with '<'). Best used with tableOnly = T and outTable function. See examples.
show.tests boolean indicating if the type of statistical test and effect size used should be shown in a column beside the pvalues. Ignored if pvalue=FALSE.
testcont test of choice for continuous variables, one of rank-sum (default) or ANOVA
testcat test of choice for categorical variables, one of Chi-squared (default) or Fisher
full boolean indicating if you want the full sample included in the table, ignored if maincov is NULL
include_missing Option to include NA values of maincov. NAs will not be included in statistical tests
percentage choice of how percentages are presented, one of column (default) or row
dropLevels logical, indicating if empty factor levels be dropped from the output, default is TRUE.
excludeLevels a named list of covariate levels to exclude from statistical tests in the form list(varname =c('level1','level2')). These levels will be excluded from association tests, but not the table. This can be useful for levels where there is a logical skip (ie not missing, but not presented). Ignored if pvalue=FALSE.
numobs named list overriding the number of people you expect to have the covariate
fontsize PDF/HTML output only, manually set the table fontsize
chunk_label only used if output is to Word to allow cross-referencing
Details

Comparisons for categorical variables default to chi-square tests, but if there are counts of <5 then the Fisher Exact test will be used and if this is unsuccessful then a second attempt will be made computing p-values using MC simulation. If testcont='ANOV A' then the t-test with unequal variance will be used for two groups and an ANOV A will be used for three or more. The statistical test used can be displayed by specifying show.tests=TRUE. Effect size can be obtained when p-value is requested.

Further formatting options are available using tableOnly=TRUE and outputting the table with a call to outTable.

Value

A character vector of the table source code, unless tableOnly=TRUE in which case a data frame is returned.

References

See Also

covsum,fisher.test, chisq.test, wilcox.test, kruskal.test, anova, cramer_v, eta_squared, and outTable

Examples

data("pembrolizumab")
rm_covsum(data=pembrolizumab, maincov = "orr", covs=c("age","sex","pdl1","tmb","l_size","change_ctdna_group"), show.tests=TRUE)

To Show Effect Sizes
rm_covsum(data=pembrolizumab, maincov = "orr", covs=c("age","sex"), effSize=TRUE)

To make custom changes or change the fontsize in PDF/HTML
tab <- rm_covsum(data=pembrolizumab,maincov = 'change_ctdna_group', covs=c('age','sex','pdl1','tmb','l_size'),show.tests=TRUE,tableOnly = TRUE)
outTable(tab, fontsize=7)

To return unformatted p-values
tab <- rm_covsum(data=pembrolizumab, maincov = 'orr', covs=c('age','sex','pdl1','tmb','l_size','change_ctdna_group'), show.tests=TRUE,unformattedp=TRUE,tableOnly=TRUE)
outTable(tab,digits=5)
outTable(tab,digits=5, applyAttributes=FALSE) # remove bold/indent
Format a regression model nicely for 'Rmarkdown'

Description

Multivariable (or univariate) regression models are re-formatted for reporting and a global p-value is added for the evaluation of factor variables.

Usage

```r
rm_mvsum(
  model,
  data,
  digits = getOption("reportRmd.digits", 2),
  covTitle = "",
  showN = TRUE,
  showEvent = TRUE,
  CIwidth = 0.95,
  vif = TRUE,
  caption = NULL,
  tableOnly = FALSE,
  p.adjust = "none",
  unformattedp = FALSE,
  nicenames = TRUE,
  chunk_label,
  fontsize
)
```

Arguments

- **model**: model fit
- **data**: data that model was fit on (an attempt will be made to extract this from the model)
- **digits**: number of digits to round estimates to, does not affect p-values
- **covTitle**: character with the names of the covariate (predictor) column. The default is to leave this empty for output or, for table only output to use the column name 'Covariate'.
- **showN**: boolean indicating sample sizes should be shown for each comparison, can be useful for interactions
- **showEvent**: boolean indicating if number of events should be shown. Only available for logistic.
- **CIwidth**: width for confidence intervals, defaults to 0.95
- **vif**: boolean indicating if the variance inflation factor should be included. See details
- **caption**: table caption
tableOnly boolean indicating if unformatted table should be returned
p.adjust p-adjustments to be performed (Global p-values only)
unformattedp boolean indicating if you would like the p-value to be returned unformatted (ie not rounded or prefixed with '<'). Should be used in conjunction with the digits argument.
nicenames boolean indicating if you want to replace . and _ in strings with a space
chunk_label only used if output is to Word to allow cross-referencing
fontsize PDF/HTML output only, manually set the table fontsize

Details

Global p-values are likelihood ratio tests for lm, glm and polr models. For lme models an attempt is made to re-fit the model using ML and if successful LRT is used to obtain a global p-value. For coxph models the model is re-run without robust variances with and without each variable and a LRT is presented. If unsuccessful a Wald p-value is returned. For GEE and CRR models Wald global p-values are returned. For negative binomial models a deviance test is used.

If the variance inflation factor is requested (VIF=T) then a generalised VIF will be calculated in the same manner as the car package.

The number of decimals places to display the statistics can be changed with digits, but this will not change the display of p-values. If more significant digits are required for p-values then use tableOnly=TRUE and format as desired.

Value

A character vector of the table source code, unless tableOnly=TRUE in which case a data frame is returned

References

Examples

data("pembrolizumab")
glm_fit = glm(change_ctdna_group~sex:age+baseline_ctdna+l_size, data=pembrolizumab,family = "binomial")
rm_mvsum(glm_fit)

#linear model with p-value adjustment
lm_fit=lm(baseline_ctdna~age+sex+l_size+tmb,data=pembrolizumab)
rm_mvsum(lm_fit,p.adjust = "bonferroni")

#coxph
require(survival)
res.cox <- coxph(Surv(os_time, os_status) ~ sex+age+l_size+tmb, data = pembrolizumab)
rm_mvsum(res.cox, vif=TRUE)
Description

This is a wrapper function around the survdiff function to display overall event rates and group-specific rates along with the log-rank test of a difference in survival between groups in a single table suitable for markdown output. Median survival times are included by default but can be removed setting median=FALSE

Usage

```
rm_survdiff(
  data,
  time,
  status,
  covs,
  strata,
  includeVarNames = FALSE,
  digits = 1,
  showCols = c("N", "Observed", "Expected"),
  CIwidth = 0.95,
  conf.type = "log",
  caption = NULL,
  tableOnly = FALSE,
  fontsize
)
```

Arguments

- **data**: data frame containing survival data
- **time**: string indicating survival time variable
- **status**: string indicating event status variable
- **covs**: character vector indicating variables to group observations by
- **strata**: string indicating the variable to stratify observations by
- **includeVarNames**: boolean indicating if the variable names should be included in the output table, default is FALSE
- **digits**: the number of digits in the survival rate
- **showCols**: character vector indicating which of the optional columns to display, defaults to c("N", "Observed", "Expected")
- **CIwidth**: width of the median survival estimates, default is 95%
- **conf.type**: type of confidence interval see `survfit` for details. Default is 'log'.
Caption

Table

Table only should a dataframe or a formatted object be returned

Font size

PDF/HTML output only, manually set the table font size

Value

A character vector of the survival table source code, unless tableOnly=TRUE in which case a data frame is returned

See also

survdiff

Examples

Differences between sex

```r
rm_survdiff(data=pembrolizumab, time='os_time', status='os_status',
            covs='sex', digits=1)
```

Differences between sex, stratified by cohort

```r
rm_survdiff(data=pembrolizumab, time='os_time', status='os_status',
            covs='sex', strata='cohort', digits=1)
```

Differences between sex/cohort groups

```r
events = c(1, 2, 3),
rm_survdiff(data=pembrolizumab, time='os_time', status='os_status',
            covs=c('sex', 'cohort'), digits=1)
```

rm_survsum

Summarise survival data by group

Description

Displays event counts, median survival time and survival rates at specified times points for the entire cohort and by group. The logrank test of differences in survival curves is displayed.

Usage

```r
rm_survsum(
  data,
  time,
  status,
  group = NULL,
  survtimes = NULL,
  survtimeunit,
  survtimesLbls = NULL,
  CIwidth = 0.95,
  unformattedp = FALSE,
  conf.type = "log",
)```
na.action = "na.omit",
showCounts = TRUE,
showLogrank = TRUE,
eventProb = FALSE,
digits = getOption("reportRmd.digits", 2),
caption = NULL,
tableOnly = FALSE,
fontsize
)

Arguments

data data frame containing survival data
time string indicating survival time variable
status string indicating event status variable
group string or character vector indicating the variable(s) to group observations by. If this is left as NULL (the default) then summaries are provided for the entire cohort.
survtimes numeric vector specifying when survival probabilities should be calculated.
survtimeunit unit of time to suffix to the time column label if survival probabilities are requested, should be plural
survtimesLbls if supplied, a vector the same length as survtimes with descriptions (useful for displaying years with data provided in months)
CIwidth width of the survival probabilities, default is 95%
unformattedp boolean indicating if you would like the p-value to be returned unformatted (ie not rounded or prefixed with '<'). Should be used in conjunction with the digits argument.
conf.type type of confidence interval see survfit for details. Default is 'log'.
na.action default is to omit missing values, but can be set to throw and error using na.action='na.fail'
showCounts boolean indicating if the at risk, events and censored columns should be output; default is TRUE
showLogrank boolean indicating if the log-rank test statistic and p-value should be output; default is TRUE
eventProb boolean indicating if event probabilities, rather than survival probabilities, should be displayed; default is FALSE
digits the number of digits in the survival rate, default is 2, unless the reportRmd.digits option is set
caption table caption for markdown output
tableOnly should a dataframe or a formatted object be returned
fontsize PDF/HTML output only, manually set the table fontsize

Details

This summary table is supplied for simple group comparisons only. To examine differences in groups with stratification see rm_survdiff. To summarise differences in survival rates controlling for covariates see rm_survtime.
Value

A character vector of the survival table source code, unless tableOnly=TRUE in which case a data frame is returned.

See Also

survfit

Examples

# Simple median survival table
data("pembrolizumab")
rm_survsum(data=pembrolizumab, time='os_time', status='os_status')

# Survival table with yearly survival rates
rm_survsum(data=pembrolizumab, time='os_time', status='os_status',
survtimes=c(12,24), survtimesLbls=1:2, survtimeunit='yr')

# Median survival by group
rm_survsum(data=pembrolizumab, time='os_time', status='os_status', group='sex')

# Survival Summary by cohort, displayed in years
rm_survsum(data=pembrolizumab, time='os_time', status='os_status',
group="cohort", survtimes=seq(12,72,12),
survtimesLbls=seq(1,6,1),
survtimeunit='years')

# Survival Summary by Sex and ctDNA group
rm_survsum(data=pembrolizumab, time='os_time', status='os_status',
group=c('sex', 'change_ctdna_group'), survtimes=c(12,24), survtimeunit='mo')

rm_survtime

Display survival rates and events for specified times

Description

This is a wrapper for the survfit function to output a tidy display for reporting. Either Kaplan Meier or Cox Proportional Hazards models may be used to estimate the survival probabilities.

Usage

rm_survtime(
  data,
  time,
  status,
  covs = NULL,
  strata = NULL,
  type = "KM",
Arguments

data data frame containing survival data
time string indicating survival time variable
status string indicating event status variable
covs character vector with the names of variables to adjust for in coxph fit
strata string indicating the variable to group observations by. If this is left as NULL (the default) then event counts and survival rates are provided for the entire cohort.
type survival function, if no covs are specified defaults to Kaplan-Meier, otherwise the Cox PH model is fit. Use type='PH' to fit a Cox PH model with no covariates.
survtimes numeric vector specifying when survival probabilities should be calculated.
survtimesunit unit of time to suffix to the time column label if survival probabilities are requested, should be plural
strata.prefix character value describing the grouping variable
survtimesLbls if supplied, a vector the same length as survtimes with descriptions (useful for displaying years with data provided in months)
showCols character vector specifying which of the optional columns to display, defaults to c('At Risk','Events','Censored')
CIwidth width of the survival probabilities, default is 95%
conf.type type of confidence interval see survfit for details. Default is 'log'.
na.action default is to omit missing values, but can be set to throw and error using na.action='na.fail'
showCounts boolean indicating if the at risk, events and censored columns should be output, default is TRUE
digits the number of digits in the survival rate, default is 2.
caption table caption for markdown output
tableOnly should a dataframe or a formatted object be returned
fontsize PDF/HTML output only, manually set the table fontsize
Details

If covariates are supplied then a Cox proportional hazards model is fit for the entire cohort and each strata. Otherwise the default is for Kaplan-Meier estimates. Setting type = 'PH' will force a proportional hazards model.

Value

A character vector of the survival table source code, unless tableOnly=TRUE in which case a data frame is returned.

See Also

survfit

Examples

# Kaplan-Meier survival probabilities with time displayed in years
data("pembrolizumab")
rm_survtime(data=pembrolizumab,time='os_time',status='os_status',
strata="cohort",type='KM',survtimes=seq(12,72,12),
survtimeslbs=seq(1,6,1),
surtimeunit='years')

# Cox Proportional Hazards survival probabilities
rm_survtime(data=pembrolizumab,time='os_time',status='os_status',
strata="cohort",type='PH',survtimes=seq(12,72,12),surtimeunit='months')

# Cox Proportional Hazards survival probabilities controlling for age
rm_survtime(data=pembrolizumab,time='os_time',status='os_status',
covs='age',strata="cohort",survtimes=seq(12,72,12),surtimeunit='months')

---

rm_uvsum

Output several univariate models nicely in a single table

Description

A table with the model parameters from running separate univariate models on each covariate. For factors with more than two levels a Global p-value is returned.

Usage

```r
rm_uvsum(
 response,
 covs,
 data,
 digits = getOption("reportRmd.digits", 2),
 covTitle = "",
)```
caption = NULL,
tableOnly = FALSE,
removeInf = FALSE,
p.adjust = "none",
unformattedp = FALSE,
chunk_label,
gee = FALSE,
id = NULL,
corstr = NULL,
family = NULL,
type = NULL,
offset,
strata = 1,
nicenames = TRUE,
showN = TRUE,
showEvent = TRUE,
CIwidth = 0.95,
reflevel = NULL,
returnModels = FALSE,
fontsize,
forceWald
)

Arguments

response string vector with name of response
covs character vector with the names of columns to fit univariate models to
data dataframe containing data
digits number of digits to round estimates and CI to. Does not affect p-values.
covTitle character with the names of the covariate (predictor) column. The default is to leave this empty for output or, for table only output to use the column name 'Covariate'.
caption character containing table caption (default is no caption)
tableOnly boolean indicating if unformatted table should be returned
removeInf boolean indicating if infinite estimates should be removed from the table
p.adjust p-adjustments to be performed (Global p-values only)
unformattedp boolean indicating if you would like the p-value to be returned unformatted (ie not rounded or prefixed with '<'). Should be used in conjunction with the digits argument.
chunk_label only used if output is to Word to allow cross-referencing
gee boolean indicating if gee models should be fit to account for correlated observations. If TRUE then the id argument must specify the column in the data which indicates the correlated clusters.
id character vector which identifies clusters. Only used for geeglm
corstr character string specifying the correlation structure. Only used for geeglm. The following are permitted: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"

family description of the error distribution and link function to be used in the model. Only used for geeglm

type string indicating the type of univariate model to fit. The function will try and guess what type you want based on your response. If you want to override this you can manually specify the type. Options include "linear", "logistic", "poisson", "coxph", "crr", "boxcox", "ordinal", "geeglm"

offset string specifying the offset term to be used for Poisson or negative binomial regression. Example: offset="log(follow_up)"

strata character vector of covariates to stratify by. Only used for coxph and crr
	nicenames boolean indicating if you want to replace . and _ in strings with a space

showN boolean indicating if you want to show sample sizes

showEvent boolean indicating if you want to show number of events. Only available for logistic.

CIwidth width of confidence interval, default is 0.95

reflevel manual specification of the reference level. Only used for ordinal regression

returnModels boolean indicating if a list of fitted models should be returned. If this is TRUE then the models will be returned, but the output will be suppressed. In addition to the model elements a data element will be appended to each model so that the fitted data can be examined, if necessary. See Details

fontsize PDF/HTML output only, manually set the table fontsize

forceWald boolean indicating if Wald confidence intervals should be used instead of profile likelihood. This is not recommended, but can speed up computations. To use throughout a document use options(reportRmd.forceWald=TRUE)

Details

Global p-values are likelihood ratio tests for lm, glm and polr models. For lme models an attempt is made to re-fit the model using ML and if successful LRT is used to obtain a global p-value. For coxph models the model is re-run without robust variances with and without each variable and a LRT is presented. If unsuccessful a Wald p-value is returned. For GEE and CRR models Wald global p-values are returned.

The number of decimals places to display the statistics can be changed with digits, but this will not change the display of p-values. If more significant digits are required for p-values then use tableOnly=TRUE and format as desired.

Value

A character vector of the table source code, unless tableOnly=TRUE in which case a data frame is returned
See Also

uvsum, lm, glm, crr, coxph, lme, geeglm, polr

Examples

Examples are for demonstration and are not meaningful
Coxph model with 90% CI
data("pembrolizumab")
rm_uvsum(response = c('os_time', 'os_status'),
covs=c('age', 'sex', 'baseline_ctdna', 'l_size', 'change_ctdna_group'),
data=pembrolizumab, CIwidth=.9)

Linear model with default 95% CI
rm_uvsum(response = 'baseline_ctdna',
covs=c('age', 'sex', 'l_size', 'pdl1', 'tmb'),
data=pembrolizumab)

Logistic model with default 95% CI
rm_uvsum(response = 'os_status',
covs=c('age', 'sex', 'l_size', 'pdl1', 'tmb'),
data=pembrolizumab, family = binomial)

Poisson models returned as model list
mList <- rm_uvsum(response = 'baseline_ctdna',
covs=c('age', 'sex', 'l_size', 'pdl1', 'tmb'),
data=pembrolizumab, returnModels=TRUE)

GEE on correlated outcomes
data("ctDNA")
rm_uvsum(response = 'size_change',
covs=c('time', 'ctdna_status'),
gee=TRUE,
id='id', corstr="exchangeable", family=gaussian("identity"),
data=ctDNA, showN=TRUE)

rm_uv_mv

Combine univariate and multivariable regression tables

Description

This function will combine rm_uvsum and rm_mvsum outputs into a single table. The tableOnly argument must be set to TRUE when tables to be combined are created. The resulting table will be in the same order as the uvsum table and will contain the same columns as the uvsum and mvsum tables, but the p-values will be combined into a single column. There must be a variable overlapping between the uvsum and mvsum tables and all variables in the mvsum table must also appear in the uvsum table.
Usage

```r
rm_uv_mv(
  uvsumTable,  # Output from rm_uvsum, with tableOnly=TRUE
  mvsumTable,  # Output from rm_mvsum, with tableOnly=TRUE
  covTitle = "",  # character with the names of the covariate (predictor) column. The default is to leave this empty for output or, for table only output to use the column name 'Covariate'.
  vif = FALSE,  # boolean indicating if the variance inflation factor should be shown if present in the mvsumTable. Default is FALSE.
  showN = FALSE,  # boolean indicating if sample sizes should be displayed.
  showEvent = FALSE,  # boolean indicating if number of events (dichotomous outcomes) should be displayed.
  caption = NULL,  # table caption
  tableOnly = FALSE,  # boolean indicating if unformatted table should be returned
  chunk_label,  # only used if output is to Word to allow cross-referencing
  fontsize  # PDF/HTML output only, manually set the table fontsize
)
```

Arguments

- `uvsumTable`: Output from `rm_uvsum`, with `tableOnly=TRUE`
- `mvsumTable`: Output from `rm_mvsum`, with `tableOnly=TRUE`
- `covTitle`: character with the names of the covariate (predictor) column. The default is to leave this empty for output or, for table only output to use the column name 'Covariate'.
- `vif`: boolean indicating if the variance inflation factor should be shown if present in the `mvsumTable`. Default is `FALSE`.
- `showN`: boolean indicating if sample sizes should be displayed.
- `showEvent`: boolean indicating if number of events (dichotomous outcomes) should be displayed.
- `caption`: table caption
- `tableOnly`: boolean indicating if unformatted table should be returned
- `chunk_label`: only used if output is to Word to allow cross-referencing
- `fontsize`: PDF/HTML output only, manually set the table fontsize

Value

A character vector of the table source code, unless `tableOnly=TRUE` in which case a data frame is returned

See Also

`rm_uvsum`, `rm_mvsum`

Examples

```r
require(survival)
data("pembrolizumab")
uvTab <- rm_uvsum(response = c('os_time','os_status'),
covs=c('age','sex','baseline_ctdna','l_size','change_ctdna_group'),
```

```
data=pembrolizumab,tableOnly=TRUE)

mv_surv_fit <- coxph(Surv(os_time, os_status)~age+sex+
baseline_ctdna+l_size+change_ctdna_group, data=pembrolizumab)

uvTab <- rm_mvsum(mv_surv_fit)

# linear model
uvtab<-rm_uvsum(response = 'baseline_ctdna',
covs=c('age','sex','l_size','pdl1','tmb'),
data=pembrolizumab,tableOnly=TRUE)

lm_fit=lm(baseline_ctdna~age+sex+l_size+tmb,
data=pembrolizumab)

mvtab<-rm_mvsum(lm_fit,tableOnly = TRUE)

rm_uv_mv(uvtab,mvtab,tableOnly=TRUE)

# logistic model
uvtab<-rm_uvsum(response = 'os_status',
covs=c('age','sex','l_size','pdl1','tmb'),
data=pembrolizumab,family = binomial,tableOnly=TRUE)

logis_fit<-glm(os_status~age+sex+l_size+pdl1+tmb,
data = pembrolizumab,family = 'binomial')

mvtab<-rm_mvsum(logis_fit,tableOnly = TRUE)

rm_uv_mv(uvtab,mvtab,tableOnly=TRUE)

---

**sanitizestr**  
Sanitizes strings to not break \LaTeX

**Description**

Strings with special characters will break \LaTeX\ if returned 'asis' by knitr. This happens every time we use one of the main reportRx functions. We first sanitize our strings with this function to stop \LaTeX\ from breaking.

**Usage**

sanitizestr(str)

**Arguments**

- **str** — a vector of strings to sanitize

---

**set_labels**  
Set variable labels

**Description**

Assign variable labels to a data.frame from a lookup table.

**Usage**

set_labels(data, names_labels)
Arguments

- `data` : data frame to be labelled
- `names_labels` : data frame with column 1 containing variable names from data and column 2 containing variable labels. Other columns will be ignored.

Details

Useful if variable labels have been imported from a data dictionary. The first column in `names_labels` must contain the variable name and the second column the variable label. The column names are not used.

If no label is provided then the existing label will not be changed. To remove a label set the label to NA.

Examples

```r
create data frame with labels
lbls <- data.frame(c1=c('cohort','size_change'),
c2=c('Cancer cohort','Change in tumour size'))
set labels and return labelled data frame
set_labels(ctDNA,lbls)
```

---

**Description**

Set variable labels for a data frame using name-label pairs.

**Usage**

```
set_var_labels(data, ...)
```

**Arguments**

- `data` : data frame containing variables to be labelled
- `...` : Name-label pairs the name gives the name of the column in the output and the label is a character vector of length one.

**Details**

If no label is provided for a variable then the existing label will not be changed. To remove a label set the label to NA.
Examples

# set labels using name-label pairs
# and return labelled data frame
cDNA |> set_var_labels(
    ctdna_status="detectable ctDNA",
    cohort="A cohort label")

testData

Funky ctDNA data There is a weird factor with all one level, the cohort variable contains a cohort level (and Cohort A) and for one cohort all the size changes are missing

Description

Funky ctDNA data

There is a weird factor with all one level, the cohort variable contains a cohort level (and Cohort A) and for one cohort all the size changes are missing

Usage

testData

Format

A data frame with 270 rows and 6 variables:

id  Patient ID

cohort  Study Cohort: A = Squamous cell carcinoma of soft pallate, B = Triple negative breast cancer, C = Ovarian, high grade serous, D = Melanoma, E = Other Solid Tumor, cohort -for testing only

badfactor  for testing

ctdna_status Change in ctDNA since baseline

time  Number of weeks on treatment

size_change  Percentage change in tumour measurement

Source

https://www.nature.com/articles/s43018-020-0096-5
Get univariate summary dataframe

Description
Returns a dataframe corresponding to a univariate regression table

Usage
uvsum(
  response,
  covs,
  data,
  digits = getOption("reportRmd.digits", 2),
  id = NULL,
  corstr = NULL,
  family = NULL,
  type = NULL,
  offset = NULL,
  gee = FALSE,
  strata = 1,
  markup = TRUE,
  sanitize = TRUE,
  nicenames = TRUE,
  showN = TRUE,
  showEvent = TRUE,
  CIwidth = 0.95,
  reflevel = NULL,
  returnModels = FALSE,
  forceWald
)

Arguments
response string vector with name of response
covs character vector with the names of columns to fit univariate models to
data dataframe containing data
digits number of digits to round to
id character vector which identifies clusters. Used for GEE and coxph models.
corstr character string specifying the correlation structure. Only used for geeglm. The following are permitted: "independence", "exchangeable", "ar1", "unstructured" and "userdefined"
family specify details of the model used. This argument does not need to be specified and should be used with caution. By default, gaussian errors are used for linear models, the binomial family with logit link is used for logistic regression and
poisson with log link is used for poisson regression. This can be specified with
the type argument, or will be inferred from the data type. See family. Ignored
for ordinal and survival regression and if the type argument is not explicitly
specified.

**type**
string indicating the type of univariate model to fit. The function will try and
guess what type you want based on your response. If you want to override
this you can manually specify the type. Options include "linear", "logistic",
"poisson", "coxph", "crr", "boxcox", "ordinal" and "negbin"

**offset**
string specifying the offset term to be used for Poisson or negative binomial
regression. Example: offset="log(follow_up)"

**gee**
boolean indicating if gee models should be fit to account for correlated observa-
tions. If TRUE then the id argument must specify the column in the data which
indicates the correlated clusters.

**strata**
character vector of covariates to stratify by. Only used for coxph and crr

**markup**
boolean indicating if you want latex markup

**sanitize**
boolean indicating if you want to sanitize all strings to not break LaTeX

**nicenames**
boolean indicating if you want to replace . and _ in strings with a space

**showN**
boolean indicating if you want to show sample sizes

**showEvent**
boolean indicating if you want to show number of events. Only available for
logistic.

**CIwidth**
width of confidence interval, default is 0.95

**reflevel**
manual specification of the reference level. Only used for ordinal. This may
allow you to debug if the function throws an error.

**returnModels**
boolean indicating if a list of fitted models should be returned.

**forceWald**
boolean indicating if Wald confidence intervals should be used instead of profile
likelihood. This is not recommended, but can speed up computations. To use
throughout a document use options(reportRmd.forceWald=TRUE)

**Details**
Univariate summaries for a number of covariates, the type of model can be specified. If unspecified
the function will guess the appropriate model based on the response variable.

Confidence intervals are extracted using confint where possible. Otherwise Student t distribution is
used for linear models and the Normal distribution is used for proportions.

returnModels can be used to return a list of the univariate models, which will be the same length
as covs. The data used to run each model will include all cases with observations on the response
and covariate. For gee models the data are re-ordered so that the ids appear sequentially and proper
estimates are given.

**See Also**

lm, glm, crr, coxph, lme, geeglm, polr, glm.nb
Index

* dataframe
  covsum, 5
  mvsum, 28
  rm_covsum, 39
  uvsum, 57
* datasets
  ctDNA, 8
  pembrolizumab, 33
  testData, 56
* helper
  addspace, 3
  cap, 4
  formatp, 16
  hbld, 27
  lbld, 27
  lpvalue, 27
  nicename, 30
  niceNum, 31
  psthr, 36
  pstprn, 36
  pvalue, 36
  rmds, 37
  sanitizestr, 54
* model
  boxcoxfitRx, 3
crrRx, 7
* plot
  forestplot2, 10
  forestplotMV, 11
  forestplotUV, 13
  forestplotUVMV, 14
  plotuv, 34
addspace, 3
anova, 7, 41
boxcoxfitRx, 3
cap, 4
chisq.test, 7, 41
clear_labels, 4
covsum, 5, 41
coxph, 52, 58
cramer_v, 41
crr, 7, 52, 58
crrRx, 7
crDNA, 8
eta_squared, 41
excelCol, 8
excelColLetters, 9
extract_labels, 10
family, 58
fisher.test, 7, 41
forestplot2, 10
forestplotMV, 11
forestplotUV, 13
forestplotUVMV, 14
formatp, 16
geeglm, 52, 58
geoR_boxcoxfit, 16
ggarrange, 35
ggkmcif, 17
ggkmcif2, 21
ggkmcif2Parameters, 22, 23
ggkmcif_paste, 26
ggplot, 35
glm, 52, 58
glm.nb, 58
hbld, 27
kruskal.test, 7, 41
lbld, 27
lm, 52, 58
lme, 52, 58
lpvalue, 27
mvsum, 28
nestTable, 29
nicename, 30
niceNum, 31
outTable, 31, 41
pembrolizumab, 33
plotuv, 34
polr, 52, 58
psthr, 36
pstprn, 36
pvalue, 36
rm_cifsum, 37
rm_covsum, 39
rm_mvsum, 42, 53
rm_survdiff, 44, 46
rm_survsum, 45
rm_survtimes, 46, 47
rm_uv_mv, 52
rm_uvsum, 49, 53
rmds, 37
sanitizestr, 54
set_labels, 54
set_var_labels, 55
survdiff, 45
survfit, 44, 46–49
testData, 56
uvsum, 34, 52, 57
wilcox.test, 7, 41