Package ‘reservoir’

April 14, 2016

Type Package
Title Tools for Analysis, Design, and Operation of Water Supply Storages
Version 1.1.5
Date 2016-04-14
URL https://cran.r-project.org/package=reservoir
Description Measure single-storage water supply system performance using resilience, reliability, and vulnerability metrics; assess storage-yield-reliability relationships; determine no-fail storage with sequent peak analysis; optimize release decisions for water supply, hydropower, and multi-objective reservoirs using deterministic and stochastic dynamic programming; generate inflow replicates using parametric and non-parametric models; evaluate inflow persistence using the Hurst coefficient.
License GPL (>= 2)
LazyData yes
Imports gtools, stats, graphics
NeedsCompilation no
Author Sean Turner [aut, cre],
Jia Yi Ng [aut],
Stefano Galelli [aut]
Maintainer Sean Turner <swd.turner@gmail.com>
Repository CRAN
Date/Publication 2016-04-14 14:50:03

R topics documented:

- `dirtyreps` .. 2
- `dp` ... 3
- `dp_hydro` .. 4
- `dp_multi` .. 6
- `dp_supply` .. 7
DIRTYREPS

Description

Generates seasonal time series using either the kNN Bootstrap (non-parametric) or a numerically-fitted PARMA(1,1) (parametric) model. For the parametric model, the function automatically transforms the seasonal sub-series to normal and deseasonalizes prior to model fitting.

Usage

dirtyreps(Q, reps, years, k, d, adjust, parameters, method = "kNNboot")

Arguments

Q: time series object with seasonal resolution (e.g., frequency = 2, 3, 4, 6 or 12 for monthly data).
reps: integer. The number of replicates to be generated. The default is 100.
years: integer. The length of each replicate in years. The default is equal to the number of complete years given in Q.
k: integer. The k parameter of the kNN Bootstrap (i.e., number of nearest neighbors). If left blank k = n ^ 0.5., where n is the number of years in the input data.
d: integer. The d parameter of the kNN Bootstrap (i.e., number of previous time periods to inform the model). If left blank d = 1.
adjust: logical. If TRUE (the default) the final output time series X will be coerced for 0 <= X <= 1.2*max(Q). Applies only if the PARMA method is used.
parameters: logical. If TRUE the output will be given as a list including the replicate samples and relevant model parameters (k and d for kNNboot and phi, theta and standard deviation of residuals for PARMA). The default is FALSE.
method

character string giving the method used to generate the data. Defaults to "kNN-boot" - the k Nearest Neighbour Bootstrap. See references for detail on the two methods available.

Value

Returns a multi time series object containing synthetic streamflow replicates.

References

Examples

```r
Q <- res$Q_Mm3
replicates <- dirtyreps(Q, reps = 3)
mean(replicates); mean(Q)
sd(replicates); sd(Q)
plot(replicates)
```

dp

Dynamic Programming (Deprecated function; use 'dp_supply' instead)

Description

Determines the optimal sequence of releases from the reservoir to minimise a penalty cost function based on water supply deficit.

Usage

```r
dp(Q, capacity, target, S_disc = 1000, R_disc = 10, loss_exp = 2, 
   S_initial = 1, plot = TRUE, rep_rrv = FALSE)
```

Arguments

- `Q` vector or time series object. Net inflows to the reservoir.
- `capacity` numerical. The reservoir storage capacity (must be the same volumetric unit as Q and the target release).
- `target` numerical. The target release constant.
- `S_disc` integer. Storage discretization—the number of equally-sized storage states. Default = 1000.
loss_exp numeric. The exponent of the penalty cost function—i.e., Cost[t] <- ((target - release[t]) / target) ^ **loss_exp**. Default value is 2.

S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.

plot logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.

rep_rrv logical. If TRUE then reliability, resilience and vulnerability metrics are computed and returned.

Value

Returns the time series of optimal releases and, if requested, the reliability, resilience and vulnerability of the system.

References

See Also

- sdp for Stochastic Dynamic Programming

dp_hydro

Dynamic Programming for hydropower reservoirs

Description

Determines the optimal sequence of turbined releases to maximise the total energy produced by the reservoir.

Usage

```
dp_hydro(Q, capacity, capacity_live = capacity, surface_area, evap, 
          installed_cap, head, qmax, max_depth, efficiency = 0.9, S_disc = 1000, 
          R_disc = 10, S_initial = 1, plot = TRUE)
```

Arguments

- **Q**
 - time series object. Net inflows to the reservoir. Must be in volumetric units of Mm^3.

- **capacity**
 - numerical. The total reservoir storage capacity (including unusable "dead" storage). Must be in Mm^3.

- **capacity_live**
 - numerical. The volume of usable water in the reservoir ("live capacity" or "active storage"). capacity_live <= capacity. Default capacity_live = capacity. Must be in Mm^3.
dp_hydro

- **surface_area**: numerical. The reservoir surface area at full capacity. Must be in square kilometers (km^2), or Mm^2.

- **evap**: vector or time series object of length Q, or a numerical constant, representing evaporation loss potential from reservoir surface. Varies with level if depth and surface_area parameters are specified. Must be in meters, or kg/m^2 * 10^-3.

- **installed_cap**: numerical. The hydropower plant electric capacity (MW).

- **head**: numerical. The maximum hydraulic head of the hydropower plant (m). Can be omitted and estimated if qmax is supplied.

- **qmax**: numerical. The maximum flow into the hydropower plant. Can be omitted and estimated if head is supplied. Must be in volumetric units of Mm^3.

- **max_depth**: numerical. The maximum water depth of the reservoir at maximum capacity. If omitted, the depth-storage-area relationship will be estimated from surface area and capacity only. Recommended units: meters.

- **efficiency**: numerical. The hydropower plant efficiency. Default is 0.9, but, unless user specifies an efficiency, it will be automatically re-estimated if head and qmax are supplied.

- **S_disc**: integer. Storage discretization—the number of equally-sized storage states. Default = 1000.

- **S_initial**: numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.

- **plot**: logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.

Value

Returns the time series of optimal releases and simulated storage, evaporation, depth, uncontrolled spill, and power generated. Total energy generated is also returned.

See Also

- [sdp_hydro](#) for Stochastic Dynamic Programming for hydropower reservoirs.

Examples

```r
layout(1:4)
dp_hydro(resX$Q_Mm3, resX$cap_Mm3, surface_area = resX$A_km2,
installed_cap = resX$inst_cap_MW, qmax = mean(resX$Q_Mm3), S_disc = 100)
```
Dynamic Programming with multiple objectives (supply, flood control, amenity)

Description

Determines the optimal sequence of releases from the reservoir to minimise a penalty cost function based on water supply, spill, and water level. For water supply: Cost[t] = ((target - release[t]) / target) ^ loss_exp[1]). For flood control: Cost[t] = (Spill[t] / quantile(Q, spill_targ)) ^ loss_exp[2]. For amenity: Cost[t] = abs(((storage[t] - (vol_targ * capacity)) / (vol_targ * capacity))) ^ loss_exp[3].

Usage

dp_multi(Q, capacity, target, surface_area, max_depth, evap, R_max = 2 *
target, spill_targ = 0.95, vol_targ = 0.75, weights = c(0.7, 0.2, 0.1),
loss_exp = c(2, 2, 2), S_disc = 1000, R_disc = 10, S_initial = 1,
plot = TRUE, rep_rrv = FALSE)

Arguments

Q vector or time series object. Net inflow totals to the reservoir. Recommended units: Mm^3 (Million cubic meters).
capacity numerical. The reservoir storage capacity (must be the same volumetric unit as Q and the target release).
target numerical. The target release constant. Recommended units: Mm^3 (Million cubic meters).
surface_area numerical. The reservoir water surface area at maximum capacity. Recommended units: km^2 (square kilometers).
max_depth numerical. The maximum water depth of the reservoir at maximum capacity. If omitted, the depth-storage-area relationship will be estimated from surface area and capacity only. Recommended units: meters.
evap vector or time series object of length Q, or a numerical constant. Evaporation from losses from reservoir surface. Varies with level if depth and surface_area parameters are specified. Recommended units: meters, or kg/m2 * 10 ^ -3.
R_max numerical. The maximum controlled release, in the same units as target.
spill_targ numerical. The quantile of the inflow time series used to standardise the "minimise spill" objective.
vol_targ numerical. The target storage volume constant (as proportion of capacity).
weights vector of length 3 indicating weighting to be applied to release, spill and water level objectives respectively.
loss_exp vector of length 3 indicating the exponents on release, spill and water level deviations from target. Default exponents are c(2,2,2).
S_disc integer. Storage discretization—the number of equally-sized storage states. Default = 1000.
dp_supply

S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The
default value is 1.
plot logical. If TRUE (the default) the storage behavior diagram and release time
series are plotted.
rep_rrv logical. If TRUE then reliability, resilience and vulnerability metrics are com-
punted and returned.

Value

Returns reservoir simulation output (storage, release, spill), total penalty cost associated with the
objective function, and, if requested, the reliability, resilience and vulnerability of the system.

See Also

sdp_multi for Stochastic Dynamic Programming

Examples

layout(1:3)
dp_multi(resX$Q_Mm3, cap = resX$cap_Mm3, target = 0.2 * mean(resX$Q_Mm3), S_disc = 100)

dp_supply

Dynamic Programming for water supply reservoirs

Description

Determines the optimal sequence of releases from the reservoir to minimise a penalty cost function
based on water supply deficit.

Usage

dp_supply(Q, capacity, target, surface_area, max_depth, evap, S_disc = 1000,
R_disc = 10, loss_exp = 2, S_initial = 1, plot = TRUE,
rep_rrv = FALSE)

Arguments

Q vector or time series object. Net inflow totals to the reservoir. Recommended
units: Mm^3 (Million cubic meters).
capacity numerical. The reservoir storage capacity. Recommended units: Mm^3 (Million
cubic meters).
target numerical. The target release constant. Recommended units: Mm^3 (Million
cubic meters).
surface_area numerical. The reservoir water surface area at maximum capacity. Recom-
manded units: km^2 (square kilometers).
max_depth numerical. The maximum water depth of the reservoir at maximum capacity. If omitted, the depth-storage-area relationship will be estimated from surface area and capacity only. Recommended units: meters.
evap vector or time series object of length Q, or a numerical constant. Evaporation from losses from reservoir surface. Varies with level if depth and surface_area parameters are specified. Recommended units: meters, or kg/m² * 10⁻³.
S_disc integer. Storage discretization—the number of equally-sized storage states. Default = 1000.
loss_exp numeric. The exponent of the penalty cost function—i.e., Cost[t] <- ((target - release[t]) / target) ^ **loss_exp**). Default value is 2.
S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.
plot logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.
rep_rrv logical. If TRUE then reliability, resilience and vulnerability metrics are computed and returned.

Value

Returns the reservoir simulation output (storage, release, spill), total penalty cost associated with the objective function, and, if requested, the reliability, resilience and vulnerability of the system.

See Also

sdp_supply for Stochastic Dynamic Programming for water supply reservoirs

Examples

layout(1:3)
dp_supply(resX$Q_Mm3, capacity = resX$cap_Mm3, target = 0.3 * mean(resX$Q_Mm3), S_disc = 100)

<table>
<thead>
<tr>
<th>Hurst</th>
<th>Hurst coefficient estimation</th>
</tr>
</thead>
</table>

Description

Hurst coefficient estimation.

Usage

Hurst(Q)

Arguments

Q vector or annualized time series object. Net inflows or streamflow totals.
Value

Returns an estimate of the Hurst coefficient, \(H (0.5 < H < 1) \).

Examples

\[
Q_{\text{annual}} \leftarrow \text{aggregate}(\text{resX}QMm3) \# \text{convert monthly to annual data}
\]

\[
\text{Hurst}(Q_{\text{annual}})
\]

Description

Measure single reservoir performance using resilience, reliability, and vulnerability metrics; compute storage-yield-reliability relationships; determine no-fail Rippl storage with sequent peak analysis; optimize release decisions for water supply, hydropower, and multi-objective reservoirs using deterministic and stochastic dynamic programming; evaluate inflow characteristics.

Analysis and design functions

The \text{Rippl} function executes the sequent peak algorithm [Thomas and Burden, 1963] to determine the no-fail storage [Rippl, 1883] for given inflow and release time series. The \text{storage} function gives the design storage for a specified time-based reliability and yield. Similarly, the \text{yield} function computes the reliability yield given the storage capacity. The \text{simRes} function simulates a reservoir under standard operating policy, or using an optimised policy produced by \text{sdp_supply}. The \text{rrv} function returns three reliability measures, resilience, and dimensionless vulnerability for given storage, inflow time series, and target release [McMahon et al, 2006]. Users can assume Standard Operating Policy, or can apply the output of \text{sdp_supply} to determine the RRV metrics under different operating objectives. The \text{Hurst} function estimates the Hurst coefficient [Hurst, 1951] for an annualized inflow time series, using the method proposed by Pfaff [2008].

Optimization functions

The Dynamic Programming functions find the optimal sequence of releases for a given reservoir. The Stochastic Dynamic Programming functions find the optimal release policy for a given reservoir, based on storage, within-year time period and, optionally, current-period inflow. For single-objective water supply reservoirs, users may specify a loss exponent parameter for supply deficits and then optimize reservoir release decisions to minimize summed penalty costs over the operating horizon. This can be done using \text{dp_supply} or \text{sdp_supply}. There is also an option to simulate the output of \text{sdp_supply} using the \text{rrv} function to validate the policy under alternative inflows or analyze reservoir performance under different operating objectives. The optimal operating policy for hydropower operations can be found using \text{dp_hydro} or \text{sdp_hydro}. The operating target is to maximise total energy output over the duration of the input time series of inflows. The \text{dp_multi} and \text{sdp_multi} functions allow users to optimize for three weighted objectives representing water supply deficit, flood control, and amenity.
Storage-depth-area relationships

All reservoir analysis and optimization functions, with the exception of Rippl, storage, and yield, allow the user to account for evaporation losses from the reservoir surface. The package incorporates two storage-depth-area relationships for adjusting the surface area (and therefore evaporation potential) with storage. The simplest is based on the half-pyramid method [Liebe et al, 2005], requiring the user to input the surface area of the reservoir at full capacity via the surface_area parameter. A more nuanced relationship [Kaveh et al., 2013] is implemented if the user also provides the maximum depth of the reservoir at full capacity via the max_depth parameter. Users must use the recommended units when implementing evaporation losses.

Stochastic generation of synthetic streamflow replicates

The dirtyreps function provides quick and dirty generation of stochastic streamflow replicates (seasonal input data, such as monthly or quarterly, only). Two methods are available: the non-parametric kNN bootstrap [Lall and Sharma, 1996] and the parametric periodic Autoregressive Moving Average (PARMA). The PARMA is fitted for p = 1 and q = 1, or PARMA(1,1). Fitting is done numerically by the least-squares method [Salas and Fernandez, 1993]. When using the PARMA model, users do not need to transform or deseasonalize the input data as this is done automatically within the algorithm. The kNN bootstrap is non-parametric, so no initial data preparation is required here either.

References

Hurst, H.E. (1951) Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers 116, 770-808.

Examples

1. Express the distribution of Rippl storage for a known inflow process...
layout(1:4)
a) Assume the inflow process follows a lognormal distribution
(meanlog = 0, sdlog = 1):
x <- rlnorm(1200)

b) Convert to a 100-year, monthly time series object beginning Jan 1900
x <- ts(x, start = c(1900, 1), frequency = 12)

c) Begin reservoir analysis... e.g., compute the Rippl storage
x_Rippl <- Rippl(x, target = mean(x) * 0.9)
no_fail_storage <- x_Rippl

d) Resample x and loop the procedure multiple times to get the
distribution of no-failure storage for the inflow process assuming
constant release (R) equal to 90 percent of the mean inflow.
no_fail_storage <- vector("numeric", 100)
for (i in 1:length(no_fail_storage))
 x <- ts(rlnorm(1200), start = c(1900, 1), frequency = 12)
 no_fail_storage[i] <- Rippl(x, target = mean(x) * 0.9 ,plot = FALSE)
hist(no_fail_storage)

2. Trade off between annual reliability and vulnerability for a given system...
layout(1:1)
a) Define the system: inflow time series, storage, and target release.
inflow_ts <- res$Q_Mm3
storage_cap <- res$cap_Mm3
demand <- 0.3 * mean(res$Q_Mm3)

b) define range of loss exponents to control preference of high reliability
(low loss exponent) or low vulnerability (high loss exponent).
loss_exponents <- c(1.0, 1.5, 2)

c) set up results table
pareto_results <- data.frame(matrix(ncol = 2, nrow = length(loss_exponents)))
names(pareto_results) <- c("reliability", "vulnerability")
row.names(pareto_results) <- loss_exponents

d) loop the sdp function through all loss exponents and plot results
for (loss_f in loss_exponents){
sdp_temp <- sdp_supply(inflow_ts, capacity = storage_cap, target = demand, rep_rrv = TRUE,
 S_disc = 100, R_disc = 10, plot = FALSE, loss_exp = loss_f, Markov = TRUE)
pareto_results$reliability[which(row.names(pareto_results)==loss_f)] <- sdp_temp$annual_reliability
pareto_results$vulnerability[which(row.names(pareto_results)==loss_f)] <- sdp_temp$vulnerability}
```r
plot (pareto_results$reliability, pareto_results$vulnerability, type = "b", lty = 3)
```

resX

Reservoir X inflow time series and reservoir detail

Description

Reservoir X inflow time series and reservoir detail

Format

list object

Source

http://atlas.gwsp.org

References

Rippl

Rippl analysis

Description

Computes the Rippl no-failure storage for given time series of inflows and releases using the sequent peak algorithm.

Usage

`Rippl(Q, target, R, double_cycle = FALSE, plot = TRUE)`

Arguments

- `Q`: vector or time series object. Net inflow totals to the reservoir.
- `target`: a target release constant in same volumetric units as Q. Can be omitted if R is given.
- `R`: a time series or vector of target releases (volumetric). Must be the same length as Q.
- `double_cycle`: logical. If TRUE the Q and R time series will be replicated and placed end-to-end to double the simulation. Recommended if the critical period occurs at the end of the sequence.
- `plot`: logical. If TRUE (the default) the storage behavior diagram is plotted.
Value

Returns the no-fail storage capacity and corresponding storage behaviour time series.

Examples

```r
# define a release vector for a constant release equal to 90 % of the mean inflow
no_fail_storage <- Rippl(res$Q_Mm3, target = 0.9 * mean(res$Q_Mm3))$No_fail_storage
```

rrv

Reliability, resilience, and vulnerability analysis for water supply reservoirs

Description

Computes time-based, annual, and volumetric reliability, as well as resilience and dimensionless vulnerability for a single reservoir.

Usage

```r
rrv(Q, target, capacity, double_cycle = FALSE, surface_area, max_depth, evap,
   plot = TRUE, S_initial = 1, policy)
```

Arguments

- **Q**: vector or time series object. Net inflow totals to the reservoir. Recommended units: Mm^3 (Million cubic meters).
- **target**: numerical. The target release constant. Recommended units: Mm^3 (Million cubic meters).
- **capacity**: numerical. The reservoir capacity. Should be same volumetric unit as Q and R.
- **double_cycle**: logical. If TRUE the input series will be replicated and placed end-to-end to double the simulation. (Recommended if the critical period occurs at the end of the recorded inflow time series)
- **surface_area**: numerical. The reservoir water surface area at maximum capacity. Recommended units: km^2 (square kilometers).
- **max_depth**: numerical. The maximum water depth of the reservoir at maximum capacity. If omitted, the depth-storage-area relationship will be estimated from surface area and capacity only. Recommended units: meters.
- **evap**: vector or time series object of length Q, or a numerical constant. Evaporation from losses from reservoir surface. Varies with level if depth and surface_area parameters are specified. Recommended units: meters, or kg/m2 * 10^-3.
- **plot**: logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.
- **S_initial**: numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.
- **policy**: list. The output of the SDP function. If omitted, Standard Operating Policy is assumed.
Value

Returns reliability, resilience and vulnerability metrics based on supply deficits.

Examples

```r
# Compare reliability, resilience and vulnerability for two operating policies (SOP and SDP).
rrv(resX$Q_Mm3, capacity = 20*resX$cap_Mm3, target = 0.95 * mean(resX$Q_Mm3))
pol_Markov <- sdp_supply(resX$Q_Mm3, capacity = 20 * resX$cap_Mm3, target = 0.95 * mean(resX$Q_Mm3), Markov = TRUE)
rrv(resX$Q_Mm3, capacity = 20*resX$cap_Mm3, target = 0.95 * mean(resX$Q_Mm3), policy = pol_Markov)
```

sdp

Stochastic Dynamic Programming (Deprecated function; use 'sdp_supply' instead)

Description

Derives the optimal release policy based on storage state, inflow class and within-year period.

Usage

```r
sdp(Q, capacity, target, S_disc = 1000, R_disc = 10, Q_disc = c(0, 0.2375, 0.475, 0.7125, 0.95, 1), loss_exp = 2, S_initial = 1, plot = TRUE, tol = 0.99, rep_rrv = FALSE)
```

Arguments

- **Q**: time series object. Net inflows to the reservoir.
- **capacity**: numerical. The reservoir storage capacity (must be the same volumetric unit as Q and the target release).
- **target**: numerical. The target release constant.
- **S_disc**: integer. Storage discretization—the number of equally-sized storage states. Default = 1000.
- **Q_disc**: vector. Inflow discretization bounding quantiles. Defaults to five inflow classes bounded by quantile vector c(0.0, 0.2375, 0.475, 0.7125, 0.95, 1.0).
- **loss_exp**: numeric. The exponent of the penalty cost function—i.e., Cost[t] <- ((target - release[t]) / target) ^ **loss_exp**). Default value is 2.
- **S_initial**: numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.
- **plot**: logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.
- **tol**: numerical. The tolerance for policy convergence. The default value is 0.990.
- **rep_rrv**: logical. If TRUE then reliability, resilience and vulnerability metrics are computed and returned.
sdp_hydro

Value

Returns a list that includes: the optimal policy as an array of release decisions dependent on storage state, month/season, and current-period inflow class; the Bellman cost function based on storage state, month/season, and inflow class; the optimized release and storage time series through the training inflow data; the flow discretization (which is required if the output is to be implemented in the rrv function); and, if requested, the reliability, resilience, and vulnerability of the system under the optimized policy.

References

See Also

sdp for deterministic Dynamic Programming

sdp_hydro

Stochastic Dynamic Programming for hydropower reservoirs

Description

Determines the optimal policy of turbined releases to maximise the total energy produced by the reservoir. The policy can be based on season and storage level, or season, storage level, and current-period inflow.

Usage

sdp_hydro(Q, capacity, capacity_live = capacity, surface_area, max_depth, evap, installed_cap, head, qmax, efficiency = 0.9, S_disc = 1000, R_disc = 10, Q_disc = c(0, 0.2375, 0.475, 0.7125, 0.95, 1), S_initial = 1, plot = TRUE, tol = 0.99, Markov = FALSE)

Arguments

Q time series object. Net inflows to the reservoir. Must be in volumetric units of Mm^3.

capacity numerical. The total reservoir storage capacity (including unusable "dead" storage). Must be in Mm^3.

capacity_live numerical. The volume of usable water in the reservoir ("live capacity" or "active storage"). capacity_live <= capacity. Default capacity_live = capacity. Must be in Mm^3.
surface_area numerical. The reservoir surface area at full capacity. Must be in square kilometers (km^2), or Mm^2.

max_depth numerical. The maximum water depth of the reservoir at maximum capacity. If omitted, the depth-storage-area relationship will be estimated from surface area and capacity only. Recommended units: meters.

evap vector or time series object of length Q, or a numerical constant, representing evaporation loss potential from reservoir surface. Varies with level if depth and surface_area parameters are specified. Must be in meters, or kg/m2 * 10^-3.

installed_cap numerical. The hydropower plant electric capacity (MW).

head numerical. The maximum hydraulic head of the hydropower plant (m). Can be omitted if qmax is supplied.

qmax numerical. The maximum flow into the hydropower plant. Can be omitted and estimated if head is supplied. Must be in volumetric units of Mm^3.

efficiency numerical. The hydropower plant efficiency. Default is 0.9, but, unless user specifies an efficiency, it will be automatically re-estimated if head and qmax are supplied.

S_disc integer. Storage discretization—the number of equally-sized storage states. Default = 1000.

Q_disc vector. Inflow discretization bounding quantiles. Defaults to five inflow classes bounded by quantile vector c(0.0, 0.2375, 0.4750, 0.7125, 0.95, 1.0).

S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.

plot logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.

tol numerical. The tolerance for policy convergence. The default value is 0.990.

Markov logical. If TRUE the current period inflow is used as a hydrological state variable and inflow persistence is incorporated using a first-order, periodic Markov chain. The default is FALSE.

Value

Returns the optimal release policy, associated Bellman function, simulated storage, release, evaporation, depth, uncontrolled spill, and power generated, and total energy generated.

See Also

dp_hydro for deterministic Dynamic Programming for hydropower reservoirs.

Examples

```r
layout(1:4)
sdp_hydro(resX$Q_Mm3, resX$cap_Mm3, surface_area = resX$A_km2, installed_cap = resX$Inst_cap_MW, qmax = mean(resX$Q_Mm3))
sdp_hydro(resX$Q_Mm3, resX$cap_Mm3, surface_area = resX$A_km2, installed_cap = resX$Inst_cap_MW, qmax = mean(resX$Q_Mm3), Markov = TRUE)
```
Stochastic Dynamic Programming with multiple objectives (supply, flood control, amenity)

Description

Determines the optimal sequence of releases from the reservoir to minimise a penalty cost function based on water supply, spill, and water level. For water supply: $\text{Cost}[t] = ((\text{target} - \text{release}[t]) / \text{target})^{\text{loss}_{\text{exp}}[1]}$. For flood control: $\text{Cost}[t] = (\text{Spill}[t] / \text{quantile}(Q, \text{spill}_{\text{targ}}))^{\text{loss}_{\text{exp}}[2]}$. For amenity: $\text{Cost}[t] = \text{abs}(((\text{storage}[t] - (\text{vol}_{\text{targ}} \times \text{capacity})) / (\text{vol}_{\text{targ}} \times \text{capacity})))^{\text{loss}_{\text{exp}}[3]}$.

Usage

```r
sdp_multi(Q, capacity, target, surface_area, max_depth, evap, R_max = 2 *
  target, spill_targ = 0.95, vol_targ = 0.75, Markov = FALSE,
  weights = c(0.7, 0.2, 0.1), S_disc = 1000, R_disc = 10, Q_disc = c(0,
  0.2375, 0.475, 0.7125, 0.95, 1), loss_exp = c(2, 2, 2), s_initial = 1,
  plot = TRUE, tol = 0.99, rep_rrv = FALSE)
```

Arguments

- `Q` time series object. Net inflow to the reservoir.
- `capacity` numerical. The reservoir storage capacity (must be the same volumetric unit as `Q` and the target release).
- `target` numerical. The target release constant. Recommended units: Mm3 (Million cubic meters).
- `surface_area` numerical. The reservoir water surface area at maximum capacity. Recommended units: km2 (square kilometers).
- `max_depth` numerical. The maximum water depth of the reservoir at maximum capacity. If omitted, the depth-storage-area relationship will be estimated from surface area and capacity only. Recommended units: meters.
- `evap` vector or time series object of length `Q`, or a numerical constant. Evaporation from losses from reservoir surface. Varies with level if depth and `surface_area` parameters are specified. Recommended units: meters, or kg/m2 * 10^-3.
- `R_max` numerical. The maximum controlled release.
- `spill_targ` numerical. The quantile of the inflow time series used to standardise the "minimise spill" objective.
- `vol_targ` numerical. The target storage volume constant (as proportion of capacity).
- `Markov` logical. If TRUE the current period inflow is used as a hydrological state variable and inflow persistence is incorporated using a first-order, periodic Markov chain. The default is FALSE.
- `weights` vector of length 3 indicating weighting to be applied to release, spill and water level objectives respectively.
sdp_supply

S_disc integer. Storage discretization—the number of equally-sized storage states. Default = 1000.
Q_disc vector. Inflow discretization bounding quantiles. Defaults to five inflow classes bounded by quantile vector c(0.0, 0.2375, 0.4750, 0.7125, 0.95, 1.0).
loss_exp vector of length 3 indicating the exponents on release, spill and water level deviations from target. Default exponents are c(2,2,2).
S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.
plot logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.
tol numerical. The tolerance for policy convergence. The default value is 0.990.
rep_rrv logical. If TRUE then reliability, resilience and vulnerability metrics are computed and returned.

Value

Returns a list that includes: the optimal policy as an array of release decisions dependent on storage state, month/season, and current-period inflow class; the Bellman cost function based on storage state, month/season, and inflow class; the optimized release and storage time series through the training inflow data; the flow discretization (which is required if the output is to be implemented in the rrv function); and, if requested, the reliability, resilience, and vulnerability of the system under the optimized policy.

See Also

dp_multi for deterministic Dynamic Programming.

Examples

```r
layout(1:3)
sdp_multi(res$Q$Mm3, cap = res$cap$Mm3, target = 0.2 * mean(res$Q$Mm3))
```

Description

Derives the optimal release policy based on storage state and within-year period only.

Usage

```r
sdp_supply(Q, capacity, target, surface_area, max_depth, evap, S_disc = 1000, R_disc = 10, Q_disc = c(0, 0.2375, 0.4750, 0.7125, 0.95, 1), loss_exp = 2, S_initial = 1, plot = TRUE, tol = 0.99, Markov = FALSE, rep_rrv = FALSE)
```
Arguments

- **Q**
 - vector or time series object. Net inflow totals to the reservoir. Recommended units: Mm3 (Million cubic meters).

- **capacity**
 - numerical. The reservoir storage capacity. Recommended units: Mm3 (Million cubic meters).

- **target**
 - numerical. The target release constant. Recommended units: Mm3 (Million cubic meters).

- **surface_area**
 - numerical. The reservoir water surface area at maximum capacity. Recommended units: km2 (square kilometers).

- **max_depth**
 - numerical. The maximum water depth of the reservoir at maximum capacity. If omitted, the depth-storage-area relationship will be estimated from surface area and capacity only. Recommended units: meters.

- **evap**
 - vector or time series object of length Q, or a numerical constant. Evaporation from losses from reservoir surface. Varies with level if depth and surface_area parameters are specified. Recommended units: meters, or kg/m2 * 10$^{-3}$.

- **S_disc**
 - integer. Storage discretization—the number of equally-sized storage states. Default = 1000.

- **R_disc**

- **Q_disc**
 - vector. Inflow discretization bounding quantiles. Defaults to five inflow classes bounded by quantile vector c(0.0, 0.2375, 0.4750, 0.7125, 0.95, 1.0).

- **loss_exp**
 - numeric. The exponent of the penalty cost function—i.e., Cost[t] <- ((target - release[t]) / target) ** loss_exp**). Default value is 2.

- **S_initial**
 - numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.

- **plot**
 - logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.

- **tol**
 - numerical. The tolerance for policy convergence. The default value is 0.990.

- **Markov**
 - logical. If TRUE the current period inflow is used as a hydrological state variable and inflow persistence is incorporated using a first-order, periodic Markov chain. The default is FALSE.

- **rep_rrv**
 - logical. If TRUE then reliability, resilience, and vulnerability metrics are computed and returned.

Value

Returns a list that includes: the optimal policy as an array of release decisions dependent on storage state, month/season, and current-period inflow class; the Bellman cost function based on storage state, month/season, and inflow class; the optimized release and storage time series through the training inflow data; the flow discretization (which is required if the output is to be implemented in the rrv function); and, if requested, the reliability, resilience, and vulnerability of the system under the optimized policy.

See Also

- **dp_supply** for deterministic Dynamic Programming for water supply reservoirs
Examples

```r
layout(1:3)
sdp_supply(resX$Q_Mm3, capacity = resX$cap_Mm3, target = 0.3 * mean(resX$Q_Mm3))
sdp_supply(resX$Q_Mm3, capacity = resX$cap_Mm3, target = 0.3 * mean(resX$Q_Mm3), Markov = TRUE)
```

simRes

Simulate a water supply reservoir with specified operating policy.

Description

Simulates a reservoir for a given inflow time series and assuming Standard Operating Policy (meet target at all times, unless constrained by available water in reservoir plus incoming flows) or an optimised policy derived using `sdp_supply`.

Usage

```r
simRes(Q, target, capacity, surface_area, max_depth, evap,
      double_cycle = FALSE, plot = TRUE, S_initial = 1, policy)
```

Arguments

- **Q**
 - vector or time series object. Net inflow totals to the reservoir. Mm3 (Million cubic meters).
- **target**
 - numerical constant, or a time series or vector of the target releases. Must be the same length as Q is given as a vector or time series. Mm3 (Million cubic meters).
- **capacity**
 - numerical. The reservoir capacity. Should be same volumetric unit as Q. Mm3 (Million cubic meters).
- **surface_area**
 - numerical. The reservoir surface area at full capacity. Must be in square kilometers (km2), or Mm2.
- **max_depth**
 - numerical. The maximum water depth of the reservoir at maximum capacity. Must be in meters. If omitted, the depth-storage-area relationship will be estimated from surface area and capacity only.
- **evap**
 - vector or time series object of length Q, or a numerical constant. Evaporation from losses from reservoir surface. Varies with level if depth and surface_area parameters are specified. Recommended units: meters, or kg/m$^2 * 10^{-3}$.
- **double_cycle**
 - logical. If TRUE the Q and R time series will be replicated and placed end-to-end to double the simulation. Recommended if the critical period occurs at the end of the sequence.
- **plot**
 - logical. If TRUE (the default) the storage and release time series are plotted.
- **S_initial**
 - numerical. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.
- **policy**
 - list. The output of the SDP function. If omitted, Standard Operating Policy is assumed.
Storage

Value

Returns the no-fail storage capacity and corresponding storage behaviour time series.

Examples

```r
# simulate a reservoir assuming standard operating policy, then compare with SDP-derived policy
# trained on historical flows.

# DEFINE RESERVOIR SPECS AND MODEL INPUTS
res_cap <- 1500 #Mm^3
targ <- 150 #Mm^3
area <- 40 #km^2
max_d <- 40 #m
ev = 0.2 #m
Q_pre1980 <- window(resX$Q_Mm3, end = c(1979, 12), frequency = 12)
Q_post1980 <- window(resX$Q_Mm3, start = c(1980, 1), frequency = 12)

# SIMULATE WITH SOP
layout(1:3)
simSOP <- simRes(Q_post1980, capacity = res_cap, target = targ,
surface_area = area, max_depth = max_d, evap = ev)

# TRAIN SDP POLICY ON HISTORICAL FLOWS
policy_x <- sdp_supply(Q_pre1980, capacity = res_cap, target = targ,
surface_area = area, max_depth = max_d, evap = ev, Markov = TRUE, plot = FALSE, S_disc = 100)

# SIMULATE WITH SDP-DERIVED POLICY
simSOP <- simRes(Q_post1980, capacity = res_cap, target = targ,
surface_area = area, max_depth = max_d, evap = ev, policy = policy_x)
```

Description

Returns the required storage for given inflow time series, yield, and target time-based reliability. Assumes standard operating policy. Storage is computed iteratively using the bi-section method.

Usage

```r
storage(Q, yield, reliability, demand_profile, plot = TRUE, S_initial = 1,
       max_iterations = 50, double_cycle = FALSE)
```

Arguments

- **Q**
 vector or time series object. Net inflow totals to the reservoir. Recommended units: Mm^3 (Million cubic meters).

- **yield**
 the required yield. Must be same volumetric units as Q.
yield

reliability numerical. The required time-based reliability.
demand_profile a vector of factors with length = frequency(Q). Represents within-year demand profile. Defaults to constant release if left blank.
plot logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.
S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.
max_iterations Maximum number of iterations for yield computation.
double_cycle logical. If TRUE the input series will be replicated and placed end-to-end to double the simulation. (Recommended if the critical period occurs at the end of the recorded inflow time series)

Value
Returns the required storage capacity necessary to supply specified yield with specified reliability.

Examples

Determine the required storage for 95 % reliability and yield equal to 80 % of the mean inflow.
layout(1:3)
storage(resX$Q_Mm3 * 20, yield = 0.9 * mean(resX$Q_Mm3), reliability = 0.95)

yield

Storage-Reliability-Yield (SRY) relationships: Yield computation

Description
Returns the yield for given inflow time series, reservoir capacity, and required time-based reliability. Assumes standard operating policy. Yield is computed iteratively using the bi-section method.

Usage

generate_data(Q, capacity, reliability, demand_profile, plot = TRUE, S_initial = 1,
max_iterations = 50, double_cycle = FALSE)

Arguments

Q vector or time series object. Net inflow totals to the reservoir.
capacity numerical. The reservoir storage capacity. Must be in the same volumetric units as Q.
reliability numerical. The required time-based reliability.
demand_profile a vector of factors with length = frequency(Q). Represents within-year demand profile. Defaults to constant release if left blank.
plot logical. If TRUE (the default) the storage behavior diagram and release time series are plotted.
yield

S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The default value is 1.

max_iterations Maximum number of iterations for yield computation.

double_cycle logical. If TRUE the input series will be replicated and placed end-to-end to double the simulation. (Recommended if the critical period occurs at the end of the recorded inflow time series)

Value

Returns yield of a reservoir with specified storage capacity and time-based reliability.

Examples

Compute yield for 0.95 reliability
layout(1:3)
yield_ResX <- yield(resX$Q_Mm3, capacity = 500, reliability = 0.95)
Compute yield for quarterly time series with seasonal demand profile

quart_ts <- aggregate(resX$Q_Mm3, nfrequency = 4)
yld <- yield(quart_ts,
capacity = 500, reliability = 0.9, demand_profile = c(0.8, 1.2, 1.2, 0.8))
Index

dirtyreps, 2, 10
dp, 3
dp_hydro, 4, 9, 16
dp_multi, 6, 9, 18
dp_supply, 7, 9, 19

Hurst, 8, 9

reservoir, 9
reservoir-package (reservoir), 9
resX, 12
Rippl, 9, 10, 12
rrv, 9, 13

sdp, 4, 14, 15
sdp_hydro, 5, 9, 15
sdp_multi, 7, 9, 17
sdp_supply, 8, 9, 18, 20
simRes, 9, 20
storage, 9, 10, 21

yield, 9, 10, 22