Package ‘reshape2’

April 9, 2020

Title Flexibly Reshape Data: A Reboot of the Reshape Package
Version 1.4.4
Author Hadley Wickham <h.wickham@gmail.com>
Maintainer Hadley Wickham <h.wickham@gmail.com>
Description Flexibly restructure and aggregate data using just two
functions: melt and 'dcast' (or 'acast').
License MIT + file LICENSE
URL https://github.com/hadley/reshape
BugReports https://github.com/hadley/reshape/issues
Depends R (>= 3.1)
Imports plyr (>= 1.8.1), Rcpp, stringr
Suggests covr, lattice, testthat (>= 0.8.0)
LinkingTo Rcpp
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-04-09 13:50:02 UTC

R topics documented:

 addMargins ... 2
 cast ... 2
 colsplit ... 5
 frenchFries .. 5
 melt ... 6
 melt.array ... 7
 melt.data.frame .. 8
add_margins

Add margins to a data frame.

Description

Rownames are silently stripped. All margining variables will be converted to factors.

Usage

add_margins(df, vars, margins = TRUE)

Arguments

df
vars
margins

input data frame
a list of character vectors giving the variables in each dimension
a character vector of variable names to compute margins for. TRUE will compute all possible margins.

cast

Cast functions Cast a molten data frame into an array or data frame.

Description

Use acast or dcast depending on whether you want vector/matrix/array output or data frame output. Data frames can have at most two dimensions.

Usage

dcast(
 data,
 formula,
 fun.aggregate = NULL,
 ...,
 margins = NULL,
 subset = NULL,
 fill = NULL,
drop = TRUE,
value.var = guess_value(data)
)
See Also

`melt`, `http://had.co.nz/reshape/`

Examples

Air quality example
names(airquality) <- tolower(names(airquality))
aqm <- melt(airquality, id=c("month", "day"), na.rm=TRUE)

acast(aqm, day ~ month ~ variable)
acast(aqm, month ~ variable, mean)
adcast(aqm, month ~ variable, mean, margins = TRUE)
dcast(aqm, month ~ variable, mean, margins = c("month", "variable"))

library(plyr) # needed to access . function
acast(aqm, variable ~ month, mean, subset = .(variable == "ozone"))
acast(aqm, variable ~ month, mean, subset = .(month == 5))

Chick weight example
names(ChickWeight) <- tolower(names(ChickWeight))
chick_m <- melt(ChickWeight, id=2:4, na.rm=TRUE)
dcast(chick_m, time ~ variable, mean) # average effect of time
dcast(chick_m, diet ~ variable, mean) # average effect of diet
acast(chick_m, diet ~ time, mean) # average effect of diet & time

How many chicks at each time? - checking for balance
acast(chick_m, time ~ diet, length)
acast(chick_m, chick ~ time, mean)
acast(chick_m, chick ~ time, mean, subset = .(time < 10 & chick < 20))
acast(chick_m, time ~ diet, length)
dcast(chick_m, diet + chick ~ time)
acast(chick_m, diet + chick ~ time)
acast(chick_m, chick ~ time ~ diet)
acast(chick_m, diet + chick ~ time, length, margins="diet")
acast(chick_m, diet + chick ~ time, length, drop = FALSE)

Tips example
dcast(melt(tips), sex ~ smoker, mean, subset = .(variable == "total_bill"))

ff_d <- melt(french_fries, id=1:4, na.rm=TRUE)
acast(ff_d, subject ~ time, length)
acast(ff_d, subject ~ time, length, fill=0)
dcast(ff_d, treatment ~ variable, mean, margins = TRUE)
dcast(ff_d, treatment + subject ~ variable, mean, margins="treatment")
if (require("lattice")) {
lattice::xyplot("1" ~ "2" | variable, dcast(ff_d, ... ~ rep), aspect="iso")
}
colsplit

Split a vector into multiple columns

Description

Useful for splitting variable names that a combination of multiple variables. Uses `type.convert` to convert each column to correct type, but will not convert character to factor.

Usage

colsplit(string, pattern, names)

Arguments

- **string**: character vector or factor to split up
- **pattern**: regular expression to split on
- **names**: names for output columns

Examples

```r
x <- c("a_1", "a_2", "b_2", "c_3")
vars <- colsplit(x, ",", c("trt", "time"))
vars
str(vars)
```

french_fries

Sensory data from a french fries experiment.

Description

This data was collected from a sensory experiment conducted at Iowa State University in 2004. The investigators were interested in the effect of using three different fryer oils had on the taste of the fries.

Usage

french_fries

Format

A data frame with 696 rows and 9 variables
Details

Variables:

- time in weeks from start of study.
- treatment (type of oil),
- subject,
- replicate,
- potato-y flavour,
- buttery flavour,
- grassy flavour,
- rancid flavour,
- painty flavour

melt

Convert an object into a molten data frame.

Description

This the generic melt function. See the following functions for the details about different data structures:

Usage

melt(data, ..., na.rm = FALSE, value.name = "value")

Arguments

data Data set to melt
... further arguments passed to or from other methods.
na.rm Should NA values be removed from the data set? This will convert explicit
 missings to implicit missings.
value.name name of variable used to store values

Details

- melt.data.frame for data.frames
- melt.array for arrays, matrices and tables
- melt.list for lists

See Also

cast
Melt an array.

Description
This code is conceptually similar to `as.data.frame.table`.

Usage

```r
## S3 method for class 'array'
melt(
  data,
  varnames = names(dimnames(data)),
  ..., 
  na.rm = FALSE,
  as.is = FALSE,
  value.name = "value"
)

## S3 method for class 'table'
melt(
  data,
  varnames = names(dimnames(data)),
  ..., 
  na.rm = FALSE,
  as.is = FALSE,
  value.name = "value"
)

## S3 method for class 'matrix'
melt(
  data,
  varnames = names(dimnames(data)),
  ..., 
  na.rm = FALSE,
  as.is = FALSE,
  value.name = "value"
)
```

Arguments
- `data` array to melt
- `varnames` variable names to use in molten data.frame
- `...` further arguments passed to or from other methods.
- `na.rm` Should NA values be removed from the data set? This will convert explicit missings to implicit missings.
melt.data.frame

Melt a data frame into form suitable for easy casting.

Description

You need to tell melt which of your variables are id variables, and which are measured variables. If you only supply one of `id.vars` and `measure.vars`, melt will assume the remainder of the variables in the data set belong to the other. If you supply neither, melt will assume factor and character variables are id variables, and all others are measured.

Usage

```r
## S3 method for class 'data.frame'
melt(
  data,
  id.vars,
  measure.vars,
  variable.name = "variable",
  ...,
  na.rm = FALSE,
  value.name = "value",
  factorsAsStrings = TRUE
)
```
melt.default

Arguments

- **data**: data frame to melt
- **id.vars**: vector of id variables. Can be integer (variable position) or string (variable name). If blank, will use all non-measured variables.
- **measure.vars**: vector of measured variables. Can be integer (variable position) or string (variable name). If blank, will use all non id.vars
- **variable.name**: name of variable used to store measured variable names
- **na.rm**: Should NA values be removed from the data set? This will convert explicit missings to implicit missings.
- **value.name**: name of variable used to store values
- **factorsAsStrings**: Control whether factors are converted to character when melted as measure variables. When FALSE, coercion is forced if levels are not identical across the measure.vars.

See Also

- cast

Other melt methods: melt.array(), melt.default(), melt.list()

Examples

```r
names(airquality) <- tolower(names(airquality))
melt(airquality, id=c("month", "day"))
names(ChickWeight) <- tolower(names(ChickWeight))
melt(ChickWeight, id=2:4)
```

melt.default

Melt a vector. For vectors, makes a column of a data frame

Description

Melt a vector. For vectors, makes a column of a data frame

Usage

```r
## Default S3 method:
melt(data, ..., na.rm = FALSE, value.name = "value")
```

Arguments

- **data**: vector to melt
- **...**: further arguments passed to or from other methods.
- **na.rm**: Should NA values be removed from the data set? This will convert explicit missings to implicit missings.
- **value.name**: name of variable used to store values
melt.list

Melt a list by recursively melting each component.

Description

Melt a list by recursively melting each component.

Usage

S3 method for class 'list'
melt(data, ..., level = 1)

Arguments

data

list to recursively melt

...

further arguments passed to or from other methods.

level

list level - used for creating labels

See Also

cast

Other melt methods: `melt.array()`, `melt.data.frame()`, `melt.default()`

Examples

```r
a <- as.list(c(1:4, NA))
melt(a)
names(a) <- letters[1:4]
melt(a)
a <- list(matrix(1:4, ncol=2), matrix(1:6, ncol=2))
melt(a)
a <- list(matrix(1:4, ncol=2), array(1:27, c(3,3,3)))
melt(a)
melt(list(1:5, matrix(1:4, ncol=2)))
melt(list(list(1:3), 1, list(as.list(3:4), as.list(1:2))))
```
melt_check

Check that input variables to melt are appropriate.

Description

If id.vars or measure.vars are missing, melt_check will do its best to impute them. If you only supply one of id.vars and measure.vars, melt will assume the remainder of the variables in the data set belong to the other. If you supply neither, melt will assume discrete variables are id variables and all other are measured.

Usage

melt_check(data, id.vars, measure.vars, variable.name, value.name)

Arguments

data data frame
id.vars vector of identifying variable names or indexes
measure.vars vector of Measured variable names or indexes
variable.name name of variable used to store measured variable names
value.name name of variable used to store values

Value

a list giving id and measure variables names.

parse_formula

Parse casting formulae.

Description

There are a two ways to specify a casting formula: either as a string, or a list of quoted variables. This function converts the former to the latter.

Usage

parse_formula(formula = "... ~ variable", varnames, value.var = "value")

Arguments

formula formula to parse
varnames names of all variables in data
value.var name of variable containing values
Details

Casting formulas separate dimensions with ~ and variables within a dimension with + or *. . can be used as a placeholder, and ... represents all other variables not otherwise used.

Examples

```r
reshape2::parse_formula("a + ...", letters[1:6])
reshape2::parse_formula("a ~ b + d")
reshape2::parse_formula("a + b - c ~ .")
```

```
recast  
---
Recast: melt and cast in a single step
```

Description

This conveniently wraps melting and (d)casting a data frame into a single step.

Usage

```r
recast(data, formula, ..., id.var, measure.var)
```

Arguments

- **data**
 - data set to melt
- **formula**
 - casting formula, see `dcast` for specifics
- **...**
 - other arguments passed to `dcast`
- **id.var**
 - identifying variables. If blank, will use all non measure.var variables
- **measure.var**
 - measured variables. If blank, will use all non id.var variables

See Also

`http://had.co.nz/reshape/`

Examples

```r
recast(french_fries, time ~ variable, id.var = 1:4)
```
smiths

Demo data describing the Smiths.

Description
A small demo dataset describing John and Mary Smith. Used in the introductory vignette.

Usage
smiths

Format
A data frame with 2 rows and 5 variables

tips

Tipping data

Description
One waiter recorded information about each tip he received over a period of a few months working in one restaurant. He collected several variables:

Usage
tips

Format
A data frame with 244 rows and 7 variables

Details
- tip in dollars,
- bill in dollars,
- sex of the bill payer,
- whether there were smokers in the party,
- day of the week,
- time of day,
- size of the party.

In all he recorded 244 tips. The data was reported in a collection of case studies for business statistics (Bryant & Smith 1995).

References
Index

*Topic **datasets**
 - french_fries, 5
 - smiths, 13
 - tips, 13

*Topic **manip**
 - cast, 2
 - colsplit, 5
 - melt, 6
 - melt.array, 7
 - melt.data.frame, 8
 - melt.default, 9
 - melt.list, 10
 - recast, 12

.., 3

acast (cast), 2
add.margins, 2
as.data.frame.table, 7

cast, 2, 6, 8–10
colsplit, 5

dcast, 12
dcast (cast), 2

french_fries, 5

guess_value, 3

melt, 3, 4, 6, 10
melt.array, 6, 7, 9, 10
melt.data.frame, 6, 8, 8, 10
melt.default, 8, 9, 9, 10
melt.list, 6, 8–10, 10
melt.matrix (melt.array), 7
melt.table (melt.array), 7
melt_check, 11

parse_formula, 11

recast, 12

smiths, 13
tips, 13
type.convert, 5, 8