Package ‘restlos’

August 11, 2015

Type Package
Title Robust Estimation of Location and Scatter
Version 0.2-2
Date 2015-08-09
Author Steffen Liebscher and Thomas Kirschstein
Maintainer Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>
Description The restlos package provides algorithms for robust estimation of location (mean and mode) and scatter based on minimum spanning trees (pMST), self-organizing maps (Flood Algorithm), Delaunay triangulations (RDELA), and nested minimum volume convex sets (MVCH). The functions are also suitable for outlier detection.
Depends R (>= 3.2.1)
Imports som (>= 0.3-5), rgl (>= 0.95.1247), geometry (>= 0.3-5),
 igraph (>= 1.0.1), limSolve (>= 1.5.5.1)
License GPL (>= 2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2015-08-11 15:28:34

R topics documented:

restlos-package ... 2
flood ... 3
halle ... 4
MVCH ... 4
plot.flood .. 6
plot.pMST .. 7
plot.rdel .. 8
pMST ... 9
rdela ... 10

Index 12
Description

The restlos package provides algorithms for robust estimation of location (mean and mode) and scatter based on minimum spanning trees (pMST), self-organizing maps (Flood Algorithm), Delaunay triangulations (RDELA), and nested minimum volume convex sets (MVCH). The functions are also suitable for outlier detection.

Details

Package: restlos
Type: Package
Version: 0.2-2
Date: 2015-08-09
License: GPL (>= 2)
LazyLoad: yes

Author(s)

Steffen Liebscher and Thomas Kirschstein
Maintainer: Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

References

The Flood Algorithm

Description

The function determines a robust subsample utilizing self-organizing maps (SOM).

Usage

```
flood(data, Nx=10, Ny=10, rlen=2000)
```

Arguments

- `data`: At least a two-dimensional data matrix is required. Number of observations needs to be greater than number of dimensions.
- `Nx`: Size of the SOM-net in x direction. Default is 10.
- `Ny`: Size of the SOM-net in y direction. Default is 10.
- `rlen`: Number of iterations during SOM learn process. Default is 2000.

Details

The function first calls the `som` function within the `som`-package. The results are subsequently used to determine a robust subsample. Arguments `Nx`, `Ny`, and `rlen` are passed to `som`. These arguments should be selected depending on the size of the data set (number of observations/dimensions). The larger the data set the larger the net size and the number of iterations should be. Note: At the moment only rectangular and quadratic SOM nets are supported.

Value

- `som.results`: SOM results as delivered by `som`.
- `som.neigh`: A matrix showing for every neuron (first column) the index of the neighboring neurons (columns 2-5).
- `umatrix`: The U-matrix shows the U-value for every neuron.
- `winneuron`: Vector of length `n` giving the index of the nearest neuron (Euclidean distance).
- `lib`: List of all basins found. Index of neurons. Smallest subsample of size `(n+d+1)/2`.
- `lin`: List of all neighboring neurons per basin. Index of neurons. Smallest subsample of size `(n+d+1)/2`.
- `geb`: Number of associated data points per basin. Smallest subsample of size `(n+d+1)/2`.
- `l`: Internal value necessary for plotting.
- `fafh`: Data for plotting the flood area flood height curve.
- `fafh.lib`: Internal data necessary for plotting extented flooding.
- `fafh.drin`: Internal data necessary for plotting extented flooding.
- `drin`: Robust subsample of minimal size.
Author(s)
Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

References

Examples
```r
# flood(halle)
```

halle

Halle data set

Description
Artificial data set containing a total of 1600 observations in two dimensions (in three groups with 100, 1000, 500 obs. from top to bottom). Central cluster is quadratically transformed leading to a U-shaped main part of the data.

Usage
```r
halle
```

Examples
```r
# plot(halle)
```

MVCH

The MVCH Algorithm

Description
The function determines the multivariate mode by iteratively selecting minimum volume convex subsets.

Usage
```r
MVCH(data, ps=0.75, pf=0.2, k=1000, a.poi=2, del.poi=1)
```
Arguments

- **data**: At least a two-dimensional data matrix is required. Number of observations needs to be greater than number of dimensions.

- **ps**: A numeric value between 0 and 1. Fraction of points to be retained in each iteration. Default is set to 0.7. See Details for more information.

- **pf**: A numeric value between 0 and 1. Fraction of points determining the size of the final subset. Default is set to 0.2. See Details for more information.

- **k**: The maximum number of iterations. Default is set to 1000. See Details for more information.

- **a.poi**: An integer $a.poi \geq 1$. Number of points added when searching for minimum volume subsets. Default is set to 2. See Details for more information.

- **del.poi**: An integer $1 \leq del.poi < a.poi$. Number of points deleted when searching for minimum volume subsets. Default is set to 1. See Details for more information.

Details

The algorithm iteratively determines a sequence of subsets of certain size with minimum convex hull volume (i.e. minimum volume subsets) until a certain threshold is reached. In the first iteration a minimum volume subset of size $n_1 = \lfloor n \cdot ps \rfloor$ is sought. In the second iteration, out of the subset found in iteration 1, a subset of size $n_2 = \lfloor n_1 \cdot ps \rfloor$ is determined. The procedure continues until the threshold is reached: $\lceil n \cdot pf \rceil$ where n is the number of observations in data. The mode is calculated as the arithmetic mean of the observations in the final subset. Hence, the combination of ps and pf determines the running time and robustness of the procedure. Highest robustness (in terms of maximum breakdown point) is achieved for $ps = \lfloor \frac{n + d + 1}{2} \rfloor$. Small values of pf guarantee an accurate mode estimation also for asymmetric data sets but running times increase.

To find a minimum volume subset, in each iteration $in.subs$ atomic subsets (consisting of $d+1$ observations) are constructed. Each of these atomic subsets is iteratively expanded by adding the $a.poi$ closest points and deleting $del.poi$. All three values determine the accuracy of the subset identification (and, hence, the estimate) as well as the running time of the algorithm. Small values of $in.subs$ reduce running time. Choosing similar values for $a.poi$ and $del.poi$ increases running time and algorithm accuracy.

For more details on the algorithm see the reference.

Value

A list with following entries:

- **mode**: The mode estimate.

- **set**: The final subset used for mode calculation.

- **vol**: The convex hull volume of the final subset.

- **set.1**: The subset identified after the first iteration (outlier-free subset).

Author(s)

Thomas Kirschstein <thomas.kirschstein@wiwi.uni-halle.de>
References

Examples

```r
# maximum breakdown point estimation
# MVCH(halle, ps = floor((nrow(halle) + ncol(halle) + 1)/2), pf = 0.05)

# slower estimation
# MVCH(halle, ps = 0.75, pf = 0.05)

# quicker estimation
# MVCH(halle, ps = 0.25, pf = 0.05)
```

plot.flood
Plot function for objects of class flood

Description

Function to plot the results obtained by function flood

Usage

```r
## S3 method for class 'flood'
plot(x,..., level = 0)
```

Arguments

- `x` Object of class flood.
- `level` Flood level. Numeric value between 0 and 1. Default is 0 (i.e. all plots are based on the smallest robust subsample).
- `...` Further graphical parameters.

Details

The resulting plots depend on the dimensionality of the data set. For \(d=2\) and \(d=3\) the data set and the superimposed SOM net are plotted. For \(d>3\) a Mahalanobis distance plot is generated instead. The U-landscape and the Flood-Area-Flood-Height-curve are always plotted.

Note

At the moment no additional graphical parameters can be passed.
Author(s)

Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

References

Examples

```r
# plot(flood(halle))
```

Description

Function to plot the results obtained by function `pmst`.

Usage

```r
## S3 method for class 'pmst'
plot(x, ...)```

**Arguments**

- `x` Object of class `pmst`
- `...` Further graphical parameters.

**Details**

The resulting plots display the LC- and the AL-plot to support the decision on the size of the robust subsample, see references. Moreover, if the data set has dimension 2 or 3, the data set is plotted with the chosen robust subset superimposed as red points.

Author(s)

Thomas Kirschstein <thomas.kirschstein@wiwi.uni-halle.de>

References


Examples

```r
plot(pmST(halle))
```
plot.rdela  

Plot function for objects of class rdela

Description

Function to plot the results obtained by function rdela

Usage

```r
CC sS method for class 'rdela'
plot(x,...)
```

Arguments

- `x` Object of class rdela.
- `...` Further graphical parameters.

Details

The resulting plots depend on the dimensionality of the data set. For d=2 and d=3 the data set and the selected robust subsample are plotted. For d>3 a Mahalanobis distance plot is generated instead.

Note

At the moment no additional graphical parameters can be passed.

Author(s)

Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

References


Examples

```r
plot(rdela(halle))
```
The pMST Algorithm

Description
The function determines a robust subsample and computes estimates of location and scatter on the subset.

Usage
pMST(data, N = floor((nrow(data) + ncol(data) + 1)/2), lmax = nrow(data) * 100)

Arguments
- data: data set to be analyzed, at least a 2-dimensional matrix whose number of rows (i.e. observations \( n \)) is greater than the number of columns (i.e. dimension \( d \)).
- N: Size of the (robust) subsample to be determined. Default is \((n+d+1)/2\).
- lmax: Numerical option: determines the maximal number of pruning steps, see deteils.

Details
The function uses the minimum.spanning.tree function from the igraph-package to determine the minimum spanning tree (MST) of the data. The resulting MST is iteratively pruned by deleting edges (starting with the longest edge in the MST) until a connected subset with sufficient size (\( N \)) remains. Based on the robust subsample, location and scatter are estimated.

Value
- loc: Location estimate based on the robust subsample.
- cov: Covariance estimate based on the robust subsample.
- sample: Index of the observations in the robust subsample.
- data: The input data set.

Author(s)
Thomas Kirschstein <thomas.kirschstein@wiwi.uni-halle.de>

References

The RDELA Algorithm

Description

The function determines a robust subsample utilizing the Delaunay triangulation.

Usage

\[
\text{rdela}(\text{data, N, rew=TRUE})
\]

Arguments

- **data**: At least a two-dimensional data matrix is required. Number of observations needs to be greater than the number of dimensions. No degenerated (i.e. collinear) data sets allowed.
- **N**: Size of the identified subsample. Default is \((n+d+1)/2\).
- **rew**: Logical. Specifies whether reweighting should be conducted (TRUE) or not (FALSE). Default is TRUE.

Details

The function first calls the \texttt{delaunayn} function within the \texttt{geometry}-package. The results are subsequently used to determine a robust subsample.

Value

- **data**: The input data set.
- **tri**: Vertices of all simplices of the Delaunay triangulation. Each row represents a simplex.
- **neigh**: Lists for every simplex the adjacent/neighboring simplices. Each list entry represents a simplex.
- **radii**: Circum-(hypersphere-)radius of each simplex.
- **center**: Center coordinates of all simplices.
- **LiB**: List of all basins found. Index of simplices. Smallest subsample of size \((n+d+1)/2\).
- **LiN**: List of all neighboring simplices per basin. Index of simplices. Smallest subsample of size \((n+d+1)/2\).
- **GeB**: Number of associated data points per basin. Smallest subsample of size \((n+d+1)/2\).
**rdela**

**drin** (Initial) Robust subsample of size N.

**raw.mean** Mean estimate based on (initial) robust subsample of size N.

**raw.cov** Covariance estimate based on (initial) robust subsample of size N.

**final** Final robust subsample after reweighting.

**mean** Mean estimate based on final robust subsample.

**cov** Covariance estimate based on final robust subsample.

**Author(s)**

Steffen Liebscher <steffen.liebscher@wiwi.uni-halle.de>

**References**


**Examples**

```r
gerda(halle)
```
Index

†Topic datasets
  halle, 4
†Topic robust
  flood, 3
  MVCH, 4
  plot.flood, 6
  plot.pMST, 7
  plot.rdelta, 8
  pMST, 9
  rdelta, 10
  restlos-package, 2

flood, 3
halle, 4
MVCH, 4
plot.flood, 6
plot.pMST, 7
plot.rdelta, 8
pMST, 9
rdela, 10
restlos-package, 2
restlos-package, 2