Package ‘rfPermute’

February 23, 2020

Type Package

Title Estimate Permutation p-Values for Random Forest Importance Metrics

Description Estimate significance of importance metrics for a Random Forest model by permuting the response variable. Produces null distribution of importance metrics for each predictor variable and p-value of observed. Provides summary and visualization functions for 'randomForest' results.

Version 2.1.81

URL https://github.com/EricArcher/rfPermute

BugReports https://github.com/EricArcher/rfPermute/issues

Depends R (>= 3.2.0), randomForest

Imports abind, dplyr, ggplot2, grDevices, gridExtra, magrittr, parallel, rlang, scales, stats, swfscMisc (>= 1.3), tibble, tidyr, utils

License GPL (>= 2)

RoxygenNote 7.0.2

NeedsCompilation no

Author Eric Archer [aut, cre]

Maintainer Eric Archer <eric.archer@noaa.gov>

Repository CRAN

Date/Publication 2020-02-23 18:30:02 UTC

R topics documented:
casePredictions .. 2
classConfInt ... 3
cleanRFdata ... 4
classificationMatrix ... 4
casePredictions

Description

Get data frame of case predictions for training data along with vote distributions.

Usage

casePredictions(rf)

Arguments

rf an object inheriting from randomForest.

Value

A data frame containing columns of original and predicted cases, whether they were correctly classified, and vote distributions.

Author(s)

Eric Archer <eric.archer@noaa.gov>
Examples

data(mtcars)

rf <- randomForest(factor(am) ~ ., mtcars)
casePredictions(rf)

classConfInt(rf)

data(symb.metab)

rf <- randomForest(type ~ ., symb.metab)
classConfInt(rf)

classConfInt
Classification Confidence Intervals

Description
Calculate confidence intervals for Random Forest classifications

Usage

classConfInt(rf, conf.level = 0.95, threshold = 0.8)

Arguments

- **rf**
a randomForest object

- **conf.level**
confidence level for the binom.test confidence interval

- **threshold**
threshold to test observed classification probability against.

Value
A matrix with the following columns for each class and overall:

- **pct.correct**
percent correctly classified

- **LCI_##, UCI_##**
the lower and upper central confidence intervals given conf.level

- **Pr.gt_##**
the probability that the true classification probability is >= threshold

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

data(symb.metab)

rf <- randomForest(type ~ ., symb.metab)
classConfInt(rf)
cleanRFdata
Clean Random Forest Input Data

Description

Removes cases for a Random Forest classification model with missing data and predictors that are constant.

Usage

```r
cleanRFdata(x, y, data, max.levels = 30)
```

Arguments

- `x`: columns used as predictor variables as character or numeric vector.
- `y`: column used as response variable as character or numeric.
- `data`: data.frame containing `x` and `y` columns.
- `max.levels`: maximum number of levels in response variable `y`.

Value

A data.frame containing cleaned data.

Author(s)

Eric Archer <eric.archer@noaa.gov>

confusionMatrix
Confusion Matrix

Description

Generate a confusion matrix for Random Forest analyses with error rates translated into percent correctly classified, and columns for confidence intervals and expected classification rates (priors) added.

Usage

```r
confusionMatrix(rf, conf.level = 0.95, threshold = 0.8)
```

Arguments

- `rf`: a `randomForest` object.
- `conf.level`: confidence level for the `binom.test` confidence interval.
- `threshold`: threshold to test observed classification probability against.
expectedErrorRate

Author(s)
Eric Archer <eric.archer@noaa.gov>

See Also
classConfInt, exptdErrRate

Examples
data(mtcars)

rf <- randomForest(factor(am) ~ ., mtcars, importance = TRUE)
confusionMatrix(rf)

exptdErrRate Expected Error Rate

Description
Calculate expected OOB error rates (priors) for randomForest classification model based on random assignment and class sizes.

Usage
exptdErrRate(rf)

Arguments
rf
an object inheriting from link{randomForest}.

Value
a vector of expected error rates (priors) for each class.

Author(s)
Eric Archer <eric.archer@noaa.gov>

Examples
data(mtcars)

rf <- randomForest(factor(am) ~ ., mtcars)
exptdErrRate(rf)
impHeatmap

Description

Plot heatmap of importance scores or ranks from a classification model

Usage

impHeatmap(
 rf,
 n = NULL,
 ranks = TRUE,
 plot = TRUE,
 xlab = NULL,
 ylab = NULL,
 scale = TRUE,
 alpha = 0.05
)

Arguments

 rf an object inheriting from randomForest.
 n Plot n most important predictors.
 ranks plot ranks instead of actual importance scores?
 plot print the plot?
 xlab, ylab labels for the x and y axes.
 scale For permutation based measures, should the measures be divided their "standard errors"?
 alpha a number specifying the critical alpha for identifying predictors with importance scores significantly different from random. This parameter is only relevant if rf is a rfPermute object with p-values. Importance measures with p-values less than alpha will be denoted in the heatmap by a black border. If set to NULL, no border is drawn.

Details

rf must be a classification model run with importance = TRUE.

Value

the ggplot object is invisibly returned.

Author(s)

Eric Archer <eric.archer@noaa.gov>
Examples

data(mtcars)

A randomForest model
rf <- randomForest(factor(am) ~ ., mtcars, importance = TRUE)
importance(rf)
impHeatmap(rf, xlab = "Transmission", ylab = "Predictor")

An rfPermute model with significant predictors identified
rp <- rfPermute(factor(am) ~ ., mtcars, nrep = 100, num.cores = 1)
impHeatmap(rp, xlab = "Transmission", ylab = "Predictor")

pctCorrect

<table>
<thead>
<tr>
<th>Percent Correctly Classified</th>
</tr>
</thead>
</table>

Description

Calculate the percent of individuals correctly classified in a specified percent of trees in the forest.

Usage

pctCorrect(rf, pct = c(seq(0.8, 0.95, 0.05), 0.99))

Arguments

- `rf`: a randomForest or rfPermute object.
- `pct`: vector of minimum percent of trees voting for each class. Can be 0:1 or 0:100.

Value

a matrix giving the percent of individuals correctly classified in each class and overall for each threshold value specified in `pct`.

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

data(mtcars)

rf <- randomForest(factor(am) ~ ., mtcars, importance = TRUE)
pctCorrect(rf)
Description

Plot the Random Forest importance distributions, with significant p-values as estimated in rfPermute.

Usage

```r
plot(x, alpha = 0.05, sig.only = FALSE, type = NULL, n = NULL, main = NULL, ... )
```

Arguments

- `x`: An object produced by a call to `rp.importance`.
- `alpha`: Critical alpha to identify "significant" predictors.
- `sig.only`: Plot only the significant (<= alpha) predictors?
- `type`: character vector listing which importance measures to plot. Can be class names or names of overall importance measures (e.g., "MeanDecreaseAccuracy") in the `rp.importance` object.
- `n`: Plot n most important predictors.
- `main`: Main title for plot.
- `...`: Optional arguments which will be ignored.

Details

The function will generate a panel of plots, one for each importance type.

Author(s)

Eric Archer <eric.archer@noaa.gov>

See Also

`rfPermute, rp.importance`
Examples

A regression model using the ozone example
```
data(airquality)
ozone.rfP <- rfPermute(
  Ozone ~ ., data = airquality, ntree = 100,
  na.action = na.omit, nrep = 50, num.cores = 1
)
```

Plot the unscaled importance distributions and highlight significant predictors
```
plot(rp.importance(ozone.rfP, scale = FALSE))
```

... and the scaled measures
```
plot(rp.importance(ozone.rfP, scale = TRUE))
```

plotConfMat

Plot Confusion Matrix

Description

Plot confusion matrix heatmap.

Usage

```
plotConfMat(rf, title = NULL, plot = TRUE)
```

Arguments

- `rf` an object inheriting from `randomForest`
- `title` a title for the plot.
- `plot` display the plot?

Value

the ggplot2 object is invisibly returned.

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

```
data(mtcars)
rf <- randomForest(factor(am) ~ ., mtcars)
plotConfMat(rf)
```
plotImpVarDist

Plot Important Variable Distribution

Description

Plot distribution of predictor variables on classes sorted by order of importance in model.

Usage

```r
plotImpVarDist(rf, df, class.col, max.vars = 16, plot = TRUE)
```

Arguments

- `rf` an object inheriting from `randomForest`.
- `df` data.frame with predictors in `rf` model.
- `class.col` response column name in `df`.
- `max.vars` number of variables to plot (from most important to least).
- `plot` display the plot?

Value

the ggplot2 object is invisibly returned.

Note

If the model in `rf` was run with `importance = TRUE`, then 'MeanDecreaseAccuracy' is used as the importance measure. Otherwise, 'MeanDecreaseGini' is used.

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

```r
data(mtcars)
df <- mtcars
df$am <- factor(df$am)

rf <- randomForest(am ~ ., df, importance = TRUE)
plotImpVarDist(rf, df, "am")
```
plotInbag

Plot inbag distribution

Description

Plot distribution of sample inbag rates

Usage

```r
plotInbag(rf, sampsize = NULL, bins = 20, plot = TRUE)
```

Arguments

- `rf` an object inheriting from `randomForest`.
- `sampsize` optional vector of sample sizes used in `rf` model.
- `bins` number of bins in histogram.
- `plot` display the plot?

Value

the `ggplot2` object is invisibly returned. The red vertical lines mark the expected values for the classes in the model based on their frequency and sample sizes.

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

```r
data(mtcars)
rf <- randomForest(factor(am) ~ ., mtcars)
plotInbag(rf)
```

plotNull

Plot Random Forest Importance Null Distributions

Description

Plot the Random Forest null distributions importance metrics, observed values, and p-values for each predictor variable from the object produced by a call to `rfPermute`.

```r
data(mtcars)
rf <- randomForest(factor(am) ~ ., mtcars)
plotNull(rf)
```
Usage

plotNull(
 x,
 preds = NULL,
 imp.type = NULL,
 scale = TRUE,
 plot.type = c("density", "hist"),
 plot = TRUE
)

Arguments

x An object produced by a call to rfPermute.
preds a character vector of predictors to plot. If NULL, then all predictors are plotted.
imp.type Either a numeric or character vector giving the importance metric(s) to plot.
scale Plot importance measures scaled (divided by) standard errors?
plot.type type of plot to produce: "density" for smoothed density plot, or "hist" for histogram.
plot display the plot?

Details

The function will generate an plot for each predictor, with faceted importance metrics. The vertical red line shows the observed importance score and the p-value is given in the facet label.

Value

A named list of the ggplot figures produced is invisbly returned.

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

A regression model using the ozone example
data(airquality)
ozone.rfP <- rfPermute(
 Ozone ~ ., data = airquality, ntree = 100,
 na.action = na.omit, nrep = 50, num.cores = 1
)

Plot the null distributions and observed values.
plotNull(ozone.rfP)
plotOOBtimes

Description
Plot histogram of times samples were OOB.

Usage
plotOOBtimes(rf, bins = NULL, plot = TRUE)

Arguments
- *rf*: an object inheriting from `randomForest`.
- *bins*: number of bins in histogram. Defaults to number of samples / 5.
- *plot*: display the plot?

Value
the ggplot2 object is invisibly returned.

Author(s)
Eric Archer <eric.archer@noaa.gov>

Examples
```
data(mtcars)
rf <- randomForest(factor(am) ~ ., mtcars)
plotOOBtimes(rf)
```

plotPredictedProbs

Description
Plot histogram of assignment probabilities to predicted class. This is used for determining if the model differentiates between correctly and incorrectly classified samples in terms of how well they are classified.

Usage
plotPredictedProbs(rf, bins = 30, plot = TRUE)

plotRFtrace

Arguments

- **rf**
 an object inheriting from `randomForest`.

- **bins**
 number of bins in histogram. Defaults to number of samples / 5.

- **plot**
 display the plot?

Value

the `ggplot2` object is invisibly returned.

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

```r
data(mtcars)

rf <- randomForest(factor(am) ~ ., mtcars)
plotPredictedProbs(rf, bins = 20)
```

Description

Plot trace of cumulative OOB error rate by number of trees

Usage

```r
plotRFtrace(rf, plot = TRUE)
```

Arguments

- **rf**
 an object inheriting from `randomForest`.

- **plot**
 display the plot?

Value

the `ggplot2` object is invisibly returned.

Author(s)

Eric Archer <eric.archer@noaa.gov>
plotVotes

Examples

data(mtcars)

rf <- randomForest(factor(am) ~ ., mtcars)
plotRFtrace(rf)

plotVotes

Plot Vote Distribution

Description

Plot distribution of votes for each sample in each class.

Usage

plotVotes(rf, type = NULL, freq.sep.line = TRUE, plot = TRUE)

Arguments

rf an object inheriting from randomForest.

 type either area for stacked continuous area plot or bar for discrete stacked bar chart. The latter is preferred for small numbers of cases. If not specified, a bar chart will be used if all classes have <= 30 cases.

 freq.sep.line put frequency of original group on second line in facet label? If FALSE, labels are single line. If NULL frequencies will not be included in labels.

 plot display the plot?

Value

the ggplot2 object is invisibly returned.

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

data(mtcars)

rf <- randomForest(factor(am) ~ ., mtcars)
plotVotes(rf)
proximityPlot

Plot Random Forest Proximity Scores

Description

Create a plot of Random Forest proximity scores using multi-dimensional scaling.

Usage

proximityPlot(
 rf,
 dim.x = 1,
 dim.y = 2,
 legend.loc = c("top", "bottom", "left", "right"),
 point.size = 2,
 circle.size = 8,
 circle.border = 1,
 hull.alpha = 0.3,
 plot = TRUE
)

Arguments

rf A randomForest object.
dim.x, dim.y Numeric values giving x and y dimensions to plot from multidimensional scaling of proximity scores.
legend.loc Character keyword specifying location of legend. Can be "bottom","top","left","right".
point.size Size of central points.
circle.size Size of circles around correctly classified points as argument to 'cex'. Set to NULL for no circles.
circle.border Width of circle border.
hull.alpha value giving alpha transparency level for convex hull shading. Setting to NULL produces no shading. Ignored for regression models.
plot logical determining whether or not to show plot.

Details

Produces a scatter plot of proximity scores for dim.x and dim.y dimensions from a multidimensional scale (MDS) conversion of proximity scores from a randomForest object. For classification models, a convex hull is drawn around the a-priori classes with points colored according to original (inner) and predicted (outer) class.

Value

a list with prox.cmd: the MDS scores of the selected dimensions, and g the ggplot object.
rfPermute

Author(s)

Eric Archer <eric.archer@noaa.gov>

Examples

data(symb.metab)

rf <- randomForest(type ~ ., symb.metab, proximity = TRUE)
proximityPlot(rf)

rfPermute

Estimate Permutation p-values for Random Forest Importance Metrics

Description

Estimate significance of importance metrics for a Random Forest model by permuting the response variable. Produces null distribution of importance metrics for each predictor variable and p-value of observed.

Usage

rfPermute(x, ...)

Default S3 method:
rfPermute(x, y, ..., nrep = 100, num.cores = 1)

S3 method for class 'formula'
rfPermute(formula, data = NULL, ..., subset, na.action = na.fail, nrep = 100)

Arguments

x, y, formula, data, subset, na.action, ...

See randomForest for definitions.

nrep Number of permutation replicates to run to construct null distribution and calculate p-values (default = 100).

num.cores Number of CPUs to distribute permutation results over. Defaults to NULL which uses one fewer than the number of cores reported by detectCores.

Details

All other parameters are as defined in randomForest.formula. A Random Forest model is first created as normal to calculate the observed values of variable importance. The response variable is then permuted nrep times, with a new Random Forest model built for each permutation step.
Value

An rfPermute object which contains all of the components of a randomForest object plus:

null.dist A list containing two three-dimensional arrays of null distributions for unscaled and scaled importance measures.
pval A three dimensional array containing permutation p-values for unscaled and scaled importance measures.

Author(s)

Eric Archer <eric.archer@noaa.gov>

See Also

plotNull for plotting null distributions from the rfPermute objects.
rp.importance for extracting importance measures.
rp.combine for combining multiple rfPermute objects.
proximityPlot for plotting case proximities.
impHeatmap for plotting a heatmap of importance scores.
randomForest

Examples

A regression model using the ozone example
data(airquality)
ozone.rfP <- rfPermute(
 Ozone ~ ., data = airquality, ntree = 100,
 na.action = na.omit, nrep = 50, num.cores = 1
)

Plot the null distributions and observed values.
plotNull(ozone.rfP)

Plot the unscaled importance distributions and highlight significant predictors
plot(rp.importance(ozone.rfP, scale = FALSE))

... and the scaled measures
plot(rp.importance(ozone.rfP, scale = TRUE))

rp.combine Combine rfPermute Objects

Description

Combines two or more ensembles of rfPermute objects into one, combining randomForest results, null distributions, and re-calculating p-values.
Usage

rp.combine(...)

Arguments

two or more objects of class rfPermute, to be combined into one.

Author(s)

Eric Archer <eric.archer@noaa.gov>

See Also

combine

Examples

data(iris)
rp1 <- rfPermute(
 Species ~ ., iris, ntree = 50, norm.votes = FALSE, nrep = 100, num.cores = 1
)
rp2 <- rfPermute(
 Species ~ ., iris, ntree = 50, norm.votes = FALSE, nrep = 100, num.cores = 1
)
rp3 <- rfPermute(
 Species ~ ., iris, ntree = 50, norm.votes = FALSE, nrep = 100, num.cores = 1
)
 rp.all <- rp.combine(rp1, rp2, rp3)

layout(matrix(1:6, nrow = 2))
plotNull(rp.all)
layout(matrix(1))

Extract rfPermute Importance Scores and p-values.

Description

Extract a matrix of the observed importance scores and p-values from the object produced by a call to rfPermute

Usage

rp.importance(x, scale = TRUE, sort.by = NULL, decreasing = TRUE)
Arguments

- **x**
 An object produced by a call to `rfPermute`.

- **scale**
 For permutation based measures, should the measures be divided their "standard errors"?

- **sort.by**
 Character vector giving the importance metric(s) or p-values to sort by. If `NULL`, defaults to "MeanDecreaseAccuracy" for classification models and "%IncMSE" for regression models.

- **decreasing**
 Logical. Should the sort order be increasing or decreasing?

Details

P-values can be given to the `sort.by` argument by adding `.pval` to the column name of the desired column from the `importance` element of the `rfPermute` object.

Author(s)

Eric Archer <eric.archer@noaa.gov>

See Also

- `rfPermute`, `plot.rp.importance`

Examples

```r
# A regression model using the ozone example
ozone.rfP <- rfPermute(
  Ozone ~ ., data = airquality, ntree = 100,
  na.action = na.omit, nrep = 50, num.cores = 1
)
imp.unscaled <- rp.importance(ozone.rfP, scale = TRUE)
imp.unscaled

imp.scaled <- rp.importance(ozone.rfP, scale = TRUE)
imp.scaled
```

symb.metab

Symbiodinium type metabolite profiles

Description

A data.frame of 155 metabolite relative concentrations for 64 samples of four Symbiodinium clade types.

Usage

`data(symb.metab)`
Format

data.frame

References

Index

*Topic **classif**
 rfPermute, 17

*Topic **datasets**
 symb.metab, 20

*Topic **regression**
 rfPermute, 17

*Topic **tree**
 rfPermute, 17

binom.test, 3, 4

casePredictions, 2
classConfInt, 3, 5
cleanRFdata, 4
combine, 19
confusionMatrix, 4
detectCores, 17
exptdErrRate, 5, 5
ggplot, 16
impHeatmap, 6, 18
pctCorrect, 7
plot.rp.importance, 8, 20
plotConfMat, 9
plotImpVarDist, 10
plotInbag, 11
plotNull, 11, 18
plotOOBtimes, 13
plotPredictedProbs, 13
plotRFtrace, 14
plotVotes, 15
proximityPlot, 16, 18

randomForest, 2–4, 6, 7, 9–11, 13–15, 17, 18
rfPermute, 6, 8, 11, 12, 17, 20
rp.combine, 18, 18
rp.importance, 8, 18, 19
symb.metab, 20