Package ‘rgnoisefilt’

October 2, 2023

Version 1.1.2

Title Elimination of Noisy Samples in Regression Datasets using Noise Filters

Description Traditional noise filtering methods aim at removing noisy samples from a classification dataset. This package adapts classic and recent filtering techniques for use in regression problems, and it also incorporates methods specifically designed for regression data. In order to do this, it uses approaches proposed in the specialized literature, such as Martin et al. (2021) [doi:10.1109/ACCESS.2021.3123151] and Arnaiz-Gonzalez et al. (2016) [doi:10.1016/j.eswa.2015.12.046]. Thus, the goal of the implemented noise filters is to eliminate samples with noise in regression datasets.

License GPL (>= 3)

URL https://github.com/juanmartinsantos/rgnoisefilt

Depends R (>= 3.2.0)
Imports e1071, FNN, gbm, modelr, nnet, randomForest, rpart, arules, infotheo, entropy, ggplot2, class, kknn

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Author Juan Martin [aut, cre], José A. Sáez [aut], Emilio Corchado [aut], Pablo Morales [ctb] (Author of the NoiseFiltersR package), Julian Luengo [ctb] (Author of the NoiseFiltersR package), Luis P.F. Garcia [ctb] (Author of the NoiseFiltersR package), Ana C. Lorena [ctb] (Author of the NoiseFiltersR package), Andre C.P.L.F. de Carvalho [ctb] (Author of the NoiseFiltersR package), Francisco Herrera [ctb] (Author of the NoiseFiltersR package)

Maintainer Juan Martin <juanmartin@usal.es>

Repository CRAN

Date/Publication 2023-10-02 08:10:02 UTC

Suggests testthat (>= 3.0.0), knitr, rmarkdown
R topics documented:

- discCNN ... 2
- discENN ... 4
- discNCL ... 6
- discTL ... 8
- plot.rfdata .. 9
- print.rfdata 11
- regAENN ... 12
- regBBNR ... 14
- regCNN .. 16
- regCVCF ... 18
- regDF .. 20
- regEF .. 22
- regENN .. 24
- regFMF .. 26
- regGE ... 28
- regHRRF .. 30
- regIPF .. 32
- regIRF .. 34
- regRND .. 36
- regRNN .. 38
- rfCDF ... 39
- rfDROP2 .. 41
- rfDROP3 .. 43
- rfMIF ... 45
- summary.rfdata 47

Index 49

discCNN

Condensed Nearest Neighbors for Regression by Discretization

Description

Application of the discCNN noise filtering method in a regression dataset.

Usage

```r
## Default S3 method:
discCNN(x, y, ...)

## S3 method for class 'formula'
discCNN(formula, data, ...)
```

discCNN

Arguments

- **x** a data frame of input attributes.
- **y** a double vector with the output regressand of each sample.
- ... other options to pass to the function.
- **formula** a formula with the output regressand and, at least, one input attribute.
- **data** a data frame in which to interpret the variables in the formula.

Details

discCNN discretizes the numerical output variable to make it compatible with *Condensed Nearest Neighbors* (CNN), typically used in classification tasks. CNN performs a first classification and stores all the samples that are misclassified. Then, those stored samples are taken as a training set. The process stops when all the unstored samples are correctly classified.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- **xclean** a data frame with the input attributes of clean samples (without errors).
- **yclean** a double vector with the output regressand of clean samples (without errors).
- **numclean** an integer with the amount of clean samples.
- **idclean** an integer vector with the indices of clean samples.
- **xnoise** a data frame with the input attributes of noisy samples (with errors).
- **ynoise** a double vector with the output regressand of noisy samples (with errors).
- **numnoise** an integer with the amount of noisy samples.
- **idnoise** an integer vector with the indices of noisy samples.
- **filter** the full name of the noise filter used.
- **param** a list of the argument values.
- **call** the function call.

Note that objects of the class `rfdata` support `print.rfdata`, `summary.rfdata` and `plot.rfdata` methods.

References

See Also

discENN, discTL, discNCL, print.rfdata, summary.rfdata
Examples

```r
# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- discENN(x = rock[-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- discENN(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
```

discENN
Edited Nearest Neighbors for Regression by Discretization

Description

Application of the discENN noise filtering method in a regression dataset.

Usage

```r
## Default S3 method:
discENN(x, y, k = 5, ...)

## S3 method for class '/formula'
discENN(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `k`: an integer with the number of nearest neighbors to be used (default: 5).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

discENN discretizes the numerical output variable to make it compatible with *Edited Nearest Neighbors* (ENN), typically used in classification tasks. ENN removes a sample if its class label is different from that of the majority of its nearest neighbors (k).
Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

- xclean: a data frame with the input attributes of clean samples (without errors).
- yclean: a double vector with the output regressand of clean samples (without errors).
- numclean: an integer with the amount of clean samples.
- idclean: an integer vector with the indices of clean samples.
- xnoise: a data frame with the input attributes of noisy samples (with errors).
- ynoise: a double vector with the output regressand of noisy samples (with errors).
- numnoise: an integer with the amount of noisy samples.
- idnoise: an integer vector with the indices of noisy samples.
- filter: the full name of the noise filter used.
- param: a list of the argument values.
- call: the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References

See Also
discCNN, discTL, discNCL, print.rfdata, summary.rfdata

Examples

```r
# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- discENN(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- discENN(formula = perm ~ ., data = rock)
```
check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)

Default S3 method:
discNCL(x, y, k = 3, ...)

S3 method for class 'formula'
discNCL(formula, data, ...)

Arguments

- **x**
 - a data frame of input attributes.
- **y**
 - a double vector with the output regressand of each sample.
- **k**
 - an integer with the number of nearest neighbors to be used (default: 3).
- **...**
 - other options to pass to the function.
- **formula**
 - a formula with the output regressand and, at least, one input attribute.
- **data**
 - a data frame in which to interpret the variables in the formula.

Details
discNCL discretizes the numerical output variable to make it compatible with Neighborhood Cleaning Rule (NCL), typically used in classification tasks. NCL identifies and prunes majority class instances that are predominantly surrounded by minority class counterparts, often perceived as noise or overlapping points. By removing these instances, decision boundaries become clearer, thereby enhancing classification performance.

Value
The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

- **xclean**
 - a data frame with the input attributes of clean samples (without errors).
- **yclean**
 - a double vector with the output regressand of clean samples (without errors).
discNCL

numclean an integer with the amount of clean samples.
idclean an integer vector with the indices of clean samples.
xnoise a data frame with the input attributes of noisy samples (with errors).
ynoise a double vector with the output regressand of noisy samples (with errors).
umnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References

See Also

discCNN, discTL, discENN, print.rfdata, summary.rfdata

Examples

load the dataset
data(rock)

usage of the default method
set.seed(9)
out.def <- discNCL(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])

show results
summary(out.def, showid = TRUE)

usage of the method for class formula
set.seed(9)
out.frm <- discNCL(formula = perm ~ ., data = rock)

check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Description

Application of the discTL noise filtering method in a regression dataset.

Usage

```r
## Default S3 method:
discTL(x, y, ...)

## S3 method for class 'formula'
discTL(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

discTL discretizes the numerical output variable to make it compatible with Tomek Links (TL), typically used in classification tasks. TL identifies pairs of instances that are close neighbors but belong to different classes. If an instance in such a pair is predominantly surrounded by instances from a different class, it may be flagged as noisy.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean`: a data frame with the input attributes of clean samples (without errors).
- `yclean`: a double vector with the output regressand of clean samples (without errors).
- `numclean`: an integer with the amount of clean samples.
- `idclean`: an integer vector with the indices of clean samples.
- `xnoise`: a data frame with the input attributes of noisy samples (with errors).
- `ynoise`: a double vector with the output regressand of noisy samples (with errors).
- `numnoise`: an integer with the amount of noisy samples.
plot.rfdata

idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References

See Also
discENN, discCNN, discNCL, print.rfdata, summary.rfdata

Examples

load the dataset
data(rock)

usage of the default method
set.seed(9)
out.def <- discTL(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

show results
summary(out.def, showid = TRUE)

usage of the method for class formula
set.seed(9)
out.frm <- discTL(formula = perm ~ ., data = rock)

check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)

plot.rfdata

Plot function for class rfdata

Description

Graphical representation that allows for comparing data distributions before and after the noise filtering process.
plot.rfdata

Usage

S3 method for class 'rfdata'
plot(x, ..., var = c(1), fun = "mean")

Arguments

x
an object of rfdata class.

...
other options to pass to the function.

var
an integer vector with the indices of variables whose distributions are compared, considering the attributes in the order in which they appear in the original data, with the output variable in the last position (default = c(1)).

fun
a character containing the name of the descriptive statistic function to compute for each distribution of the variable, or a user-defined function that returns a value from a distribution of numeric values (default: "mean"). Some options for fun include "mean", "median" or "sd" (standard deviation).

Details

This function generates a plot for each of the variables specified by the var parameter, allowing the comparison of their value distributions before filtering, using the descriptive statistic specified by fun, with the distributions of the data from samples identified as clean and noisy by the filtering method.

Value

An object of class ggplot that graphically represents the data distributions before and after the noise filtering.

See Also

print.rfdata, summary.rfdata

Examples

load the dataset
data(rock)

apply the regression noise filter
set.seed(9)
output <- regAENN(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

comparison chart of data distributions before and after the filtering process
plot(x = output, var = c(1:4), fun = "mean")
print.rfdata

Print function for class rfdata

Description

This method displays the basic information about the noise filtering process contained in an object of class rfdata.

Usage

```r
## S3 method for class 'rfdata'
print(x, ...)
```

Arguments

- `x`: an object of class rfdata.
- `...`: other options to pass to the function.

Details

This function presents the basic information of the regression noise filter and the resulting noisy dataset contained in the object `x` of class rfdata. The information offered is as follows:

- the name of the regression noise filter.
- the parameters associated with the noise filter.
- the number of noisy and clean samples in the dataset.

Value

This function does not return any value.

See Also

`summary.rfdata`, `regAENN`, `regENN`, `regGE`, `regEF`

Examples

```r
# load the dataset
data(rock)

# apply the regression noise filter
set.seed(9)
output <- regAENN(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

# print the results
print(output)
```
Description

Application of the regAENN noise filtering method in a regression dataset.

Usage

```r
## Default S3 method:
regAENN(x, y, t = 0.2, k = 5, ...)

## S3 method for class 'formula'
regAENN(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `k`: an integer with the number of nearest neighbors to be used (default: 5).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

regAENN applies regENN from 1 to k throughout the dataset and removes those noisy samples considered by any regENN. The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (t) to determine the similarity between the output variable of the samples.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean`: a data frame with the input attributes of clean samples (without errors).
- `yclean`: a double vector with the output regressand of clean samples (without errors).
- `numclean`: an integer with the amount of clean samples.
- `idclean`: an integer vector with the indices of clean samples.
- `xnoise`: a data frame with the input attributes of noisy samples (with errors).
regAENN

ynoise a double vector with the output regressand of noisy samples (with errors).

numnoise an integer with the amount of noisy samples.

idnoise an integer vector with the indices of noisy samples.

filter the full name of the noise filter used.

param a list of the argument values.

call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References

See Also

regENN, regCNN, regGE, print.rfdata, summary.rfdata

Examples

```r
# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regAENN(x = rock[-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regAENN(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
```
Description

Application of the regBBNR noise filtering method in a regression dataset.

Usage

```r
## Default S3 method:
regBBNR(x, y, t = 0.2, k = 5, ...)

## S3 method for class 'formula'
regBBNR(formula, data, ...)
```

Arguments

- **x**: a data frame of input attributes.
- **y**: a double vector with the output regressand of each sample.
- **t**: a double in $[0,1]$ with the threshold used by regression noise filter (default: 0.2).
- **k**: an integer with the number of nearest neighbors to be used (default: 5).
- **...**: other options to pass to the function.
- **formula**: a formula with the output regressand and, at least, one input attribute.
- **data**: a data frame in which to interpret the variables in the formula.

Details

In classification problems, *Blame Based Noise Reduction* (BBNR) removes a sample if it participates in the misclassification of another sample and if its removal does not produce the misclassification on another correctly classified sample. The implementation of this noise filter to be used in regression problems follows the proposal of Martín *et al.* (2021), which is based on the use of a noise threshold (t) to determine the similarity between the output variable of the samples.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- **xclean**: a data frame with the input attributes of clean samples (without errors).
- **yclean**: a double vector with the output regressand of clean samples (without errors).
- **numclean**: an integer with the amount of clean samples.
- **idclean**: an integer vector with the indices of clean samples.
- **xnoise**: a data frame with the input attributes of noisy samples (with errors).
regBBNR

ynoise a double vector with the output regressand of noisy samples (with errors).

numnoise an integer with the amount of noisy samples.

idnoise an integer vector with the indices of noisy samples.

filter the full name of the noise filter used.

param a list of the argument values.

call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References

See Also

regCNN, regRNN, regENN, print.rfdata, summary.rfdata

Examples

```r
# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regBBNR(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regBBNR(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
```

```
Description

Application of the regCNN noise filtering method in a regression dataset.

Usage

```r
Default S3 method:
regCNN(x, y, t = 0.2, ...)

S3 method for class 'formula'
regCNN(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

Condensed Nearest Neighbors (CNN) seeks to obtain a data subset that improves the quality of the original dataset. In classification problems, CNN performs a first classification and stores all the samples that are misclassified. Then, those stored samples are taken as a training set. The process stops when all the unstored samples are correctly classified. The implementation of this noise filter to be used in regression problems follows the proposal of Martín *et al.* (2021), which is based on the use of a noise threshold (`t`) to determine the similarity between the output variable of the samples.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean`: a data frame with the input attributes of clean samples (without errors).
- `yclean`: a double vector with the output regressand of clean samples (without errors).
- `numclean`: an integer with the amount of clean samples.
- `idclean`: an integer vector with the indices of clean samples.
- `xnoise`: a data frame with the input attributes of noisy samples (with errors).
ynoise a double vector with the output regressand of noisy samples (with errors).
numnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regRNN, regENN, regBBNR, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regCNN(x = rock[-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regCNN(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Description

Application of the regCVCF noise filtering method in a regression dataset.

Usage

```r
Default S3 method: regCVCF(x, y, t = 0.2, nfolds = 10, vote = FALSE, ...)

S3 method for class 'formula'
regCVCF(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `nfolds`: number of folds in which the dataset is split (default: 10).
- `vote`: a logical indicating if the consensus voting (TRUE) or majority voting (FALSE) is used (default: FALSE).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

In classification problems, *Cross-Validated Committees Filter* (CVCF) divides the dataset into `nfolds` cross-validation folds and builds a decision tree with C4.5 on each one. Using each classifier, a prediction of the whole dataset is obtained. Finally, a sample is considered as noisy using a voting scheme (indicated by the argument `vote`): if equal to TRUE, a consensus voting is used (in which a sample is removed if it is misclassified by all the models); if equal to FALSE, a majority voting is used (in which a sample is removed if it is misclassified by more than half of the models). The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (`t`) to determine the similarity between the output variable of the samples.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:
regCVCF

xclean  a data frame with the input attributes of clean samples (without errors).
yclean  a double vector with the output regressand of clean samples (without errors).
numclean an integer with the amount of clean samples.
idclean an integer vector with the indices of clean samples.
xnoise  a data frame with the input attributes of noisy samples (with errors).
ynoise  a double vector with the output regressand of noisy samples (with errors).
numnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter  the full name of the noise filter used.
param   a list of the argument values.
call    the function call.

Note that objects of the class rfdta support print.rfdta, summary.rfdta and plot.rfdta methods.

References


See Also

regIPF, regIRF, regEF, print.rfdta, summary.rfdta

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regCVCF(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regCVCF(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Description

Application of the regDF noise filtering method in a regression dataset.

Usage

```r
Default S3 method:
regDF(x, y, t = 0.2, nfolds = 10, m = 3, vote = FALSE, ...)

S3 method for class 'formula'
regDF(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `nfolds`: number of folds in which the dataset is split (default: 10).
- `m`: an integer in [1,9] with the number of algorithms in the ensemble (default: 3).
- `vote`: a logical indicating if the consensus voting (TRUE) or majority voting (FALSE) is used (default: FALSE).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

In classification, Dynamic Filter (DF) divides the dataset into nfolds cross-validation folds and obtains the prediction of 9 classifiers: SVM; k-NN with k = 3, 5 and 9; CART; C4.5; MLPN; Random Forest and Naive Bayes. Then, it selects one ensemble of size m with best predictions. Finally, a sample is considered as noisy using a voting scheme (indicated by the argument vote): if equal to TRUE, a consensus voting is used (in which a sample is removed if it is misclassified by all the models); if equal to FALSE, a majority voting is used (in which a sample is removed if it is misclassified by more than a half of the models). The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (t) to determine the similarity between the output variable of the samples.
Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean` a data frame with the input attributes of clean samples (without errors).
- `yclean` a double vector with the output regressand of clean samples (without errors).
- `numclean` an integer with the amount of clean samples.
- `idclean` an integer vector with the indices of clean samples.
- `xnoise` a data frame with the input attributes of noisy samples (with errors).
- `ynoise` a double vector with the output regressand of noisy samples (with errors).
- `numnoise` an integer with the amount of noisy samples.
- `idnoise` an integer vector with the indices of noisy samples.
- `filter` the full name of the noise filter used.
- `param` a list of the argument values.
- `call` the function call.

Note that objects of the class `rfdata` support `print.rfdata`, `summary.rfdata` and `plot.rfdata` methods.

References


See Also

`regEF`, `regGE`, `regHRRF`, `print.rfdata`, `summary.rfdata`

Examples

```r
load the dataset
data(rock)

usage of the default method
set.seed(9)
out.def <- regDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])

show results
summary(out.def, showid = TRUE)

usage of the method for class formula
set.seed(9)
out.frm <- regDF(formula = perm ~ ., data = rock)
```
# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)

---

**regEF**  
*Ensemble Filter for Regression*

**Description**

Application of the regEF noise filtering method in a regression dataset.

**Usage**

```r
Default S3 method:
regEF(x, y, t = 0.2, nfolds = 10, vote = TRUE, ...)

S3 method for class 'formula'
regEF(formula, data, ...)
```

**Arguments**

- `x`  
  a data frame of input attributes.

- `y`  
  a double vector with the output regressand of each sample.

- `t`  
  a double in [0,1] with the *threshold* used by regression noise filter (default: 0.2).

- `nfolds`  
  number of folds in which the dataset is split (default: 10).

- `vote`  
  a logical indicating if the consensus voting (TRUE) or majority voting (FALSE) is used (default: TRUE).

- `...`  
  other options to pass to the function.

- `formula`  
  a formula with the output regressand and, at least, one input attribute.

- `data`  
  a data frame in which to interpret the variables in the formula.

**Details**

In classification, *Ensemble Filter* (EF) divides the dataset into `nfolds` cross-validation folds. Then, a prediction is obtained for each one of the classifiers –C4.5, NN and LDA. Finally, a sample is considered as noisy using a voting scheme (indicated by the argument `vote`); if equal to TRUE, a consensus voting is used (in which a sample is removed if it is misclassified by all the models); if equal to FALSE, a majority voting is used (in which a sample is removed if it is misclassified by more than a half of the models). The implementation of this noise filter to be used in regression problems follows the proposal of Martín *et al.* (2021), which is based on the use of a noise threshold (`t`) to determine the similarity between the output variable of the samples.
Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

- xclean: a data frame with the input attributes of clean samples (without errors).
- yclean: a double vector with the output regressand of clean samples (without errors).
- numclean: an integer with the amount of clean samples.
- idclean: an integer vector with the indices of clean samples.
- xnoise: a data frame with the input attributes of noisy samples (with errors).
- ynoise: a double vector with the output regressand of noisy samples (with errors).
- numnoise: an integer with the amount of noisy samples.
- idnoise: an integer vector with the indices of noisy samples.
- filter: the full name of the noise filter used.
- param: a list of the argument values.
- call: the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regDF, regCVCF, regIPF, print.rfdata, summary.rfdata

Examples

```r
load the dataset
data(rock)

usage of the default method
set.seed(9)
out.def <- regEF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])

show results
summary(out.def, showid = TRUE)

usage of the method for class formula
set.seed(9)
out.frm <- regEF(formula = perm ~ ., data = rock)
```
# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)

---

### regENN

**Edited Nearest Neighbors for Regression**

**Description**

Application of the regENN noise filtering method in a regression dataset.

**Usage**

```r
Default S3 method:
regENN(x, y, t = 0.2, k = 5, ...)

S3 method for class 'formula'
regENN(formula, data, ...)
```

**Arguments**

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `k`: an integer with the number of nearest neighbors to be used (default: 5).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

**Details**

In classification, **Edited Nearest Neighbors** (ENN) removes a sample if its class label is different from that of the majority of its nearest neighbors (k). The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (t) to determine the similarity between the output variable of the samples.

**Value**

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean`: a data frame with the input attributes of clean samples (without errors).
- `yclean`: a double vector with the output regressand of clean samples (without errors).
numclean an integer with the amount of clean samples.
idclean an integer vector with the indices of clean samples.
xnoise a data frame with the input attributes of noisy samples (with errors).
ynoise a double vector with the output regressand of noisy samples (with errors).
umnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regAENN, regGE, regCNN, print.rfdata, summary.rfdata

Examples

```r
load the dataset
data(rock)

usage of the default method
set.seed(9)
out.def <- regENN(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

show results
summary(out.def, showid = TRUE)

usage of the method for class formula
set.seed(9)
out.frm <- regENN(formula = perm ~ ., data = rock)

check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
```
**Description**

Application of the regFMF noise filtering method in a regression dataset.

**Usage**

```r
Default S3 method:
regFMF(x, y, t = 0.2, vote = FALSE, ...)

S3 method for class 'formula'
regFMF(formula, data, ...)
```

**Arguments**

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `vote`: a logical indicating if the consensus voting (`TRUE`) or majority voting (`FALSE`) is used (default: `FALSE`).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

**Details**

*Fusion of Multiple Filters for Regression* (regFMF) is an adaptation of *Ensembles of label Noise Filters* (ENF) found in the field of classification, which creates an ensemble with the AENN, DF and HARF filtering techniques. Then, each filter generates one vote per sample. A sample is considered as noisy using a voting scheme (indicated by the argument `vote`): if equal to `TRUE`, a consensus voting is used (in which a sample is removed if it is misclassified by all the models); if equal to `FALSE`, a majority voting is used (in which a sample is removed if it is misclassified by more than a half of the models). The implementation of this noise filter to be used in regression problems follows the proposal of Martín *et al.* (2021), which is based on the use of a noise threshold (`t`) to determine the similarity between the output variable of the samples.

**Value**

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean`: a data frame with the input attributes of clean samples (without errors).
regFMF

yclean  a double vector with the output regressand of clean samples (without errors).
numclean an integer with the amount of clean samples.
idclean  an integer vector with the indices of clean samples.
xnoise  a data frame with the input attributes of noisy samples (with errors).
ynoise  a double vector with the output regressand of noisy samples (with errors).
umnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter  the full name of the noise filter used.
param  a list of the argument values.
call  the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regDF, regHRRF, regAENN, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regFMF(x = rock[,ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regFMF(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Description

Application of the regGE noise filtering method in a regression dataset.

Usage

```r
Default S3 method:
regGE(x, y, t = 0.2, k = 5, ...)
S3 method for class 'formula'
regGE(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `k`: an integer with the number of nearest neighbors to be used (default: 5).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

In classification, Generalized Edition (GE) is a generalization of ENN, which can relabel a sample if at least half of its nearest neighbors (k) have the same class label; otherwise it is removed. The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (t) to determine the similarity between the output variable of the samples.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean`: a data frame with the input attributes of clean samples (without errors).
- `yclean`: a double vector with the output regressand of clean samples (without errors).
- `numclean`: an integer with the amount of clean samples.
- `idclean`: an integer vector with the indices of clean samples.
- `xnoise`: a data frame with the input attributes of noisy samples (with errors).
ynoise a double vector with the output regressand of noisy samples (with errors).
numnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regENN, regAENN, regRNN, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regGE(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regGE(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
regHRRF

Hybrid Repair-Remove Filter for Regression

Description

Application of the regHRRF noise filtering method in a regression dataset.

Usage

```r
Default S3 method:
regHRRF(x, y, t = 0.2, vote = FALSE, ...)

S3 method for class 'formula'
regHRRF(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `vote`: a logical indicating if the consensus voting (TRUE) or majority voting (FALSE) is used (default: FALSE).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

regHRRF is an adaptation of Hybrid Repair-Remove Filter (HRRF) found in the field of classification, which builds a classifier set using SVM, MLPNN, CART and k-NN (k= 1, 3 and 5) on the dataset. HRRF removes noisy samples depending on chosen voting scheme (indicated by the argument `vote`): if equal to TRUE, a consensus voting is used (in which a sample is removed if it is misclassified by all the models); if equal to FALSE, a majority voting is used (in which a sample is removed if it is misclassified by more than a half of the models). The process is repeated while the prediction accuracy (over the original dataset) of the ensemble increases. The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (`t`) to determine the similarity between the output variable of the samples.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:
**regHRRF**

- `xclean` a data frame with the input attributes of clean samples (without errors).
- `yclean` a double vector with the output regressand of clean samples (without errors).
- `numclean` an integer with the amount of clean samples.
- `idclean` an integer vector with the indices of clean samples.
- `xnoise` a data frame with the input attributes of noisy samples (with errors).
- `ynoise` a double vector with the output regressand of noisy samples (with errors).
- `numnoise` an integer with the amount of noisy samples.
- `idnoise` an integer vector with the indices of noisy samples.
- `filter` the full name of the noise filter used.
- `param` a list of the argument values.
- `call` the function call.

Note that objects of the class `rfdata` support `print.rfdata`, `summary.rfdata` and `plot.rfdata` methods.

**References**


**See Also**

`regIPF`, `regEF`, `regFMF`, `print.rfdata`, `summary.rfdata`

**Examples**

```r
load the dataset
data(rock) # data regression

usage of the default method
set.seed(9)
out.def <- regHRRF(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

show results
summary(out.def, showid = TRUE)

usage of the method for class formula
set.seed(9)
out.frm <- regHRRF(formula = perm ~ ., data = rock)

check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
```
Description

Application of the regIPF noise filtering method in a regression dataset.

Usage

```r
Default S3 method:
regIPF(x, y, t = 0.4, nfolds = 10, vote = FALSE, p = 0.01, s = 3, i = 0.5, ...)

S3 method for class 'formula'
regIPF(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0, 1] with the threshold used by regression noise filter (default: 0.2).
- `nfolds`: number of folds in which the dataset is split (default: 10).
- `vote`: a logical indicating if the consensus voting (TRUE) or majority voting (FALSE) is used (default: FALSE).
- `p`: a double in [0, 1] with the minimum proportion of original samples that must be labeled as noisy (default: 0.4).
- `s`: an integer with the number of iterations without improvement for the stopping criterion (default: 3).
- `i`: a double in [0, 1] with the proportion of good samples which must be retained per iteration (default: 0.5).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

In classification, *Iterative Partitioning Filter* (IPF) builds a classifier with C4.5 on each fold (nfolds) to evaluate the whole dataset. The noisy samples are removed depending on the chosen voting scheme (indicated by the argument `vote`): if equal to TRUE, a consensus voting is used (in which a sample is removed if it is misclassified by all the models); if equal to FALSE, a majority voting is used (in which a sample is removed if it is misclassified by more than a half of the models). In addition, IPF integrates an iterative process that stops depending on the arguments p, s and i. The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (t) to determine the similarity between the output variable of the samples.
Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

- **xclean**: a data frame with the input attributes of clean samples (without errors).
- **yclean**: a double vector with the output regressand of clean samples (without errors).
- **numclean**: an integer with the amount of clean samples.
- **idclean**: an integer vector with the indices of clean samples.
- **xnoise**: a data frame with the input attributes of noisy samples (with errors).
- **ynoise**: a double vector with the output regressand of noisy samples (with errors).
- **numnoise**: an integer with the amount of noisy samples.
- **idnoise**: an integer vector with the indices of noisy samples.
- **filter**: the full name of the noise filter used.
- **param**: a list of the argument values.
- **call**: the function call.

Note that objects of the class rfdata support `print.rfdata`, `summary.rfdata` and `plot.rfdata` methods.

References


See Also

`regIRF`, `regCVCF`, `regFMF`, `print.rfdata`, `summary.rfdata`

Examples

```r
load the dataset
data(rock)

usage of the default method
set.seed(9)
out.def <- regIPF(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

show results
summary(out.def, showid = TRUE)

usage of the method for class formula
set.seed(9)
```
out.frm <- regIPF(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)

---

### Description

Application of the regIRF noise filtering method in a regression dataset.

### Usage

#### Default S3 method:

```r
regIRF(x, y, t = 0.2, ...)
```

#### S3 method for class 'formula'

```r
regIRF(formula, data, ...)
```

### Arguments

- `x` a data frame of input attributes.
- `y` a double vector with the output regressand of each sample.
- `t` a double in \([0,1]\) with the threshold used by regression noise filter (default: 0.2).
- `...` other options to pass to the function.
- `formula` a formula with the output regressand and, at least, one input attribute.
- `data` a data frame in which to interpret the variables in the formula.

### Details

In classification, *Iterative Robust Filter* (IRF) builds models with C4.5 from the dataset and removes misclassified samples until there are no more wrong classifications. The implementation of this noise filter to be used in regression problems follows the proposal of Martin *et al.* (2021), which is based on the use of a noise threshold \((t)\) to determine the similarity between the output variable of the samples.

### Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean` a data frame with the input attributes of clean samples (without errors).
regIRF

yclean a double vector with the output regressand of clean samples (without errors).
numclean an integer with the amount of clean samples.
idclean an integer vector with the indices of clean samples.
xnoise a data frame with the input attributes of noisy samples (with errors).
ynoise a double vector with the output regressand of noisy samples (with errors).
umnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regIPF, regCVCF, regFMF, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regIRF(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regIRF(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Description

Application of the regRND noise filtering method in a regression dataset.

Usage

```r
Default S3 method:
regRND(x, y, t = 0.2, nfolds = 5, vote = FALSE, ...)

S3 method for class 'formula'
regRND(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `nfolds`: an integer with the number of folds in which the dataset is split (default: 10).
- `vote`: a logical indicating if the consensus voting (TRUE) or majority voting (FALSE) is used (default: FALSE).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

Regressand Noise Detection (RND) is an adaptation of Class Noise Detection and Classification (CNDC) found in the field of classification. In a first step, CNDC builds an ensemble with SVM, Random Forest, Naive Bayes, k-NN and Neural Network. Then, a sample is marked as noisy using a voting scheme (indicated by the argument `vote`): if equal to TRUE, a consensus voting is used (in which a sample is marked as noisy if it is misclassified by all the models); if equal to FALSE, a majority voting is used (in which a sample is marked as noisy if it is misclassified by more than a half of the models). Then, the decision to remove a sample is made by a distance filtering. The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (`t`) to determine the similarity between the output variable of the samples.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:
xclean  a data frame with the input attributes of clean samples (without errors).
yclean  a double vector with the output regressand of clean samples (without errors).
umclean  an integer with the amount of clean samples.
idclean  an integer vector with the indices of clean samples.
xnoise  a data frame with the input attributes of noisy samples (with errors).
ynoise  a double vector with the output regressand of noisy samples (with errors).
umnoise  an integer with the amount of noisy samples.
idnoise  an integer vector with the indices of noisy samples.
filter  the full name of the noise filter used.
param  a list of the argument values.
call  the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regENN, regAENN, regGE, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regRND(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regRND(formula = perm ~ ., data = rock[,])

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Description

Application of the regRNN noise filtering method in a regression dataset.

Usage

```r
Default S3 method:
regRNN(x, y, t = 0.2, ...)

S3 method for class 'formula'
regRNN(formula, data, ...)
```

Arguments

- `x`: a data frame of input attributes.
- `y`: a double vector with the output regressand of each sample.
- `t`: a double in [0,1] with the threshold used by regression noise filter (default: 0.2).
- `...`: other options to pass to the function.
- `formula`: a formula with the output regressand and, at least, one input attribute.
- `data`: a data frame in which to interpret the variables in the formula.

Details

In classification, Reduced Nearest Neighbors (RNN) is an enhancement of CNN that includes one more step, which removes samples in the dataset that do not affect the performance of the \(k\)-NN classifier. The implementation of this noise filter to be used in regression problems follows the proposal of Martín et al. (2021), which is based on the use of a noise threshold (\(t\)) to determine the similarity between the output variable of the samples.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean`: a data frame with the input attributes of clean samples (without errors).
- `yclean`: a double vector with the output regressand of clean samples (without errors).
- `numclean`: an integer with the amount of clean samples.
- `idclean`: an integer vector with the indices of clean samples.
- `xnoise`: a data frame with the input attributes of noisy samples (with errors).
- `ynoise`: a double vector with the output regressand of noisy samples (with errors).
rfCDF

numnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regCNN, regBBNR, regENN, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- regRNN(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- regRNN(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Usage

## Default S3 method:
rfCDF(x, y, subsets = 5, VCdim = 0.1 * nrow(x), prob = 0.05, ...)

## S3 method for class 'formula'
rfCDF(formula, data, ...)

Arguments

x a data frame of input attributes.
y a double vector with the output regressand of each sample.
subsets an integer with the number of subsets to be used (default: 5).
VCdim an integer specifying the VC-dimension (default: 0.1*nrow(x)).
prob a double with the probability used in the filtering process (default: 0.05).
... other options to pass to the function.
formula a formula with the output regressand and, at least, one input attribute.
data a data frame in which to interpret the variables in the formula.

Details

CDF divides the dataset into two subsets, Din and Dout, which represent samples within and outside the covering interval, respectively. Samples in Din are considered to have low noise and are retained in the final clean set of samples. Then, the noise of each sample is estimated using the Covering Distance function. Samples in Dout can be removed one by one based on their absolute noise, with samples exhibiting larger noise removed first. Each time a new sample is removed, an objective function can be estimated. Finally, the removing operation is stopped at the maximum value of the objective function.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

xclean a data frame with the input attributes of clean samples (without errors).
yclean a double vector with the output regressand of clean samples (without errors).
umclean an integer with the amount of clean samples.
idclean an integer vector with the indices of clean samples.
xnoise a data frame with the input attributes of noisy samples (with errors).
ynoise a double vector with the output regressand of noisy samples (with errors).
umnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regEF, regIPF, regGE, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- rfCDF(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- rfCDF(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Arguments

- `x` a data frame of input attributes.
- `y` a double vector with the output regressand of each sample.
- `k` an integer with the number of nearest neighbors to be used (default: 5).
- `...` other options to pass to the function.
- `formula` a formula with the output regressand and, at least, one input attribute.
- `data` a data frame in which to interpret the variables in the formula.

Details

`rfDROP2` tests the prediction of an edited dataset $S$ over the original dataset $T$. The noise filter removes an instance $p$ only if its exclusion does not increase the prediction error of its associates. This is measured by comparing the accumulation of errors with and without $p$ in the dataset.

Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class `rfdata`, which contains information related to the noise filtering process in the form of a list with the following elements:

- `xclean` a data frame with the input attributes of clean samples (without errors).
- `yclean` a double vector with the output regressand of clean samples (without errors).
- `numclean` an integer with the amount of clean samples.
- `idclean` an integer vector with the indices of clean samples.
- `xnoise` a data frame with the input attributes of noisy samples (with errors).
- `ynoise` a double vector with the output regressand of noisy samples (with errors).
- `numnoise` an integer with the amount of noisy samples.
- `idnoise` an integer vector with the indices of noisy samples.
- `filter` the full name of the noise filter used.
- `param` a list of the argument values.
- `call` the function call.

Note that objects of the class `rfdata` support `print.rfdata`, `summary.rfdata` and `plot.rfdata` methods.

References


See Also

`rfDROP3`, `regRNN`, `regCNN`, `print.rfdata`, `summary.rfdata`
Examples

```r
load the dataset
data(rock)

usage of the default method
set.seed(9)
out.def <- rfDROP2(x = rock[,-ncol(rock)], y = rock[,ncol(rock)])

show results
summary(out.def, showid = TRUE)

usage of the method for class formula
set.seed(9)
out.frm <- rfDROP2(formula = perm ~ ., data = rock)

check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
```

---

**rfDROP3**

Decremental Reduction Optimization Procedure 3 for Regression

**Description**

Application of the rfDROP3 noise filtering method in a regression dataset.

**Usage**

```r
Default S3 method:
rfDROP3(x, y, k = 5, ...)
S3 method for class 'Var'
rfDROP3(formula, data, ...)
```

**Arguments**

- `x` a data frame of input attributes.
- `y` a double vector with the output regressand of each sample.
- `k` an integer with the number of nearest neighbors to be used (default: 5).
- `...` other options to pass to the function.
- `formula` a formula with the output regressand and, at least, one input attribute.
- `data` a data frame in which to interpret the variables in the formula.

**Details**

`rfDROP3` works on the basis of `rfDROP2`, which removes an instance $p$ only if its exclusion does not increase the prediction error of its associates. This is measured by comparing the accumulation of errors with and without $p$ in the dataset. `rfDROP3` integrates a initial noise filtering with `regENN`, and then sorts instances based on distance to the nearest enemy.
Value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

- xclean: a data frame with the input attributes of clean samples (without errors).
- yclean: a double vector with the output regressand of clean samples (without errors).
- numclean: an integer with the amount of clean samples.
- idclean: an integer vector with the indices of clean samples.
- xnoise: a data frame with the input attributes of noisy samples (with errors).
- ynoise: a double vector with the output regressand of noisy samples (with errors).
- numnoise: an integer with the amount of noisy samples.
- idnoise: an integer vector with the indices of noisy samples.
- filter: the full name of the noise filter used.
- param: a list of the argument values.
- call: the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

rfDROP2, regENN, regRNN, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- rfDROP3(x = rock[-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- rfDROP3(formula = perm ~ ., data = rock)
rfMIF

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)

rfMIF  Mutual Information-based Filter for Regression

Description

Application of the rfMIF noise filtering method in a regression dataset.

Usage

## Default S3 method:
rfMIF(x, y, k = 5, alpha = 0.05, ...)

## S3 method for class 'formula'
rfMIF(formula, data, ...)

Arguments

x  a data frame of input attributes.
y  a double vector with the output regressand of each sample.
k  an integer with the number of nearest neighbors to be used (default: 5).
alpha  a double in [0,1] with the threshold used by rfMIF (default: 0.05).
...  other options to pass to the function.
formula  a formula with the output regressand and, at least, one input attribute.
data  a data frame in which to interpret the variables in the formula.

details

The rfMIF filter harnesses mutual information to enhance the prototypes within the training set. First, it identifies the k-nearest neighbors for each data point. Subsequently, mutual information values are calculated and standardized between 0 and 1. rfMIF then compares the mutual information of each data point to its k-nearest neighbors. If the discrepancy surpasses a threshold (alpha), the sample is considered noisy.

value

The result of applying the regression filter is a reduced dataset containing the clean samples (without errors or noise), since it removes noisy samples (those with errors). This function returns an object of class rfdata, which contains information related to the noise filtering process in the form of a list with the following elements:

xclean  a data frame with the input attributes of clean samples (without errors).
yclean  a double vector with the output regressand of clean samples (without errors).
numclean an integer with the amount of clean samples.
idclean an integer vector with the indices of clean samples.
xnoise a data frame with the input attributes of noisy samples (with errors).
ynoise a double vector with the output regressand of noisy samples (with errors).
umnoise an integer with the amount of noisy samples.
idnoise an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

Note that objects of the class rfdata support print.rfdata, summary.rfdata and plot.rfdata methods.

References


See Also

regENN, regAENN, regCNN, print.rfdata, summary.rfdata

Examples

# load the dataset
data(rock)

# usage of the default method
set.seed(9)
out.def <- rfMIF(x = rock[-ncol(rock)], y = rock[,ncol(rock)])

# show results
summary(out.def, showid = TRUE)

# usage of the method for class formula
set.seed(9)
out.frm <- rfMIF(formula = perm ~ ., data = rock)

# check the match of noisy indices
all(out.def$idnoise == out.frm$idnoise)
Description

This method displays a summary containing information about the noise filtering process contained in an object of class \texttt{rfdata}.

Usage

```r
S3 method for class 'rfdata'
summary(object, ..., showid = FALSE)
```

Arguments

- \texttt{object}: an object of class \texttt{rfdata}.
- \texttt{...}: other options to pass to the function.
- \texttt{showid}: a logical indicating if the indices of noisy samples must be displayed (default: \texttt{FALSE}).

Details

This function presents a summary containing information of the regression noise filter and the resulting dataset contained in the object of class \texttt{rfdata}. The information offered is as follows:

- the function call.
- the name of the regression noise filter.
- the parameters associated with the noise filter.
- the number of noisy and clean samples in the dataset.
- the indices of the noisy and clean samples (if \texttt{showid = TRUE}).

Value

A list including information related to the noise filtering process contained in the object \texttt{object} of class \texttt{rfdata} with the following elements:

- \texttt{xclean}: a data frame with the input attributes of clean samples (without errors).
- \texttt{yclean}: a double vector with the output regressand of clean samples (without errors).
- \texttt{numclean}: an integer with the amount of clean samples.
- \texttt{idclean}: an integer vector with the indices of clean samples.
- \texttt{xnoise}: a data frame with the input attributes of noisy samples (with errors).
- \texttt{ynoise}: a double vector with the output regressand of noisy samples (with errors).
- \texttt{numnoise}: an integer with the amount of noisy samples.
- \texttt{idnoise}: an integer vector with the indices of noisy samples.
filter the full name of the noise filter used.
param a list of the argument values.
call the function call.

This list also includes the showid argument.

See Also
print.rfdata, regEF, regDF, regHRRF, regIRF

Examples
# load the dataset
data(rock)

# apply the regression noise filter
set.seed(9)
output <- regAENN(x = rock[, -ncol(rock)], y = rock[, ncol(rock)])

# print the results
summary(output)
Index

discCNN, 2, 5, 7, 9
discENN, 3, 4, 7, 9
discNCL, 3, 5, 6, 9
discTL, 3, 5, 7, 8

plot.rfdata, 3, 5, 7, 9, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 42, 44, 46
print.rfdata, 3, 5, 7, 9, 10, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 42, 44, 46, 48

regAENN, 11, 12, 25, 27, 29, 37, 46
regBBNR, 14, 17, 39
regCNN, 13, 15, 16, 25, 39, 42, 46
regCVCF, 18, 23, 33, 35
regDF, 20, 23, 27, 48
regEF, 11, 19, 21, 22, 31, 41, 48
regENN, 11–13, 15, 17, 24, 29, 37, 39, 43, 44, 46
regFMF, 26, 31, 33, 35
regGE, 11, 13, 21, 25, 28, 37, 41
regHRRF, 21, 27, 30, 48
regIPF, 19, 23, 31, 32, 35, 41
regIRF, 19, 33, 34, 48
regRND, 36
regRNN, 15, 17, 29, 38, 42, 44
rfCDF, 39
rfDROP2, 41, 43, 44
rfDROP3, 42, 43
rfMIF, 45

summary.rfdata, 3, 5, 7, 9–11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 42, 44, 46, 47