Package ‘ri2’

October 14, 2022

Type Package

Title Randomization Inference for Randomized Experiments

Version 0.4.0

Description Randomization inference procedures for simple and complex randomized designs, including multi-armed trials, as described in Gerber and Green (2012, ISBN: 978-0393979954). Users formally describe their randomization procedure and test statistic. The randomization distribution of the test statistic under some null hypothesis is efficiently simulated.

License MIT + file LICENSE

Encoding UTF-8

Imports generics, ggplot2, pbapply

Depends randomizr (>= 0.16.0), estimatr

Suggests testthat, knitr, rmarkdown

RoxygenNote 7.1.2

VignetteBuilder knitr

NeedsCompilation no

Author Alexander Coppock [aut, cre]

Maintainer Alexander Coppock <acoppock@gmail.com>

Repository CRAN

Date/Publication 2022-05-26 16:20:02 UTC

R topics documented:

 conduct_ri ... 2
 ri2 ... 5

Index 7
conduct_ri

Conduct Randomization Inference

Description

This function makes it easy to conduct three kinds of randomization inference.

Usage

```r
conduct_ri(
  formula = NULL,
  model_1 = NULL,
  model_2 = NULL,
  test_function = NULL,
  assignment = "Z",
  outcome = NULL,
  declaration = NULL,
  sharp_hypothesis = 0,
  studentize = FALSE,
  IPW = TRUE,
  IPW_weights = NULL,
  sampling_weights = NULL,
  permutation_matrix = NULL,
  data,
  sims = 1000,
  progress_bar = FALSE,
  p = "two-tailed"
)
```

Arguments

- `formula`: an object of class formula, as in `lm`. Use formula when conducting significance tests of an Average Treatment Effect estimate under a sharp null hypothesis. For the difference-in-means estimate, do not include covariates. For the OLS covariate-adjusted estimate, include covariates.
- `model_1`: an object of class formula, as in `lm`. Models 1 and 2 must be "nested." `model_1` should be the "restricted" model and `model_2` should be the "unrestricted" model.
- `model_2`: an object of class formula, as in `lm`. Models 1 and 2 must be "nested." `model_1` should be the "restricted" model and `model_2` should be the "unrestricted" model.
- `test_function`: A function that takes data and returns a scalar test statistic.
- `assignment`: a character string that indicates which variable is randomly assigned. Defaults to "Z".
- `outcome`: a character string that indicates which variable is the outcome variable. Defaults to NULL.
- `declaration`: A random assignment declaration, created by `declare_ra`.
Details

1. Conduct hypothesis tests under the sharp null when the test statistic is the difference-in-means or covariate-adjusted average treatment effect estimate.
2. Conduct "ANOVA" style hypothesis tests, where the f-statistic from two nested models is the test statistic. This procedure is especially helpful when testing interaction terms under null of constant effects.
3. Arbitrary (scalar) test statistics

Examples

```r
# Data from Gerber and Green Table 2.2
# Randomization Inference for the Average Treatment Effect

table_2.2 <- data.frame(d = c(1, 0, 0, 0, 0, 0, 1),
                        y = c(15, 15, 20, 20, 10, 15, 30))

## Declare randomization procedure
declaration <- declare_ra(N = 7, m = 2)
```
Conduct Randomization Inference

```r
out <- conduct_ri(y ~ d,
declaration = declaration,
assignment = "d",
sharp_hypothesis = 0,
data = table_2.2)
```

summary(out)
plot(out)
tidy(out)

Using a custom permutation matrix

```r
permutation_matrix <- matrix(c(0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0),
ncol = 7)

 conduct_ri(y ~ d, assignment = "d", data = table_2.2,
            permutation_matrix = permutation_matrix)
```

Randomization Inference for an Interaction

```r
N <- 100
declaration <- randomizr::declare_ra(N = N, m = 50)

Z <- randomizr::conduct_ra(declaration)
X <- rnorm(N)
Y <- .9 * X + .2 * Z + 1 * X * Z + rnorm(N)
dat <- data.frame(Y, X, Z)

ate_obs <- coef(lm(Y ~ Z, data = dat))[2]
out <-

conduct_ri(
    model_1 = Y ~ Z + X,
    model_2 = Y ~ Z + X + Z * X,
    declaration = declaration,
    assignment = "Z",
    sharp_hypothesis = ate_obs,
    data = dat, sims = 100)
)
# Randomization Inference for arbitrary test statistics

## In this example we're conducting a randomization check (in this case, a balance test).

```
N <- 100
declaration <- randomizr::declare_ra(N = N, m = 50)

Z <- randomizr::conduct_ra(declaration)
X <- rnorm(N)
Y <- .9 * X + .2 * Z + rnorm(N)
dat <- data.frame(Y, X, Z)

balance_fun <- function(data) {
 f_stat <- summary(lm(Z ~ X, data = data))$f[1]
 names(f_stat) <- NULL
 return(f_stat)
}

confirm function works as expected
balance_fun(dat)

conduct randomization inference
out <-
 conduct_ri(
 test_function = balance_fun,
 declaration = declaration,
 assignment = "Z",
 sharp_hypothesis = 0,
 data = dat, sims = 100
)

plot(out)
summary(out)
tidy(out)
```
Description

Randomization Inference
Index

conduct_ri, 2
declare_ra, 2
lm, 2
obtain_permutation_matrix, 3
ri2, 5