Package ‘rigr’

September 15, 2021

Title Regression, Inference, and General Data Analysis Tools in R
Version 1.0.1
Description A set of tools to streamline data analysis. Learning both R and introductory statistics at the same time can be challenging, and so we created 'rigr' to facilitate common data analysis tasks and enable learners to focus on statistical concepts. We provide easy-to-use interfaces for descriptive statistics, one- and two-sample inference, and regression analyses. 'rigr' output includes key information while omitting unnecessary details that can be confusing to beginners. Heteroscedasticity-robust ("sandwich") standard errors are returned by default, and multiple partial F-tests and tests for contrasts are easy to specify. A single regression function can fit both linear and generalized linear models, allowing students to more easily make connections between different classes of models.
License MIT + file LICENSE
BugReports https://github.com/statdivlab/rigr/issues/
Depends R (>= 3.5.0)
Imports Exact, plyr, sandwich, tibble, survival
Suggests testthat (>= 3.0.0), knitr, rmarkdown, tidyverse
VignetteBuilder knitr
RoxygenNote 7.1.1
Encoding UTF-8
LazyData true
NeedsCompilation no
Author Amy D Willis [aut, cre] (<https://orcid.org/0000-0002-2802-4317>),
Taylor Okonek [aut],
Charles J Wolock [aut],
Brian D Williamson [aut],
Scott S Emerson [aut],
Andrew J Spieker [aut],
Travis Y Hee Wai [ctb],
James P Hughes [ctb],
R Core Team [ctb],
Akhil S Bhel [ctb],
Thomas Lumley [ctb]
Maintainer Amy D Willis <adwillis@uw.edu>
Repository CRAN
Date/Publication 2021-09-15 09:20:02 UTC

R topics documented:

rigr-package 2
descrip 3
dummy 6
fev 7
lincom 8
mri 9
polynomial 11
predict.uRegress 12
proptest 13
proptesti 14
psa 16
regress 17
residuals.uRegress 19
salary 20
ttest 21
ttesti 23
U 25
wilcoxon 26

Index

28

rigr-package Regression, Inference, and General Data Analysis Tools in R

Description

Developed by Scott S. Emerson, Andrew J. Spieker, Brian D. Williamson, and Travis Y. Hee Wai at the University of Washington Department of Biostatistics. Currently maintained by Prof. Amy Willis at the University of Washington Department of Biostatistics. Previously maintained by Charles Wolock and Taylor Okonek, also at the University of Washington Department of Biostatistics. Aims to facilitate regression, descriptive statistics, and one- and two-sample inference by implementing more intuitive layout and functionality for existing R functions.

Details

Package: rigr
Type: Package
Version: 1.0.0
Date: 2021-09-10
License: MIT
A set of tools designed to facilitate easy adoption of R for students in introductory classes with little programming experience. Compiles output from existing routines together in an intuitive format, and adds functionality to existing functions. For instance, the regression function can perform linear models and generalized linear models. The user can also specify multiple-partial F-tests to print out with the model coefficients, and robust standard errors are provided automatically. We also provide functions for descriptive statistics and one- and two-sample inference with improved, legible output.

Author(s)

Scott S. Emerson, Andrew J. Spieker, Brian D. Williamson, Amy D. Willis, Charles Wolock, and Taylor Okonek

Maintainer: Amy Willis <adwillis@uw.edu>

Descrip

Descriptive Statistics

Description

Produces table of relevant descriptive statistics for an arbitrary number of variables of class `integer`, `numeric`, `Surv`, `Date`, or `factor`. Descriptive statistics can be obtained within strata, and the user can specify that only a subset of the data be used. Descriptive statistics include the count of observations, the count of cases with missing values, the mean, standard deviation, geometric mean, minimum, and maximum. The user can specify arbitrary quantiles to be estimated, as well as specifying the estimation of proportions of observations within specified ranges.

Usage

```r
    describe(
        ..., strata = NULL,
        subset = NULL,
        probs = c(0.25, 0.5, 0.75),
        geomInclude = FALSE,
        replaceZeroes = FALSE,
        restriction = Inf,
        above = NULL,
        below = NULL,
        labove = NULL,
        rbelow = NULL,
        lbetween = NULL,
        rbetween = NULL,
        interval = NULL,
        linterval = NULL,
        rinterval = NULL
    )
```
Arguments

... an arbitrary number of variables for which descriptive statistics are desired. The arguments can be vectors, matrices, or lists. Individual columns of a matrix or elements of a list may be of class numeric, factor, Surv, or Date. Factor variables are converted to integers. Character vectors will be coerced to numeric. Variables may be of different lengths, unless strata or subset are non-NULL. A single data.frame or tibble may also be entered, in which case each variable in the object will be described.

strata a vector, matrix, or list of stratification variables. Descriptive statistics will be computed within strata defined by each unique combination of the stratification variables, as well as in the combined sample. If strata is supplied, all variables must be of that same length.

subset a vector indicating a subset to be used for all descriptive statistics. If subset is supplied, all variables must be of that same length.

probs a vector of probabilities between 0 and 1 indicating quantile estimates to be included in the descriptive statistics. Default is to compute 25th, 50th (median) and 75th percentiles.

geomInclude if not FALSE (the default), includes the geometric mean in the descriptive statistics.

replaceZeroes if not FALSE (the default), this indicates a value to be used in place of zeroes when computing a geometric mean. If TRUE, a value equal to one-half the lowest nonzero value is used. If a numeric value is supplied, that value is used for all variables.

restriction a value used for computing restricted means, standard deviations, and geometric means with censored time-to-event data. The default value of Inf will cause restrictions at the highest observation. Note that the same value is used for all variables of class Surv.

above a vector of values used to dichotomize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values greater than each element of above.

below a vector of values used to dichotomize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values less than each element of below.

labove a vector of values used to dichotomize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values greater than or equal to each element of labove.

rbelow a vector of values used to dichotomize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values less than or equal to each element of rbelow.

lbetween a vector of values with -Inf and Inf appended is used as cutpoints to categorize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values between successive elements of lbetween, with the left-hand endpoint included in each interval.
rbetween

a vector of values with -Inf and Inf appended is used as cutpoints to categorize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values between successive elements of rbetween, with the right-hand endpoint included in each interval.

interval

da two-column matrix of values in which each row is used to define intervals of interest to categorize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values between two elements in a row, with neither endpoint included in each interval.

linterval

da two-column matrix of values in which each row is used to define intervals of interest to categorize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values between two elements in a row, with the left-hand endpoint included in each interval.

rinterval

da two-column matrix of values in which each row is used to define intervals of interest to categorize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values between two elements in a row, with the right-hand endpoint included in each interval.

lrinterval

da two-column matrix of values in which each row is used to define intervals of interest to categorize variables. The descriptive statistics will include an estimate for each variable of the proportion of measurements with values between two elements in a row, with both endpoints included in each interval.

Details

This function depends on the survival R package. You should execute `library(survival)` if that library has not been previously installed. Quantiles are computed for uncensored data using the default method in `quantile()`. For variables of class factor, descriptive statistics will be computed using the integer coding for factors. For variables of class Surv, estimated proportions and quantiles will be computed from Kaplan-Meier estimates, as will be restricted means, restricted standard deviations, and restricted geometric means. For variables of class Date, estimated proportions will be labeled using the Julian date since January 1, 1970.

Value

An object of class uDescriptives is returned. Descriptive statistics for each variable in the entire subsetted sample, as well as within each stratum if any is defined, are contained in a matrix with rows corresponding to variables and strata and columns corresponding to the descriptive statistics. Descriptive statistics include

- N: the number of observations.
- Msng: the number of observations with missing values.
- Mean: the mean of the nonmissing observations (this is potentially a restricted mean for right-censored time-to-event data).
- Std Dev: the standard deviation of the nonmissing observations (this is potentially a restricted standard deviation for right-censored time to event data).
- Geom Mn: the geometric mean of the nonmissing observations (this is potentially a restricted geometric mean for right-censored time to event data). Nonpositive values in the variable will generate NA, unless replaceZeroes was specified.
• Min: the minimum value of the nonmissing observations (this is potentially restricted for right-censored time-to-event data).
• Quantiles: columns corresponding to the quantiles specified by probs (these are potentially restricted for right-censored time-to-event data).
• Max: the maximum value of the nonmissing observations (this is potentially restricted for right-censored time-to-event data).
• Proportions: columns corresponding to the proportions as specified by above, below, labove, rbelow, lbetween, rbetween, interval, linterval, rinterval, and lrinterval.
• restriction: the threshold for restricted means, standard deviations, and geometric means.
• firstEvent: the time of the first event for censored time-to-event variables.
• lastEvent: the time of the last event for censored time-to-event variables.
• isDate: an indicator that the variable is a Date object.

Examples

```r
# Read in the data
data(mri)

# Create the table
descrip(mri)
```

dummy

Create Dummy Variables

Usage

```r
dummy(
  x,
  subset = rep(TRUE, length(x)),
  reference = sort(unique(x[!is.na(x)])),
  includeAll = FALSE
)
```

Arguments

- **x**: variable used to create the dummy variables.
- **subset**: cluster a subset of the data, if desired.
- **reference**: the reference value for the dummy variables to compare to.
- **includeAll**: logical value indicating whether all of the dummy variables should be returned (including the reference).
Description

Data from a study of 654 children on the relationship between smoking status and lung function (measured by FEV). Each row corresponds to a single clinic visit and contains information on age, height, sex, FEV, and smoking status. More information, including a coding key, is available at http://www.emersonstatistics.com/datasets/fev.doc.

Usage

fev

Format

A data frame with 654 rows and 7 variables:

- seqnbr case number (the numbers 1 to 654)
- subjid subject identification number (unique for each different child)
- age subject age at time of measurement (years)
- fev measured forced exhalation volume (liters per second)
- height subject height at time of measurement (inches)
- sex subject sex
- smoke smoking habits ("yes" or "no")

Source

http://www.emersonstatistics.com/datasets/fev.txt
lincom Tests of Linear Combinations of Regression Coefficients

Description
Produces point estimates, interval estimates, and p-values for linear combinations of regression coefficients using a uRegress object.

Usage
lincom(
 reg,
 comb,
 null.hypoth = 0,
 conf.level = 0.95,
 robustSE = TRUE,
 eform = reg$fnctl != "mean"
)

Arguments
reg an object of class uRegress.
comb a vector or matrix containing the values of the constants which create the linear combination of the form
\[c_0 + c_1 \beta_1 + \ldots \]
Zeros must be given if coefficients aren’t going to be included. For testing multiple combinations, this must be a matrix with number of columns equal to the number of coefficients in the model.
null.hypoth the null hypothesis to compare the linear combination of coefficients against. This is a scalar if one combination is given, and a vector or matrix otherwise. The default value is 0.
conf.level a number between 0 and 1, indicating the desired confidence level for intervals.
robustSE a logical value indicating whether or not to use robust standard errors in calculation. Defaults to TRUE. If TRUE, then robustSE must have been TRUE when reg was created.
eform a logical value indicating whether or not to exponentiate the estimated coefficient. By default this is performed based on the type of regression used.

Value
A list of class lincom. The comb entries in the list are labeled comb1, comb2, etc. for as many linear combinations were used. Each is a list with the following components:

printMat A formatted table with inferential results for the linear combination of coefficients. These include the point estimate, standard error, confidence interval, and t-test for the linear combination.
`mri`

null.hypothesis The null hypothesis for the linear combination.

Examples

```r
# Loading required libraries
library(sandwich)

# Reading in a dataset
data(mri)

# Linear regression of LDL on age (with robust SE by default)
testReg <- regress ("mean", ldl~age+stroke, data = mri)

# Testing coefficient created by .5*age - stroke (the first 0 comes from excluding the intercept)
testC <- c(0, 0.5, -1)
lincom(testReg, testC)

# Test multiple combinations:
# whether .5*age - stroke = 0 and Intercept + 60*age = 125
testC <- matrix(c(0, 0.5, -1, 1, 60, 0), byrow = TRUE, nrow = 2)
lincom(testReg, testC, null.hypoth = c(0, 125))
```

mri

MRI dataset

Description

Data from an observational study of the incidence of cardiovascular disease (especially heart attacks and congestive heart failure) and cerebrovascular disease (especially strokes) in the U.S. elderly. More information, including a coding key, is available at http://www.emersonstatistics.com/datasets/mri.doc.

Usage

`mri`

Format

A data frame with 735 rows and 30 variables:

- **ptid** participant identification number.
- **mridate** the date on which the participant underwent MRI scan in MMDDYY format.
- **age** participant age at time of MRI, in years.
- **sex** participant sex (male or female).
- **race** indicator of participant’s race (1=white, 2=black, 3=Asian, 4=other).
- **weight** participant’s weight at time of MRI (pounds).
height participant’s height at time of MRI (centimeters).

packyrs participant smoking history in pack years (1 pack year = smoking 1 pack of cigarettes per day for 1 year). A participant who has never smoked has 0 pack years.

yrsquit number of years since quitting smoking. A current smoker will have a nonzero packyrs and a 0 for yrsquit. A never smoker will have a zero for both variables.

alcoh average alcohol intake for the participant for the two weeks prior to MRI (drinks per week, where one drink is 1 oz. whiskey, 4 oz. wine, or 12 oz. beer).

physact physical activity of the participant for the week prior to MRI (1,000 kcal).

chf indicator of whether the participant had been diagnosed with congestive heart failure prior to MRI (0=no, 1=yes).

chd indicator of whether the participant had been diagnosed with coronary heart disease prior to MRI (0=no, 1=diagnosis of angina, 2=diagnosis of myocardial infarction).

stroke indicator of whether the participant had been diagnosed with a cerebrovascular event prior to MRI (0=no, 1=diagnosis of a transient ischemic attack, 2=diagnosis of stroke).

diabetes indicator of whether the participant had been diagnosed with diabetes prior to MRI (0=no, 1=yes).

genhlth an indicator of the participant’s view of their own health (1=excellent, 2=very good, 3=good, 4=fair, 5=poor)

ldl a laboratory measure of low density lipoprotein (a kind of cholesterol) in the participant’s blood at the time of MRI (mg/dL).

alb a laboratory measure of albumin, a kind of protein, in the participant’s blood at the time of MRI (g/L).

crt a laboratory measure of creatinine, a waste product, in the participant’s blood at the time of MRI (mg/dL).

plt a laboratory measure of the number of platelets circulating in the participant’s blood at the time of MRI (1000 per cubic mm).

sbp a measurement of the participant’s systolic blood pressure in their arm at the time of MRI (mm Hg).

aai the ratio of systolic blood pressure measured in the participant’s ankle at time of MRI to the systolic blood pressure in the participant’s arm.

fev a measure of the forced expiratory volume in the participant at the time of MRI (L/sec).

dsst a measure of cognitive function (Digit Symbol Substitution Test) for the participant at the time of MRI. Maximum score possible is 100.

atrophy a measure of global brain activity detected on MRI. Measurements range from 0 to 100, with 100 being the most severe atrophy.

whgrd a measure of white matter changes detected on MRI. 0 means no changes, 9 means marked changes.

numinf a count of the number of distinct regions identified on MRI scan which were suggestive of infarcts.

volinf a measure of the total volume of infarct-like lesions found on MRI scan (cubic cm).

obstime the total time (in days) that the participant was observed on study between the date of MRI and death or September 16, 1997, whichever came first.
death an indicator that the participant was observed to die while on study. If 1, the number of days recorded in obstime is the number of days from that participant’s MRI to their death. If 0, the number of days in obstime is the number of days between that participant’s MRI and September 16, 1997.

Source

http://www.emersonstatistics.com/datasets/mri.txt

Create Polynomials

Description

Creates polynomial variables, to be used in regression. Will create polynomials of degree less than or equal to the degree specified, and will mean center variables by default.

Usage

polynomial(x, degree = 2, center = mean(x, na.rm = TRUE))

Arguments

x variable used to create the polynomials.
degree the maximum degree polynomial to be returned. Polynomials of degree <= degree will be returned.
center the value to center the polynomials at.

Value

A matrix containing the linear splines.

Examples

Reading in a dataset
data(mri)

Create a polynomial on ldl
polynomial(mri$ldl, degree=3)

Use a polynomial in regress
regress("mean", atrophy ~ polynomial(age, degree = 2), data = mri)
predict.uRegress

Prediction Intervals for uRegress objects

Description

Produces prediction intervals for objects of class uRegress.

Usage

```r
## S3 method for class 'uRegress'
predict(object, interval = "prediction", level = 0.95, ...)
```

Arguments

- `object`: an object of class uRegress.
- `interval`: Type of interval calculation
- `level`: Tolerance/confidence level
- `...`: other arguments to pass to the appropriate predict function for the class of `object$fit`. See `predict.lm`, or `predict.glm` for more details.

Value

Returns a matrix with the fitted value and prediction interval for the entered X.

See Also

- `regress`

Examples

```r
# Loading required libraries
library(survival)
library(sandwich)

# Reading in a dataset
data(mri)

# Linear regression of LDL on age (with robust SE by default)
testReg <- regress ("mean", ldl~age, data = mri)

# 95% Prediction Interval for age 50
predict(testReg)
```
proptest

Test of proportions with improved layout

Description
Performs a one- or two-sample test of proportions using data. This test can be approximate or exact.

Usage
proptest(
 var1,
 var2 = NULL,
 by = NULL,
 exact = FALSE,
 null.hypoth = ifelse(is.null(var2) && is.null(by), 0.5, 0),
 alternative = "two.sided",
 conf.level = 0.95,
 correct = FALSE,
 more.digits = 0
)

Arguments
var1 a (non-empty) vector of binary numeric (0-1), binary factor, or logical data values
var2 an optional (non-empty) vector of binary numeric (0-1), binary factor, or logical data values
by a variable of equal length to that of var1 with two outcomes (numeric or factor). This will be used to define strata for a prop test on var1.
exact If true, performs a test of equality of proportions using exact binomial probabilities.
null.hypoth a number specifying the null hypothesis for the mean (or difference in means if performing a two-sample test). Defaults to 0.5 for a one-sample test and 0 for a two-sample test.
alternative a string: one of "less", "two.sided", or "greater" specifying the form of the test. Defaults to a two-sided test.
conf.level confidence level of the test. Defaults to 0.95.
correct a logical indicating whether to perform a continuity correction
more.digits a numeric value specifying whether or not to display more or fewer digits in the output. Non-integers are automatically rounded down.

Details
Missing values must be given by "NA"s to be recognized as missing values. Numeric data must be given in 0-1 form. This function also accepts binary factor variables, treating the higher level as 1 and the lower level as 0, or logical variables.
Value

A list of class proptest. The print method lays out the information in an easy-to-read format.

tab A formatted table of descriptive and inferential results (total number of observations, number of missing observations, sample proportion, standard error of the proportion estimate), along with a confidence interval for the underlying proportion.
zstat the value of the test statistic, if using an approximate test.
pval the p-value for the test
var1 The user-supplied first data vector.
var2 The user-supplied second data vector.
by The user-supplied stratification variable.
par A vector of information about the type of test (null hypothesis, alternative hypothesis, etc.)

See Also

prop.test

Examples

Read in data set
data(psa)
attach(psa)

Define new binary variable as indicator
of whether or not bss was worst possible
bssworst <- bss
bssworst[bss == 1] <- 0
bssworst[bss == 2] <- 0
bssworst[bss == 3] <- 1

Perform test comparing proportion in remission
between bss strata
proptest(factor(inrem), by = bssworst)

proptesti Test of proportions from summary statistics

Description

Performs a one- or two-sample test of proportions using counts of successes and trials, rather than binary data. This test can be approximate or exact.
proptesti

Usage

```r
proptesti(
  x1,  # Number of successes in first sample
  n1,  # Number of trials in first sample
  x2 = NULL,  # Number of successes in second sample
  n2 = NULL,  # Number of trials in second sample
  exact = FALSE,  # If true, performs a test of equality of proportions with Exact Binomial based confidence intervals.
  null.hypoth = ifelse(is.null(x2) && is.null(n2), 0.5, 0),  # a number specifying the null hypothesis for the mean (or difference in means if performing a two-sample test). Defaults to 0.5 for one-sample and 0 for two-sample.
  conf.level = 0.95,  # confidence level of the test. Defaults to 0.95
  alternative = "two.sided",  # a string: one of "less", "two.sided", or "greater" specifying the form of the test. Defaults to a two-sided test.
  correct = FALSE,  # a logical indicating whether to perform a continuity correction
  more.digits = 0
)
```

Arguments

- `x1`: Number of successes in first sample
- `n1`: Number of trials in first sample
- `x2`: Number of successes in second sample
- `n2`: Number of trials in second sample
- `exact`: If true, performs a test of equality of proportions with Exact Binomial based confidence intervals.
- `null.hypoth`: a number specifying the null hypothesis for the mean (or difference in means if performing a two-sample test). Defaults to 0.5 for one-sample and 0 for two-sample.
- `conf.level`: confidence level of the test. Defaults to 0.95
- `alternative`: a string: one of "less", "two.sided", or "greater" specifying the form of the test. Defaults to a two-sided test.
- `correct`: a logical indicating whether to perform a continuity correction
- `more.digits`: a numeric value specifying whether or not to display more or fewer digits in the output. Non-integers are automatically rounded down.

Details

If `x2` or `n2` are specified, then both must be specified, and a two-sample test is run.

Value

A list of class `proptesti`. The print method lays out the information in an easy-to-read format.

- `tab`: A formatted table of descriptive and inferential results (total number of observations, sample proportion, standard error of the proportion estimate), along with a confidence interval for the underlying proportion.
- `zstat`: the value of the test statistic, if using an approximate test.
- `pval`: the p-value for the test
- `par`: A vector of information about the type of test (null hypothesis, alternative hypothesis, etc.)
Examples

```r
# Two-sample test
proptesti(10, 100, 15, 200, alternative = "less")
```

psa

PSA dataset

Description

Data from a study of 50 men having hormonally treated prostate cancer. Includes information on PSA levels, tumor characteristics, remission status, age, and disease state. More information, including a coding key, is available at http://www.emersonstatistics.com/datasets/PSA.doc.

Usage

`psa`

Format

A data frame with 50 rows and 9 variables:

- **ptid** patient identifier
- **nadirpsa** lowest PSA value attained post therapy (ng/ml)
- **pretxpsa** PSA value prior to therapy (ng/ml)
- **ps** performance status (0= worst, 100= best)
- **bss** bone scan score (1= least disease, 3= most)
- **grade** tumor grade (1= least aggressive, 3= most)
- **age** patient’s age (years)
- **obstime** time observed in remission (months)
- **inrem** indicator whether patient still in remission at last follow-up (yes or no)

Source

Description

Produces point estimates, interval estimates, and p values for an arbitrary functional (mean, geometric mean, proportion, odds) of a variable of class integer, or numeric when regressed on an arbitrary number of covariates. Multiple Partial F-tests can be specified using the `U` function.

Usage

```r
regress(
  fnctl, formula, data, 
  intercept = TRUE, weights = rep(1, nrow(data)), subset = rep(TRUE, nrow(data)), robustSE = TRUE, conf.level = 0.95, 
  exponentiate = fnctl != "mean", replaceZeroes, useFdstn = TRUE, suppress = FALSE, na.action, 
  method = "qr", qr = TRUE, singular.ok = TRUE, contrasts = NULL, offset, 
  control = list(...), ...
)
```

Arguments

- `fnctl` a character string indicating the functional (summary measure of the distribution) for which inference is desired. Choices include "mean", "geometric mean", "odds", "rate".
- `formula` an object of class `formula` as might be passed to `lm` or `glm`. Functions of variables, specified using `dummy` or `polynomial` may also be included in `formula`.
- `data` a data frame, matrix, or other data structure with matching names to those entered in `formula`.
- `intercept` a logical value indicating whether a intercept exists or not. Default value is `TRUE` for all functionals. Intercept may also be removed if a "-1" is present in `formula`. If "-1" is present in `formula` but `intercept = TRUE` is specified, the model will fit without an intercept.
weights
subset
robustSE
conf.level
exponentiate
replaceZeroes
useFdstn
suppress
na.action, qr, singular.ok, offset, contrasts, control
method
...
An object of class uRegress is returned. Parameter estimates, confidence intervals, and p values are contained in a matrix $augCoefficients.

See Also

Functions for fitting linear models (\texttt{lm}), and generalized linear models (\texttt{glm}). Also see the function to specify multiple-partial F-tests, \texttt{U}.

Examples

```r
# Loading dataset
data(mri)

# Linear regression of atrophy on age
regress("mean", atrophy ~ age, data = mri)

# Linear regression of atrophy on sex and height and their interaction,
# with a multiple-partial F-test on the height-sex interaction
regress("mean", atrophy ~ height + sex + U(hs=~height:sex), data = mri)

# Logistic regression of sex on atrophy
mri$sex_bin <- ifelse(mri$sex == "Female", 1, 0)
regress("odds", sex_bin ~ atrophy, data = mri)
```

residuals.uRegress

Extract Residuals from uRegress objects

Description

Extracts residuals (unstandardized, standardized, studentized, or jackknife) from uRegress objects.

Usage

```r
## S3 method for class 'uRegress'
residuals(object, type = "", ...)  
```

Arguments

- **object**
 - an object of class uRegress, as returned by \texttt{regress}.
- **type**
 - denotes the type of residuals to return. Default value is "", which returns unstandardized residuals. "standardized", "studentized", and "jackknife" return the expected type of residuals.
- **...**
 - other arguments
Details

Relies on functionality from the stats package to return residuals from the uRegress object. "studentized" residuals are computed as internally studentized residuals, while "jackknife" computes the externally studentized residuals.

Value

Returns the type of residuals requested.

See Also

regress, rstudent, rstandard

Examples

```r
# Reading in a dataset
data(mri)

# Create a uRegress object, regressing ldl on age
ldlReg <- regress("mean", age~ldl, data=mri)

# Get the studentized residuals
residuals(ldlReg, "studentized")

# Get the jackknifed residuals
residuals(ldlReg, "jackknife")
```

salary

Salary dataset

Description

Data from a study of 1,597 faculty members at a single US university. Includes information on monthly salary each year from 1976 through 1995, as well as sex, highest degree attained, year of highest degree, field, year hired, rank, and administrative duties. More information, including a coding key, is available at http://www.emersonstatistics.com/datasets/salary.doc.

Usage

salary
Format

A data frame with 19792 rows and 11 variables:

- **case** case number
- **id** identification number for the faculty member
- **sex** M (male) or F (female)
- **deg** highest degree attained: PhD, Prof (professional degree, e.g., medicine or law), or Other (Master’s or Bachelor’s degree)
- **yrdeg** year highest degree attained
- **field** Arts (Arts and Humanities), Prof (professional school, e.g., Business, Law, Engineering or Public Affairs), or Other
- **startyr** year in which the faculty member was hired (2 digits)
- **year** year (2 digits)
- **rank** rank of the faculty member in this year: Assist (Assistant), Assoc (Associate), or Full (Full)
- **admin** indicator of whether the faculty member had administrative duties (e.g., department chair) in this year: 1 (yes), or 0 (no)
- **salary** monthly salary of the faculty member in this year in dollars

Source

http://www.emersonstatistics.com/datasets/salary.txt

ttest

T-test with Improved Layout

Description

Performs a one- or two-sample t-test using data. In the two-sample case, the user can specify whether or not observations are matched, and whether or not equal variances should be presumed.

Usage

```r
ttest(
  var1,
  var2 = NA,
  by = NA,
  geom = FALSE,
  null.hypoth = 0,
  alternative = "two.sided",
  var.eq = FALSE,
  conf.level = 0.95,
  matched = FALSE,
  more.digits = 0
)
```
Arguments

- **var1**: a (non-empty) numeric vector of data values.
- **var2**: an optional (non-empty) numeric vector of data.
- **by**: a variable of equal length to that of `var1` with two outcomes. This will be used to define strata for a t-test on `var1`.
- **geom**: a logical indicating whether the geometric mean should be calculated and displayed.
- **null.hypoth**: a number specifying the null hypothesis for the mean (or difference in means if performing a two-sample test). Defaults to zero.
- **alternative**: a string: one of "less", "two.sided", or "greater" specifying the form of the test. Defaults to a two-sided test.
- **var.eq**: a logical value, either TRUE or FALSE (default), specifying whether or not equal variances should be presumed in a two-sample t-test. Also controls robust standard errors.
- **conf.level**: confidence level of the test. Defaults to 0.95.
- **matched**: a logical value, either TRUE or FALSE, indicating whether or not the variables of a two-sample t-test are matched. Variables must be of equal length.
- **more.digits**: a numeric value specifying whether or not to display more or fewer digits in the output. Non-integers are automatically rounded down.

Details

Missing values must be given by `NA` to be recognized as missing values.

Value

A list of class `ttest`. The print method lays out the information in an easy-to-read format.

- **tab**: A formatted table of descriptive and inferential statistics (total number of observations, number of missing observations, mean, standard error of the mean estimate, standard deviation), along with a confidence interval for the mean.
- **df**: Degrees of freedom for the t-test.
- **p**: P-value for the t-test.
- **tstat**: Test statistic for the t-test.
- **var1**: The user-supplied first data vector.
- **var2**: The user-supplied second data vector.
- **by**: The user-supplied stratification variable.
- **par**: A vector of information about the type of test (null hypothesis, alternative hypothesis, etc.).
- **geo**: A formatted table of descriptive and inferential statistics for the geometric mean.
- **call**: The call made to the `ttest` function.
See Also

t.test

Examples

Read in data set
data(psa)
attach(psa)

Perform t-test
ttest(pretxpsa, null.hypoth = 100, alternative = "greater", more.digits = 1)

Define new binary variable as indicator
of whether or not bss was worst possible
bssworst <- bss
bssworst[bss == 1] <- 0
bssworst[bss == 2] <- 0
bssworst[bss == 3] <- 1

Perform t-test allowing for unequal
variances between strata -#
ttest(pretxpsa, by = bssworst)

Perform matched t-test
ttest(pretxpsa, nadirpsa, matched = TRUE, conf.level = 99/100, more.digits = 1)
Arguments

obs number of observations for the first sample.
mean the sample mean of the first sample.
sd the sample standard deviation of the first sample.
obs2 number of observations for the second sample (this is optional).
mean2 if obs2 is supplied, then sample mean of the second sample must be supplied.
sd2 if obs2 is supplied, then sample standard deviation of the second sample must be supplied.
null.hypoth a number specifying the null hypothesis for the mean (or difference in means if performing a two-sample test). Defaults to zero.
conf.level confidence level of the test. Defaults to 0.95.
alternative a string: one of "less", "two.sided", or "greater" specifying the form of the test. Defaults to a two-sided test.
var.eq a logical value, either TRUE or FALSE (default), specifying whether or not equal variances should be presumed in a two-sample t-test.
more.digits a numeric value specifying whether or not to display more or fewer digits in the output. Non-integers are automatically rounded down.

Details

If obs2, mean2, or sd2 is specified, then all three must be specified and a two-sample t-test is run.

Value

a list of class ttesti. The print method lays out the information in an easy-to-read format.

```
var.eq = FALSE,
more.digits = 0
```

```
Examples

# t-test given sample descriptives
ttesti(24, 175, 35, null.hypoth=230)

# two-sample test
ttesti(10, -1.6, 1.5, 30, -.7, 2.1)

---

Create a Partial Formula

Description

Creates a partial formula of the form ~var1 + var2. The partial formula can be named by adding an equals sign before the tilde.

Usage

U(...)  

Arguments

...  

partial formula of the form ~var1 + var2.

Value

A partial formula (potentially named) for use in regress.

See Also

regress

Examples

# Reading in a dataset
data(mri)

# Create a named partial formula
U(ma=~male+age)

# Create an unnamed partial formula
U(~male+age)
Wilcoxon Signed Rank and Mann-Whitney-Wilcoxon Rank Sum Test

Description

Performs Wilcoxon signed rank test or Mann-Whitney-Wilcoxon rank sum test depending on data and logicals entered. Relies heavily on the function `wilcox.test`. Adds formatting and variances.

Usage

wilcoxon(
  var1,
  var2 = NULL,
  alternative = "two.sided",
  null.hypoth = 0,
  paired = FALSE,
  exact = FALSE,
  correct = FALSE,
  conf.int = FALSE,
  conf.level = 0.95
)

Arguments

- var1: numeric vector of data values. Non-finite (missing or infinite) values will be omitted.
- var2: optional numeric vector of data values. Non-finite (missing or infinite) values will be omitted.
- alternative: specifies the alternative hypothesis for the test; acceptable values are "two.sided", "greater", or "less".
- null.hypoth: the value of the null hypothesis.
- paired: logical indicating whether the data are paired or not. Default is FALSE. If TRUE, data must be the same length.
- exact: logical value indicating whether or not an exact test should be computed.
- correct: logical indicating whether or not a continuity correction should be used and displayed.
- conf.int: logical indicating whether or not to calculate and display a confidence interval
- conf.level: confidence level for the interval. Defaults to 0.95.

Details

In the one-sample case, the returned confidence interval (when `conf.int = TRUE`) is a confidence interval for the pseudo-median of the underlying distribution. In the two-sample case, the function returns a confidence interval for the median of the difference between samples from the two distributions. See `wilcox.test` for more information.
Value

A list of class wilcoxon is returned. The print method lays out the information in an easy-to-read format.

- **statistic**: the value of the test statistic with a name describing it.
- **parameter**: the parameter(s) for the exact distribution of the test statistic.
- **p.value**: the p-value for the test (calculated for the test statistic).
- **null.value**: the parameter null.hypothesis.
- **alternative**: character string describing the alternative hypothesis.
- **method**: the type of test applied.
- **data.name**: a character string giving the names of the data.
- **conf.int**: a confidence interval for the location parameter (only present if the argument conf.int=TRUE).
- **estimate**: an estimate of the location parameter (only present if the argument conf.int=TRUE).
- **table**: a formatted table of rank sum and number of observation values, for printing.
- **vars**: a formatted table of variances, for printing.
- **hyps**: a formatted table of the hypotheses, for printing.
- **inf**: a formatted table of inference values, for printing.

See Also

- `wilcox.test`

Examples

```r
#- Create the data -#
cf <- c(1153, 1132, 1165, 1460, 1162, 1493, 1358, 1453, 1185, 1824, 1793, 1930, 2075)
healthy <- c(996, 1080, 1182, 1452, 1634, 1619, 1140, 1123, 1113, 1463, 1632, 1614, 1836)

#- Perform the test -#
wilcoxon(cf, healthy, paired=TRUE)

#- Perform the test -#
wilcoxon(cf, healthy, conf.int=TRUE)
```
Index

* datasets
  - fev, 7
  - mri, 9
  - psa, 16
  - salary, 20

* package
  - rigr-package, 2

- descrip, 3
- dummy, 6, 17
- fev, 7
- fitted.uRegress (regress), 17
- glm, 19
- lincom, 8
- lm, 19
- mri, 9

- plot.proptest (proptest), 13
- polynomial, 11, 17
- predict (predict.uRegress), 12
- predict.glm, 12
- predict.lm, 12
- predict.uRegress, 12
- print.augCoefficients (regress), 17
- print.lincom (lincom), 8
- print.proptest (proptest), 13
- print.proptesti (proptesti), 14
- print.ttest (ttest), 21
- print.ttesti (ttesti), 23
- print.uDescriptives (descrip), 3
- print.uRegress (regress), 17
- print.wilcoxon (wilcoxon), 26
- prop.test, 14
- proptest, 13
- proptesti, 14
- psa, 16
- regress, 12, 17, 19, 20, 25
- residuals (residuals.uRegress), 19
- residuals.uRegress, 19
- rigr (rigr-package), 2
- rigr-package, 2
- rstandard, 20
- rstudent, 20
- salary, 20
- t.test, 23
- ttest, 21
- ttesti, 23
- U, 17–19, 25
- uLRtest (regress), 17
- uWaldtest (regress), 17
- wilcox.test, 26, 27
- wilcoxon, 26

28