Package ‘rintcal’

December 1, 2022

Type Package
Title Radiocarbon Calibration Curves
Version 0.5.2
Description The IntCal20 radiocarbon calibration curves (Reimer et al. 2020 <doi:10.1017/RDC.2020.68>) are provided as a data package, together with previous IntCal curves (IntCal13, IntCal09, IntCal04, IntCal98) and post-bomb curves. Also provided are functions to copy the curves into memory, to plot the curves and their underlying data, to calibrate radiocarbon dates and to transform between different radiocarbon 'domains'.
License GPL (>= 2)
RoxygenNote 7.2.2
Suggests knitr, rmarkdown, utf8
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Imports data.table, jsonlite
Language en-GB
Depends R (>= 2.10)
LazyData true
Author Maarten Blaauw [aut, cre] (<https://orcid.org/0000-0002-5680-1515>)
Maintainer Maarten Blaauw <maarten.blaauw@qub.ac.uk>
Repository CRAN
Date/Publication 2022-12-01 16:00:02 UTC

R topics documented:

age.F14C ... 2
age.pMC .. 3
calBP.14C ... 4
caldist .. 5
Calculate F14C values from radiocarbon ages

Usage

\[\text{age.F14C}(\text{mn}, \text{sdev} = c(), \text{decimals} = 5) \]

Arguments

- \text{mn} Reported mean of the 14C age.
- \text{sdev} Reported error of the 14C age. If left empty, will translate \text{mn} to F14C.
- \text{decimals} Amount of decimals required for the F14C value. Defaults to 5.

Details

Post-bomb dates are often reported as F14C or fraction modern carbon. Since Bacon expects radiocarbon ages, this function can be used to calculate F14C values from radiocarbon ages. The reverse function of \text{F14C.age}.

\[\text{age.F14C} \]
Value

F14C values from C14 ages.

Examples

\(\text{age.F14C}(-2000, 20) \)

age.pMC

Calculate pMC values from C14 ages

Description

Calculate pMC values from radiocarbon ages

Usage

\[
\text{age.pMC}(\text{mn}, \text{sdev} = \text{c()}, \text{ratio} = 100, \text{decimals} = 5)
\]

Arguments

- **mn**: Reported mean of the 14C age.
- **sdev**: Reported error of the 14C age.
- **ratio**: Most modern-date values are reported against 100. If it is against 1 instead, a warning is provided; use \text{age.F14C}.
- **decimals**: Amount of decimals required for the pMC value. Defaults to 5.

Details

Post-bomb dates are often reported as pMC or percent modern carbon. Since Bacon expects radiocarbon ages, this function can be used to calculate pMC values from radiocarbon ages. The reverse function is \text{pMC.age}.

Value

pMC values from C14 ages.

Examples

\[
\begin{align*}
\text{age.pMC}(-2000, 20) \\
\text{age.pMC}(-2000, 20, 1)
\end{align*}
\]
calBP.14C

 Find the 14C age and error belonging to a cal BP age.

Description

Given a calendar age, the calibration curve (default cc=1) is interpolated and the corresponding 14C age and error are returned.

Usage

calBP.14C(yr, cc = 1, postbomb = FALSE, rule = 1, cc.dir = NULL)

Arguments

yr The cal BP year.
cc calibration curve for C14 (see caldist()).
postbomb Whether or not to use a postbomb curve (see caldist()).
rule How should R’s approx function deal with extrapolation. If rule=1, the default, then NAs are returned for such points and if it is 2, the value at the closest data extreme is used.
cc.dir Directory of the calibration curves. Defaults to where the package’s files are stored (system.file), but can be set to, e.g., cc.dir="curves".

Details

Interpolation is used, and values outside the calibration curve are given as NA. For negative cal BP ages, a postbomb curve will have to be provided.

Value

The calibration-curve 14C year belonging to the entered cal BP age

Author(s)

Maarten Blaauw

Examples

calBP.14C(100)
caldist

Calculate calibrated distribution

Description

Calculate the calibrated distribution of a radiocarbon date.

Usage

```r
caldist(
  age,  # Uncalibrated radiocarbon age
  error,  # Lab error of the radiocarbon age
  cc = 1,  # Calibration curve to use. Defaults to IntCal20 (cc=1).
  postbomb = FALSE,  # Whether or not to use a postbomb curve. Required for negative radiocarbon ages.
  yrsteps = FALSE,  # Steps to use for interpolation. Defaults to the cal BP steps in the calibration curve
  cc.resample = FALSE,  # The IntCal20 curves have different densities (every year between 0 and 5 kcal BP, then every 5 yr up to 15 kcal BP, then every 10 yr up to 25 kcal BP, and then every 20 yr up to 55 kcal BP). If calibrated ages span these density ranges, their drawn heights can differ, as can their total areas (which should ideally all sum to the same size). To account for this, resample to a constant time-span, using, e.g., cc.resample=5 for 5-yr timespans.
  dist.res = 200,  # As an alternative to yrsteps, provide the amount of 'bins' in the distribution
  threshold = 0.001,  # Report only values above a threshold. Defaults to threshold=1e-6.
  normal = TRUE,  # Resample to a constant time-span, using, e.g., cc.resample=5 for 5-yr timespans.
  t.a = 3,  # Steps to use for interpolation. Defaults to the cal BP steps in the calibration curve
  t.b = 4,  # Steps to use for interpolation. Defaults to the cal BP steps in the calibration curve
  normalise = TRUE,  # Steps to use for interpolation. Defaults to the cal BP steps in the calibration curve
  BCAD = FALSE,  # whether or not to use a postbomb curve. Required for negative radiocarbon ages.
  rule = 1,  # Steps to use for interpolation. Defaults to the cal BP steps in the calibration curve
  cc.dir = NULL
)
```
calibrate

normal Use the normal distribution to calibrate dates (default TRUE). The alternative is to use the t model (Christen and Perez 2016).
t.a Value a of the t distribution (defaults to 3).
t.b Value a of the t distribution (defaults to 4).
normalise Sum the entire calibrated distribution to 1. Defaults to normalise=TRUE.
BCAD Which calendar scale to use. Defaults to cal BP, BCAD=FALSE.
rule Which extrapolation rule to use. Defaults to rule=1 which returns NAs.
cc.dir Directory of the calibration curves. Defaults to where the package’s files are stored (system.file), but can be set to, e.g., cc.dir="curves".

Value

The probability distribution(s) as two columns: cal BP ages and their associated probabilities

Examples

calib <- caldist(130,20)
plot(calib, type="l")
postbomb <- caldist(-3030, 20, "nh1", BCAD=TRUE)

Description

Calibrate individual 14C dates, plot them and report calibrated ranges.

Usage

calibrate(
 age = 2450,
 error = 50,
 cc = 1,
 postbomb = FALSE,
 reservoir = 0,
 prob = 0.95,
 BCAD = FALSE,
 ka = FALSE,
 cal.lab = c(),
 C14.lab = c(),
 cal.lim = c(),
 C14.lim = c(),
 cc.col = rgb(0, 0.5, 0, 0.7),
 cc.fill = rgb(0, 0.5, 0, 0.7),
 date.col = "red",
 dist.col = rgb(0, 0, 0, 0.2),
)
Arguments

age Mean of the uncalibrated C-14 age.
error Error of the uncalibrated C-14 age.
cc Calibration curve for C-14 dates (1, 2, 3, or 4, or, e.g., "IntCal20", "Marine20",
postbomb Whether or not this is a postbomb age. Defaults to FALSE.
reservoir Reservoir age, or reservoir age and age offset.
prob Probability confidence intervals (between 0 and 1).
BCAD Use BC/AD or cal BP scale (default cal BP).
ka Use thousands of years instead of years in the plots and hpd ranges. Defaults to FALSE.
cal.lab Label of the calendar/horizontal axis. Defaults to the calendar scale, but alternative names can be provided.
C14.lab Label of the C-14/vertical axis. Defaults to the 14C scale, but alternative names can be provided.
cal.lim Minimum and maximum of calendar axis (default calculated automatically).
C14.lim Minimum and maximum of C-14 axis (default calculated automatically).
cc.col Colour of the lines of the calibration curve. Defaults to semi-transparent dark green; cc.col=rgb(0,.5,0,.7).
cc.fill Colour of the inner part of the calibration curve. Defaults to semi-transparent dark green; `cc.col=rgb(0,.5,0,.7)`.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

dist.fill Colour of the inner part of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

cal.rev Whether or not to reverse the direction of the calendar axis.

yr.steps Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.

threshold Below which value should probabilities be excluded from calculations.

date.col Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".

dist.col Colour of the outer lines of the distributions. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.2)`.

hpd.fill Colour of the highest posterior density. Defaults to semi-transparent grey, `dist.col=rgb(0,0,0,.3)`.

dist.height Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.

... Other plotting parameters.
Details

Type `calibrate()` to see how a date of 2450 + 50 14C BP gets calibrated (the calibration curve happens to show a plateau around this 14C age). To calibrate a different date, provide its reported mean and error (1 standard deviation error as reported by the radiocarbon laboratory) as follows: `calibrate(mean, error)`, e.g., for a date of 130 + 20 14C BP, type `calibrate(age=130, error=20)` or, shorter, `calibrate(130,20)`.

In case the date has a reservoir effect or age offset, e.g., of 100 14C years, provide this as follows: `calibrate(130,20,reservoir=100)`. If you want to include an uncertainty for this offset, provide this as follows, e.g., for an uncertainty of 50 yr: `calibrate(130,20,reservoir=c(100,50))`. The uncertainty for the age offset will then be added to the error (by taking the square root of the sum of the squared error and the squared offset uncertainty). If the carbon of your sample has mixed marine/terrestrial sources, instead apply the marine offset using `mix.curves` and calibrate the date using that custom-built curve (cc="mixed").

If you prefer to work with, e.g., 68 % as opposed to the default 95 % confidence intervals, type: `calibrate(130,20,prob=0.68)` or `calibrate(130,20,.0.68)` (the commas between the brackets indicate the position of the option; the standard deviation is the fourth option of the `calibrate` function). The calibrated distribution can be calculated for every single calendar year (`yrsteps=1`) within a wide range of the 14C date. Probabilities below a threshold (default `threshold=0.0005`) will be neglected.

By default the northern hemisphere terrestrial calibration curve is used (`cc=1` or `cc1="IntCal20"`). To use alternative curves, use `cc=2` (cc2="Marine20"), `cc=3` (cc3="SHCal20C"), `cc=4` (cc4="mixed.14C"), or specify a postbomb curve (e.g., `cc=nh1`).

Calibrate works in cal BP (calendar years before AD 1950) by default, but can work with cal BC/AD through the option `BCAD=TRUE`.

By default the Gaussian distribution is used to calibrate dates. For use of the t distribution (Christen and Perez 2016) instead, set `normal=FALSE` provide values for `t.a` and `t.b` (defaults to `t.a=3` and `t.b=4`).

Calibrated distributions are usually reduced to their 68% or 95% calibrated ranges, taking into account the asymmetric and multi-peaked shape of these distributions. Calibrated ranges at 68% will obviously result in narrower confidence intervals, and a perceived higher precision, than 95% ranges. However, given the often asymmetric and multi-modal nature of calibrated distributions, the probability that the 'true' calendar date lies outside the 1 standard deviation hpd ranges is considerable (c. 32%). Therefore the use of 95% calibrated ranges is preferable, and default.

Negative radiocarbon ages are calibrated with postbomb curves, but the user needs to tell which curve to use. For example, to use the first of the three northern hemisphere curves, provide the option `cc="nh1"`, `cc="nh2"`, `cc="nh3"`, while for southern hemisphere samples, use `cc="sh1-2"` or `cc="sh3"`.

A graph of the calibration is produced, and it can be adapted in several ways. The limits of the horizontal (calendar scale) and vertical (14C scale) axes are calculated automatically but can be changed by providing alternative values for the options `cal.lim`, `C14.lim`. The titles of both axis can be changed by providing alternative titles to `cal.lab` and/or `C14.lab`. The heights of the distributions of the 14C and calibrated ages can be set to alternative values using `dist.height` (default 0.3 which plots the distribution up to 30% of the height of the entire graph). Parameters for white space around the graph can be changed (default `mar=c(3.5,2,2,1)` for spacing below, to the left, above and to the right respectively), as can the spacing for the axis labels (`mgp=c(2,1,0)`).
By default, the axes are connected at the lower left, bty="1". Check the R documentation of par() for more options.

The colours of the 14C date, the calibration curve, the distributions, and the highest posterior density (hpd) ranges, can be changed by providing an alternative colour in date.col, cc.col, dist.col, and/or hpd.col, respectively. The default colours are transparent grey for the dates probability distributions (dist.col=rgb(0,0,0, 0.3) and sd.col=rgb(0,0,0, 0.5); change the last value of rgb for different greyscale values), red for the uncalibrated mean and error bars (date.col="red"), and transparent green for the calibration curve (cc.col=rgb(0, 0.5, 0, 0.7)). R's rgb() function expects values between 0 and 1 for red, green and blue, respectively, followed by a value for the semi-transparency (also between 0 and 1). Some graphic devices such as postscript are unable to use transparency; in that case provide different colours or leave the fourth value empty.

Value

A graph of the raw and calibrated C-14 date, the calibrated ranges and, invisibly, the calibrated distribution and hpd ranges.

Examples

calibrate()
calibrate(130, 20)
cal <- calibrate(2550, 20, reservoir=100)
cal; plot(cal[[1]])
calibrate(130, 20, prob=0.68)
calibrate(age=130, error=20, BCAD=TRUE)
calibrate(4450, 40, reservoir=c(100, 50))

curve

Copy a calibration curve

Description

Copy one of the calibration curves into memory.

Usage

ccurve(cc = 1, postbomb = FALSE, cc.dir = NULL, resample = 0)

Arguments

cc Calibration curve for 14C dates: cc=1 for IntCal20 (northern hemisphere terrestrial), cc=2 for Marine20 (marine), cc=3 for SHCal20 (southern hemisphere terrestrial). Alternatively, one can also write, e.g., "IntCal20", "Marine13". One can also make a custom-built calibration curve, e.g. using mix.ccurves(), and load this using cc=4. In this case, it is recommended to place the custom calibration curve in its own directory, using cc.dir (see below).

postbomb Use postbomb=TRUE to get a postbomb calibration curve (default postbomb=FALSE). For monthly data, type e.g. ccurve("sh1-2_monthly")
ccurve

cc.dir
Directory of the calibration curves. Defaults to where the package’s files are stored (system.file), but can be set to, e.g., cc.dir="ccurves".

resample
The IntCal curves come at a range of ‘bin sizes’: every year from 0 to 5 kcal BP, then every 5 yr until 15 kcal BP, then every 10 yr until 25 kcal BP, and every 20 year thereafter. The curves can be resampled to constant bin sizes, e.g. resample=5. Defaults to FALSE.

Details
Copy the radiocarbon calibration curve defined by cc into memory.

Value
The calibration curve (invisible).

References
Hogg et al. 2013 SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP. Radiocarbon 55, 1889-1903. doi:10.2458/azu_js_rc.55.16783
Hogg et al. 2020 SHCal20 Southern Hemisphere calibration, 0-55,000 years cal BP. Radiocarbon 62. doi:10.1017/RDC.2020.59
Hughen et al. 2020 Marine20-the marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon 62. doi:10.1017/RDC.2020.68
Levin and Kromer 2004 ”The tropospheric 14CO2 level in mid latitudes of the Northern Hemisphere” Radiocarbon 46, 1261-1272
Reimer et al. 2004 IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 1029–1058. doi:10.1017/S0033822200032999
Reimer et al. 2009 IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 1111–1150. doi:10.1017/S0033822200034202
Reimer et al. 2013 IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887. doi:10.2458/azu_js_rc.55.16947
Stuiver et al. 1998 INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 1041-1083. doi:10.1017/S0033822200019123
Examples

```r
intcal20 <- ccurve(1)
marine20 <- ccurve(2)
shcal20 <- ccurve(3)
marine98 <- ccurve("Marine98")
pb.sh3 <- ccurve("sh3")
```

contaminate

Simulate the impact of contamination on a radiocarbon age

Description

Given a certain radiocarbon age, calculate the observed impact of contamination with a ratio of material with a different 14C content (for example, 1

Usage

```r
contaminate(y, sdev = c(), fraction, F14C, F14C.er = 0, decimals = 5)
```

Arguments

- `y`: the true radiocarbon age
- `sdev`: the error of the true radiocarbon age
- `fraction`: Relative amount of contamination. Must be between 0 and 1
- `F14C`: the F14C of the contamination. Set at 1 for carbon of modern radiocarbon age, at 0 for 14C-free carbon, or anywhere inbetween.
- `F14C.er`: error of the contamination. Defaults to 0.
- `decimals`: Rounding of the output. Since details matter here, the default is to provide 5 decimals.

Value

The observed radiocarbon age and error

Author(s)

Maarten Blaauw

Examples

```r
contaminate(5000, 20, .01, 1) # 1% contamination with modern carbon
# Impacts of different amounts of contamination with modern carbon:
real.14C <- seq(0, 50e3, length=200)
contam <- seq(0, .1, length=101) # 0 to 10% contamination
contam.col <- rainbow(length(contam))
plot(0, type="n", xlab="real", ylab="observed")
```
Copy a calibration curve

Description

Copy one of the calibration curves into memory. Renamed to ccurve, and copyCalibrationCurve will become obsolete

Usage

copyCalibrationCurve(cc = 1, postbomb = FALSE)

Arguments

cc Calibration curve for 14C dates: cc=1 for IntCal20 (northern hemisphere terrestrial), cc=2 for Marine20 (marine), cc=3 for SHCal20 (southern hemisphere terrestrial). Alternatively, one can also write, e.g., "IntCal20", "Marine13".
postbomb Use postbomb=TRUE to get a postbomb calibration curve (default postbomb=FALSE).

Details

Copy the radiocarbon calibration curve defined by cc into memory.

Value

The calibration curve (invisible).

Transform D14C into F14C

Description

Transform D14C into F14C

Usage

D14C.F14C(D14C, t)
Arguments

D14C The Delta14C value to translate
t the cal BP age

Details

As explained by Heaton et al. 2020 (Radiocarbon), 14C measurements are commonly expressed in three domains: Delta14C, F14C and the radiocarbon age. This function translates Delta14C, the historical level of Delta14C in the year t cal BP, to F14C values. Note that per convention, this function uses the Cambridge half-life, not the Libby half-life.

Value

The corresponding F14C value

Examples

D14C.F14C(-10, 238)

draw.ccurve Draw a calibration curve.

Description

Draw one or two of the calibration curves, or add a calibration curve to an existing plot.

Usage

draw.ccurve(
cal1 = -50,
cal2 = 55000,
c1 = "IntCal20",
c2 = NA,
c1.postbomb = FALSE,
c2.postbomb = FALSE,
BCAD = FALSE,
cal.lab = NA,
cal.rev = FALSE,
c14.lab = NA,
c14.lim = NA,
c14.rev = FALSE,
ka = FALSE,
add.yaxis = FALSE,
cc1.col = rgb(0, 0, 1, 0.5),
c1.fill = rgb(0, 0, 1, 0.2),
c2.col = rgb(0, 0, 0, 1, 0.5),
c2.fill = rgb(0, 0, 0, 0.2),
Arguments

cal1 First calendar year for the plot

cal2 Last calendar year for the plot

cc1 Name of the calibration curve. Can be "IntCal20", "Marine20", "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13". Can also be "nh1", "nh2", "nh3", "sh1-2", "sh3", "nh1_monthly", "nh1_monthly", "nh2_monthly", "nh3_monthly", "sh1-2_monthly", "sh3_monthly", "Kure", "LevinKromer" or "Santos" for postbomb curves.

cc2 Optional second calibration curve to plot. Can be "IntCal20", "Marine20", "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13". Defaults to nothing, NA.

cc1.postbomb Use postbomb=TRUE to get a postbomb calibration curve for cc1 (default cc1.postbomb=FALSE).

cc2.postbomb Use postbomb=TRUE to get a postbomb calibration curve for cc2 (default cc2.postbomb=FALSE).

BCAD The calendar scale of graphs and age output-files is in cal BP (calendar or calibrated years before the present, where the present is AD 1950) by default, but can be changed to BC/AD using BCAD=TRUE.

cal.lab The labels for the calendar axis (default age.lab="cal BP" or "BC/AD" if BCAD=TRUE), or to age.lab="kcal BP" etc. if ka=TRUE.

cal.rev Reverse the calendar axis.

c14.lab Label for the C-14 axis. Defaults to 14C BP (or 14C kBP if ka=TRUE).

c14.lim Axis limits for the C-14 axis. Calculated automatically by default.

c14.rev Reverse the C-14 axis.

ka Use kcal BP (and C14 kBP).

add.yaxis Whether or not to plot the second calibration. Defaults to add.yaxis=FALSE.

cc1.col Colour of the calibration curve (outline).

cc1.fill Colour of the calibration curve (fill).

cc2.col Colour of the calibration curve (outline), if activated (default cc2=NA).

cc2.fill Colour of the calibration curve (fill), if activated (default cc2=NA).

add Whether or not to add the curve(s) to an existing plot. Defaults to FALSE, which draws a new plot

bty Draw a box around a box of a certain shape. Defaults to bty="l".

cc.dir Directory of the calibration curves. Defaults to where the package's files are stored (system.file), but can be set to, e.g., cc.dir="curves".

legend Location of the legend (only activated if more than one curve is plotted). Plotted in the topleft corner by default. Use legend=c() to leave empty

... Any additional optional plotting parameters.
draw.dates

Value

A plot of the calibration curve

Examples

draw.ccurve()
draw.ccurve(1000, 3000, cc2="Marine20")
draw.ccurve(1800, 2020, BCAD=TRUE, cc2="nh1", cc2.postbomb=TRUE)
draw.ccurve(1800, 2010, BCAD=TRUE, cc2="nh1", add.yaxis=TRUE)

Description

Add individual or multiple calibrated dates to a plot.

Usage

draw.dates(
 age,
 error,
 depth,
 cc = 1,
 postbomb = FALSE,
 reservoir = c(),
 normal = TRUE,
 t.a = 3,
 t.b = 4,
 prob = 0.95,
 threshold = 0.001,
 BCAD = FALSE,
 draw.hpd = TRUE,
 hpd.lwd = 2,
 hpd.col = rgb(0, 0, 1, 0.7),
 cal.hpd.col = rgb(0, 0.5, 0.5, 0.35),
 mirror = TRUE,
 up = FALSE,
 col = rgb(0, 0, 1, 0.3),
 border = rgb(0, 0, 1, 0.5),
 cal.col = rgb(0, 0.5, 0.5, 0.35),
 cal.border = rgb(0, 0.5, 0.5, 0.35),
 add = FALSE,
 ka = FALSE,
 rotate.axes = FALSE,
 ex = 1,
 normalise = TRUE,
cc.resample = 5,
age.lab = c(),
age.lim = c(),
age.rev = FALSE,
d.lab = c(),
d.lim = c(),
d.rev = TRUE,
labels = c(),
label.x = 1,
label.y = c(),
label.cex = 0.8,
label.col = border,
label.offset = c(0, 0),
label.adj = c(1, 0),
label.rot = 0,
cc.dir = NULL,
dist.res = 100,

Arguments

age
Mean of the uncalibrated C-14 age (or multiple ages).

error
Error of the uncalibrated C-14 age (or ages).

depth
Depth(s) of the date(s). Can also be their relative positions if no depths are available.

cc
Calibration curve for C-14 dates (1, 2, 3, or 4, or, e.g., "IntCal20", "Marine20", "SHCal20", "nh1", "sh3", or "mixed"). If there are multiple dates but all use the same calibration curve, one value can be provided.

postbomb
Whether or not this is a postbomb age. Defaults to FALSE.

reservoir
Reservoir age, or reservoir age and age offset.

normal
Use the normal distribution to calibrate dates (default TRUE). The alternative is to use the t model (Christen and Perez 2009).

t.a
Value a of the t distribution (defaults to 3).

t.b
Value a of the t distribution (defaults to 4).

prob
Probability confidence intervals (between 0 and 1).

threshold
Report only values above a threshold. Defaults to threshold=0.001.

BCAD
Use BC/AD or cal BP scale (default cal BP).

draw.hpd
Whether or not to draw the hpd ranges as a line

hpd.lwd
Width of the line of the hpd ranges

hpd.col
Colour of the hpd rectangle for all dates or radiocarbon dates

cal.hpd.col
Colour of the hpd rectangle for cal BP dates

mirror
Plot distributions mirrored, a bit like a swan. Confuses some people but looks nice to the author so is the default.
If mirror is set to FALSE, the distribution can be plotted up or down, depending on the direction of the axis.

col
Colour of the inside of the distribution

border
Colour of the border of the distribution

cal.col
Colour of the inside of distribution of non-radiocarbon dates that didn’t need calibration

cal.border
Colour of the border of the distribution of non-radiocarbon dates that didn’t need calibration

add
Whether or not to add the dates to an existing plot. If set to FALSE (default), a plot will be set up.

ka
Whether or not to plot ages as thousands of years. Defaults to ka=FALSE.

rotate.axes
By default, the calendar age axis is plotted on the horizontal axis, and depth/position on the vertical one. Use rotate.axes=TRUE to rotate the axes.

ex
Exaggeration of the height of the distribution, defaults to ex=1.

normalise
If TRUE, the age distributions are normalised by plotting each distribution with the same total area. Precise dates will therefore peak higher than less precise dates (default). If normalise=FALSE, the peak of each date will be drawn at the same height.

cc.resample
The IntCal20 curves have different densities (every year between 0 and 5 kcal BP, then every 5 yr up to 15 kcal BP, then every 10 yr up to 25 kcal BP, and then every 20 yr up to 55 kcal BP). If calibrated ages span these density ranges, their drawn heights can differ, as can their total areas (which should ideally all sum to the same size). To account for this, resample to a constant time-span, using, e.g., cc.resample=5 for 5-yr timespans.

age.lab
Title of the calendar axis (if present)

age.lim
Limits of the calendar axis (if present)

age.rev
Reverse the age axis. Defaults to TRUE

d.lab
Title of the vertical axis (if present)

d.lim
Limits of the vertical axis (if present)

d.rev
Reverse the y-axis. Defaults to TRUE

labels
Add labels to the dates. Empty by default.

label.x
Horizontal position of the date labels. By default draws them before the youngest age (1), but can also draw them after the oldest age (2), or above its mean (3).

label.y
Vertical positions of the depths/labels. Defaults to 0 (or 1 if label.x is 3 or 4).

label.cex
Size of labels.

label.col
Colour of the labels. Defaults to the colour given to the borders of the dates.

label.offset
Offsets of the positions of the depths/labels, giving the x and y offsets. Defaults to c(0,0).

label.adj
Justification of the labels. Follows R’s adj option: A value of ‘0’ produces left-justified text, ‘0.5’ (the default) centered text and ‘1’ right-justified text.

label.rot
Rotation of the label. 0 by default (horizontal).
F14C.age

Description

Calculate C14 ages from F14C values of radiocarbon dates.

Usage

F14C.age(mn, sdev = c(), decimals = 5)

Arguments

- **mn**: Reported mean of the F14C
- **sdev**: Reported error of the F14C. Returns just the mean if left empty.
- **decimals**: Amount of decimals required for the radiocarbon age. Quite sensitive, defaults to 5.

Details

Post-bomb dates are often reported as F14C or fraction modern carbon. Since Bacon expects radiocarbon ages, this function can be used to calculate radiocarbon ages from F14C values. The reverse function is `age.F14C`.

Value

Radiocarbon ages from F14C values. If F14C values are above 100%, the resulting radiocarbon ages will be negative.

Examples

F14C.age(1.10, 0.5) # a postbomb date, so with a negative 14C age
F14C.age(0.80, 0.5) # prebomb dates can also be calculated
F14C.D14C
Transform F14C into D14C

Description

Transform F14C into D14C

Usage

\[F14C.D14C(F14C, t)\]

Arguments

- **F14C**
 The F14C value to translate
- **t**
 the cal BP age

Details

As explained by Heaton et al. 2020 (Radiocarbon), 14C measurements are commonly expressed in three domains: Delta14C, F14C and the radiocarbon age. This function translates F14C values into Delta14C, the historical level of Delta14C in the year t cal BP. Note that per convention, this function uses the Cambridge half-life, not the Libby half-life.

Value

The corresponding D14C value

Examples

```r
F14C.D14C(0.985, 222)
cc <- ccurve()
# plot IntCal20 as D14C:
cc.Fmin <- age.F14C(cc[,2]+cc[,3])
cc.Fmax <- age.F14C(cc[,2]-cc[,3])
cc.D14Cmin <- F14C.D14C(cc.Fmin, cc[,1])
cc.D14Cmax <- F14C.D14C(cc.Fmax, cc[,1])
plot(cc[,1]/1e3, cc.D14Cmax, type="l", xlab="kcal BP", ylab=expression(paste(Delta, "^{14}, "C")))
lines(cc[,1]/1e3, cc.D14Cmin)
```
glue.ccurves

Glue prebomb and postbomb curves

Description

Produce a custom curve by merging two calibration curves, e.g. a prebomb and a postbomb one for dates which straddle both curves.

Usage

```r
glue.ccurves(prebomb = "IntCal20", postbomb = "NH1")
```

Arguments

- `prebomb`: The prebomb curve. Defaults to "IntCal20"
- `postbomb`: The postbomb curve. Defaults to "NH1" (Hua et al. 2013)

Value

The custom-made curve (invisibly)

Examples

```r
my.cc <- glue.ccurves()
```

hpd

Calculate highest posterior density

Description

Calculate highest posterior density ranges of calibrated distribution

Usage

```r
hpd(calib, prob = 0.95, return.raw = FALSE, rounded = 1)
```

Arguments

- `calib`: The calibrated distribution, as returned from caldist()
- `prob`: Probability range which should be calculated. Default `prob=0.95`.
- `return.raw`: The raw data to calculate hpds can be returned, e.g. to draw polygons of the calibrated distributions. Defaults to `return.raw=FALSE`.
- `rounded`: Rounding for reported probabilities. Defaults to 1 decimal.
Value

The highest posterior density ranges, as three columns: from age, to age, and the corresponding percentage(s) of the range(s)

Examples

```r
hpd(caldist(130,20))
plot(tmp <- caldist(2450,50), type='l')
abline(v=hpd(tmp)[,1:2], col=4)
```

intcal
IntCal20 json file

Description

The IntCal20 calibration curves and their underpinning data. This is based on a json file produced by Prof. Christopher Bronk Ramsey, University of Oxford.

Usage

```r
intcal
```

Format

```r
## 'intcal' A list with six main entries:

json_application  IntChron project name
records  a list with 139 entries for each IntCal dataset
project_series_list a list with 5 entries: IntCal20, Marine20, SHCal20, a list of the underlying datasets, and a GICC vs IntCal20 comparison
parameters  an empty list
bibliography  a list with 141 bibliography entries
options  a list of 17 options (not used)
```

Source

<https://intchron.org/archive/IntCal/IntCal20/index.json>
Description
plot the C14 ages underpinning the IntCal20/Marine20/SHCal20 calibration curves

Usage
intcal.data(
 cal1,
 cal2,
 cc1 = "IntCal20",
 cc2 = NA,
 calcurve.data = "IntCal20",
 BCAD = FALSE,
 cal.lab = NA,
 cal.rev = FALSE,
 c14.lab = NA,
 c14.lim = NA,
 c14.rev = FALSE,
 ka = FALSE,
 cc1.col = rgb(0, 0, 1, 0.5),
 cc1.fill = rgb(0, 0, 1, 0.2),
 cc2.col = rgb(0, 0.5, 0, 0.5),
 cc2.fill = rgb(0, 0.5, 0, 0.2),
 data.cols = 1:8,
 data.pch = c(1, 2, 5, 6, 15:19),
 pch.cex = 0.5,
 legend.loc = "topleft",
 legend.ncol = 2,
 legend.cex = 0.7,
 cc.legend = "bottomright",
 bty = "l",
 ...
)

Arguments
- cal1: First calendar year for the plot
- cal2: Last calendar year for the plot
- cc1: Name of the calibration curve. Can be "IntCal20", "Marine20", "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13".
- cc2: Optional second calibration curve to plot. Can be "IntCal20", "Marine20", "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13". Defaults to nothing, NA.
calcurve.data Which dataset to use. Defaults to calcurve.data="IntCal20", but can also be calcurve.data="SHCal20". Note that Marine20 is based on IntCal20 and a marine carbon cycle model.

BCAD The calendar scale of graphs and age output-files is in cal BP (calendar or calibrated years before the present, where the present is AD 1950) by default, but can be changed to BC/AD using BCAD=TRUE.

cal.lab The labels for the calendar axis (default age.lab="cal BP" or "BC/AD" if BCAD=TRUE), or to age.lab="kcal BP" etc. if ka=TRUE.

cal.rev Reverse the calendar axis.

c14.lab Label for the C-14 axis. Defaults to 14C BP (or 14C kBP if ka=TRUE).

c14.lim Axis limits for the C-14 axis. Calculated automatically by default.

c14.rev Reverse the C-14 axis.

ka Use kcal BP (and C14 kBP).

cc1.col Colour of the calibration curve (outline).

cc1.fill Colour of the calibration curve (fill).

cc2.col Colour of the calibration curve (outline), if activated (default cc2=NA).

cc2.fill Colour of the calibration curve (fill), if activated (default cc2=NA).

data.cols Colours of the data points. Defaults to R’s colours 1 to 8 (black, red, green, darkblue, lightblue, purple, orange, and grey)

data.pch Symbols of the data points. Defaults to R’s symbols 1, 2, 5, 6, and 15 to 19 (open circle, open upward triangle, open diamond, open downward triangle, closed square, closed circle, closed upward triangle, closed diamond)

pch.cex Size of the data symbols. Defaults to 0.5.

legend.loc Location of the data legend. Defaults to topleft. Set to NA for no plotting.

legend.ncol Number of columns of the data legend.

legend.cex Size of the legend. Defaults to 0.7.

cc.legend Location of the legend for the calibration curve(s).

bty Box type around the plot. Defaults to "l"-shaped.

... Any additional optional plotting parameters.

Details

These datasets were downloaded from Intcal.org. All data have both uncertainties in C14 age and on the calendar scale. For trees this is the sample thickness (e.g., 10 years or 1 year). The name of each dataset starts with a lower-case letter which indicates their nature (t = tree-rings, l = lake sediment, c = coral, m = marine sediment, s = speleothem), followed by either the radiocarbon laboratory’s placename or the lastname of the main author. Most of the tree-ring datasets are dated at calendar year precision: tSeattle (references 1-2), tBelfast (3-5), tWaikato (4-7), tGroningen (8-10), tHeidelberg (11-14), tPretoria (16), tvrinke (17-20), tGalimberti (21), tMannheim (22-25), tAix (26-27), tAarhus (22, 28-30), tManningKromer (31-32), tVienna (33-34), tTokyo (35-39), tArizona (40), tMiyake (41), tPearson (22, 41-45), and tZurich (22-23, 25, 41, 43, 46-49). Horizontal error bars for these series indicate the numbers of rings in the samples (e.g., 10 tree-rings; 1-yr samples do not
have error bars). Additionally, there are some floating tree-ring datasets with imprecisely known calendar ages; tAdolphy (50) and tTurney (51-52). For these and the following datasets, horizontal error bars indicate their 1 sd calendar age uncertainties. Beside trees, other datasets include lake sediment (lSuigestu, 53-54), corals (cBard 55-56, cFairbanks 57, cCutler 58 and cDurand 61, marine sediment (mCariaco 59-60, 62-63, mBard 64-65) and speleothems (sSouthon 66-67, sHoffman 68, sBeck 69). The southern hemisphere calibration curve SHCal20 is mostly modelled on IntCal20, but it contains datasets from the southern hemisphere; tPretoria (70), tWaikato (72-75), tBelfast (76-67), tSydney (78-80), tLivermore (81), tArizona, tIrvineWaikato and tZurich (82-83).

Value

A plot of the IntCal curve and the underlying data

References

[20] Simon M. Fahnri, John Southon, Benjamin T. Fuller, Junghun Park, Michael Friedrich, Raimund Muscheler, Lukas Wacker, R. E. Taylor, Single-year German oak and Californian bristlecone pine 14C data at the beginning of the Hallstatt plateau from 856 BC to 626 BC; Radiocarbon

[46] Wacker et al. in prep

[49] Bayliss et al. in prep

[63] Hughen, K, Heaton, TJ. Updated Cariaco Basin 14C Calibration Dataset from 0-60k BP, in prep

Examples

intcal.data(100, 200)
intcal.data(40e3, 55e3, ka=TRUE)

intcal.data.frames Extract from the intcal file

Description

Extract items from the intcal json file.

Usage

intcal.data.frames(obj, ...)

Arguments

obj Name of the object
...

Additional options can be provided, see examples
Examples

```r
intcal <- intcal.read.data()
# all datasets from the Southern Hemisphere:
sh.data <- intcal.data.frames(intcal, intcal_set_type='SH')
head(sh.data)
Irish.oaks <- intcal.data.frames(intcal, intcal_set=3)
head(Irish.oaks[[2]]$data)
```

intcal.read.data

Read data underlying the IntCal curves.

Description

Download the json file that contains the IntCal20 radiocarbon calibration curves and the contributing data series.

Usage

```r
intcal.read.data(from.intchron.org = FALSE, from.jsonfile = FALSE)
```

Arguments

- `from.intchron.org`
 Download the IntCal20 json file the inchron.org server. Defaults to FALSE, and then the data will be loaded from within the rintcal package

- `from.jsonfile`
 The name and location of the json file (if used). Defaults to FALSE, and then the data will be loaded from within the rintcal package

Details

The intcal curves consist of the IntCal20, SHCal20 and Marine20 calibration curves. The details of these curves can be loaded, as well as the underlying data such as tree-ring records.

Examples

```r
intcal <- intcal.read.data()
```
intcal.write.data

Write intcal data to a file.

Description
Write the intcal.json file that comes with the rintcal packages to somewhere local. This can be useful if you want to avoid repeatedly downloading the json file from intchron.org.

Usage

```
intcal.write.data(data, fname)
```

Arguments

- `data` intcal variable as obtained from intcal.read.data()
- `fname` Name of the file to be written

Examples

```r
intcal <- intcal.read.data()
myintcal <- tempfile()
intcal.write.data(intcal, myintcal)
```

l.calib

Find the calibrated probability of a calendar age for a 14C date.

Description
Find the calibrated probability of a cal BP age for a radiocarbon date. Can handle either multiple calendar ages for a single radiocarbon date, or a single calendar age for multiple radiocarbon dates.

Usage

```
l.calib(yr, y, er, cc = ccurve1, FALSE), normal = TRUE, t.a = 3, t.b = 4)
```

Arguments

- `yr` The cal BP year.
- `y` The radiocarbon date’s mean.
- `er` The radiocarbon date’s lab error.
- `cc` calibration curve for the radiocarbon date(s) (see ccurve()).
- `normal` Use the normal distribution to calibrate dates (default TRUE). The alternative is to use the t model (Christen and Perez 2016).
- `t.a` Value a of the t distribution (defaults to 3).
- `t.b` Value b of the t distribution (defaults to 4).
Details

The function cannot deal with multiple calibration curves if multiple calendar years or radiocarbon dates are entered.

Value

The calibrated probability of a calendar age for a 14C age

Author(s)

Maarten Blaauw

Examples

l.calib(100, 130, 20)
l.calib(100:110, 130, 20) # multiple calendar ages of a single date
l.calib(100, c(130,150), c(15,20)) # multiple radiocarbon ages and a single calendar age

list.ccurves List the calibration curves

Description

List the file names of the calibration curves available within the rintcal package.

Usage

list.ccurves()

Value

A list of the available calibration curves

mix.ccurves Build a custom-made, mixed calibration curve.

Description

If two curves need to be ‘mixed’ to calibrate, e.g. for dates of mixed terrestrial and marine carbon sources, then this function can be used. The curve will be returned invisibly, or saved in a temporary directory together with the main calibration curves. This temporary directory then has to be specified in further commands, e.g. for rbacon: Bacon(), cc.dir=tmpdr) (see examples). It is advisable to make your own curves folder and have cc.dir point to that folder.
mix.ccurves

Usage

mix.ccurves(
 proportion = 0.5,
 cc1 = "IntCal20",
 cc2 = "Marine20",
 name = "mixed.14C",
 cc.dir = c(),
 save = FALSE,
 offset = c(0, 0),
 sep = "\t"
)

Arguments

proportion Proportion of the first calibration curve required. e.g., change to proportion=0.7 if cc1 should contribute 70% (and cc2 30%) to the mixed curve.

cc1 The first calibration curve to be mixed. Defaults to the northern hemisphere terrestrial curve IntCal20.

cc2 The second calibration curve to be mixed. Defaults to the marine curve IntCal20.

name Name of the new calibration curve.

cc.dir Name of the directory where to save the file. Since R does not allow automatic saving of files, this points to a temporary directory by default. Adapt to your own folder, e.g., cc.dir="~/ccurves" or in your current working directory, cc.dir=".".

save Save the curve in the folder specified by dir. Defaults to FALSE.

offset Any offset and error to be applied to cc2 (default 0 +- 0).

sep Separator between fields (tab by default, "\t")

Details

The proportional contribution of each of both calibration curves has to be set.

Value

A file containing the custom-made calibration curve, based on calibration curves cc1 and cc2.

Examples

tmpdir <- tempdir()
mix.ccurves(cc.dir=tmpdir)
clean up:
unlink(tmpdir)
new.ccdir

Make directory and fill with calibration curves

Description
Make an alternative ‘curves’ directory and fill it with the calibration curves.

Usage

new.ccdir(cc.dir)

Arguments

cc.dir Name and location of the new directory. For example, this could be a folder called ‘ccurves’, living within the current working directory, cc.dir="./ccurves".

Details
Copies all calibration curves within the ‘rintcal’ package to the new directory.

Value
A message informing the user the name of the folder into which the calibration curves have been copied.

Examples

new.ccdir(tempdir())

pMC.age
Calculate C14 ages from pMC values.

Description
Calculate C14 ages from pMC values of radiocarbon dates.

Usage

pMC.age(mn, sdev = c(), ratio = 100, decimals = 0)

Arguments

mn Reported mean of the pMC.
sdev Reported error of the pMC.
ratio Most modern-date values are reported against 100. If it is against 1 instead, use 1 here.
decimals Amount of decimals required for the radiocarbon age.
Details

Post-bomb dates are often reported as pMC or percent modern carbon. Since Bacon expects radiocarbon ages, this function can be used to calculate radiocarbon ages from pMC values. The reverse function is age.pMC.

Value

Radiocarbon ages from pMC values. If pMC values are above 100%, the resulting radiocarbon ages will be negative.

Examples

```r
pMC.age(110, 0.5) # a postbomb date, so with a negative 14C age
pMC.age(80, 0.5) # prebomb dates can also be calculated
pMC.age(.8, 0.005, ratio=1) # throws a warning, use F14C.age instead
```

point.estimates

Calculate a point estimate

Description

Calculate a point estimate of a calibrated distribution - either the weighted mean, the median or the mode (maximum). Note that point estimates often tend to be very poor representations of entire calibrated distributions, so please be careful and do not reduce entire calibrated distributions to just 1 point value.

Usage

```r
point.estimates(
  calib,
  wmean = TRUE,
  median = TRUE,
  mode = TRUE,
  midpoint = TRUE,
  prob = 0.95,
  rounded = 1
)
```

Arguments

- `calib`: The calibrated distribution, as returned from caldist()
- `wmean`: Report the weighted mean (defaults to TRUE)
- `median`: Report the median (defaults to TRUE)
- `mode`: Report the mode, which is the year with the maximum probability (defaults to TRUE)
- `midpoint`: Report the midpoint of the hpd range(s)
- `prob`: probability range for the hpd range(s)
- `rounded`: Rounding for reported probabilities. Defaults to 1 decimal.
Value

The chosen point estimates

Examples

```r
point.estimates(caldist(130, 20))
plot(tmp <- caldist(2450, 50), type='l')
abline(v=point.estimates(tmp), col=1:4)
```

Description

The international IntCal research group publishes ratified radiocarbon calibration curves such as IntCal20, Marine20 and SHCal20 (Reimer et al. 2020). This data package provides the files of these curves, for use by other R package (reducing the need for replication and the size of other packages that use IntCal curves). It also comes with functions to read in calibration curves, plot curves or dates, translate pMC ages to 14C ages (et vice versa), etc.

Author(s)

Maarten Blaauw <maarten.blaauw@qub.ac.uk>
Index

* datasets
 intcal, 22

 age.F14C, 2, 19
 age.pMC, 3, 36

 calBP.14C, 4
caldist, 5
calibrate, 6
ccurve, 10
contaminate, 12
copyCalibrationCurve, 13

 D14C.F14C, 13
draw.ccurve, 14
draw.dates, 16

 F14C.age, 2, 19
 F14C.D14C, 20

 glue.ccurves, 21

 hpd, 21

 intcal, 22
 intcal.data, 23
 intcal.data.frames, 30
 intcal.read.data, 31
 intcal.write.data, 32

 l.calib, 32
 list.ccurves, 33

 mix.ccurves, 33

 new.ccdir, 35

 pMC.age, 3, 35
 point.estimates, 36

 rintcal, 37