Risk Parity Portfolios with riskParityPortfolio

Prof. Daniel P. Palomar
(Joint work with Zé Vinícius)
Hong Kong University of Science and Technology (HKUST)

R/Finance 2019
University of Illinois at Chicago (UIC), Chicago, IL, USA
17 May 2019
Markowitz portfolio

- Let us denote the returns of N assets at time t with the vector \mathbf{r}_t.
- Suppose that \mathbf{r}_t follows an i.i.d. distribution (not totally accurate but widely adopted) with mean μ and covariance matrix Σ.
- The portfolio vector \mathbf{w} denotes the normalized dollar weights of the N assets ($\mathbf{1}^T \mathbf{w} = 1$).
- Portfolio return is $r_{\text{portf}}^t = \mathbf{w}^T \mathbf{r}_t$.
- Markowitz proposed in his seminar 1952 paper1 to find a trade-off between the portfolio expected return $\mathbf{w}^T \mu$ and its risk measured by the variance $\mathbf{w}^T \Sigma \mathbf{w}$:

\[
\begin{align*}
\text{maximize} \quad & \mathbf{w}^T \mu - \lambda \mathbf{w}^T \Sigma \mathbf{w} \\
\text{subject to} \quad & \mathbf{w} \geq 0, \quad \mathbf{1}^T \mathbf{w} = 1,
\end{align*}
\]

where λ is a parameter that controls how risk-averse the investor is.

Drawbacks of Markowitz portfolio: Markowitz’s portfolio has been heavily critized for over half a century and has never been fully embraced by practitioners for many reasons:
- variance is not a good measure of risk,
- portfolio is highly sensitive to parameter estimation errors,
- only considers the risk as a whole and ignores the risk diversification.

Risk parity is an approach to portfolio management that focuses on allocation of risk rather than allocation of capital.

Some of its theoretical components were developed in the 1950s and 1960s but the **first risk parity fund, called the “All Weather” fund**, was pioneered by Bridgewater Associates LP in 1996.

Some portfolio managers have expressed skepticism but others point to its performance during the financial crisis of 2007-2008 as an indication of its potential success.
From “dollar” to risk diversification

Equally weighted portfolio (aka uniform portfolio) vs risk parity portfolio:

Portfolio allocation of EWP

Relative risk contribution of EWP

Portfolio allocation of RPP

Relative risk contribution of RPP
From Euler’s theorem, the volatility can be decomposed as

$$\sigma (w) = \sum_{i=1}^{N} RC_i$$

where RC_i is the risk contribution (RC) from the ith asset to the total risk $\sigma(w)$:

$$RC_i = \frac{w_i (\Sigma w)_i}{\sqrt{w^T \Sigma w}}.$$

The risk parity portfolio (RPP) attempts to “equalize” the risk contributions:

$$RC_i = \frac{1}{N} \sigma(w).$$

More generally, the risk budgeting portfolio (RBP) attempts to allocate the risk according to the risk profile determined by the weights b (with $1^T b = 1$ and $b \geq 0$):

$$RC_i = b_i \sigma(w).$$
1 **Naive diagonal formulation**: pretend that Σ is diagonal and simply use the volatilities $\sigma = \sqrt{\text{diag}(\Sigma)}$, obtaining:

$$w = \frac{\sigma^{-1}}{1^T \sigma^{-1}}.$$

2 **Vanilla convex formulation**: suppose we only have the constraints $1^T w = 1$ and $w \geq 0$, then after some change of variable the problem reduced to solving

$$\Sigma x = b/x.$$

3 **General nonconvex formulation** (there are many reformulations possible):

minimize $\sum_{i,j=1}^{N} \left(w_i (\Sigma w)_i - w_j (\Sigma w)_j \right)^2 - F(w)$

subject to $w \geq 0$, $1^T w = 1$, $w \in \mathcal{W}$.
Some R packages contain functions to compute the RPP, e.g., PortfolioAnalytics, FRAPO, cccp, and FinCovRegularization. But they are based on general-purpose solvers and may not be efficient.

riskParityPortfolio is the first package specifically devised for the computation of different versions of RPP in an efficient way: https://CRAN.R-project.org/package=riskParityPortfolio

Published on Christmas of 2018 and somehow was well-received by the community (600 downloads in 2 days).

Authors: Zé Vinícius and Daniel P. Palomar.
Using `riskParityPortfolio`

- Load Package:

```r
library(riskParityPortfolio)
?riskParityPortfolio  # to get help for the function
```

- The simplest use is for the vanilla RPP:

```r
rpp_vanilla <- riskParityPortfolio(Sigma)
names(rpp_vanilla)
```

```
R>> [1] "w"                   "risk_contribution"
```

```r
print(rpp_vanilla$w, digits = 2)
```

```
R>>  AAPL  AMD  ADI  ABBV  AEZS  A  APD  AA  CF
R>>  0.156 0.068 0.125 0.133 0.045 0.129 0.158 0.085 0.101
```
Using `riskParityPortfolio`

- Naive diagonal formulation:

```r
rpp_naive <- riskParityPortfolio(Sigma,
                                 formulation = "diag")
```

- Unified nonconvex formulation including expected return in objective and box constraints:

\[
\begin{align*}
\text{minimize} \quad & \sum_{i,j=1}^{N} \left(w_i (\Sigma w)_i - w_j (\Sigma w)_j \right)^2 - \lambda w^T \mu \\
\text{subject to} \quad & w \geq 0, \quad 1^T w = 1, \quad l \leq w \leq u.
\end{align*}
\]

```r
rpp_mu <- riskParityPortfolio(Sigma,
                              mu = mu, lmd_mu = 1e-3,
                              w_ub = 0.16)
```
Risk concentration terms

Many formulations included in the package:

\[R(\mathbf{w}) = \sum_{i,j=1}^{N} \left(w_i (\mathbf{\Sigma w})_i - w_j (\mathbf{\Sigma w})_j \right)^2 \]

\[R(\mathbf{w}) = \sum_{i=1}^{N} \left(w_i (\mathbf{\Sigma w})_i - \theta \right)^2 \]

\[R(\mathbf{w}) = \sum_{i=1}^{N} \left(\frac{w_i(\mathbf{\Sigma w})_i}{\mathbf{w}^T\mathbf{\Sigma w}} - b_i \right)^2 \]

\[R(\mathbf{w}) = \sum_{i,j=1}^{N} \left(\frac{w_i(\mathbf{\Sigma w})_i}{b_i} - \frac{w_j(\mathbf{\Sigma w})_j}{b_j} \right)^2 \]

\[R(\mathbf{w}) = \sum_{i=1}^{N} \left(w_i (\mathbf{\Sigma w})_i - b_i \mathbf{w}^T\mathbf{\Sigma w} \right)^2 \]

\[R(\mathbf{w}) = \sum_{i=1}^{N} \left(\frac{w_i(\mathbf{\Sigma w})_i}{\sqrt{\mathbf{w}^T\mathbf{\Sigma w}}} - b_i \sqrt{\mathbf{w}^T\mathbf{\Sigma w}} \right)^2 \]

\[R(\mathbf{w}) = \sum_{i=1}^{N} \left(\frac{w_i(\mathbf{\Sigma w})_i}{b_i} - \theta \right)^2 \]
Using `riskParityPortfolio`

Risk contribution

- Markowitz
- RPP (naive)
- RPP (vanilla)
- RPP + μ

stocks: AAPL, AMD, ADI, ABBV, AEZS, A, APD, AA, CF

D. Palomar (HKUST)
Using riskParityPortfolio

Illustration of the **expected return vs risk concentration** trade-off:
Using riskParityPortfolio

Illustration of the volatility vs risk concentration trade-off:
References

- Standard textbooks:

- Vanilla formulations:

- Unified formulation and advanced algorithms:
Thanks

For more information visit:

https://www.danielppalomar.com