Package ‘riskclustr’

October 14, 2022

Type Package

Title Functions to Study Etiologic Heterogeneity

Version 0.4.0

Description A collection of functions related to the study of etiologic heterogeneity both across disease subtypes and across individual disease markers. The included functions allow one to quantify the extent of etiologic heterogeneity in the context of a case-control study, and provide p-values to test for etiologic heterogeneity across individual risk factors. Begg CB, Zabor EC, Bernstein JL, Bernstein L, Press MF, Seshan VE (2013) <doi:10.1002/sim.5902>.

Depends R (>= 4.0)

License GPL-2

URL http://www.emilyzabor.com/riskclustr/,
https://github.com/zabore/riskclustr

BugReports https://github.com/zabore/riskclustr/issues

Encoding UTF-8

Imports mlogit, stringr, Matrix

Language en-US

LazyData true

RoxygenNote 7.1.0

VignetteBuilder knitr

Suggests testthat, covr, rmarkdown, dplyr, knitr, usethis, spelling

NeedsCompilation no

Author Emily C. Zabor [aut, cre]

Maintainer Emily C. Zabor <zabore2@ccf.org>

Repository CRAN

Date/Publication 2022-03-23 01:00:02 UTC
R topics documented:

- d ... 2
- dstar .. 3
- eh_test_marker 4
- eh_test_subtype 5
- optimal_kmeans_d 7
- posthoc_factor_test 8
- subtype_data 9

Index 11

d
Estimate the incremental explained risk variation in a case-control study

Description

d estimates the incremental explained risk variation across a set of pre-specified disease subtypes in a case-control study. This function takes the name of the disease subtype variable, the number of disease subtypes, a list of risk factors, and a wide dataset, and does the needed transformation on the dataset to get the correct format. Then the polytomous logistic regression model is fit using `mlogit`, and D is calculated based on the resulting risk predictions.

Usage

d(label, M, factors, data)

Arguments

- **label**
 the name of the subtype variable in the data. This should be a numeric variable with values 0 through M, where 0 indicates control subjects. Must be supplied in quotes, e.g. `label = "subtype"`. quotes.

- **M**
 is the number of subtypes. For M>=2.

- **factors**
 a list of the names of the binary or continuous risk factors. For binary risk factors the lowest level will be used as the reference level. e.g. `factors = list("age", "sex", "race")`.

- **data**
 the name of the dataframe that contains the relevant variables.

References

Examples

```r
d(
    label = "subtype",
    M = 4,
    factors = list("x1", "x2", "x3"),
    data = subtype_data
)
```

Description

`dsstar` estimates the incremental explained risk variation across a set of pre-specified disease subtypes in a case-only study. The highest frequency level of `label` is used as the reference level, for stability. This function takes the name of the disease subtype variable, the number of disease subtypes, a list of risk factors, and a wide case-only dataset, and does the needed transformation on the dataset to get the correct format. Then the polytomous logistic regression model is fit using `mlogit`, and D* is calculated based on the resulting risk predictions.

Usage

```r
dstar(label, M, factors, data)
```

Arguments

- **label**: the name of the subtype variable in the data. This should be a numeric variable with values 0 through M, where 0 indicates control subjects. Must be supplied in quotes, e.g. `label = "subtype"`. quotes.
- **M**: is the number of subtypes. For M>=2.
- **factors**: a list of the names of the binary or continuous risk factors. For binary risk factors the lowest level will be used as the reference level. e.g. `factors = list("age", "sex", "race")`.
- **data**: the name of the case-only dataframe that contains the relevant variables.

References

Examples

Exclude controls from data as this is a case-only calculation
dstar(
 label = "subtype",
 M = 4,
 factors = list("x1", "x2", "x3"),
 data = subtype_data[subtype_data$subtype > 0,]
)

Description

`eh_test_marker` takes a list of individual disease markers, a list of risk factors, a variable name denoting case versus control status, and a dataframe, and returns results related to the question of whether each risk factor differs across levels of the disease subtypes and the question of whether each risk factor differs across levels of each individual disease marker of which the disease subtypes are comprised. Input is a dataframe that contains the individual disease markers, the risk factors of interest, and an indicator of case or control status. The disease markers must be binary and must have levels 0 or 1 for cases. The disease markers should be left missing for control subjects. For categorical disease markers, a reference level should be selected and then indicator variables for each remaining level of the disease marker should be created. Risk factors can be either binary or continuous. For categorical risk factors, a reference level should be selected and then indicator variables for each remaining level of the risk factor should be created.

Usage

`eh_test_marker(markers, factors, case, data, digits = 2)`

Arguments

- **markers**: a list of the names of the binary disease markers. Each must have levels 0 or 1 for case subjects. This value will be missing for all control subjects. e.g. `markers = list("marker1", "marker2")`
- **factors**: a list of the names of the binary or continuous risk factors. For binary risk factors the lowest level will be used as the reference level. e.g. `factors = list("age", "sex", "race")`
- **case**: denotes the variable that contains each subject’s status as a case or control. This value should be 1 for cases and 0 for controls. Argument must be supplied in quotes, e.g. `case = "status"`.
- **data**: the name of the dataframe that contains the relevant variables.
- **digits**: the number of digits to round the odds ratios and associated confidence intervals, and the estimates and associated standard errors. Defaults to 2.
Value

Returns a list.

- **beta** is a matrix containing the raw estimates from the polytomous logistic regression model fit with `mlogit` with a row for each risk factor and a column for each disease subtype.
- **beta_se** is a matrix containing the raw standard errors from the polytomous logistic regression model fit with `mlogit` with a row for each risk factor and a column for each disease subtype.
- **eh_pval** is a vector of unformatted p-values for testing whether each risk factor differs across the levels of the disease subtype.
- **gamma** is a matrix containing the estimated disease marker parameters, obtained as linear combinations of the **beta** estimates, with a row for each risk factor and a column for each disease marker.
- **gamma_se** is a matrix containing the estimated disease marker standard errors, obtained based on a transformation of the **beta** standard errors, with a row for each risk factor and a column for each disease marker.
- **gamma_p** is a matrix of p-values for testing whether each risk factor differs across levels of each disease marker, with a row for each risk factor and a column for each disease marker.
- **or_ci_p** is a dataframe with the odds ratio (95% factor/subtype combination, as well as a column of formatted etiologic heterogeneity p-values.
- **beta_se_p** is a dataframe with the estimates (SE) for each risk factor/subtype combination, as well as a column of formatted etiologic heterogeneity p-values.
- **gamma_se_p** is a dataframe with disease marker estimates (SE) and their associated p-values.

Author(s)

Emily C Zabor <zabore@mskcc.org>

Examples

```r
# Run for two binary tumor markers, which will combine to form four subtypes
eh_test_marker(
  markers = list("marker1", "marker2"),
  factors = list("x1", "x2", "x3"),
  case = "case",
  data = subtype_data,
  digits = 2
)
```

eh_test_subtype

Test for etiologic heterogeneity of risk factors according to disease subtypes in a case-control study
Description

`eh_test_subtype` takes the name of the variable containing the pre-specified subtype labels, the number of subtypes, a list of risk factors, and the name of the dataframe and returns results related to the question of whether each risk factor differs across levels of the disease subtypes. Input is a dataframe that contains the risk factors of interest and a variable containing numeric class labels that is 0 for control subjects. Risk factors can be either binary or continuous. For categorical risk factors, a reference level should be selected and then indicator variables for each remaining level of the risk factor should be created. Categorical risk factors entered as is will be treated as ordinal. The multinomial logistic regression model is fit using `mlogit`.

Usage

```r
eh_test_subtype(label, M, factors, data, digits = 2)
```

Arguments

- `label` the name of the subtype variable in the data. This should be a numeric variable with values 0 through M, where 0 indicates control subjects. Must be supplied in quotes, e.g. `label = "subtype"`.
- `M` is the number of subtypes. For M>=2.
- `factors` a list of the names of the binary or continuous risk factors. For binary or categorical risk factors the lowest level will be used as the reference level. e.g. `factors = list("age", "sex", "race")`.
- `data` the name of the dataframe that contains the relevant variables.
- `digits` the number of digits to round the odds ratios and associated confidence intervals, and the estimates and associated standard errors. Defaults to 2.

Value

Returns a list.

- `beta` is a matrix containing the raw estimates from the polytomous logistic regression model fit with `mlogit` with a row for each risk factor and a column for each disease subtype.
- `beta_se` is a matrix containing the raw standard errors from the polytomous logistic regression model fit with `mlogit` with a row for each risk factor and a column for each disease subtype.
- `eh_pval` is a vector of unformatted p-values for testing whether each risk factor differs across the levels of the disease subtype.
- `or_ci_p` is a dataframe with the odds ratio (95\% factor/subtype combination, as well as a column of formatted etiologic heterogeneity p-values.
- `beta_se_p` is a dataframe with the estimates (SE) for each risk factor/subtype combination, as well as a column of formatted etiologic heterogeneity p-values.
- `var_covar` contains the variance-covariance matrix associated with the model estimates contained in `beta`.

Author(s)

Emily C Zabor <zabore@mskcc.org>
Examples

```r
eh_test_subtype(
  label = "subtype",
  M = 4,
  factors = list("x1", "x2", "x3"),
  data = subtype_data,
  digits = 2
)
```

optimal_kmeans_d
Obtain optimal D solution based on k-means clustering of disease marker data in a case-control study

Description

`optimal_kmeans_d` applies k-means clustering using the `kmeans` function with many random starts. The D value is then calculated for the cluster solution at each random start using the `d` function, and the cluster solution that maximizes D is returned, along with the corresponding value of D. In this way the optimally etiologically heterogeneous subtype solution can be identified from possibly high-dimensional disease marker data.

Usage

```r
optimal_kmeans_d(markers, M, factors, case, data, nstart = 100, seed = NULL)
```

Arguments

- **markers**: a vector of the names of the disease markers. These markers should be of a type that is suitable for use with `kmeans` clustering. All markers will be missing for control subjects. e.g. `markers = c("marker1", "marker2")`
- **M**: is the number of clusters to identify using `kmeans` clustering. For M>=2.
- **factors**: a list of the names of the binary or continuous risk factors. For binary risk factors the lowest level will be used as the reference level. e.g. `factors = list("age", "sex", "race")`
- **case**: denotes the variable that contains each subject’s status as a case or control. This value should be 1 for cases and 0 for controls. Argument must be supplied in quotes, e.g. `case = "status"`.
- **data**: the name of the dataframe that contains the relevant variables.
- **nstart**: the number of random starts to use with `kmeans` clustering. Defaults to 100.
- **seed**: an integer argument passed to `set.seed`. Default is NULL. Recommended to set in order to obtain reproducible results.
posthoc_factor_test

Post-hoc test to obtain overall p-value for a factor variable used in a eh_test_subtype fit.

Description

posthoc_factor_test takes a eh_test_subtype fit and returns an overall p-value for a specified factor variable.

Usage

posthoc_factor_test(fit, factor, nlevels)
subtype_data

Arguments

fit the resulting eh_test_subtype fit.
factor is the name of the factor variable of interest, supplied in quotes, e.g. factor = "race". Only supports a single factor.
nlevels is the number of levels the factor variable in factor has.

Value

Returns a list.
pval is a formatted p-value.
pval_raw is the raw, unformatted p-value.

Author(s)

Emily C Zabor <zabore@mskcc.org>

subtype_data Simulated subtype data

Description

A dataset containing 2000 patients: 1200 cases and 800 controls. There are four subtypes, and both numeric and character subtype labels. The subtypes are formed by cross-classification of two binary disease markers, disease marker 1 and disease marker 2. There are three risk factors, two continuous and one binary. One of the continuous risk factors and the binary risk factor are related to the disease subtypes. There are also 30 continuous tumor markers, 20 of which are related to the subtypes and 10 of which represent noise, which could be used in a clustering analysis.

Usage

subtype_data

Format

A data frame with 2000 rows–one row per patient

case Indicator of case control status, 1 for cases and 0 for controls
subtype Numeric subtype label, 0 for control subjects
subtype_name Character subtype label
marker1 Disease marker 1
marker2 Disease marker 2
x1 Continuous risk factor 1
x2 Continuous risk factor 2
x3 Binary risk factor
y1 Continuous tumor marker 1
y2 Continuous tumor marker 2
y3 Continuous tumor marker 3
y4 Continuous tumor marker 4
y5 Continuous tumor marker 5
y6 Continuous tumor marker 6
y7 Continuous tumor marker 7
y8 Continuous tumor marker 8
y9 Continuous tumor marker 9
y10 Continuous tumor marker 10
y11 Continuous tumor marker 11
y12 Continuous tumor marker 12
y13 Continuous tumor marker 13
y14 Continuous tumor marker 14
y15 Continuous tumor marker 15
y16 Continuous tumor marker 16
y17 Continuous tumor marker 17
y18 Continuous tumor marker 18
y19 Continuous tumor marker 19
y20 Continuous tumor marker 20
y21 Continuous tumor marker 21
y22 Continuous tumor marker 22
y23 Continuous tumor marker 23
y24 Continuous tumor marker 24
y25 Continuous tumor marker 25
y26 Continuous tumor marker 26
y27 Continuous tumor marker 27
y28 Continuous tumor marker 28
y29 Continuous tumor marker 29
y30 Continuous tumor marker 30
Index

* datasets
 subtype_data, 9

beta, 5

d, 2, 7
dstar, 3

eh_test_marker, 4
eh_test_subtype, 5

kmeans, 7

mlogit, 2, 3, 5, 6

optimal_kmeans_d, 7

posthoc_factor_test, 8

set.seed, 7

subtype_data, 9