Package ‘rlmDataDriven’

October 3, 2019

Type Package
Title Robust Regression with Data Driven Tuning Parameter
Version 0.4.0
Author You-Gan Wang, Benoit Liquet, Aurelien Callens and Na Wang.
Maintainer You-Gan Wang <you-gan.wang@qut.edu.au>
Imports stats, MASS, tseries
Description Data driven approach for robust regression estimation in homoscedastic and heteroscedastic context. See Wang et al. (2007), <doi:10.1198/106186007X180156> regarding homoscedastic framework.
License GPL (>= 2.0)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.0
NeedsCompilation no
Repository CRAN
Date/Publication 2019-10-03 09:10:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>R topic</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>DD-internal</td>
<td>2</td>
</tr>
<tr>
<td>plasma</td>
<td>2</td>
</tr>
<tr>
<td>rlmDD</td>
<td>2</td>
</tr>
<tr>
<td>rlmDD_het</td>
<td>4</td>
</tr>
<tr>
<td>whm</td>
<td>6</td>
</tr>
</tbody>
</table>

Index 9
DD-internal *Internal Functions*

Description
Internal functions not to be used by the user.

plasma

Description
The data are collected from 273 female patients.

Usage
plasma

Format
This data frame contains the following columns:
- y plasma beta-carotene
- calories calories in KJ
- dietary dietary beta-carotene

Source

rlmDD *Data driven robust methods*

Description
Robust estimation often relies on a dispersion function that is more slowly varying at large values than the squared function. However, the choice of tuning constant in dispersion function may impact the estimation efficiency to a great extent. For a given family of dispersion functions, we suggest obtaining the ‘best’ tuning constant from the data so that the asymptotic efficiency is maximized.

This library provides a robust linear regression with a tuning parameter being automatically chosen to provide the necessary resistance against outliers. The robust (loss) functions include the Huber, Tukey bisquare and the exponential loss.
Usage

rlmDD(yy, xx, beta0, betaR, method, plot)

Arguments

yy Vector representing the response variable
xx Design matrix of the covariates excluding the intercept in the first column
beta0 Initial parameter estimate using lm
betaR Robust estimate of beta with a fixed tuning constant using rlm
method Huber, Bisquare or Exponential
plot "Y" gives a plot: the efficiency factor versus a range of tuning parameter values.

Value

The function returns a list including

 esti Value of the robust estimate
 Std.Error Standard error of the robust estimate
 tunning Optimum tuning parameter
 R2 R-squared value

Author(s)

You-Gan Wang, Na Wang

References

with Data-Dependent Regularization Parameters and Autoregressive Temporal Correlations.
Environmental Modeling & Assessment, in press.

See Also

rlm function from package MASS

Examples

library(MASS)
data(stackloss)

LS <- lm(stack.loss ~ stack.x)
RB <- rlm(stack.loss ~ stack.x, psi = psi.huber, k = 1.345)
dd1 <- rlmDD(stack.loss, stack.x, LS$coef, RB$coef, method = "Huber", plot = "Y")

LS <- lm(stack.loss ~ stack.x)
RB <- rlm(stack.loss ~ stack.x, psi = psi.bisquare, c = 4.685)
DD2 <- rlmDD(stack.loss, stack.x, LS$coef, RB$coef, method = "Bisquare", plot = "Y")

LS <- lm(stack.loss ~ stack.x)
RB <- rlm(stack.loss ~ stack.x, psi = psi.huber, k = 1.345)
DD3 <- rlmDD(stack.loss, stack.x, LS$coef, RB$coef, method = "Exponential", plot = "Y")

Plasma dataset

data(plasma)
y <- plasma$y
x <- cbind(plasma$calories, plasma$dietary)

LS <- lm(y ~ x)
RB <- rlm(y ~ x, psi = psi.huber, k = 1.345)
DD.h <- rlmDD(y, x, LS$coef, RB$coef, method = "Huber", plot = "Y")

LS <- lm(y ~ x)
RB <- rlm(y ~ x, psi = psi.bisquare, c = 4.685)
DD.b <- rlmDD(y, x, LS$coef, RB$coef, method = "Bisquare", plot = "Y")

LS <- lm(y ~ x)
RB <- rlm(y ~ x, psi = psi.huber, k = 1.345)
DD.e <- rlmDD(y, x, LS$coef, RB$coef, method = "Exponential", plot = "Y")

rlmDD_het

Robust estimation for autoregressive models with heterogeneity

Description

Performs robust regression for autoregressive models with heterogeneity.

First, a M-estimation is performed on the data assuming that the variance is constant. The residuals of this model are used to robustly estimate the variance parameter. Then, a weighted M-estimation with variance as weight is used to update the regression parameters. These steps are repeated for different values of tuning parameter. The best tuning parameter is the one which minimizes the variance of the estimator.

Finally, lagged term are built and added to the regression model therefore accounting for temporal correlations. The loss function used is Huber's function.
Usage

rlmDD_het(yy, xx, var.function = c("power", "exponential"),
phi.par = TRUE, tuning.para = NULL, step = 0.1, n.lag = NULL,
print.summary = TRUE)

Arguments

- **yy**: Vector representing the response variable
- **xx**: Design matrix of the covariates (including the intercept)
- **var.function**: Assumed function for the variance. "power" function corresponds to $\sqrt{\text{Var}} = \sigma = \phi |x^T \beta|^\gamma$ and "exponential" to $\sqrt{\text{Var}} = \sigma = \phi e^{\gamma |x^T \beta|}$.
- **phi.par**: If TRUE, the function estimate the phi parameter. If FALSE, phi is assumed equal to 1.
- **tuning.para**: If NULL, the function will run the estimation procedure for a range of value between 0 and 3 and will select the tuning parameter that minimizes the variance of the estimates. The user can also indicate a value of tuning parameter: in this case the estimation procedure will be evaluated once with the selected value of the tuning parameter.
- **step**: Only works when tuning.para = NULL, indicates the increment of the tuning parameter sequence (between 0 and 3) tested by the function. It will determine the precision of the tuning parameter. Caution: a smaller value indicates a larger number of value tested, resulting in a longer computing time.
- **n.lag**: If NULL, a pAcf plot of the residuals will appear and you will have to indicate the number of lags the method has to include. The user can also give an integer corresponding to the number of lags desired.
- **print.summary**: If TRUE, prints a summary of the estimates.

Value

The function returns a list including

- **coefficients**: Value of the robust estimates
- **residuals**: Residuals of the model.
- **p_residuals**: Pearson residuals of the model.
- **r_residuals**: Robust pearson residuals of the model: $\psi(p_{residuals}, c)$

with ψ the derivative of the loss function and c the chosen tuning parameter.

- **fitted.values**: Fitted values obtained with the robust method
- **vcov**: Variance-covariance matrix of the estimates
- **summary**: Summary of the model including: values, standard errors and z-values of the estimates
- **model**: Design matrix of the model
- **tuningpara**: When tuning.para = NULL, list containing the optimal tuning parameter, all the values of tuning parameter tested and their associated variance obtained.
- **varpara**: Estimates of the variance parameters
Author(s)

Aurelien Callens, You-Gan Wang, Benoit Liquet

References

See Also

rlm function from package MASS

Examples

```r
library(tseries)
data(ice.river)
xx <- model.matrix(flow.vat ~ prec + temp, data = ice.river)
yy <- flow.jok

least_square <- lm(flow.vat ~ prec + temp, data = ice.river)
pacf(least_square$residuals)
qqnorm(least_square$residuals)
qqline(least_square$residuals, col = "red", lwd = 2)

#With choice of optimal tuning parameter and 2 lags.
#Note that if lag = NULL, a Pacf plot will appear to help you choose
#the number of lags, you will need to input this number in the console.
model_1 <- rlmDD_het(yy, xx, var.function = "exponential",
                     tuning.para = NULL, n.lag = 2)
pacf(model_1$p_residuals)
qqnorm(model_1$r_residuals)
qqline(model_1$r_residuals, col = "red", lwd = 2)

#For fixed number of lags and tuning parameter
model_2 <- rlmDD_het(yy, xx, var.function = "exponential",
                     tuning.para = 1.345, n.lag = 2)
```
whm

Description

This function performs a weighted M-estimation described by Carroll and Ruppert (1982) with the Huber loss function. First, a M-estimation is performed on the data assuming that the variance is constant. The residuals of this model are used to robustly estimate the variance parameter. Then, a weighted M-estimation with variance as weight is used to update the regression parameters. These steps are iterated until desired convergence.

Usage

whm(yy, xx, var.function = "power", tuning.para = 1.345, ite = 5)

Arguments

yy Vector representing the response variable
xx Design matrix of the covariates including the intercept in the first column
var.function Assumed function for the variance. "power" function corresponds to \(\sqrt{\text{Var}} = \phi |x^T \beta|^\gamma \) and "exponential" to \(\sqrt{\text{Var}} = \phi e^{\gamma |x^T \beta|} \).
tuning.para Value of the tuning parameter associated with the loss function.
tie Number of iterations for the estimation procedure.

Value

The function returns a list including

esti Value of the robust estimate
Std.Error Standard error of the robust estimate
tunning Optimum tuning parameter
R2 R-squared value

Author(s)

Aurelien Callens, You-Gan Wang, Benoit Liquet.

References

See Also

r1m function from package MASS
Examples

library(MASS)
data(stackloss)

LS <- lm(stack.loss ~ stack.x)
RB <- rlm(stack.loss ~ stack.x, psi = psi.huber, k = 1.345)

yy <- stack.loss
xx <- model.matrix(stack.loss ~ stack.x)

With power function as variance function
WHM_p <- whm(yy, xx, var.function = "power", tuning.para = 1.345)

With exponential function as variance function
WHM_e <- whm(yy, xx, var.function = "exponential", tuning.para = 1.345)
Index

*Topic datasets
 plasma, 2

*Topic regression
 rlmDD, 2
 rlmDD_het, 4
 whm, 6

chi (DD-internal), 2
create_lag (DD-internal), 2

DD-internal, 2
dpsi.Exp (DD-internal), 2
dpsi.Huber (DD-internal), 2
dpsi.Tukey (DD-internal), 2

eff (DD-internal), 2
ESL_O (DD-internal), 2

plasma, 2
psi.Exp (DD-internal), 2
psi.Huber (DD-internal), 2
psi.Tukey (DD-internal), 2

rho.b (DD-internal), 2
rho.e (DD-internal), 2
rho.h (DD-internal), 2
rlmDD, 2
rlmDD_het, 4

whm, 6